

(12) United States Patent Nemet

(10) Patent No.: US 9,400,952 B2 (45) Date of Patent: *Jul. 26, 2016

- (54) TAMPER-PROOF QUALITY MANAGEMENT BARCODE INDICATORS
- (71) Applicant: VARCODE LTD., Rosh Ha'ain (IL)
- (72) Inventor: Yaron Nemet, Kedumim (IL)
- (73) Assignee: Varcode Ltd., Rosh Ha'ayin (IL)
- (*) Notice: Subject to any disclaimer, the term of this

References Cited

U.S. PATENT DOCUMENTS

4,057,029 A 11/1977 Seiter 4,059,407 A 11/1977 Hochstrasser

(56)

CN

CN

(Continued)

FOREIGN PATENT DOCUMENTS

1720180 1/2006

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

> This patent is subject to a terminal disclaimer.

(21) Appl. No.: 14/823,758

(22) Filed: Aug. 11, 2015

(65) Prior Publication Data
 US 2016/0042260 A1 Feb. 11, 2016

Related U.S. Application Data

(63) Continuation of application No. 14/461,778, filed on Aug. 18, 2014, now Pat. No. 9,122,963, which is a continuation of application No. 13/657,185, filed on Oct. 22, 2012, now Pat. No. 8,807,422.

(51) **Int. Cl.**

1720100	1/2000
1914621	2/2007

(Continued) OTHER PUBLICATIONS

A European Search Report dated Apr. 6, 2011, which issued during the prosecution of European Patent Application No. 07827384.4. (Continued)

Primary Examiner — Christle I Marshall
(74) Attorney, Agent, or Firm — Fish & Rchardson P.C.

(57) **ABSTRACT**

A tamper-proof barcoded quality indicator operative to provide a machine-readable indication of exceedance of time and temperature thresholds following actuation thereof, including a first barcode including a first colorable area and being machine-readable before exceedance of the time and temperature thresholds, a second barcode including a second colorable area and not being machine-readable before exceedance of the time and temperature thresholds, a coloring agent located at a first location on the indicator, a coloring agent pathway operative to allow the coloring agent to move, at a rate which is at least partially a function of time, from the first location to the first and second colorable areas simultaneously for simultaneous coloring thereof upon exceedance of the time and temperature thresholds, thereby causing the first barcode to become unreadable and at the same time causing the second barcode to become machine-readable, and a tamper-proof actuator element operative to actuate the indicator.

G06K 19/06	(2006.01)
G01D 7/00	(2006.01)

(52) **U.S. Cl.**

7 Claims, 4 Drawing Sheets

US 9,400,952 B2 Page 2

(56)	Referen	ces Cited	7,587,217	B1	9/2009	Laakso et al.
			7,590,626	B2	9/2009	Li et al.
U.	S. PALENI	DOCUMENTS	7,702,680 7,747,427			Yih et al. Lee et al.
RE31,586 E	5/1984	Magnussen	7,813,916		10/2010	
4,674,065 A		Lange et al.	7,917,355 8,005,664			Wu et al. Hanumanthappa
5,053,339 A 5,084,143 A			8,091,776			Nemet et al.
5,085,802 A		Jalinski	8,196,821			Nemet et al.
5,146,405 A		Church et al.	8,271,266 8,341,520			Gallagher et al. Iakobashvili et al.
5,254,473 A 5,369,577 A		Patel Kadashevich et al.	8,365,070			Song et al.
5,485,372 A		Golding et al.	8,473,278		6/2013	Futagi et al.
5,591,952 A		Krichever et al.	8,500,014 8,528,808		8/2013 9/2013	Nemet et al. Nemet
5,600,119 A 5,617,488 A		Dvorkis et al. Hong et al.	8,540,156		9/2013	
5,634,195 A		Sawyer	8,579,193		11/2013	
5,659,771 A		Golding	8,626,786 8,807,422	_		Halcrow et al. Nemet G06
5,752,227 A 5,805,245 A		Lyberg Davis	0,007,422	D2	0/2014	
5,822,728 A		Applebaum et al.	8,950,664			Nemet et al.
5,828,991 A		Skiena et al.	8,960,534 8,967,467			Nemet et al. Nemet et al.
5,882,116 A 5,895,075 A		Backus Edwards	9,122,963			Nemet G06
5,899,973 A		Bandara et al.	2002/0012332			Tiedemann et al.
5,902,982 A		LT	2002/0032564 2002/0056756			Ehsani et al. Cameron et al.
5,907,839 A 5,956,739 A		Roth Golding et al.	2002/0030730		9/2002	
6,006,221 A		Liddy et al.	2002/0169595	A1		Agichtein et al.
6,009,400 A	12/1999	Blackman	2003/0187632 2003/0204569		10/2003	Menich Andrews et al.
6,036,092 A 6,085,206 A		Lappe Domini et al.	2003/0204309		11/2003	
6,098,034 A		Razin et al.	2003/0227392	A1	12/2003	Ebert et al.
6,154,722 A	11/2000	Bellegarda	2003/0233222			Soricut et al.
6,173,261 BI 6,190,610 BI		Arai et al. Goldsmith et al.	2004/0002849 2004/0018641		1/2004 1/2004	Goldsmith et al.
6,214,623 BI		Simons et al.	2004/0030540	A1	2/2004	Ovil et al.
6,272,242 BI		Saitoh et al.	2004/0093567 2004/0138869			Schabes et al.
6,314,400 BI		Klakow Tiedemann et al.	2004/0138809			Heinecke Quinlan et al.
6,366,759 BI		Burstein et al.	2004/0260543	A1	12/2004	Horowitz
6,424,983 BI		Schabes et al.	2005/0043940 2005/0044495		2/2005	Elder Lee et al.
6,456,972 BI 6,479,016 BI		Gladstein et al. Goldsmith et al.	2005/0044495			Kaufmann
6,495,368 BI			2005/0091030			Jessee et al.
6,544,925 BI		Prusik et al.	2005/0091088 2005/0108001			Peterson Aarskog
6,685,094 B2 6,751,584 B2		Cameron Bangalore	2005/0108001			Behbehani
6,758,397 B2			2005/0139686			Helmer et al.
6,920,420 B2			2005/0143971 2005/0162274			Burstein Shniberg et al.
6,982,640 B2 7,017,806 B2		Lindsay et al. Peterson	2005/0209844			Wu et al.
7,020,338 BI		Cumbee	2005/0257146			Ashcraft et al.
7,030,863 B2		Longe et al.	2006/0003297 2006/0032427			Wiig et al. Ishii et al.
7,053,777 B2 7,054,293 B2		Allen Tiedemann et al.	2006/0032427			Wu et al.
7,057,495 B2		Debord	2006/0057022			Williams et al.
RE39,226 E		11	2006/0074655 2006/0081711			Bejar et al. Zhao et al.
7,092,567 B2 RE39,266 E		Ma et al. Lohray	2006/0110714			Symmes
7,117,144 B2		Goodman et al.	2006/0129381		6/2006	
7,156,597 B2		Goldsmith et al.	2006/0247914 2006/0260958		11/2006	Brener et al. Brunner
7,165,019 B		Goldsmith et al. Lee et al.	2007/0067177			Martin et al.
7,166,345 B2		Myers et al.	2007/0094024			Kristensson et al.
7,184,950 B2			2007/0106937 2007/0141544			Cucerzan et al. Nakane
7,224,346 B2 7,262,792 B2		Shniberg et al.	2007/0238084			Maguire et al.
7,277,088 B2	2 10/2007	Robinson et al.	2007/0265831			Dinur et al.
7,295,965 B2		Haigh et al.	2007/0271089 2008/0059151		3/2008	Bates et al. Chen
7,295,968 B2 7,296,019 B1		Bietrix et al. Chandrasekar et al.	2008/0039131			Schabes et al.
7,340,388 B2	2 3/2008	Soricut	2008/0154600	A1	6/2008	Tian et al.
7,386,442 B2		Dehlinger et al.	2008/0167858			Christie et al.
7,457,808 B2 7,475,015 B2		Gaussier Epstein et al.	2008/0173712 2008/0189106			Nemet et al. Low et al.
7,558,725 B2		Greenwald et al.	2008/0189100			Gail et al.
7,562,811 B2	2 7/2009	Nemet et al.	2008/0208567			Brockett et al.
7,584,093 B2	2 9/2009	Potter et al.	2008/0208582	A1	8/2008	Gallino

