US009396047B2
12 United States Patent (10) Patent No.: US 9.396,047 B2
Nightingale et al. 45) Date of Patent: Jul. 19, 2016

(54) OPERATING SYSTEM DISTRIBUTED OVER (56) References Cited

HETEROGENEOUS PLATFORMS
U.S. PATENT DOCUMENTS

(71) Applicant: Microsoft Corporation, Redmond, WA

(US) 6,598,097 B1* 7/2003 Danielsetal. 710/22
6,732,153 Bl 5/2004 Jakobson et al.
6,961,806 BI 11/2005 Agesen et al.
(72) Inventors: Edmund B. Nightingale, Redmond, WA 7,020,814 B2 3/2006 Ryle et al.
(US); Orion T. Hodson, Cambridge 7,149,678 B2 12/2006 Gurevich et al.
Egg))j Galen C. Hunt, Bellevue, WA (Continued)

_ OTHER PUBLICATIONS
(73) Assignee: Microsoft Technology Licensing, LLC,

Redmond, WA (US) Hunt, et al., “Singularity: Rethinking the Software Stack,” accessible

at <<http://documents.scribd.com/docs/1gl87186uilcsycyeh3e.
(*) Notice: Subject to any disclaimer, the term of this pdf>>, 2007, 13 pages.

patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/306,209 Primary Examiner — luan Dao

(22) Filed: Jun. 16, 2014 (74) Attorney, Agent, or Firm — Alin Corie; Judy Yee;
Micky Minhas
(65) Prior Publication Data
US 2014/0298356 Al Oct. 2, 2014 (57) ABSTRACT
Related U.S. Application Data An 1llustrative operating system distributes two or more

instances of the operating system over heterogeneous plat-
forms of a computing device. The nstances of the operating
system work together to provide single-kernel semantics to
present a common operating system abstraction to applica-
tion modules. The heterogeneous platforms may include co-

(62) Daivision of application No. 12/413,619, filed on Mar.
30, 2009, now Pat. No. 8,776,088.

(51) Int.CL

gggﬁ gﬁjﬁ (38828) processors that use different mnstruction set architectures and/
GOGF 9/48 (200 6' OIH) or functionality, different NUMA domains, etc. Further, the

(') operating system allows application modules to transparently
GO6F 9/50 (2006.01)

access components using a local communication path and a
remote communication path. Further, the operating system
includes a policy manager module that determines the place-
ment of components based on affinity values associated with
interaction relations between components. The affinity values
express the sensitivity of the interaction relations to a relative
location of the components.

(52) U.S.CL
CPC GOG6F 9/54 (2013.01); GO6F 9/465 (2013.01);
GOGF 9/4843 (2013.01); GO6F 9/5077
(2013.01); GO6F 9/546 (2013.01); GO6F
2209/462 (2013.01); YO2B 60/142 (2013.01);
YO2B 60/144 (2013.01); YO2B 60/167 (2013.01)

(58) Field of Classification Search

None
See application file for complete search history. 20 Claims, 13 Drawing Sheets
(START)
1300 — |
g IDEMTIFY PROCESS WHICH A
INVOLVES INTERAGTION
BETWEEN {COMPONENT X AND
COMPONENT Y, A3 DEFINED
BY INTERACTION EELATION £
L — v

s ™~
IDENTIFY AFFINITY VALUE
ASSOCIATED WITH THE
INTERACTION RELATION £

1304

L l .
4 ™y
IDENTIFY LOCATION
INFORMATION (AND
OPTIONALLY DISTANCE
INFORMATION} REGARDING
LOCATION OF COMPONENTS
1306
h_ l ,
;" YN
PLACE COMPONENT(S) BASED FOR EXAMPLE.
ON FOREGOING INFORMATION \ 0 : AGNOSTIC
1308 + : TOGETHER
\ , — : SEPARATE

(Ewm)

US 9,396,047 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

711/203
2010/0122264
2010/0251265

2004/0139287 Al* 7/2004 Fosteretal. GO6F 9/5016
711/153

2005/0041674 Al* 2/2005 Rooneyccccooen.n, HO4L 12/18
370/401

2006/0004779 A 1/2006 Rossiter et al.

2006/0104295 A 5/2006 Worley et al.

2006/0112241 A 5/2006 Weiss et al.

2006/0123424 Al 6/2006 Hunt et al.

2007/0073993 Al* 3/2007 Allenetal. 711/170

2007/0083628 Al 4/2007 Sandstrom

2007/0260827 Al* 11/2007 Zimmer et al. GOO6F 12/0638
711/154

2008/0162873 Al 7/2008 Zimmer et al.

2008/0163203 Al* 7/2008 Anandetal. GO6F 9/45533

718/1

2008/0244507 Al 10/2008 Hodson et al.

2008/0244599 Al 10/2008 Hodson et al.

2009/0089537 Al* 4/2009 Vick GO6F 12/1072

A
A

1 5/2010 Xiaocheng et al.
1 9/2010 Hodson et al.

OTHER PUBLICATIONS

Guntensperger, Raphael, “A New Approach to Remote Object Com-

munication,” accessible at <<http://dotnet.syscon.com/node/

38825>>, 2003, 5 pages.

Chandrakanth, et al., “Design and Implementation of a Multi-Chan-
nel Multi-Interface Network,” Proceedings of the 2nd International
Workshop on Multi-hop Ad Hoc Networks: From Theory to Reality,

accessible at <<http://www.crhc.uiuc.edu/wireless/papers/
chereddi2006Realman.pdf>>, 2006, 8 pages.

“Palpable Computing: A New Perspective on Ambient Computing,”
IST-002057 PalCom, PalCom External Report #69, Deliverable 54
(2.2.3), accessible at <<http://64.233.183.104/search?q=cache:
eTPad3lgdM4T.www.1st-palcom.org/publications/deliverables/De-
liverable-54-%255B2.2.3%255D-open-architecture.
pdi+communication+%22channel+abstraction%+hardware&hl=en
&ct=clnk&cd=55>>, accessed Nov. 2008, 202 pages.

Chapin, et al., “Hive: Fault Containment for Shared-Memory Multi-
processors,” 15th ACM Symposium on Operating Systems Prin-
ciples, Dec. 1995, accessible at <<http://www.coralcdn.org/05au-
cs240c¢/sched/readings/hive.pdi>>, 15 pages.

Fahndrich, et al., “Language Support for Fast and Reliable Message-
based Communication in Singularity OS,” Proceedings of the 1st
Annual European Conference on Computer Systems, 2006, acces-
sible at <<http://research.microsoit.com/users/mat/Papers/
singsharp.pdf>>, 14 pages.

Gamsa, et al., “Tornado: Maximizing I.ocality and Concurrency in a
Shared Memory Multiprocessor Operating System,” Proceedings of
the 3rd Symposium on Operating Systems Design and Implementa-
tion, (1999), accessible at <<http://www.cc.gatech.edu/classes/
AY2005/cs6210__spring/papers/gamsa99tornado.pdf>>, 14 pages.
Govlil, et al., “Cellular Disco: Resource Management Using Virtual
Clusters on Shared-Memory Multiprocessors,” ACM Transactions
on Computer Systems, vol. 18, No. 3, Aug. 2000, pp. 229-262.
Hunt, et al., “Sealing OS Processes to Improve Dependability and
Safety,” Proceedings of the 2nd Annual European Conference on

Computer Systems (EuroSys *07), 2007, accessible at <<http://re-
search.microsoft.com/os/singularity/publications/EuroSys2007__
SealedProcesses.pdf>>, 14 pages.

Swiit, et al., “Improving the Reliability of Commodity Operating
Systems,” Proceedings of the Nineteenth ACM Symposium on Oper-
ating Systems Principles, 2003, accessible at <http://www.cs.
rochester.edu/meetings/sosp2003/papers/pl16-switt.pdf>, 16 pages.
Witten, et al., “Managing Gigabytes: Compressing and Indexing
Documents and Images,” abstract of book published by Morgan
Kaufmann Publishers, Inc., Second Edition, 1999, accessible at
<<http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
B21D2BB5C7768E9B634841C6B86BAAOA?do1=10.1.1.87.9634
&rep=repl&type=pdf, 2 pages.

Hunt, et al., “An Overview of the Singularity Project,” Microsoft
Research Technical Report, MSR-TR-2005-135, accessible at
<<http://research.microsoft.com/os/singularity>>, 44 pages.
Boyd-Wickizer, et al.,, “Corey: An Operating system for Many
Cores,” Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, 2008, accessible at <<http://
www.cs.brandeis.edu/~cs220/reads/corey-0sdi08.pdf>>, 15 pages.
Chakraborty, et al., “Computation Spreading: Employing Hardware
Migration to Specialize CMP Cores On-thefly,” Proceedings of the
1 2th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2006, accessible at
<<http://pages.cs.wisc.edu/~kchak/papers/csp-asplos06.pdf >>, 10
pages.

Engler, et al., “Exokernel: An Operating System Architecture for
Application-Level Resource Management,” Proceedings of the 15th
ACM Symposium on Operating Systems Principles, 1995, draft
paper avallable at <<http://www.cs.utexas.edu/users/dahlin/Classes/
UGOS/ reading/engler95exokernel .pdf>>, 17 pages.

Fruczynski, et al., “SPINE—A Safe Programmable and Integrated
Network Environment,” Proceedings of the 8th ACM SIGOPS Euro-
pean Workshop, 1998, available at <<http://www.cs.princeton.
edu/~mefl/research/spine/reports/sigops98/ >>, 11 pages.

