US009390246B2
a2y United States Patent (10) Patent No.: US 9,390,246 B2
Tamminen et al. 45) Date of Patent: Jul. 12, 2016
(54) CREATING SECURE ORIGINAL (358) Field of Classification Search
EQUIPMENT MANUFACTURER (OEM) CPC GO6F 21/73; GO6F 21/572; GO6F 21/60;
IDENTIFICATION GO6F 21/602; GO6F 21/62; GO6F 21/6209;
GO6F 21/6218; GO6F 21/64
(71) Applicants: Rauno Tamminen, Tampere (FI); Jari See application file for complete search history.
Lukkarila, Hyvinkaa (FI); Uttam
Sengupta, Portland, OR (US) (56) References Cited
(72) Inventors: Rauno Tammin‘en,,Iampere (FI); Jari US PATENT DOCUMENTS
Lukkarila, Hyvinkaa (FI); Uttam
Sengupta, Portland, OR (US) 2005/0005098 Al* 1/2005 Michaelis et al. 713/156
2005/0180572 Al* 8/2005 Graunkec...... 380/277
(73) Assignee: Intel Corporation, Santa Clara, CA 2006/0129848 Al™* 6/2006 Paksoyetal. ... 713/193
(US) 2006/0218649 Al* 9/2006 Brickelletal. 726/27
2013/0254906 Al* 9/2013 Kessleretal. 726/34
2014/0358792 Al* 12/2014 Berkeetal. 705/50

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 0 days.

Primary Examiner — Samson Lemma
Assistant Examiner — Arya Golriz
(22) Filed: Sep. 25, 2013 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(21) Appl. No.: 14/036,414

(65) Prior Publication Data (57) ABSTRACT

US 2015/0086019 Al Mar. 26, 2015 . L . . .
A processing device implementing creation of secure Origi-

nal Equipment Manufacturer (OEM) identifiers (IDs) 1n a
(51) Int.CL . T . .
processing device 1s disclosed. A processing device of the

HO4L 9/08 (2006.01)
GO6F 21/32 (2013.01) disclosure mcliudes a one-time programm:able stf:rrage device
GO6F 21/31 (2013.01) and an execution umt: The executlgn unit can 1mplemjant a
GO9C 1/00 (2006.01) one-way cryptographic hash function that 1s to receive a
(52) U.S.Cl SBCI‘B"[OEM key from an _O_EM system, generate an O_EM
CPC o GOGF 21/32 (2013.01); Go6F 21731 Puplic D from the secret OEM key, and send the OEM public

(2013.01): GOIC 1/00 (2013.01): HO4L 90819 |0 1© the one-time programmable storage device for storage.

(2013.01);, HO4L 2209/12 (2013.01); HO4L
2209/127 (2013.01) 12 Claims, 15 Drawing Sheets

200

\

Receive secret OEM key as input to one-way cryptographic hash function
21

Y

Transform, using the one-way cryptographic hash function, the secret OEM key
into an OEM-specific public ID

|

Route the OEM public |ID from the one-way cryptographic hash function via a
single path to one-time programmable storage, wherein the one-time
programmable storage is only programmable from the one-way cryptographic
function

|

Store the QEM public ID in the one-time programmable storage

220

230

240

US 9,390,246 B2

Sheet 1 of 15

Jul. 12, 2016

U.S. Patent

} Ol

001 ®21A8q buissedo.d

[T 1USWUOJIAUT UOIINDBX T

Gel al
adIgqnd W30

0S| 9beiois

a|gewwelbo.id

SWli [-8uQ

~

D, V4

- uonoun4
yseH oiydesboidAin Aepp-au

Wa\az/

NTO 194088
\W20wR%S,

U.S. Patent Jul. 12, 2016 Sheet 2 of 15 US 9,390,246 B2

Recelve secret OEM key as input to one-way cryptographic hash function
2

v

Transform, using the one-way cryptographic hash function, the secret OEM key
into an OEM-specific public ID