8,540,156	B2	9/2013	Nemet		
8,579,193	B2	11/2013	Nemet		
8,626,786	B2	1/2014	Halcrow et al.		
8,807,422	B2 *	8/2014	Nemet	G06K	19/06046
					235/375
8,950,664	B2	2/2015	Nemet et al.		
8,960,534	B2	2/2015	Nemet et al.		
8,967,467	B2	3/2015	Nemet et al.		
9,122,963	B2 *	9/2015	Nemet	G06K	19/06040
002/0012332	A1	1/2002	Tiedemann et al.		
002/0032564	A1	3/2002	Ehsani et al.		
002/0056756	A1	5/2002	Cameron et al.		
002/0128821	A1	9/2002	Ehsani		
002/0169595	A1	11/2002	Agichtein et al.		
003/0187632	A1	10/2003	Menich		
003/0204569	A1	10/2003	Andrews et al.		
003/0210249	A1	11/2003	Simske		
003/0227392	A1	12/2003	Ebert et al.		
003/0233222	A1	12/2003	Soricut et al.		
004/0002849	A1	1/2004	Zhou		
004/0018641	A1	1/2004	Goldsmith et al.		
004/0030540	A1	2/2004	Ovil et al.		
04/0093567	A1	5/2004	Schabes et al.		
004/0138869	A1	7/2004	Heinecke		
004/0215514	A1	10/2004	Quinlan et al.		
04/0260543	A1	12/2004	Horowitz		

Page 3

(56)		Referen	ces Cited
	U.S.	PATENT	DOCUMENTS
2008/0249773	Al	10/2008	Bejar et al.
2008/0270897	Al	10/2008	Jawerth et al.
2009/0083028	Al	3/2009	Davtchev et al.
2009/0198671	A1	8/2009	Zhang
2009/0230182	A1	9/2009	Nemet et al.
2009/0302102	Al	12/2009	Nemet et al.
2009/0319257		12/2009	Blume et al.
2010/0020970			Liu et al.
2010/0050074			Nachmani et al.
2010/0219235			Nemet et al.
2010/0275118		_	Iakobashvili et al.
2010/0286979		11/2010	Zangvil et al.
2011/0006109		_	Nemet et al.
2011/0006115			Nemet et al.
2011/0093268			Gorin et al.
2011/0184720			Zangvil
2012/0104105			Nemet et al.
2012/0104106			Nemet et al.
2012/0145781			Nemet et al.
2012/0305637	A1	12/2012	Nemet et al.
2013/0024185	A1	1/2013	Parikh
2013/0138641	A1	5/2013	Korolev et al.
2013/0334301	A1	12/2013	Nemet et al.
2014/0001256	A1	1/2014	Nemet et al.
2014/0110486	A1	4/2014	Nemet
2014/0252096	A1	9/2014	Nemet et al.
2014/0353385	A1	12/2014	Nemet
2015/0053776	Al	2/2015	Nemet et al.
2015/0122880	Al	5/2015	Nemet et al.
2015/0193677	Al	7/2015	Nemet et al.
2015/0220877	A1	8/2015	Nemet et al.