Jul, et al., “Fine-Grained Mobility in the Emerald System,” ACM
Transactions on Computer Systems, vol. 6, No. 1, Feb. 1988, pp.
109-133.

Muir, et al., “AsyMOS—An Asymmetric Multiprocessor Operating
System,” IEEE Conference on Open Architectures and Network Pro-
gramming, 1998, accessible at <<http://citeseerx.ist.psu.edu/
viewdoc/summary?do1=10.1.1.24.9148>>, 10 pages.

Muir, et al., “Functional Divisions in the Piglet Multiprocessor Oper-
ating System,” Proceedings of the 8th ACM SIGOPS European
Workshop on Support for Composing Distributed Applications,
1998, pp. 255-260.

Schmuck, et al., “Experience with transactions 1n QuickSilver,” In
Proceedings of the 13th ACM Symposium on Operating Systems
Principles, 1991, pp. 239-253.

Schupbach, et al., “Embracing Diversity in the Barrelfish Manycore
Operating System,” Proceedings of the Workshop on Managed
Many-Core Systems, 2008, 9 pages.

Silva, et al., “K42: An Infrastructure for Operating System
Research,” accessible at <<http://ertos.nicta.com.au/publications/
papers/DaSilva. KWWTB_ 06 .pdf>>, 2006, 9 pages.

Weinsberg, et al., “Tapping Into the Fountain of CPUs: On Operating
System Support for Programmable Devices,” Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2008, 10 pages.

* cited by examiner

U.S. Patent Jul. 19, 2016 Sheet 1 of 13 US 9,396,047 B2

PROCESSING ENVIRONMENT WITH HETEROGENEOQUS
PLATFORMS (E.G., COMPUTING DEVICE)
102
s T
PROCESSING PROCESSING PROCESSING
PLATFORM A PLATFORM B oo o PLATFORM N
106 108 110
— \
APPLICATION APPLICATION APPLICATION
MODULE(S) MODULE(S) MODULE(S)
122 124
. » A
s = ——-———-—-——-,—_———s.,T—_-———- —_— - -———-—————_———_———-—_——_—_—_——_—__,_e—-_—_—————_——_ - ‘
| |
| \ , 4 |
: 0OS ﬁINGLE- oS :
| INSTANC INSTANCE B ERNEL |
: 126 108 SEMANTIC 'NST@'OCE " :
: _ 0S —— |
. I 104 :
L S R I I R [R N L
/% Ve v
PLATFORM PLATFORM P ATEFORM
FEATURES A FEATURES B FEATURES N
E.G., E'G-: _.G.,
PROCESSOR(S), PROCESSOR(S), PROCESSOR(S),
MEMORY, MEMORY, MEMORY,
ETC. ETC. ETC.
112 114 116
—— e/
7N)
118

FIG. 1

U.S. Patent

Jul. 19, 2016

Sheet 2 of 13

£ T T T T TN

PROCESSING

PLATFORM A
(E.G., NUMA

NUMA PROCESSING

DOMAIN 1)
204

'

APPLICATION

\

MODULE(S)
210

A I I I I I I S I D B S DS DS B B B s et

FRAMEWORK
202
r
|
' PROCESSING
| PLATFORM A,
| (E.G., NUMA
' DOMAIN n)
oeoo | 206

l
: y h
' | APPLICATION
| | MODULE(S)
: 216
|
|

______ DR A I O
Y | SINGLE- | .
OS ' KERNEL | 0S
INSTANCE A | SEMANTIC || INSTANCE A,
212 | os | 218
i i & : \ yy /
_ ; + _
: : —_—
PLATFORM I : PlLATEORM
FEATURES A | | | FEATURES A,
' l

FIG. 2

US 9,396,047 B2

PROCESSING
PLATFORM B
220

'

APPLICATION
MODULE(S)
224

|

|

0S l
INSTANCE B :
226 :
|

|

J

PLATFORM
FEATURES B
222

U.S. Patent Jul. 19, 2016 Sheet 3 of 13 US 9,396,047 B2

APPLICATION MODULE(S)
304

SYSTEM CALLS

OS INSTANCE A
302

KERNEL
308

OS, KERNEL COMPONENT 1
310

OSs KERNEL COMPONENT 2
312

OS,s KERNEL COMPONENT N
314

FEATURES A MONOLITHIC KERNEL
306 IMPLEMENTATION

FIG. 3

U.S. Patent Jul. 19, 2016 Sheet 4 of 13 US 9,396,047 B2

APPLICATION MODULE(S)
404

OS INSTANCE A
402

SERVICES, ETC.
414

OSAs SERVICE COMPONENT 1
416

OSA SERVICE COMPONENT N
418

OSs KERNEL COMPONENT 1
410

OSs KERNEL COMPONENT N
412

PLATFORM L ILLUSTRATIVE
FEATURES A MICROKERNEL
4006 IMPLEMENTATION

FIG. 4

U.S. Patent Jul. 19, 2016 Sheet 5 of 13 US 9,396,047 B2

APPLICATION MODULE(S) APPLICATION MODULE(S)
506 508
A
v

OS INSTANCE A OS INSTANCE B

202 504
OS COMPONENT Q OS COMPONENT Q
(E.G., MEMORY MANAGEMENT (E.G., MEMORY MANAGEM
FUNCTIONALITY) FUNCTIONALITY)
210 516
OS COMPONENT R OS COMPONENT R
(E.G., SCHEDULING (E.G., SCHEDULING
FUNCTIONALITY) FUNCTIONALITY)
212 218

OS COMPONENT T
(E.G., NETWORK INTERFACE

FUNCTIONALITY) FUNCTIONALITY)
214 220
___________ ~/ — e e — —— —— — —— —— —— —
® 00 09

OS COMPONENT S

(E.G., FILE SYSTEM

N— EXAMPLE OF
COMPONENTS WITHIN TWO
OS INSTANCES

FIG. 5

U.S. Patent Jul. 19, 2016 Sheet 6 of 13 US 9,396,047 B2
e TN
PROCESSING
PLATFORM A
APPLICATION
MODULE(S)
——&_— EXAMPLE OF LOCAL
COMMUNICATION PATH
g 602
% O
INSTANCE A

.

PROCESSING PROCESSING
PLATFORM A PLATFORM B

APPLICATION EXAMPLE OF
\ COMMUNICATION
PATH
702
OS \ OS

|NSTANCE A |NSTANCE B

U.S. Patent Jul. 19, 2016 Sheet 7 of 13 US 9,396,047 B2

COMPONENT INCLUDING
PROCESS THAT USES FILE

SYSTEM FUNCTIONALITY
803

ESTABLISHED
COMMUNICATION PATH
310

LOCATION DETERMINATION
MODULE
802

NAMESPACE REGISTRY
804

FILE SYSTEM
COMPONENT IN

PLATFORM Z
806

®

REGISTRATION IN
NAMESPACE

FIG. 8

U.S.

Patent Jul. 19, 2016 Sheet 8 of 13 US 9,396,047 B2
COMPONENT COMPONENT
PROCESS X INTERACTION RELATION Z 904 Y
e O
AFFINITY: SENSITIVITY TO RELATIVE
LOCATION OF COMPONENTS
APPLICATION
——————————————————— ————~y MODULE
I
MANIFEST FOR APPLICATION : 1004
MODULE |
10006 :
I
W — AFFINITY VAL I
X — AFFINITY VAL, |
Y — AFFINITY VAL3 :
/ — AFFINITY VAL4 |
I
e | REGISTRATION
----------------------- g OF LOCATION (E.G., AT
I S— BooT UP, ETC.)
AFFINITIES
PoLICY MANAGER | OCATION
MODULE OF
1002 COMPONENT(S) LOCATION
mmm— e —— o \ DETERMINATION
| DISTANCE | MODULE
: INFORMATION : 802
: 1008 |
~— e o 7
PLACEMENT DECISION
HARDWARE HARDWARE
PLATFORM N PLATFORM
A HARDWARE n FlG i 1 0
PLATFORM

B

U.S. Patent

Jul. 19, 2016 Sheet 9 of 13

TRANSFER MODULE A
1102

DE-A
CAT

MESSAGE

1100 —~

MEMORY

_LO-

MODULE
1124

ON

MESSAGE FORWARDING

MESSAGE FORMING

MODULE
1106

MODULE
1110

REMOTE
COMMUNICATION

PATH 11

TION | Messace >

MESSAGE RECEIVING AND

INT

“RPRETATION MODULE

1114

MEMORY ALLOCATION

MODULE
1116

v

CorPY MODULE
1118

CONFIRMATION MODULE
1122

TRANSFER MODULE B

1104

REMOTE COMMUNICATION
TRANSFER
FUNCTIONALITY

FIG. 11

US 9,396,047 B2

. MEMORY
OBJECT
1108

—————d

,___
[

I

|

I

|

I

|

I

I
"

F——————_—ﬂ

MEMORY
OBJECT
1120

e

CONSUMING
COMPONENT

p—— e ———
e e ————

U.S. Patent Jul. 19, 2016

Sheet 10 of 13

START

1200 —
.
RECEIVE REQUEST FOR A
PROCESS PROVIDED BY A
COMPONENT
1202
J/
DETERMINE IF COMPONENT IS
| OCAL OR REMOTE
1204
J/
\ 4
LOCAL

PROVIDE ACCESS TO

COMPONENT VIA LOCAL PATH

1208

J

LOCAL OR R
1206

“MOTE?