22

Route the OEM public ID from the one-way cryptographic hash function via a
single path to one-time programmable storage, wherein the one-time
programmable storage is only programmable from the one-way cryptographic

function
290
 J
Store the OEM public ID in the one-time programmable storage
240

FIG. 2

US 9,390,246 B2

Sheet 3 of 15

Jul. 12, 2016

U.S. Patent

ve Ol4

00¢ 821A8(] buissao0.d

[T JUSWUOJIAUT UOINJ9X3

GET
JUBWUOJIAUT

Alnoas W0

0¢E
M4 Alunoeg N3O0
A
/A 0cl
o0 L ooun
_ J yseH oydesboidAun Aepn-auQ
A A
4 O N wma
oM 1BAO a1dan
/ M |eq _o\ /.3 n__\,_m_o\

US 9,390,246 B2

Sheet 4 of 15

Jul. 12, 2016

U.S. Patent

g¢ Ol
COT 921A8(q Buissesold
Ol | JuswuodiAuz uonndax3
4 N\
GIE udoL | B 0g¢
uoneonuayiny M4 Aunoeg W30
o %
| i
Y
_)
EmEm:Wm_Em_ A oneq [O oo 1B : o)
.) 90IA3(] olydesboydAun Aepp-au Ad
(5% Wao N 1, y 0 Aep-euQ S M W30)
i .ﬁ ﬁ
\ 0S¢ al h 0ZT uonaund yseH
G__%n_ SoImea aiydelBoydAIn Aep-auQ
! ! A
1/
" 5w _| 02T uonouny ysey se)
/>mv_ Hoom_\ olydesboydAup Aepp-euo Aoy [BQOID y
O¥€ Joppe] A9
C wra
20IdN
2Nand W30,

US 9,390,246 B2

Sheet 5 of 15

Jul. 12, 2016

U.S. Patent

J€ Il

¢C Juswuosiaug Ajun29S NIO

-

06E " srmueyo) |
GLE USXO|
Jusuodwon - UONBINUSYINY
UOI1BOIIUSYINY 82IAS(] _ /
A
\\ﬂ 08 0ZF uonound yseH
9} 92INS(] |« B
olydelboiydAin Aepp-auQO
Emos_oo.amw_\

A

CowEa

211gNd 991A8Q

N /

o

0¢g
Asy INTFO

~

\

U.S. Patent Jul. 12, 2016 Sheet 6 of 15 US 9,390,246 B2

400

A

Retrieve OEM public ID embedded in processing device for use as input to a one-
way cryptographic hash function
41

L 4

Retrieve global key embedded in processing device for use as input to the one-
way cryptographic hash function

420

v

Generate, using the one-way cryptographic hash function, a derived OEM key
from the OEM public ID and the global key

430

Y

Provide OEM key to OEM-owned security firmware and/or to an OEM security
environment for use in authentication and security purposes

440

FIG. 4A

U.S. Patent Jul. 12, 2016 Sheet 7 of 15 US 9,390,246 B2

450

.

Retrieve OEM public ID embedded in processing device for use as input to a one-
way cryptographic hash function

499

v

Retrieve global key embedded in processing device for use as input to the one-
way cryptographic hash function

46

Y

Generate, using the one-way cryptographic hash function, a derived OEM key
from the OEM public ID and the global key

469

Y

Generate, using the one-way cryptographic hash function, a device public ID from
a root key embedded at the processing device

47

v

Generate, using the one-way cryptographic hash function, device key using the
OEM key and the device public ID

47

Y

Provide device key and device public ID to OEM security environment for use in
authentication, verification, and other security purposes

480

US 9,390,246 B2

Sheet 8 of 15

Jul. 12, 2016

U.S. Patent

g5 Ol
o — | e | | = | T R
== | 029 == P18 == ~ | onw | @re 708 | sam
HWon 1 - AIOWS abe)g 9)nvex3 s|npsyog Bulweusy, 00| | epoosq| Uyoje 4
" uondeox3 HoRg S jpeay 191s16eY “ “ U1bus
Vs Ol
7 -
g/C JIur 3yae)) eje(0/G
Jun ayoed z1 77C jun Aowsy
HUM g1.1 eled
A
00C (S)1818N|) uolnosxg
795 (Shun 295 «—| 069 uosoun;
S$S300Y AJOWS|A (Shiun uonnoax3 USeH Aem-|
L ' :