WO	2009144701	12/2009
WO	WO 2009150641	12/2009
WO	2010013228	2/2010
WO	WO 2010134061	11/2010
WO	WO 2010134062	11/2010

OTHER PUBLICATIONS

A European Search Report dated Aug. 23, 2012, which issued during the prosecution of European Patent Application No. 08849330.9. A European Search Report dated Aug. 24, 2011, which issued during the prosecution of European Patent Application No. 0 773 6287. A Notice of Allowance dated Apr. 14, 2014, which issued during the prosecution of U.S. Appl. No. 13/657,185. A Notice of Allowance dated Apr. 26, 2013, which issued during the prosecution of U.S. Appl. No. 12/598,979. A Notice of Allowance dated Feb. 15, 2012, which issued during the prosecution of U.S. Appl. No. 12/471,798. A Notice of Allowance dated Jul. 11, 213, which issued during the prosecution of U.S. Appl. No. 13/321,477. A Notice of Allowance dated May 13, 2015, which issued during the prosecution of U.S. Appl. No. 14/461,778. A Notice of Allowance dated Sep. 9, 2011, which issued during the prosecution of U.S. Appl. No. 12/469,309. An English Translation of an Office Action dated Aug. 27, 2013 which issued during the prosecution of Japanese Patent Application No. 2010-507054. An English Translation of an Office Action dated Feb. 7, 2012, which issued during the prosecution of Japanese Patent Application No. JP2009-508663. An English Translation of an Office Action dated Feb. 21, 2013 which issued during the prosecution of Japanese Patent Application No. JP2009-508663. An English Translation of an Office Action dated Jan. 15, 2013 which issued during the prosecution of Japanese Patent Application No. JP2010-507054.

FOREIGN PATENT DOCUMENTS

CN	101365934	2/2009	
БD	036753	8/1000	

EP	936753	8/1999
$_{\rm JP}$	63-094383	4/1988
$_{\rm JP}$	63-118894	5/1988
JP	3-53281	3/1991
$_{\rm JP}$	5-6470 A	1/1993
$_{\rm JP}$	05-19695	1/1993
$_{\rm JP}$	5-67253	3/1993
JP	9-504858	11/1994
JP	2001-502794	2/2001
JP	2002-40012	2/2002
$_{ m JP}$	2002504684	2/2002
$_{\rm JP}$	2003-203210	7/2003
JP	2003525464	8/2003
JP	2004-184920	7/2004
$_{\mathrm{JP}}$	2005-518320	6/2005
JP	2006-18782	1/2006
$_{ m JP}$	2006-522933	10/2006
$_{\rm JP}$	2007-121017	5/2007
WO	9427144	11/1994
WO	9427155	11/1994
WO	WO 9711535	3/1997
WO	9814777	4/1998
WO	WO 9814777	4/1998
WO	WO 9835514	12/1998
WO	WO 9942822	8/1999
WO	WO 0148680	7/2001
WO	WO 0164430	9/2001
WO	WO 03060626	7/2003
WO	2004038535	5/2004
WO	WO 2004038353	5/2004
WO	WO 2004092697	10/2004
WO	2006086053	8/2006
WO	2007049792	5/2007
WO	2008022140	2/2008
WO	2009016631	2/2009
WO	WO 2007129316	4/2009
WO	WO 2008135962	4/2009
WO	WO 2009063464	5/2009
WO	WO 2009063465	5/2009

An English Translation of an Office Action dated Sep. 10, 2013 which issued during the prosecution of Japanese Patent Application No. 2011-513110.

An Extended European Search Report dated Feb. 11, 2013, which issued during the prosecution of European Application No. 08848845.

An Extended European Search Report dated Feb. 18, 2013, which issued during the prosecution of European Application No. 09762166.

An International Preliminary Report on Patentability dated Dec. 13, 2010, which issued during the prosecution of Applicant's PCT/ IL2009/000503.

An International Preliminary Report on Patentability dated Mar. 10, 2009, which issued during the prosecution of Applicant's PCTIL2007000547.

An International Preliminary Report on Patentability dated May 18, 2010, which issued during the prosecution of Applicant's PCT/ IL2008/001495.

An International Preliminary Report on Patentability dated May 18, 2010, which issued during the prosecution of Applicant's PCT/ IL2008/001494.

An International Preliminary Report on Patentability dated Nov. 10, 2009, which issued during the prosecution of Applicant's PCT/ IL2007/001411.

An International Preliminary Report on Patentability dated Nov. 22, 2011, which issued during the prosecution of Applicant's PCT/ IL2009/001167. An International Preliminary Report on Patentability dated Nov. 22, 2011, which issued during the prosecution of Applicant's PCT/ IL2010/000205. An International Search Report and a Written Opinion both dated Aug. 31, 2009, which issued during the prosecution of Applicant's PCT/IL2009/000503. An International Search Report and a Written Opinion both dated Apr. 5, 2010, which issued during the prosecution of Applicant's PCT/IL2009/001167.

US 9,400,952 B2 Page 4

(56) **References Cited**

OTHER PUBLICATIONS

An International Search Report and a Written Opinion both dated Jul. 17, 2008, which issued during the prosecution of Applicant's PCTIL2007000547.

An International Search Report and a Written Opinion both dated Jan. 9, 2009, which issued during the prosecution of Applicant's PCT/IL2007/001411.

An International Search Report and a Written Opinion both dated Jun. 3, 2009, which issued during the prosecution of Applicant's PCT/IL2008/001494.