US 9,396,047 B2

REMOTE

PROVIDE ACCESS TO

COMPON

END

FIG. 12

ENT VIA REMOTE PATH

1210

U.S. Patent

Jul. 19, 2016 Sheet 11 of 13

START

IDENTIFY PROCESS WHICH
INVOLVES INTERACTION
BETWEEN COMPONENT X AND
COMPONENT Y, AS DEFINED
BY INTERACTION RELATION Z
1302

IDENTIFY AFFINITY VALUE
ASSOCIATED WITH THE
INTERACTION RELATION Z
1304

IDENTIFY LOCATION
INFORMATION (AND
OPTIONALLY DISTANCE
INFORMATION) REGARDING
LOCATION OF COMPONENTS
1306

PLACE COMPONENT(S) BASED
ON FOREGOING INFORMATION

1308

US 9,396,047 B2

FOR EXAMPLE:
O : AGNOSTIC
+ : TOGETHER
— : SEPARATE

U.S. Patent Jul. 19, 2016

PLATFORM A

FORM MESSAGE
1402

SEND MESSAGE TO REMOTE
PLATFORM
1404

RECEIVE CONFIRMATION AND
FREE MEMORY
1416

END

Sheet 12 of 13 US 9,396,047 B2

PLATFORM B

v

RECEIVE MESSAGE
1406

INTERPRET MESSAGE AND
ALLOCATE MEMORY

1408

l

COPY INFORMATION
DESCRIBED IN MESSAGE
1410

NOTIFY AFFECTED PROCESS
IN PLATFORM B OF RECEIPT
OF MESSAGE
1412

CONFIRM RECEIPT OF
MESSAGE
1414

U.S. Patent Jul. 19, 2016 Sheet 13 of 13 US 9,396,047 B2

COMPUTER READABLE

MEDIUM ONE OR MORE PROCESSING

UNITS
1502

(FOR STORING INSTRUCTIONS)
1504

FIG. 15

US 9,396,047 B2

1

OPERATING SYSTEM DISTRIBUTED OVER
HETEROGENEOUS PLATFORMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application 1s a divisional of U.S. patent appli-
cation Ser. No. 12/413,619 on May 30, 2009, which 1s herein
incorporated by reference 1n its entirety.

BACKGROUND

Computing devices now commonly use co-processors for
performing specialized tasks. To cite one example, a general-
purpose computing device may include a general-purpose
central processing unit (CPU) in combination with a special-
1zed graphics processing unit (GPU). The GPU may perform
computation-intensive tasks associated with the execution of
a game or other graphics-intensive application. A developer
may provide an application which runs on an operating sys-
tem which provides access to the general-purpose CPU of the
computing device. If the application invokes processes which
involve access to a co-processor, the computing device typi-
cally provides such access through a driver interface using a
well-defined protocol.

Co-processors represent rich processing resources, yet
there are a number of challenges involved 1n extending the use
of co-processors for more general-purpose applications. For
example, a co-processor and a general-purpose CPU may use
different instruction set architectures (ISAs). Further, the co-
processor and general-purpose CPU may have access to dii-
ferent respective sets of resources. Further, a rigid protocol
may govern the manner 1n which the co-processor interacts
with the general purpose CPU. This protocol may make 1t
difficult for the co-processor to access the resources of the
CPU 1n a non-standard manner, and vice versa. Generally,
these factors complicate any attempt to integrate the co-pro-
cessor with more general purpose operations performed by
the computing device.

SUMMARY

An 1llustrative operating system 1s described that distrib-
utes two or more instances ol the operating system over
heterogenecous platforms of a computing device. The
instances of the operating system work together to provide
“single-kernel” semantics. Single-kernel semantics allow
applications to be written as 1f they run on a single operating
system kernel even though they may 1n fact be spread across
the multiple operating system instances. By virtue of provid-
ing single-kernel semantics, application modules can be run
on any platform 1n the computing device without requiring
per-platiorm customization of the application modules. The
multiple-platiorm nature of any platform 1s effectively “hid-
den” from an application module code which interacts with
the platform via the operating system.

In one case, different platforms are heterogeneous because,
for example, they provide different instruction set architec-
tures or different specialized functionality. Alternatively, or in
addition, different platforms may correspond to different
respective Non-Uniform Memory Access (NUMA) domains
that offer different memory latency-related performance.
NUMA domains may also have different accessibility and
performance characteristics with respect to other system
resources, such as peripheral buses.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one case, each instance of the operating system may
include a monolithic kernel. In another case, each instance of
the operating system may include a microkernel.

According to another 1llustrative aspect, the operating sys-
tem can allow an application module (or other component) to
access an operating system component using a local commu-
nication path or a remote communication path. For example,
assume that an application module mvokes a process which
makes use of a file system component of the operating sys-
tem. The application module interacts with a local instance of
the operating system that either includes the requested file
system component or omits it. In the former case, the appli-
cation module can access the file system component using a
local communication path. In the latter case, the application
module can access the file system component using a remote
communication path that involves interaction with a remote
platform. It may be transparent to the application module
itself whether communication is performed using the local or
remote communication paths. Further, in the case that a
remote communication path 1s used, an operating system
component mstance provided by the remote platform may be
“unaware’ that 1ts resources are being accessed by anon-local
agent.

According to another 1llustrative aspect, the operating sys-
tem provides transier functionality for handling communica-
tion over a remote communication path. The transfer func-
tionality can operate by forming and sending a message
which describes information to be sent to a remote platiform.
At the remote platiorm, the transfer functionality operates by:
interpreting the message; copying the information described
in the message so that the information 1s available to the
remote platform; and sending a confirmation to the local
platform that indicates that the remote platform has received
the message. At the local platform, the transfer functionality
responds to the confirmation by freeing memory associated
with the message.

According to another illustrative aspect, the transfer func-
tionality 1s implemented by software, hardware, or combina-
tion of software and hardware. In one case, a software-imple-
mented operating system instance sends mformation to a
hardware-implemented receiving entity.

According to another 1llustrative aspect, the operating sys-
tem 1ncludes a policy manager module for deciding where to
place components among different platforms hosted by a
computing device. Consider, for example, a process that
involves interaction between a first component and a second
component, as described by an interaction relation. The
policy manager module operates by 1dentifying an aifinity
value associated with the interaction relation. The affinity
value 1dentifies a sensitivity of the process to the location of
the first component relative to the second component. The
policy manager module determines a placement of one or
more components associated with the process by taking into
consideration the atfimity value.

According to another 1llustrative aspect, the affinity value
1s specified 1n a manifest which accompanies an application
module, the application module being associated with the
pProcess.

According to another illustrative aspect, the aflinity value
can express different types ol preferences. For example, a first
allinity value may convey that the process 1s agnostic with
respect to the location of components. A second ailinity value
conveys that the process may benefit by locating the compo-
nents together on the same platform. A third affinity value
conveys that the process may benefit from separating the
components on different respective platforms. In the last-
mentioned case, the policy manager module can base its

US 9,396,047 B2

3

placement decision on the affinity value in combination with
distance information. The distance information describes the
distances between different platforms, where the distances
are proxies that express the latency 1 communication
between the different platforms. Aflinity values may be
derived 1n a number of ways, including programmer annota-
tion, static analysis, profile-driven feedback, eftc.

The above approach can be manifested 1n various types of
systems, components, methods, computer readable media,
data structures, and so on.

This Summary 1s provided to itroduce a selection of con-
cepts 1n a simplified form; these concepts are further
described below 1n the Detailed Description. This Summary
1s not intended to 1dentily key features or essential features of
the claimed subject matter, nor 1s i1t intended to be used to
limit the scope of the claimed subject matter.

[,

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an 1llustrative processing environment (such
as a computing device) including a single-kernel semantic
operating system distributed among heterogeneous plat-
forms.

FIG. 2 shows heterogeneous platiorms that include two or
more Non-Uniform Memory Access (NUMA) domains.

FIG. 3 shows an implementation of an instance of an oper-
ating system using a monolithic kernel.

FI1G. 4 shows an implementation of an instance of an oper-
ating system using a microkernel.

FI1G. 5 shows 1llustrative components that may be found in
two representative mstances ol an operating system.

FIG. 6 shows a local communication path within a plat-
form.

FIG. 7 shows a remote communication path between two
platforms.

FIG. 8 shows a location determination module which plays
a role 1 determining whether a local or remote communica-
tion path 1s to be used to access a component.

FIG. 9 shows a process that involves interaction between a
first component and a second component, as defined by an
interaction relation.

FI1G. 10 shows a policy manager module which determines
placement of components among platforms based on affinity
values provided 1n a manifest (which accompanies an appli-
cation module).

FIG. 11 shows transier functionality for communicating,
information over a remote communication path between two
platforms.

FIG. 12 shows an illustrative procedure for providing
access to a component using either a local communication
path or a remote communication path.

FIG. 13 shows an illustrative procedure for placing a com-
ponent based on affinity values.

FI1G. 14 shows an 1llustrative procedure for communicating,
information over a remote communication path between two
platforms.

FIG. 15 shows one or more processing units for executing
instructions provided on a computer readable medium.

The same numbers are used throughout the disclosure and
figures to reference like components and features. Series 100
numbers refer to features originally found 1n FIG. 1, series
200 numbers refer to features originally found in FIG. 2,
series 300 numbers refer to features originally found 1n FIG.
3, and so on.