2GS
(Shun sai4 Jaysibay [easAyd

Go (ShunJsinpeyos 1 | junjuswainsy

799

e
Lo
Lo
—
)
S
4V
O
O A
<t
4}
=
0
-
4}
il

0GG
U 8uIbuz uonNosx 3

0rG UM 8pode(

0fC U)o uondonansuy

9€G Jun 971 uononaisuy|

PEC JUN SY9ED UOIONSUY|

Jun uopdIpaid Youelg

0€S
jlury pug juol

439

065
8109

008
aulfedid

US 9,390,246 B2

Sheet 9 of 15

Jul. 12, 2016

U.S. Patent

9 Old4

syoen | [9A870] syoen | [9A87 0]

ey 09 319 919 4%
AON dA [TV MOIS\ | J1V JSE 1V 15E4 NOV

019 %OM8N

ssedAg / 914 18]S169Y 44 119
20/g 8X
N e S I 10l
S Y
909 18|npayds 09 209 13|NPayds
d4 ajdwig 13|NP3YIS 44 [BIsusc)/MO|S 18|Npsyos jsed AJOWBIA
5 £09
ananp) UIbUA 1epI() JO N0
anand) 4On uiod buneol{/1abay 4O AIOWSI\
JaWeUsY 18151693/101BI0||Y 009
10SS990.4
759 0€9
oNenD O B 3UdR) a0el |
0€9 —
NOY 829
9PO0IDIN 13p033(J uonoNIISu|
109 929
pu3 Juol 4 1ay2)slsl 4 UOIONIISU|

US 9,390,246 B2

Sheet 10 of 15

Jul. 12, 2016

U.S. Patent

0¢/

eled puy spod
07/ 98beio)s reQ

L Il

[c]

el

$99IA8(] WWO0 9SNON/PJeogAsY
0¢/
bc/ pi/ 8L/
O/ olpny s801A8(O/ 3bpug SNg
EN&
96/ 6/
4/ 3/ 6¢/ Q BT :
067 o 67 SIlYdeld) Hod-YbiH
d-d 06/ 19sAIyD d-d
vG/ 49
98/ 88/ 8// 97/
d-d d-d [*) d-d d-d
06/
iz 28/ ¢l/ €/
A[ETH OINI O Aowsy
08/ J0SS820.4 0/] 10SS820.4
/o&

U.S. Patent Jul. 12, 2016 Sheet 11 of 15 US 9,390,246 B2

895
Display GMCH Memory
849 820 840
895

ICH
890

External Graphics Peripheral

Device 870

860

FIG. 8

6 Ol4

US 9,390,246 B2

Gl6
0/| Aoeba

966

3/l
72 - 766
= 66 18sdIyD d-d
-
- 493
3
=
9 9.

056
&
o
—
2 —
N pEG
— AJOWS|A
=
—
096 10SS82014 0/6 10SS820.4
~
-
L
=
A P16
. S80IAe(O/

4
-

€6
AJOWBIN

v/ocm

-

aa .

° 0l 9l

2_-;,

~

&N

¢ T T T T T T T T -

A 0707 7507 007 4 (A _ 3707

- Jun Aedsi Jun vING Jun NvYS fJowaly palelbal) | 10S$8001d O3PIA
e
“ 0207
_ 10SS82014 oIpNy

nk piayiepiesiugiesiiuyiusiasiupinpluupie

S e _q v20}

e 910} ST

m (S)un J8)j01u0) SN C00F (Shun auuodsey "r 10558001 B0

m q|||||||||||||||||||||||||||.

. | I

e _ | 300}
| | _ solydelo) pajelbau

e “ 9007 “ e L E LT

= | (S)iun syoe) psieys | —

& _ _ 0¢0!

~ | ($)10S$82014 EIPSIN

y—

= 010}

-

Jun Jusby walsAg

N¢0OL 8100 V00l 9109

0,0} ../ 000!
10S$820.4 uoneol|ddy diyn v UO WejsAS

U.S. Patent

a\
aa .
e L O
4
2-._,,
O —
A GGL1
a |0JJUOY) Jamod
A GOLL m
- yseld NYHQ

GoL]

4IM 11°208
0GLT GrIL 071} Gel L 0SLT
\r; Od 19]|03U0D Yse|4 19]|03U0D NVYHAS NOY 1004 IS
>
~T -
= 081}
> Sd9 [
- 108UU02IB)U|
& 0L1T 6OLL
= dyoe)d z7 Jun sdepsu| SNY
R GLT] G2l |
- WSO O 11 09PN @O1|| 02FF GITT 804} 10400 BED ¢
m 08p0D) 08PIA Nd9
/00T 901
8100 8100
01T