An International Search Report and a Written Opinion both dated Jun. 8, 2010, which issued during the prosecution of Applicant's PCT/IL2010/000205. An International Search Report and a Written Opinion both dated Mar. 9, 2009, which issued during the prosecution of Applicant's PCT/IL2008/001495. An Office Action dated Mar. 6, 2015, which issued during the prosecution of U.S. Appl. No. 14/055,422.

An English Translation of an Office Action dated Dec. 24, 2013 which issued during the prosecution of Chinese Patent Application No. 200980160387.4.

An Office Action dated Jan. 16, 2013, which issued during the prosecution of U.S. Appl. No. 12/598,979.

An Office Action dated Mar. 20, 2012, which issued during the prosecution of U.S. Appl. No. 13/321,477.

An Office Action dated Aug. 14, 2015, which issued during the prosecution of U.S. Appl. No. 14/055,422.

An English Translation of an Office Action dated Feb. 26, 2013 which issued during the prosecution of Japanese Patent Application No. JP2009-508663.

An Office Action dated Apr. 19, 2011, which issued during the prosecution of U.S. Appl. No. 12/469,309.

An Office Action dated Apr. 25, 2012, which issued during the prosecution of U.S. Appl. No. 12/598,979.

An Office Action dated Dec. 19, 2012, which issued during the prosecution of U.S. Appl. No. 12/742,650.

An Office Action dated Jan. 21, 2015, which issued during the prosecution of U.S. Appl. No. 14/461,778.

An Office Action dated Jul. 12, 2013, which issued during the prosecution of European Patent Application No. 07 736 287.9.

An Office Action dated Jun. 20, 2008, which issued during the prosecution of U.S. Appl. No. 11/852,911.

An Office Action dated Mar. 9, 2012, which issued during the prosecution of U.S. Appl. No. 12/743,209.

An Office Action dated Mar. 15, 2013, which issued during the prosecution of U.S. Appl. No. 13/321,467.

An Office Action dated Mar. 20, 213, which issued during the prosecution of U.S. Appl. No. 13/321,477.

An Office Action dated May 3, 2011, which issued during the prosecution of U.S. Appl. No. 12/471,798. An Office Action dated Nov. 7, 2011, which issued during the prosecution of U.S. Appl. No. 12/598,979. An Office Action dated Nov. 7, 2012, which issued during the prosecution of U.S. Appl. No. 12/743,209. An Office Action dated Sep. 10, 2013, which issued during the prosecution of U.S. Appl. No. 13/657,185. An Office Action dated Sep. 25, 2014, which issued during the prosecution of U.S. Appl. No. 14/461,778. An Office Action together with the English translation dated Jun. 25, 2013 which issued during the prosecution of Japanese Patent Application No. 2012-511406. An Office Action together with the English translation dated Oct. 25, 2012 which issued during the prosecution of Israel Patent Application No. 201958.

An Office Action dated Oct. 28, 2013, which issued during the prosecution of U.S. Appl. No. 14/017,545.

European Search Report dated Aug. 18, 2011, which issued during the prosecution of European Patent Application No. 0 773 6287.

A Notice of Allowance dated Apr. 2, 2013, which issued during the prosecution of U.S. Appl. No. 12/743,209.

An English Translation of an Office Action dated May 22, 2015 which issued during the prosecution of Chinese Patent Application No. 200980160387.4.

An Examiner Interview Summary Report dated Nov. 7, 2008, which issued during the prosecution of U.S. Appl. No. 11/852,911.

A Notice of Allowance dated Feb. 25, 2009, which issued during the prosecution of U.S. Appl. No. 11/852,911.

A Notice of Allowance dated May 16, 2013, which issued during the prosecution of U.S. Appl. No. 12/742,650.

An Office Action dated Sep. 18, 2014, which issued during the prosecution of U.S. Appl. No. 14/143,827.

A Notice of Allowance dated Oct. 15, 2014, which issued during the prosecution of U.S. Appl. No. 14/017,545.

A Notice of Allowance dated Apr. 17, 2009, which issued during the prosecution of U.S. Appl. No. 11/852,911.

An Office Action dated Sep. 9, 2011, which issued during the prosecution of U.S. Appl. No. 12/471,798.

U.S. Appl. No. 60/746,646, filed May 7, 2006.

U.S. Appl. No. 60/804,072, filed Jun. 6, 2006.

U.S. Appl. No. 61/131,644, filed Jun. 10, 2008.

U.S. Appl. No. 61/231,799, filed Aug. 6, 2009.

An Office Action dated Nov. 4, 2013, which issued during the prosecution of U.S. Appl. No. 13/323,906.

A Notice of Allowance dated Nov. 18, 2014, which issued during the prosecution of U.S. Appl. No. 13/323,906.

A Notice of Allowance dated Apr. 23, 2014, which issued during the prosecution of U.S. Appl. No. 13/323,906. A Notice of Allowance dated Apr. 25, 2014, which issued during the An Office Action dated Oct. 12, 2012, which issued during the prosecution of U.S. Appl. No. 12/669,175.

An Office Action dated Aug. 5, 2013, which issued during the prosecution of U.S. Appl. No. 12/669,175.

An Office Action dated Feb. 5, 2013, which issued during the prosecution of U.S. Appl. No. 12/669,175.

An Office Action dated Mar. 7, 2014, which issued during the prosecution of U.S. Appl. No. 12/669,175.

A Notice of Allowance dated Aug. 4, 2014, which issued during the prosecution of U.S. Appl. No. 12/669,175.

An English Translation of an Office Action dated Apr. 22, 2014 which issued during the prosecution of Israeli Patent Application No. 205687.

An English Translation of an Office Action dated Oct. 27, 2014 which issued during the prosecution of Israeli Patent Application No. 209901.

An Office Action dated Jul. 1, 2014, which issued during the prosecution of U.S. Appl. No. 13/576,330.