DETAILED DESCRIPTION

This disclosure sets forth an illustrative operating system
that 1s distributed over heterogeneous platforms of a comput-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing device. The operating system provides single-kernel
semantics to present a common operating system abstraction
to application modules. This disclosure 1s organized as fol-
lows. Section A describes 1llustrative systems for implement-
ing the single-kernel semantic operating system. Section B
describes illustrative methods which explain the operation of
the systems of Section A.

As a preliminary matter, some of the figures describe con-
cepts 1n the context of one or more structural components,
variously referred to as functionality, modules, features, ele-
ments, etc. The various components shown 1n the figures can
be implemented 1n any manner, for example, by software,
hardware (e.g., discrete logic components, etc.), firmware,
and so on, or any combination of these implementations. In
one case, the illustrated separation of various components 1n
the figures 1nto distinct units may retlect the use of corre-
sponding distinct physical components. Alternatively, or 1n
addition, any single component illustrated 1n the figures may
be implemented by plural physical components. Alterna-
tively, or 1n addition, the depiction of any two or more sepa-
rate components in the figures may retlect different functions
performed by a single physical component.

Other figures describe the concepts 1n flowchart form. In
this form, certain operations are described as constituting,
distinct blocks performed 1n a certain order. Such implemen-
tations are illustrative and non-limiting. Certain blocks
described herein can be grouped together and performed 1n a
single operation, certain blocks can be broken apart into plu-
ral component blocks, and certain blocks can be performed in
an order that differs from that which 1s illustrated herein
(1including a parallel manner of performing the blocks). The
blocks shown 1n the flowcharts can be implemented by soft-
ware, hardware (e.g., discrete logic components, etc.), firm-
ware, manual processing, etc., or any combination of these
implementations.

As to terminology, the phrase “configured to” encom-
passes any way that any kind of functionality can be con-
structed to perform an identified operation. The functionality
can be configured to perform an operation using, for instance,
software, hardware (e.g., discrete logic components, etc.),
firmware etc., and/or any combination thereof.

The term “logic” encompasses any functionality for per-
forming a task. For instance, each operation 1llustrated in the
flowcharts corresponds to logic for performing that operation.
An operation can be performed using, for instance, software,
hardware (e.g., discrete logic components, etc.), firmware,
etc., and/or any combination thereof.

A. Illustrative Systems

A.1. Overview of System

FIG. 1 shows an illustrative processing environment 102
for implementing an operating system 104 that 1s distributed
across multiple heterogeneous platforms (106, 108, .. . 110).
In one case, the processing environment 102 may correspond
to a computing device of any type. Examples of a computing
device include a personal computer, a server-type computer, a
laptop computer, a game console device, a personal digital
assistant device, a mobile telephone device, a set-top box
device, and so on. No limitation 1s placed on what may con-
stitute a processing environment 102 as used herein.

A platform refers to any kind of processing system for
performing functions. In one case, a platform may correspond
to a general-purpose processing system including one or
more general-purpose central processing units (CPUs) and/or
other processing resources. In another case, a platform refers
to a processing system that was originally designed for per-
forming one or more specialized functions. For example, one
plattorm may include a graphics processing unit (GPU) for

US 9,396,047 B2

S

performing specialized graphics functions. Another platform
may 1include device interface functionality for interacting
with media devices. Another platform may 1nclude network
interface functionality (e.g., a network iterface controller, or
NIC) for mteracting with a network. Another platform may
include a storage controller interface (e.g., a hard-disk con-
troller) for persisting data. Another platform may include
another peripheral I/O processor, etc. No limitation 1s placed
on what may constitute a platform as used heremn. (For
instance, FIG. 2, to be described below, describes additional
implementations of platforms.) Although FIG. 1 shows the
use of three platforms, the processing environment 102 can
include any number of platforms, e.g., less than three plat-
forms or more than three platforms.

In one case, a platform can represent a collection of com-
ponents that can be physically grouped together 1n any man-
ner. For example, a platform may be organized on a common
substrate, e.g., on a common processing board, detachable
card, die, mntegrated circuit, etc. In another case, a common
substrate can implement two or more platforms. Each plat-
form may 1include one or more platform features. For
example, platform A 106 includes platform features A 112.
Platform B 108 includes platform features B 114. And plat-
form n 110 includes platform features n 116. In many cases,
the features of a platform may include one or more processing,
units and some form of memory (such as RAM memory).

The platforms (106, 108, . . . 110) are considered hetero-
geneous because at least two of the platforms (106, 108, . . .
110) differ from each other 1n one or more ways. For example,
two platforms may use different instruction set architectures
(ISAs). Alternatively, or imn addition, two platforms may
include different functional components. For example, one
platform may 1nclude BIOS functionality, while another may
not. One platform may provide cache coherency between
processors, while another may not, and so on.

One or more communication conduits 118 couple the plat-
torms (106, 108, . . . 110) together. In one case, the commu-
nication conduits 118 may represent one or more buses, such
as any type of input-output (I/0) bus. In another case, the
communication conduits 118 may represent other types of
coupling mechanisms, such a point-to-point connection, etc.

The platforms (106, 108, . . . 110) may each include one or
more application modules (120, 122, ... 124). An application
module represents an application program for performing any
type of fTunction. To name merely a few examples, one appli-
cation module may provide a word processing program.
Another application module may provide a network browser
program. Another application module may provide a media
presentation program, and so on. No limitation 1s placed on
what may constitute an application module.

The operating system 104 provides a number of founda-
tional processes that allow the application modules (120,
122, . . . 124) to interact with the platform features (112,
114, . . . 116). For instance, the operating system 104 may
include functionality for managing memory, for scheduling
events, for accessing media devices, for interacting with a
network, and so on.

The operating system 104 1s distributed among the plat-
forms (106, 108, . . . 110). More specifically, the operating
system 104 provides individual instances of the operating
system 104 on each of the platforms (106,108, ...110). That

1s, platform A 106 includes operating system (OS) istance A
126, plattorm B 108 includes OS instance B 128, and plat-

form n 110 1ncludes OS instance n 130.

As will be discussed in greater detail below, the OS
instances (126,128, . .. 130) operate using a unified operating
system framework. In other words, OS 1nstance A 126 oper-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

ates based on the same operating system framework or para-
digm as OS instance B 128 and OS instance n 130. In the
terminology of FIG. 1, the OS instances (126, 128, ... 130)
are said to constitute a single-kernel semantic operating sys-
tem. Later figures will be used to clarify the meaning of this
phrase; in brief, this phase implies that all OS nstances (126,
128, . . . 130) work together to provide the abstraction of a
single operating system to applications even through the sys-
tem 1s composed ol multiple OS 1nstances.

As consequence of the above-identified characteristic, the
OS 1nstances (126, 128, . . . 130) collectively form a homog-
enous operating system abstraction that 1s presented to the
application modules (120, 122, . .. 124). This allows a devel-
oper to create a single version of an application module that
can run on any platform (106, 108, . . . 110). The platiorm
features (112, 114, . . . 116) of the platforms (106, 108, . . .
110) may vary in the manner described above. But the oper-
ating system 104 effectively “hides” this particularity from
the application modules (120, 122, . . . 124). The developer
need not develop customized code to address the underlying
particularity of the platforms (106, 108, . . . 110). However,
application modules can still benefit from the features of each
platform via compilation to a specific platform’s features, or
via source code specialization, or via linkage to libraries
customized for the platform. For example, when run on a
network interface platform, an application component could
use 1ts hardware-accelerated checksum feature, but when run
on another platform, the application component would use
soltware to perform the checksum feature.

The different OS instances (126, 128, . . . 130) can com-
municate with each other (as described below), but otherwise
operate 1n an independent manner. For example, OS 1nstance
A 126 manages platform resources 1 a manner which 1s
independent of OS mnstance B 128, and vice versa.

Further, while all the OS 1nstances (126,128, .. .130) adopt
the same semantic paradigm, this does not mean that all of the
OS 1nstances (126, 128, . . . 130) will include the same
operating system components. That 1s, there may be differ-
ences 1n the set of components provided by the respective OS
instances (126, 128, . .. 130). To cite merely one example, OS
instance A 126 may include a file system component, but OS
instance B 128 may omit this functionality. In contrast, OS
instance B 128 may include a network interface component,
but OS 1nstance A 126 may omit this functionality, etc.

To address this characteristic, the operating system 104
implements local communication paths and remote commu-
nication paths. A local communication path allows a request-
ing entity (such as an application module) that1s “resident” 1n
one platform to access an operating system component or
other functionality that is resident on the same platform. A
remote communication path allows a requesting entity (such
an application module) that 1s resident on one platform to
access an operating system component or other functionality
that 1s resident on another platform. To name one example,
suppose that an application module on platiorm A 106 seeks
to access a network interface component of the operating
system 104. If this component 1s resident on platform A 106,
then the application module can access 1t via a local commu-
nication path. If this component 1s resident on another plat-
form, then the application module can access 1t via a remote
communication path, e.g., by accessing it from the OS
instance B 128 of platform B 108.

As aresult of this functionality, any requesting entity (such
as an application module) can consider the OS 1nstances (126,
128, ...130) as forming a single integrated resource. The fact
that a remote communication path may be called on to access
a desired component 1s complexity that 1s hidden from the

US 9,396,047 B2

7

requesting entity. As such, the distributed nature of the oper-
ating system 104 1s transparent with respect to the application
modules (120, 122, . . . 124). Further, the components of the
operating system 104 may be “unaware” of whether these
components are servicing local requesting entities or remote
requesting entities.

As a consequence of the above characteristics, the operat-
ing system 104 can spread the richness provided by a general-
purpose operating system across heterogeneous platforms.
This expands the utility of the heterogeneous platforms, with-
out placing special burdens on developers of applications.

In one representative implementation, the processing envi-
ronment 102 can assign one of the OS instances (126,
128, ...130) the role of a core OS instance, and the remainder
of the instances as satellite OS instances. For example,
assume that platform A 106 includes a general-purpose CPU;
in this case, the processing environment 102 can assign OS
instance A 126 the role of core OS 1nstance. In another imple-
mentation, the processing environment 102 can treat all of the
OS stances (126,128, . . . 130) as equivalent resources, e.g.,
without i1dentifying a core OS instance. All of the OS
instances (126, 128, . . . 130) can be considered to be satellite
OS 1instances.

Different strategies can be used to boot up (e.g., start) the
operating system 104. In one merely illustrative case, the
processing environment 102 can start up one of the OS
instances first (such as the core OS 1nstance), and then use that
OS mstance to help boot up the others. In the case of a NUMA
architecture (to be described below), the boot-up process can
enumerate the different NUMA domains. Components
within the processing environment 102 can register their pres-
ence (and location) using a location determination module (to
be discussed below).

Likewise, different strategies can be used to configure the
application modules (120,122, . .. 124). In one approach, the
processing environment 102 uses a two-phase compilation
strategy that allows the same application module code-base to
run on multiple instruction-set architectures (which may be
used by different respective platforms). In this approach, an
application module 1s first compiled to an intermediate lan-
guage (IL). The processing environment 102 then compiles
the intermediate language into each platform’s native instruc-
tion set and links the compiled code with libraries for the
platiorm.

The explanation below describes the features of the pro-
cessing environment 102 1n greater detail. That 1s, Section A.2
describes the extension of the approach of FIG. 1 to NUMA
domains. Section A.3 provides further detail regarding two
illustrative implementations of the operating system. Section
A.4 provides further detail regarding the implementation of
local and remote communication paths. Section A.5 describes
the use of a policy manager module to allocate components
among diverse platforms. And Section A.6 describes 1llustra-
tive transier functionality for passing information between
platiorms using a remote communication path.

In the following discussion, the general-purpose term
“component” refers to any part of the processing environment
102. For example, 1n one context, a component may refer to a
functional module provided by an OS 1nstance. In another
context, a component may refer to an application module. In
another context, a component may refer to a hardware feature

of a platform, such a disk drive, and so on.
A.2. NUMA Domains as Platforms

FIG. 2 shows a Non-Unmiform Memory Access (INUMA)
framework 202. NUMA technology organizes resources into
a number of NUMA domains. Each NUMA domain can

include one or more processors, memory, etc. Each domain

10

15

20

25

30

35

40

45

50

55

60

65

8

has a physical address space which 1s considered local. A
processor can access memories within 1ts local domain faster
than 1t can access memories outside its domain. This archi-
tecture may allow memory bandwidth to scale within an
increase 1n the number of processors, may reduce cache con-
tention between processors, and may decrease power usages.

Each NUMA domain can be redefined as a processing

platform 1n the context of the processing environment 102
shown 1 FIG. 1. For example, the NUMA framework 202

includes a platform A, 204 associated with a first NUMA
domain and a second platform A, 206 associated with a sec-
ond NUMA domain. While two NUMA domains are shown,
an implementation can include any number of NUMA
domains and associated platforms.

As described above, each platform can include a collection
of features, an OS nstance, and one or more application
modules which interact with the features via the OS instance.
For example, platform A, 204 includes platform features A,
208, application modules 210, and OS 1nstance A, 212. Plat-

form A 206 includes platform features A 214, application
modules 216, and OS 1nstance A, 218.

FIG. 2 also indicates that the NUMA-related platforms
(204, 206) can cooperate with one or more platforms associ-
ated with special-purpose functionality (such as special-pur-
pose processing units). For example, FIG. 2 shows a platform
B 220 that includes platform features 222, application mod-
ules 224, and OS instance B 226. This platform B 220, for
example, may include one or more processors for performing
specialized graphics processing operations. The platforms
(204, 206) associated with different NUMA domains can also
be considered heterogeneous because they offer different
memory access performance.

An operating system 228 collectively represents the func-
tionality provided by the separate OS instances (212,218 . . .
226). The operating system 228 has all the characteristics
described above 1n Section A.1. For example, the operating
system 228 provides a single-kernel semantic framework.
This allows application modules (210, 216, . . . 224) to be
implemented on any platform without taking the particulari-
ties of the underlying platforms (204, 206, . . . 220) mto
account.

In the context of FIG. 2, the application modules (210, 216)
can be placed in NUMA domains that provide the data struc-
tures and code that are predominantly used by the application
modules (210, 216).

The principles described 1n this section are not limited to
NUMA architectures, but, rather, can be applied to other
multi-processor architectures, such as, but not limited to,
symmetric multiprocessing (SMP) architectures.

A.3. Illustrative Operating System Implementations

The OS instances (126, 128, . . . 130) of the operating
system 104 (of FIG. 1) can be implemented using different
architectures. Without limitation, one implementation uses a
monolithic kernel architecture. Another implementation uses
a microkemnel architecture. Other implementations can use
hybrid architectures which integrate features of monolithic
architectures and microkernel architectures. Generally, a ker-
nel of an operating system represents a core set of functions
that allow higher-level modules to interact with the resources
of a computing device. For example, the kernel typically
provides functionality for managing memory, for scheduling
tasks, and so on. A computing device typically applies a
highest level of security to the code that implements the
kernel.

FIG. 3 shows a high-level depiction of an OS instance A
302 that 1s implemented using a monolithic kernel architec-
ture. The OS mstance A 302 allows application modules 304

US 9,396,047 B2

9

to interact with a collection of platform features A 306 pro-
vided by a platform A. The OS instance A 302 includes a
kernel 308 that provides a collection of operating system (OS)
kernel components (310, 312, . . . 314). Each OS kernel
component performs a task. For example, one OS kernel
module may perform a memory management task, another
OS kernel component may perform a scheduling task, another
OS kernel component may perform a file management task,
and so on. The kernel 308 1s monolithic 1n the sense that all of
its OS components operate “within” the kernel 308, e.g.,
within a single address space defined by the kernel 308.
FIG. 4 shows a high-level depiction of an OS 1nstance A
402 that 1s implemented using a microkernel architecture.
The OS mnstance A 402 allows application modules 404 to
interact with a collection of platform features A 406 provided
by a platform A. The OS instance A 402 includes a kernel 408
that provides a collection of operating system (OS) kernel
components (410, . . . 412). The OS instance A 402 also

includes services 414 that provide a collection of OS service
components (416, . . . 418). The OS kernel components
(410, . . . 412) typically perform more foundational tasks
compared to the OS service components (416, . . . 418). For
example, one OS kernel component may perform a memory
management task, another OS kernel component may per-
form a scheduling task, and so on. One OS service component
may perform a file management task, another OS service
component may perform a network interface task, and so on.
The kernel 408 1s referred to as a microkernel because there 1s
an attempt to 1solate the most basic operations of the operat-
ing system within the kernel 408, thus producing a smaller
kernel compared to the case of a monolithic kernel. The
functions associated with the services 414 can be considered
as “outside” the kernel 408.

In view of the separation of functions, a microkernel archi-
tecture may employ a message-passing protocol to allow
components within the kernel 408 to interact with compo-
nents within the services 414. A monolithic architecture omits
such message-passing protocol. In a monolithic architecture,
an application module accesses all the functions provided by
the kernel 308 using system calls or the like.

The operating system 104 can be implemented by extend-
ing and modifying any existing operating system framework.
For example, without limitation, as to the monolithic
approach, the operating system 104 can be implemented on
the basis of the Windows® operating system provided by
Microsolit Corporation of Redmond, Wash. As to the micro-
kernel approach, the operating system 104 can be based on
Microsoit’s Singularity operating system, e.g., as set forth 1in
Galen Hunt, et al., “An Overview of the Singularity Project,”
Microsolt Research Technical Report MSR-TR-2005-135.
The Singularity operating system uses channels to allow OS
kernel components to interact with OS service components,
as defined by contracts.

A.4. Local and Remote Commumnication Paths

As mtroduced with respect to FIG. 1, a requesting entity
(such as an application module) can request a component
within 1ts own platform using a local communication path. A
requesting entity can request a component on another plat-
form using a remote communication path.

FI1G. 5§ describes an 1llustrative context 1n which local com-
munication paths and remote communication paths can be
used. The figure shows two OS 1nstances, that 1s, OS instance
A 502 that operates on a platform A and OS instance B 504
that operates on a platform B. One or more application mod-
ules 506 are located on platiorm A, while one or more appli-
cation modules 508 are located on platform B.

10

15

20

25

30

35

40

45

50

55

60

65

10

For the purpose of this discussion, the OS instance can be
implemented using any approach, such as a monolithic kernel
architecture, a microkernel architecture, etc. In any i1mple-

mentation, OS instance A 502 includes a number of OS com-
ponents (510, 512, .. . 514) and OS nstance B 504 includes

a number of OS components (516, 518, . . . 520). Some OS
components can be present on both OS instances (502, 504).
For example, assume OS components 510 and 516 perform a
memory management task, and OS components 512 and 518
perform a scheduling task. (Although, note, as explained
above, that the OS components on different platforms operate
in an independent manner.) Other OS components can be
present on one OS 1nstance, but not the other. For example,
OS component 514, which 1s present on OS 1instance A 502,
provides file system functionality; this component 1s not
present on OS 1nstance B 504. Further, OS component 520,
which 1s present on OS instance B 504, provides network
interface functionality (e.g., a network stack); this component
1s not present on OS 1stance A 502.