An English Translation of an Office Action dated Jun. 13, 2014 which issued during the prosecution of Chinese Patent Application No. 200880101405.7.

Letter submitted on Jul. 17, 2009 in U.S. Appl. No. 11/852,911.

An Office Action dated May 9, 2013, which issued during the prosecution of U.S. Appl. No. 12/937,618.

prosecution of U.S. Appl. No. 13/490,705.

A Notice of Allowance dated Nov. 7, 2014, which issued during the prosecution of U.S. Appl. No. 13/490,705.

An English translation of an Office Action dated Feb. 3, 2014 which issued during the prosecution of Japanese Patent Application No. 2012-511407.

An English translation of an Office Action dated Aug. 26, 2014 which issued during the prosecution of Japanese Patent Application No. 2012-511407.

An English Translation of an Office Action dated Jan. 25, 2013 which issued during the prosecution of Chinese Patent Application No. 200880101405.7.

An English Translation of an Office Action dated Apr. 28, 2012 which issued during the prosecution of Chinese Patent Application No. 200880101405.7.

A Notice of Allowance dated Jun. 27, 2014, which issued during the prosecution of U.S. Appl. No. 14/017,545. A Supplementary European Search Report dated Jul. 5, 2012, which

issued during the prosecution of European Patent Application No. 08789727.

US 9,400,952 B2 Page 5

(56) **References Cited**

OTHER PUBLICATIONS

An English Translation of an Office Action dated Jun. 23, 2011 which issued during the prosecution of Chinese Patent Application No. 200880101405.7.

An International Search Report and a Written Opinion both dated May 25, 2011, which issued during the prosecution of Applicant's PCT/IL2011/00088.

An International Search Report dated May 11, 2009, which issued during the prosecution of Applicant's PCT/IL2009/00130.

An International Search Report dated Jun. 26, 2009, which issued

An English Translation of an Office Action dated Nov. 4, 2014 which issued during the prosecution of Chinese Patent Application No. 201080030956.6.

An English Translation of an Office Action dated Apr. 19, 2015 which issued during the prosecution of Israeli Patent Application No. 216396.

An English Translation of an Office Action dated Nov. 15, 2014 which issued during the prosecution of Chinese Patent Application No. 200980160387.4.

An English Translation of an Office Action dated Jan. 6, 2014 which issued during the prosecution of Chinese Patent Application No. 201080030956.6.

An English translation of an Office Action dated Jul. 28, 2015 which issued during the prosecution of Japanese Patent Application No. 2014-125707.

during the prosecution of Applicant's PCT/IL2009/00317.

An International Preliminary Examination Report dated Oct. 19, 2010, which issued during the prosecution of Applicant's PCT/IL2009/00317.

Bick, E., "A Constraint Grammar Based Spellchecker for Danish with a Special Focus on Dyslexics" SKY Journal of Linguistics, vol. 19:2006 (ISSN 1796-279X), pp. 387-396 (retrieved Jan. 12, 2009 from the internet). <URL http://www.ling.helsinki.fi/sky/julkaisut/SKY2006_1/1.6.1.%20BICK.pdf>.

An International Search Report and Written Opinion both dated Feb. 3, 2009 which issued during the prosecution of Applicant's PCT/IL08/01051.

An Office Action dated Jan. 10, 2014, which issued during the prosecution of European Patent Application No. 08848845.

An Office Action dated Jun. 5, 2014, which issued during the prosecution of U.S. Appl. No. 14/017,545.

A Supplementary European Search Report dated Apr. 13, 2011, which issued during the prosecution of European Patent Application No. 07827384.

An Office Action dated Feb. 11, 2015, which issued during the prosecution of U.S. Appl. No. 13/958,893.

An English Translation of an Office Action dated Feb. 18, 2014 which issued during the prosecution of Japanese Patent Application No. JP2009-508663. U.S. Appl. No. 60/963,956, filed May 7, 2006. U.S. Appl. No. 60/959,120, filed Jun. 6, 2006. An Office Action dated May 29, 2015, which issued during the prosecution of U.S. Appl. No. 13/958,893.

An Office Action dated Jul. 28, 2015, which issued during the prosecution of U.S. Appl. No. 14/595,412.

U.S. Appl. No. 62/163,193, filed May 18, 2015.

U.S. Appl. No. 62/189,367, filed Jul. 7, 2015.

An English translation of an Office Action dated Aug. 27, 2015 which issued during the prosecution of Japanese Patent Application No. 2014-218223.

An English Translation of an Office Action dated Dec. 31, 2015 which issued during the prosecution of Israeli Patent Application No. 209901.

An English Translation of an Office Action dated Apr. 20, 2015 which issued during the prosecution of Israeli Patent Application No. 216397.

A Supplementary European Search Report dated Sep. 16, 2015, which issued during the prosecution of European Patent Application No. 10777451.5.

European Search Report dated Sep. 16, 2015, which issued during the prosecution of European Patent Application No. 09844849.

A Notice of Allowance dated Dec. 8, 2015, which issued during the prosecution of U.S. Appl. No. 14/055,422.

An Office Action dated Nov. 19, 2013, which issued during the prosecution of European Application No. 07827384.4.

* cited by examiner

U.S. Patent US 9,400,952 B2 Jul. 26, 2016 Sheet 1 of 4

100

pUl

U.S. Patent Jul. 26, 2016 Sheet 3 of 4 US 9,400,952 B2

U.S. Patent Jul. 26, 2016 Sheet 4 of 4 US 9,400,952 B2

1

TAMPER-PROOF QUALITY MANAGEMENT BARCODE INDICATORS

REFERENCE TO RELATED APPLICATIONS

Reference is made to the following patent and patent application, owned by assignee, the disclosures of which are hereby incorporated by reference:

U.S. Pat. Nos. 7,562,811 and 8,091,776; and

U.S. Published Patent Application Nos.: 2009/0230182; ¹⁰ 2010/0219235; 2011/0006109 and 2011/0006115; and

U.S. patent application Ser. Nos. 13/321,467; 13/321,477 and 13/323,906.