As a result, the application modules 506 resident on plat-
form A can use a local communication path to access any of
the OS components (510, 512, 514) that are present 1n OS
instance A 502, but the application modules 506 use a remote
communication path to access the OS component 520 that
provides network interface functionality (because this com-
ponent 1s present on OS instance B 504). Likewise, the appli-
cation modules 508 resident on platform B can use a local
communication path to access any of the OS components
(516, 518, 520) that are present 1n OS instance B 504, but the
application modules 508 use a remote communication path to
access the OS component 514 that provides file system func-
tionality (because this component 1s present on OS 1nstance A
502).

FIGS. 6 and 7 supplement the above explanation by pro-
viding a graphical depiction of different commumnication
paths. In FIG. 6, application modules (or other requesting
entities) use a local communication path 602 to access OS
components and other resources within a same platform. In
FIG. 7, application modules (or other requesting entities) use
a remote communication path 702 to communicate from one
platiorm to another.

FIG. 8 shows one way to provide a communication path
(local or remote) using a location determination module 802.
In one case, the location determination module 802 1s a {ea-
ture of the operating system 104 that 1s resident on one OS
instance on one associated platform. In another case, the
location determination module 802 can be distributed over
plural OS 1nstances on plural respective platforms. In any
case, the location determination module represents a global
resource that can be used by any component within the pro-
cessing environment 102.

The location determination module 802 generally operates
by registering the locations of components within the pro-
cessing environment 102. The location determination module
802 can thereafter inform a requesting entity (such as an
application module) of the location of a component that 1t
secks to interact with. The location determination 802 can
also set up a communication path between the requesting
entity (e.g., an application module) and the requested com-
ponent.

In one implementation, the location determination module
802 performs the above-described role using a namespace
registry 804. The namespace registry 804 maintains informa-
tion regarding the locations of components within the pro-
cessing environment 102 and the types of functions per-
formed by the components. For example, the namespace
registry 804 can indicate that a platform Z includes an OS

US 9,396,047 B2

11

instance with a file system component 806. In one case, the
namespace registry 804 learns about the file system compo-
nent 806 when the file system component 806 notifies it of its
presence, ¢.g., when the file system component 806 1s started
up, or at some other juncture. In one case, the location deter-
mination module 802 can represent the function performed
by the file system component 806 with a path indicator, such
as, without limitation, the path indicator /FS.

Now suppose that a component 808 (such as an application
module) includes a process which involves the use of file
system functionality. The component 808 can call 1n to the
location determination module 802 to determine that there 1s
a file system component 806 on platform Z that meets 1its
needs. The location determination module 802 can then
establish a communication path 810 between the requesting
component 808 and the file system component 806. The com-
munication path 810 1s local 11 the component 808 1s located
in the same platiform as the file system component 806, and
remote otherwise.

In a microkernel environment, an OS 1nstance can execute
a local commumnication path with a local channel and a remote
communication path with a remote channel. In a monolithic
environment, an OS 1nstance allows an application module
(or other requesting entity) to access any resource 1n its own
local platform by using a system call. The OS 1instance can
implement a remote communication path when 1t receives a
system call for functionality that it does not contain. The OS
instance can send a message to a remote platform that does
provide the requested functionality. Still other implementa-
tions are possible.

A.5. Policy Manager Module

A policy manager module determines the placement of
various components within the processing environment 102.
Here, the term component 1s to be construed broadly. In many
cases, the policy manager module operates to place an appli-
cation module (or part thereol) on an 1dentified platform; 1n
this context, the application module constitutes a component.
In another case, the policy manager module operates to place
a part of the operating system on an identified platform; 1n this
context, the part constitutes a component.

The scenario shown 1n FIG. 9 provides a context that 1s
useful 1n explamning the operation of the policy manager
module. Thus, before advancing to a discussion of the policy
manager module 1tself, FIG. 9 will be described. In FIG. 9,
assume that an application module or other functionality 1s
associated with a number of processes. Assume that one of
these processes 1s a process 902. In this process 902, a com-
ponent X 1s associated with a component Y via an interaction
relation Z 904. In one merely representative case, component
X may correspond to the application module itself or part
thereol. Component Y may correspond to a component of the
operating system 104, such as a file system component. In this
scenario, the process 902 may entail interaction between the
application module and the file system component, as gov-
erned by the mteraction relation Z 904. In another scenario,
components X and Y may represent two components of the
operating system 104. In this scenario, the process 902 may
entail interaction between the two components of the operat-
ing system 104 via the interaction relation Z 904,

Assume next that the component X has not yet been placed
within the processing environment 102. In this context, the
goal of the policy manager module 1s to determine an appro-
priate location to place component X relative to component Y.
It 1s also possible to use the policy manager module 1n the
opposite scenario, €.g., to determine an appropriate location
to place component Y relative to component X. In another
case, assume that neither components X nor Y have been

10

15

20

25

30

35

40

45

50

55

60

65

12

placed. The policy manager module then operates to deter-
mine an appropriate placement of both components. But to
provide a concrete explanation, the following explanation 1s
framed mainly 1n the first-identified scenario 1n which the
goal 1s to place component X relative to component Y. In
general, the policy manager module places a component by
using one of the available platforms to run it.

One factor that guides the placement of components 1s a
degree to which the process 902 1s sensitive to the relative
location of components. For example, 1n one case, the process
902 may benefit from a low amount of latency 1n the interac-
tion between components X and Y. This factor may warrant
placing the components on the same platform. In other cases,
the process 902 may benefit from a low amount of interfer-
ence between components X and Y. This factor may warrant
isolating the components on different platforms. In other
cases, the process 902 may be relatively indifferent (agnostic)
as to the relative locations of component X and component Y.
This factor may not have any influence on the placement of
components X and Y. Still other considerations may govern
the placement of components within the processing environ-
ment 102.

Advancing to FIG. 10, this figure shows a policy manager
module 1002 which places components within the processing
environment 102. To facilitate explanation, consider the rep-
resentative scenario 1n which the goal 1s to place an applica-
tion module 1004 relative to other components within the
processing environment 102. In other words, 1n this context,
the application module 1104 corresponds to component X of
FIG. 9.

A manifest 1006 may accompany the application module
1004. The manifest 1006 provides metadata associated with
the application module 1004. In part, the manifest 1006 can
identify the processes that are associated with the application
module 1004, and the interaction relations associated with
these processes. In the merely representative example shown
in FIG. 10, the application module 1004 1s associated with
four interaction relations, labeled as relations W, X, Y, and 7.
Further, the manitest 1006 assigns an affinity value to each of
the interaction relations, e.g., atfimity values Val,, Val,, Val,,
and Val,.

The affinity values represent the sensitivity of an interac-
tion relation to the relative location of components 1n the
manner described above (with respect to FIG. 9). In one
merely representative case, an ailinity value of 0 indicates no
preference as to the relative placement of components. A
positive allinity value indicates a preference that two compo-
nents associated with the interaction relation be located
together, e.g., on the same platform. The magnitude of such a
positive value retlects the assessed “strength” of that prefer-
ence. A negative aflinity indicates a preference that the two
components be separated apart, e.g., on diflerent platforms.
The magnitude of such a negative value reflects the assessed
strength of that preference.

The policy manager module 1002 receives the manifest
1006 and extracts the aiffinity values from it. The policy man-
ager module 1002 uses the aflinity values as one factor 1n
determining where to place the application module 1004 (in
this specific representative scenario). To make this decision,
the policy manager module 1002 also receives location infor-
mation from the location determination module 802 (which
was introduced 1n the context of the explanation of FIG. 8). As
discussed, the location determination module 802 registers
the location of components (e.g., operating system compo-
nents, application modules, etc.) within the processing envi-
ronment 102. The policy manager module 1002 uses the

US 9,396,047 B2

13

location information to map information obtained the mani-
test 1006 to actual locations of components within the pro-
cessing environment 102.

For the particular case of negative affinity values, the policy
manager module 1002 also consults distance information
1008. The distance mformation 1008 provides imnformation
which reflects the relative separation between different parts
of the processing environment 102, such as different plat-
forms. For example, the distance information 1008 can indi-
cate that components within a single platform have a distance
of 0 (or other small distance value) between them. Compo-
nents between different NUMA domains may have a larger
distance (compared to intra-platform interaction), but still
relatively small. And components between distinct platforms
connected via an I/O bus have a still larger distance, and so on.
The policy manager module 1002 uses the distance informa-
tion to determine a placement of components which most
readily satisfies a negative aflinity value. For example, if the
ailinity value 1s —3 (which, 1n one scenario, may be consid-
ered to express a strong preference), then the policy manager
module 1002 may attempt to locate the components on two
disparate platforms connected via an 1/O bus.

In some cases, the policy manager module 1002 may
attempt to place the application module 1004 as a single
resource on one platform. In another case, where appropriate,
the policy manager module 1002 may attempt to break the
application module 1004 into parts and distribute i1t over two
or more platiorms.