2

Preferably, the quality indicator also includes a release layer which is adhered to an adhesive back surface of the quality indicator. Preferably, removal of the release layer is operative to expose the adhesive back surface which is operable for adhering the quality indicator to a product for which quality is to be monitored. Preferably, the release layer includes a release tab operable for enabling release of the release layer from the adhesive back surface.

There is also provided in accordance with another preferred embodiment of the present invention a barcoded quality indicator operative to provide a machine-readable indication of exceedance of at least one time and temperature threshold following actuation thereof, the indicator including $_{15}$ a first barcode including at least one first colorable area, the first barcode being machine-readable before exceedance of the at least one time and temperature threshold, at least a second barcode including at least one second colorable area, the second barcode not being machine-readable before 20 exceedance of the at least one time and temperature threshold, a coloring agent located at a first location on the indicator, a coloring agent pathway operative, following actuation of said quality indicator, to allow the coloring agent to move, at a rate which is at least partially a function of time, from the first 25 location to the first and second colorable areas simultaneously for simultaneous coloring thereof upon exceedance of the time and temperature threshold, thereby causing the first barcode to become unreadable and at the same time causing the second barcode to become machine-readable, an ³⁰ actuator element operative to actuate the quality indicator upon removal thereof from said quality indicator, and a sealing element operative to seal the coloring agent pathway subsequent to removal of the actuator element. Preferably, the actuator element is disposed between the coloring agent and the coloring agent pathway prior to actuation of the quality indicator, thereby preventing passage of the coloring agent to the coloring agent pathway. Preferably, the actuator element includes a pullable actuator tab which protrudes from the quality indicator prior to actuation of the barcoded quality indicator. Preferably, the actuation of the quality indicator includes irreversibly removing the actuator element from the quality indicator, thereby irreversibly enabling passage of the coloring agent to the coloring agent pathway. Preferably, the quality indicator also includes a release layer which is adhered to an adhesive back surface of the quality indicator. Preferably, removal of the release layer is operative to expose the adhesive back surface which is operable for adhering the quality indicator to a product for which quality is to be monitored. Preferably, the release layer includes a release tab operable for enabling release of the release layer from the adhesive back surface. Preferably, the sealing element includes a sealing tab operable for foldable sealing of the coloring agent pathway. Preferably, the sealing tab is operable for selectable adherence to the adhesive back surface, thereby sealing the coloring agent pathway.

FIELD OF THE INVENTION

The present invention relates to tamper-proof quality management barcode indicators.

BACKGROUND OF THE INVENTION

The following publications are believed to represent the current state of the art:

U.S. Pat. Nos. 5,805,245; 6,009,400; 6,685,094; 6,758, 397; 7,562,811; 8,091,776 and RE 39,266; and

U.S. Published Patent Application Nos.: 2009/0230182, 2010/0219235, 2011/0006109 and 2011/0006115.

SUMMARY OF THE INVENTION

The present invention seeks to provide tamper-proof quality management barcode indicators.

There is thus provided in accordance with a preferred embodiment of the present invention a tamper-proof barcoded quality indicator operative to provide a machine-readable indication of exceedance of at least one time and temperature threshold following actuation thereof, the indicator including a first barcode including at least one first colorable area, the first barcode being machine-readable before exceedance of the at least one time and temperature threshold, at 40 least a second barcode including at least one second colorable area, the second barcode not being machine-readable before exceedance of the at least one time and temperature threshold, a coloring agent located at a first location on the indicator, a coloring agent pathway operative, following actuation of said 45 quality indicator, to allow the coloring agent to move, at a rate which is at least partially a function of time, from the first location to the first and second colorable areas simultaneously for simultaneous coloring thereof upon exceedance of the time and temperature threshold, thereby causing the 50 first barcode to become unreadable and at the same time causing the second barcode to become machine-readable, and a tamper-proof actuator element operative to actuate the quality indicator upon removal thereof from said quality indicator. Preferably, the tamper-proof actuator element is disposed 55 between the coloring agent and the coloring agent pathway prior to actuation of the quality indicator, thereby preventing passage of the coloring agent to the coloring agent pathway. Preferably, the tamper-proof actuator element is formed of a thin flexible material. Preferably, the tamper-proof actuator 60 element includes a pullable actuator tab which protrudes from the quality indicator prior to actuation of the tamper-proof barcoded quality indicator. Preferably, the actuation of the quality indicator includes irreversibly removing the tamperproof actuator element from the quality indicator, thereby 65 irreversibly enabling passage of the coloring agent to the coloring agent pathway.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from the following detailed description, taken in conjunction with the drawings in which:

FIG. 1 is a simplified illustration of the structure of a tamper-proof barcoded quality indicator, constructed and operative in accordance with a preferred embodiment of the present invention;

3

FIG. **2** is a simplified illustration of the assembled tamperproof barcoded quality indicator of FIG. **1**;

FIGS. **3**A, **3**B and **3**C are simplified pictorial illustrations of steps in the actuation of the tamper-proof barcoded quality indicator of FIGS. **1** and **2**;

FIG. 4 is a simplified illustration of the structure of a barcoded quality indicator, constructed and operative in accordance with another preferred embodiment of the present invention;

FIG. **5** is a simplified illustration of the assembled barcoded quality indicator of FIG. **4**; and

FIGS. **6**A, **6**B, **6**C, **6**D and **6**E are simplified pictorial illustrations of steps in the actuation of the barcoded quality indicator of FIGS. **4** and **5**.

4

coloring agents from coloring element **132** to coloring agent pathway **120** when quality indicator **100** in a pre-actuated state.

A release layer **134** is preferably adhered to an adhesive 5 back surface **136** of back layer **130**. Removal of release layer is operative to expose adhesive back surface **136** which is operable for adhering quality indicator **100** to a product for which quality is to be monitored. Release layer **140** preferably includes a release tab **138** operable for easy release of release layer **140** from back surface **142**.

FIG. 2 illustrates tamper-proof barcoded quality indicator 100 in an assembled, pre-actuated state. As shown particularly in FIG. 2, an actuator tab 140 of tamper-proof actuator pull strip 122 preferably protrudes from quality indicator 100, 15 between coloring agent pathway **120** and back layer **130**. Reference is now made to FIGS. **3**A, **3**B and **3**C, which are simplified pictorial illustrations of steps in the actuation of the tamper-proof barcoded quality indicator of FIGS. 1 & 2. As shown in FIGS. **3A-3**C, after affixing tamper-proof barcoded quality indicator 100 to a product 190, indicator 100 is actuated by pulling on actuator tab 140 of tamper-proof actuator pull strip 122 and removing tamper-proof actuator pull strip 122 from between coloring agent pathway 120 and back layer **130**. It is appreciated that removal of tamper-proof actuator ²⁵ pull strip **122** from between coloring agent pathway **120** and back layer 130 allows the passage of coloring agents contained in coloring element 132 to coloring agent pathway 120, thereby actuating proof barcoded quality indicator 100. It is appreciated that tamper-proof actuator pull strip 122 is formed of a flexible material, such as a thin paper. Therefore, 30 as shown in particular in FIG. 3C, it is a particular feature of this embodiment of the present invention that once removed from between coloring agent pathway 120 and back layer 130, tamper-proof actuator pull strip 122 cannot be re-in-35 serted between coloring agent pathway 120 and back layer

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Reference is now made to FIG. 1, which is a simplified 20 illustration of the structure of a tamper-proof barcoded quality indicator, constructed and operative in accordance with a preferred embodiment of the present invention, and to FIG. 2, which is a simplified illustration of the assembled tamper-proof barcoded quality indicator of FIG. 1.

The tamper-proof barcoded quality indicator of FIGS. 1 & 2 is preferably operative to provide a machine-readable indication of exceedance of at least one time and temperature threshold following actuation thereof, and includes a first barcode including at least one first colorable area, the first barcode being machine-readable before exceedance of the at least one time and temperature threshold and at least a second barcode including at least one second colorable area, the second barcode not being machine-readable before exceedance of the at least one time and temperature threshold. Preferably, the indicator also includes a coloring agent located at a first location on the indicator and a coloring agent pathway operative to allow the coloring agent to move, at a rate which is at least partially a function of time, from the first location to the first and second colorable areas simultaneously for simultaneous coloring thereof upon exceedance of the time and temperature threshold, thereby causing the first barcode to become unreadable and at the same time causing the second barcode to become machine-readable.

A system and method for quality management which uti- 45 lizes the barcoded quality indicator of FIGS. **1** & **2** is clearly described, inter alia, in U.S. Pat. No. 8,091,776 of the applicant, which is incorporated herein by reference.

It is a particular feature of this embodiment of the present invention that the tamper-proof barcoded quality indicator of 50 FIG. 1 also includes a tamper-proof actuator element operative to prevent passage of the coloring agent to the coloring agent pathway prior to removal thereof, and to irreversibly enable passage of the coloring agent to the coloring agent pathway following removal thereof. 55

As shown in FIGS. 1 & 2, tamper-proof barcoded quality indicator 100 preferably includes a barcode defining layer 102 having a multiplicity of barcodes 110 printed thereupon. Barcode defining layer 102 is preferably formed of a transparent substrate. 60 A coloring agent pathway 120 is preferably disposed behind barcode defining layer 102. A tamper-proof actuator pull strip 122 is preferably disposed between coloring agent pathway 120 and a back layer 130 having a coloring element 132 mounted thereupon, which coloring element 132 preferably contains coloring agents. Tamper-proof actuator pull strip 122 preferably prevents the passage therethrough of

130 due to the flexible nature of tamper-proof actuator pull strip 122, thereby preventing indicator 100 from returning to a pre-actuated state.

Reference is now made to FIG. **4**, which is a simplified illustration of the structure of a barcoded quality indicator, constructed and operative in accordance with another preferred embodiment of the present invention, and to FIG. **5**, which is a simplified illustration of the assembled barcoded quality indicator of FIG. **4**.

The barcoded quality indicator of FIGS. **4** & **5** is preferably operative to provide a machine-readable indication of exceedance of at least one time and temperature threshold following actuation thereof, and includes a first barcode including at least one first colorable area, the first barcode being machine-readable before exceedance of the at least one time and temperature threshold and at least a second barcode including at least one second colorable area, the second barcode not being machine-readable before exceedance of the at least one time and temperature threshold.

Preferably, the indicator also includes a coloring agent located at a first location on the indicator and a coloring agent pathway operative to allow the coloring agent to move, at a rate which is at least partially a function of time, from the first location to the first and second colorable areas simultaneous location to the first and second colorable areas simultaneous of the time and temperature threshold, thereby causing the first barcode to become unreadable and at the same time causing the second barcode to become machine-readable. A system and method for quality management which utilizes the barcoded quality indicator of FIGS. 4 & 5 is clearly described, inter alia, in U.S. Pat. No. 8,091,776 of the applicant, which is incorporated herein by reference.