In certain 1nstances, the affinity value expressed for one
interaction relation may conflict with the affinity value
expressed for another interaction relation. For example, one
allinity may warrant placing the application module 1004 on
platform M, while another affinity value may warrant placing,
the application module 1004 on platform N. To address this
situation, the policy manager module 1002 can apply various
environment-specific rules. In one representative case,
assume that both a positive aflinity value and a negative
aiffinity value influence the placement of a component 1n
contlicting ways. Here, the policy manager module 1002 can
let the positive affinity value govern the placement of the
component (thus, the positive aflinity value overrides the
negative ailinity value). Assume next that two or more posi-
tive atlinity values (or two or more negative atlinity values)
influence the placement of a component. Here, the policy
manager module 1002 can let the affinity value with the
largest absolute value govern the placement decision. The
policy manager module 1002 may also consider the load on
cach platform when making the placement decision. For
example the policy manager module 1002 may favor a first
platform over a second platform with equal affinity 11 the first
platform 1s running fewer components than the second plat-
form.

Different events may trigger 1nitiation of the analysis per-
formed by the policy manager module 1002. In one case, the
policy manager module 1002 1s invoked when an instruction
1s made to run a component, such as the application module
1004. For example, a shell associated with the application
module 1004, which resides on a particular platform, can act
as the agent which invokes the policy manager module 1002
(when an 1nstruction 1s recerved to execute the application
module 1004). The policy manager module 1002 can then
determine where to place the application module 1004 1n
relation to 1ts shell. An atfinity value between the shell and the
application module 1004 can specily a preference as whether
or not the application module 1004 1s to run on the platform
on which it was launched. The policy manager module 1002

[l

10

15

20

25

30

35

40

45

50

55

60

65

14

can also be mmvoked upon mitialization of other parts of the
operating system 104, such as operating system service coms-
ponents.

In one implementation, the aflinity values serve as non-
binding suggestions or hints. Therefore, depending of various
contextual factors, the policy manager module 1002 can make
a placement decision which 1s contrary to one or more aflinity
values.

The approach described above can be expanded and varied
in any number of ways. For example, in many of the scenarios
described above, an interaction relation (to which an affinity
value may be attached) may reflect a use-type interaction
between two components to perform some cooperative task.
For example, an interaction relation may describe the manner
in which the application module 1004 interacts with an oper-
ating system component or other resource, or an operating
system component interacts with another operating system
component, or the application module 1004 interacts with
another application module, and so on. In another case, an
interaction relation may more loosely reflect a relationship
between components. For example, consider the case in
which the operation of one component may interfere with
another component, even though these two components are
not expressly designed to interact with each other. In this case,
an interaction relation can be defined for the components, and
an affinity value can be associated with this interaction rela-
tion. A negative value would convey a preference that these
two components be located on different platiorms.

According to another aspect, an appropriate person (e.g., a
program developer) can manually select the affinity values.
Alternatively, or an addition, an automated or semi-auto-
mated aflinity-determining agent (not shown) can generate
the aflinity values.

According to another aspect, the selection of affinity values
(whether manual or automated) can also be based on an
analysis of the capabilities of the platforms.

According to another aspect, ailinity values can be gener-
ated at any juncture. In one case, an appropriate person and/or
automated agent can provide the aflinity values based on any
static placement consideration or combination of consider-
ations. As described above, these affimity values can be
applied when the processes associated with the affinity values
are run. Alternatively, or in addition, the affinity values can be
dynamically generated (and applied) at any juncture (includ-
ing during the operation of the components) based on any
consideration or combination of considerations.

According to another aspect, 1n one case, an ailinity value
can be defined with respect to one component (e.g., “end-
point”) 1n the interaction relation, such as the application
module 1004. In another case, ailinity values can be defined
with respect to both components (e.g., “endpoints™) of the
relation.

According to another aspect, placement decisions can be
based on others considerations, including dynamic consider-
ations, such as the current and/or anticipated usage of
resources on the platforms (e.g., as retlected by CPU load,
memory usage, etc.).

The policy manager module 1002 can encompass yet addi-
tional features and capabilities.

A.6. Transfer Functionality

FIG. 11 shows transier functionality 1100 for passing
information over a remote communication path between two
components. For example, the remote communication path
may link two operating system components of two respective
OS 1nstances (on different respective platforms). To name
merely one representative scenario, assume that an applica-
tion module contacts 1ts local OS 1nstance to send a packet of

US 9,396,047 B2

15

information to a network interface component. Since the local
operating system interface does not include such a compo-
nent, itmay direct the application module to an OS 1nstance of
a remote platform (which does include the network interface
component).

FI1G. 11 shows a transfer module A 1102 that 1s associated
with a sending entity, e.g., an enftity that sends information
over a remote communication path. Transfer module B 1104
1s associated with a recerving entity, e.g., an entity which
receives the information. It will be appreciated that the send-
ing entity can also function as a recerving entity, and therefore
also 1includes the functionality of the transfer module B 1104.
And the receiving entity can also function as the sending
entity, and therefore also includes the functionality of the
transier module A 1102.

Starting first with the sending operations, transier module
A 1102 includes a message forming module 1106. In one
implementation, the message forming module 1106 forms a
message that describes information to be transferred. For
example, assume that the goal 1s to transier a memory object
1108 to the receiving entity. For example, the memory object
1108 may pertain to a packet of information to be provided to
a network interface component of the operating system 104,
etc. Here, the message forming module 1106 forms a message
that describes the memory object 1108.

The message forming module 1106 can use various fea-
tures to characterize the memory object 1108. In one
example, assume that the memory object 1108 1s present 1n
the memory of a local platform or at some other source
memory space. Further assume that the memory object 1108
represents the information using one or more data structures.
In this case, the memory object 1108 can be described by
providing a pointer which points to the location of the
memory object 1108 in local memory. The memory object
1108 can also be described by specifying its size. The
memory object 1108 can also be described by providing an
offset. The offset describes the location of any feature (such as
an internal pointer, etc.) within the memory object 1108
(which may be specified by a compiler during a compilation
process). Accordingly, 1n one case, the message forming
module 1106 may form a message by specifying a pointer,
olfset, and size associated with the memory object 1108. In
more complex cases, the memory object 1108 may include
multiple parts that can be described by providing multiple
pointers, oifsets, sizes, etc. In these cases, the message form-
ing module 1106 can provide a description which enumerates
these features ol the memory object 1108 1n any environment-
specific manner.

A message forwarding module 1110 forwards the message
generated by the message forming module 1106 over a
remote communication path 1112 to the recerving entity. In
one case, the message forwarding module 1110 can pass the
message itself, e.g., which includes one or more pointers, one
or more offsets, one or more sizes, etc. In another case, the
message forwarding module 1110 can pass a pointer to the
message that has been formed (which either directly or indi-
rectly links to the message). Still other strategies can be used
to convey information to the receiving entity. Indeed, the
message forwarding module 1110 can pass the imnformation
provided in the memory object 1108 itself, rather than its
description.

Now advancing to the transfer module B 1104 of the
receiving entity, a message recerving and interpretation mod-
ule 1114 recerves the message and unpacks the description
provided by the message. A memory allocation module 1116
then uses the description to allocate memory 1n a target
memory space, such as the memory provided by the recerving,

10

15

20

25

30

35

40

45

50

55

60

65

16

entity’s local platform. A copy module 1118 then proceeds to
copy the information described 1n the message from the send-
ing entity’s memory space to the target memory space, to
thereby provide copied memory object 1120. The copying
operation can be implemented using different mechanisms
depending, 1n part, on the capabilities of the sending entity,
the capabilities of the recerving entity, the nature of the infor-
mation 1tself, etc. In one case, the copying operation involves
a memory-to-memory transier, conducted with or without
DMA.

The recerving entity can next notily a consuming compo-
nent of the receiving entity of the arrival of the information.
The consuming component refers to that component of the
receiving entity which uses the information that has been
sent. In the representative scenario developed here, the con-
suming component may represent a process provided by a
network interface component. It may be transparent (e.g.,
unknown or 1rrelevant) to the consuming component whether
the information originates from a remote platform or its own
platform.

A confirmation module 1122 next sends a confirmation
back to the transter module A 1102. In one case, the confir-
mation constitutes the same message (or pointer to the mes-
sage) that was sent to the transfer module B 1104. A memory
de-allocation module 1124 at the transfer module A 1102
receives the confirmation and proceeds to free up the memory
associated with memory object 1108. That 1s, the transfer
module A 1102 interprets the confirmation as an indication
that the transfer module B 1104 has successiully copied the
information, and therefore there 1s no need to continue to
maintain the information 1n the memory space of the sending
entity.

In one implementation, the transfer functionality 1100 can
be entirely implemented by soiftware. In another implemen-
tation, the transier functionality 1100 can be entirely 1mple-
mented by hardware, such as by discrete logic components,
an application specific integrated circuit, etc. In another
implementation, the transier functionality 1100 can be imple-
mented by a combination of software and hardware. Still
other implementations are possible.

In a software implementation, various sub-modules 1n the
transter modules (1102, 1104) can perform functions that are
dependent on one or more contextual factors. For example,
the message forming module 1106 can form a message that
depends on the particular platform on which it 1s being used,
or the particular information that 1s being described, etc.
Likewise, the message receiving and interpretation module
1114 can interpret the recerved message 1n a manner that 1s
dependent on one or more contextual factors. In contrast, 1n
some hardware implementations, the various sub-modules of
the transter modules (1102, 1104) may be designed to serve
specific functions in specific contexts, and may therefore
represent less flexible functionality. (However, 1t 1s also pos-
sible to configure a more flexible hardware implementation
by accommodating multiple selectable operation modes or
the like).

In one case, the transfer module A 1102 and transfer mod-
ule B 1104 may represent parts of two respective OS
instances. In an alternative case, either the transfer module A
1102 or the transter module B 1104 (or both) may represent
functionality that 1s outside the context of an operating system
framework or functionality that implements selected func-
tions of an operating system framework in hardware. For
example, the transier module A 1102 may represent a com-
ponent of a software-implemented OS instance that sends
information to a hardware device that 1s not governed by any
operating system paradigm or which implements selected

US 9,396,047 B2

17

functions of an operating system framework in hardware. For
example, the hardware device can incorporate enough func-
tionality to perform the role of transier module B 1104.

B. Illustrative Processes

FIGS. 12-14 show procedures that explain the operation of >

the systems of Section A. Since the principles underlying the
operation of the systems have already been described in Sec-
tion A, certain operations will be addressed 1n summary fash-
ion 1n this section.

Starting with FI1G. 12, this figure shows a procedure 1200
for performing interaction between components using local
communication paths and remote communication paths.

In block 1202, the operating system receives a request to
perform a process, which involves the use of a component.

In block 1204, the operating system determines whether
the component that 1s being sought 1s local or remote with
respect to a local platform. The operating system can make
this determination by using the location determination mod-
ule 802 of FIG. 8.

Inblock 1206, the operating system branches to block 1208
to provide access to the component using a local communi-
cation path (if the component 1s local). Alternatively, the
operating system branches to block 1210 to provide access to
the component using a remote communication path (1f the
component 1s remote).

FIG. 13 shows a procedure 1300 performed by the policy
manager module 1002 (of FIG. 10) for placing components
among the various available platforms according to one 1llus-
trative mode of operation.

In block 1302, the policy manager module 1002 1dentifies
a process which mvolves interaction between component X
and component Y via an interaction relation 7. For example,
this block (1302) may correspond to an interpretation of an
application manifest upon running an application module.

In block 1304, the policy manager module 1002 identifies
an affinity value associated with the interaction relation 7.

In block 1306, the policy manager module 1002 identifies
location information that identifies the location of various
components associated with the process. In addition, for a
negative allinity value, the policy manager module 1002 may
determine the distances between different components 1n a
processing environment.

In block 1308, the policy manager module 1002 applies the
above-described information to place the various compo-
nents 1nvolved 1n the process. For example, this operation
may 1nvolve placing an application module on one (or more)
of the available platiorms. An aflinity value of zero indicates
no preference as to the location of components 1n the process.
A positive aflinity value reflects a preference that the compo-
nents 1nvolved 1n the process be located together. A negative
aifinity value retlects a preference that the components be
split apart (e.g., on different platiorms).

Other considerations that may govern the operation of the
policy manager module 1002 were set forth 1n Section A.5
(above).

FIG. 14 shows a procedure 1400 for passing information
between a sending entity and a receiving entity over a remote
communication path, e.g., using the transier functionality
1100 of FIG. 11. These entities may refer to two components
(e.g., soltware-implemented components) associated with an
operating system Iframework. Alternatively, or in addition,
one or more ol the enftities may refer to hardware-imple-
mented mechanisms outside the context of an operating sys-
tem framework or mechanisms that implement selected func-
tions of an operating system.

10

15

20

25

30

35

40

45

50

55

60

65

18

In block 1402, the sending entity forms a message. The
message describes information to be sent, e.g., by specifying
one or more pointers, one or more sizes, one or more oilsets,
etc.

In block 1404, the sending entity sends the message (the
message 1tsell or a pointer to the message) over the remote

communication channel. It 1s also possible to pass the 1nfor-
mation itself.

In block 1406, the receiving entity recerves the message.

In block 1408, the receiving entity unpacks and interprets
the message. Based on the description in the message, the
receiving entity allocates memory (e.g., 1 its own native
platform) to store the information.

In block 1410, the receiving entity copies the information
into the allocated memory, €.g., using memory-to-memory
transier, etc.

In block 1412, the receiving entity notifies a process that 1s
being invoked of the receipt of the information. This process
1s referred to as the consuming component within the context
of FIG. 11.

In block 1414, the receiving entity sends a confirmation to
the sending entity to indicate that it has successtully copied
the information.

In block 1416, the sending entity receives the confirmation
and frees any memory that it had allocated to storing the
memory object.

In closing, as shown in FIG. 15, the various operations
described above can be implemented, at least 1in part, by the
execution of mstructions on or more processing units 1502.
These 1nstructions can be stored on any computer readable
medium 1504. The term computer readable medium also
encompasses plural storage devices. The term computer read-
able medium also encompasses signals transmitted from a
first location to a second location, e.g., via wire, cable, wire-
less transmission, etc.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed 1s:
1. A computer device, comprising:
a first hardware processing platform configured to execute
an operating system 1nstance icluding:
a policy manager module configured to:
identify a process having an interaction relation
between a first component and a second compo-
nent,
identily an affinity value for the interaction relation
representing a sensitivity of the process to arelative
location of the first component and the second com-
ponent with one type of aflinity value conveying
that the process benefits when the first component
1s located on a different platform relative to the
second component, and
determine a placement of the first component 1n rela-
tion to the second component based on the affinity
value; and
a location determination module configured to register a
location of the first component and the second com-
ponent; and
a second hardware processing platform heterogeneous
from the first hardware processing platform.

US 9,396,047 B2

19

2. The computer device of claim 1, wherein a 0 affinity
value conveys that the process 1s agnostic with respect to the
relative location of the first component and the second com-
ponent.

3. The computer device of claim 1, wherein a positive >
allinity value conveys that the process benefits when the first
component 1s located on a same platform relative to the sec-
ond component.

4. The computer device of claim 1, wherein a negative
allinity value conveys that the process benefits 11 the first
component 1s located on the different platform relative to the
second component.

5. The computer device of claim 1, wherein the policy
manager module receives a manifest for an application mod-

ule assigning the aflinity value for the interaction relation.

6. A computer readable storage device for storing computer
readable instructions, the computer readable 1instructions pro-
viding a policy manager module when executed by one or
more processing units, the computer readable nstructions ,,
comprising:

logic configured to i1dentily a process which 1nvolves an

interaction relation between a first component and a
second component;

logic configured to identity an affinity value associated .

with the interaction relation, the atfinity value 1dentify-
ing a sensitivity of the process to arelative location of the
first component and the second component with one
type of affinity value conveying that the process benefits
when the first component 1s located on a different plat- .,
form relative to the second component; and

logic configured to determine a placement of the first com-

ponent 1n relation to the second component by taking
into consideration the affinity value.

7. The computer readable storage device of claim 6, ;5
wherein the process 1s 1nvolved in running an application
module on an operating system, and wherein the atfinity value
1s specified 1n a manifest which accompanies the application
module.

8. The computer readable storage device of claim 6, ,,
wherein the placement 1s further based on an assessment of
locations of the first component and the second component.

9. The computer readable storage device of claim 6,
wherein a 0 affinity value conveys that the process 1s agnostic
with respect to the relative location of the first componentand 5
the second component.

10. The computer readable storage device of claim 6,
wherein a positive affinity value conveys that the process
benelits when the first component 1s located on a same plat-
form relative to the second component. 50

11. The computer readable storage device of claim 6,
wherein a negative affinity value conveys that the process
benefits when the first component 1s located on a different
platform relative to the second component.

12. The computer readable storage device of claim 6, ..
wherein said logic configured to determine a placement 1s
turther to configured to:

[,

10

15

20

recetve distance information regarding respective dis-
tances between diflerent platforms; and

place the first component with respect to the second com-
ponent by considering the affinity value 1n combination
with the distance information.

13. The computer readable storage device of claim 6,

wherein:

a first affinity value conveys that the process 1s agnostic
with respect to the relative location of the first compo-
nent and the second component;

a second affinity value conveys that the process may benefit
if the first component 1s located on a same platiform

relative to the second component; and
a third affinity value conveys that the process may benefit 1t
the first component 1s located on the different platform

relative to the second component.

14. The computer readable storage device of claim 6,
wherein the affinity value comprises a non-binding sugges-
tion regarding a placement of the first component with respect
to the second component.

15. A method, using an operating system, comprising:

identifying a process involved in running an application

module on the operating system which involves an inter-
action relation between a first component and a second
component;

identitying an aifinity value associated with the interaction

relation, the affinity value identifying a sensitivity of the
process to a relative location of the first component and
the second component with one type of aflimity value
conveying that the process benefits when the first com-
ponent 1s located on a different platform relative to the
second component; and

determining a placement of the first component 1n relation

to the second component by taking into consideration
the atfinmity value.

16. The method of claim 15, wherein the affinity value 1s
specified 1n a manifest which accompanies the application
module.

17. The method of claim 15, wherein one type of aifinity
value conveys that the process 1s agnostic with respect to the
relative location of the first component and the second com-
ponent.

18. The method of claim 15, wherein one type of affinity
value conveys that the process benefits when the first compo-
nent 1s located on a same platform relative to the second
component.

19. The method of claim 15, wherein a negative affinity
value conveys that the process benefits when the first compo-
nent 1s located on the different platform relative to the second
component.

20. The method of claim 135, further comprising:

receving distance information regarding respective dis-

tances between diflerent platforms; and

placing the first component with respect to the second

component by considering the affinity value in combi-
nation with the distance information.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