5

Preferably, the barcoded quality indicator of FIGS. 4 and 5 also includes an actuator element operative to prevent passage of the coloring agent to the coloring agent pathway prior to removal thereof, and to irreversibly enable passage of the coloring agent to the coloring agent pathway following ⁵ removal thereof.

It is a particular feature of this embodiment of the present invention that the barcoded quality indicator of FIGS. 4 and 5 also includes a sealing element operative to seal the coloring -10 agent pathway subsequent to removal of the actuator element. As shown in FIGS. 4 & 5, barcoded quality indicator 200 preferably includes a barcode defining layer 202 having a multiplicity of barcodes 210 printed thereupon. Barcode defining layer **202** is preferably formed of a transparent substrate, and is preferably formed with a foldable sealing tab 212. A coloring agent pathway 220 is preferably disposed behind barcode defining layer 202. An actuator pull strip 222 is preferably disposed between coloring agent pathway **220** ₂₀ and a back layer 230 having a coloring element 232 mounted thereupon, which coloring element 232 preferably contains coloring agents. Actuator pull strip 222 preferably prevents the passage therethrough of coloring agents from coloring element 232 to coloring agent pathway 220 when quality 25 indicator **200** in a pre-actuated state. A release layer 234 is preferably adhered to an adhesive back surface 236 of back layer 230. Removal of release layer is operative to expose adhesive back surface 236 which is operable for adhering quality indicator 200 to a product for 30 which quality is to be monitored. Release layer 234 preferably includes a release tab 238 operable for easy release of release layer 234 from back surface 236. FIG. 5 illustrates barcoded quality indicator 200 in an assembled, pre-actuated state. As shown particularly in FIG. 35 5, an actuator tab 240 of actuator pull strip 222 preferably protrudes from quality indicator 200, between coloring agent pathway 220 and back layer 230. Reference is now made to FIGS. 6A, 6B, 6C, 6D and 6E, which are simplified pictorial illustrations of steps in the 40 actuation of the barcoded quality indicator of FIGS. 4 and 5. As shown in FIGS. 6A & 6B, indicator 200 is actuated by pulling on actuator tab 240 of actuator pull strip 222 and removing actuator pull strip 222 from between coloring agent pathway 220 and back layer 230. It is appreciated that 45 removal of actuator pull strip 222 from between coloring agent pathway 220 and back layer 230 allows the passage of coloring agents contained in coloring element 232 to coloring agent pathway 220, thereby actuating proof barcoded quality indicator **200**. It is also appreciated that removal of actuator 50 pull strip 222 from between coloring agent pathway 220 and back layer 230 is operative to expose an open slit 250 formed between coloring agent pathway 220 and back layer 230. Thereafter, as shown in FIG. 6C, release layer 234 is removed from adhesive back surface 236, thereby exposing adhesive back surface 236 which is operable for adhering quality indicator 200 to a pallet of produce 260 for which quality is to be monitored. Thereafter, as shown in FIG. 6D, slit 250 is sealed by folding foldable sealing tab 212 over slit 250 and adhering tab 212 to adhesive back surface 236. It is a particular feature of this embodiment of the present invention that sealing of slit 250 by folding sealing tab 212 over slit 250 onto adhesive back surface 236 is operative to prevent environmental elements, such as moisture, from entering slit 250. It is appreciated that entry of moisture into 65 slit 250 may damage, for example, any one of barcode defining layer 202, barcodes 210, and coloring agents contained in

6

coloring element 232 or located in coloring agent pathway
220, thereby rendering quality indicator 200 inaccurate.
As shown in FIG. 6E, after sealing of slit 250, indicator 200
is adhered to pallet 260.

It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of various features described hereinabove and variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing, which are not in the prior art.

The invention claimed is:

1. A barcoded quality indicator operative to provide a machine-readable indication of exceedance of at least one threshold following actuation thereof, said indicator comprising:

- a first barcode including at least one first colorable area, said first barcode being machine-readable before exceedance of said at least one threshold;
- at least a second barcode including at least one second colorable area, said second barcode not being machinereadable before exceedance of said at least one threshold;
- a coloring agent located at a first location on said indicator; a coloring agent pathway operative, following actuation of said quality indicator, to allow said coloring agent to move from said first location to said first and second colorable areas simultaneously for simultaneous coloring thereof upon exceedance of said threshold, thereby causing said first barcode to become unreadable and at the same time causing said second barcode to become

machine-readable;

- an actuator element operative to actuate said quality indicator upon removal thereof from said quality indicator; and
- a sealing element operative to seal said coloring agent pathway subsequent to removal of said actuator element, said sealing element comprising a foldable sealing tab operative to prevent damage to said barcoded quality indicator.
- 2. A barcoded quality indicator according to claim 1 and wherein said actuator element is disposed between said coloring agent and said coloring agent pathway prior to actuation of said quality indicator, thereby preventing passage of said coloring agent to said coloring agent pathway.

3. A barcoded quality indicator according to claim **1** and wherein said actuator element comprises a pullable actuator tab which protrudes from said quality indicator prior to actuation of said barcoded quality indicator.

4. A barcoded quality indicator according to claim 1 and
55 wherein said actuation of said quality indicator comprises irreversibly removing said actuator element from said quality indicator, thereby irreversibly enabling passage of said coloring agent to said coloring agent pathway.
5. A barcoded quality indicator according to claim 1 and
60 wherein said quality indicator also comprises a release layer which is adhered to an adhesive back surface of said quality

indicator.
6. A barcoded quality indicator according to claim 5 and wherein removal of said release layer is operative to expose said adhesive back surface which is operable for adhering said quality indicator to a product for which quality is to be monitored.

5

8

7

7. A barcoded quality indicator according to claim 5 and wherein said release layer comprises a release tab operable for enabling release of said release layer from said adhesive back surface.

* * * * *