4100)an|d COLl

do1
v/oo:

U.S. Patent

U.S. Patent Jul. 12, 2016 Sheet 15 of 15 US 9,390,246 B2

/ 1200
PROCESSOR 1202

o STATIC MEMORY
1206

PROCESSING
LOGIC 1226

VIDEQ DISPLAY
1210

MAIN MEMORY 1204

INSTRUCTIONS ALPHA-NUMERIC
12% INPUT DEVICE
1212

GRAPHICS
PROCESSING CURSOR
UNIT CONTROL
1222 DEVICE
1214

VIDEO
PROCESSING SIGNAL

UNIT GENERATION
1228 DEVICE
1216

AUDIO

PROCESSING DATA STORAGE DEVICE
UNIT 1218

1232
MACHINE-READABLE
MEDIUM 1224

NETWORK
INTERFACE AN

DEVICE SOFTWARE
1226

FIG. 12

US 9,390,246 B2

1

CREATING SECURE ORIGINAL
EQUIPMENT MANUFACTURER (OEM)
IDENTIFICATION

TECHNICAL FIELD

The embodiments of the disclosure relate generally to pro-
cessing devices and, more specifically, relate to creating
secure original equipment manufacturer (OEM) 1dentifica-
tion.

BACKGROUND

Original equipment manufacturers (OEMSs), such as
mobile handset device manufacturers, aim to protect their
soltware assets running on any of a variety of hardware plat-
forms (e.g., processing device, System-on-a-Chip (SoC),
ctc.) available 1 the market. This 1s because OEMs have
assets that create a unique look and feel for their respective
devices and these software assets require protection from
clone manufacturers who have access to the same hardware
platforms and seek to copy the OEM’s software asset.

One approach for providing protection for OEMs and their
software assets has been to label hardware of the hardware
plattorm with OEM specific identifiers that the OEM soft-
ware assets could then use for verification purposes. How-
ever, 1n practice, this approach turns generic hardware into
non-generic hardware, as the hardware 1s now programmed
specifically for the OEM wvia the OEM-specific 1dentifier.
Programming of the OEM-specific identifiers into hardware
platforms should occur 1n a trusted environment (e.g., before
delivering the hardware to OEMs) 1n order to ensure the
correct OEM 1identifiers are used. This, 1n turn, causes the
hardware manufacturer to have complex mventory manage-
ment 1ssues and logistics.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more tully from the
detailed description given below and from the accompanying
drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclosure
to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 illustrates a secure Original Equipment Manufac-
turer (OEM) 1dentifier (ID) creation architecture in accor-
dance with which implementations may operate.

FI1G. 2 15 a flow diagram 1llustrating a method for creating
secure OEM 1IDs in a processing device according to an
implementation of the disclosure.

FIG. 3A 1s a block diagram 1llustrating an OEM key derti-
vation architecture in which an implementation of the disclo-
sure may operate.

FIG. 3B 1s a block diagram 1llustrating a device-specific
key dertvation architecture in which an implementation of the
disclosure may operate.

FIG. 3C 1s a block diagram 1llustrating an OEM security
environment utilized for verilying an authentication based on
a dertved device-specific key, in which an implementation of
the disclosure may operate.

FI1G. 4A 1s aflow diagram illustrating a method for dertving,
OEM keys 1n a processing device according to an implemen-
tation of the disclosure.

FI1G. 4B 1s atlow diagram illustrating a method for dertving,
device-specific keys 1n a processing device according to an
implementation of the disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5A 15 a block diagram illustrating a micro-architec-
ture for a processor that implements secure OEM ID creation

in which one embodiment of the disclosure may be used.

FIG. 5B 1s a block diagram illustrating an in-order pipeline
and a register renaming stage, out-of-order 1ssue/execution
pipeline implemented according to at least one embodiment
of the disclosure.

FIG. 6 illustrates a block diagram of the micro-architecture
for a processor that includes logic circuits to perform secure
OEM 1D creation in accordance with one embodiment of the
disclosure.

FIG. 7 1s a block diagram 1llustrating a system in which an
embodiment of the disclosure may be used.

FIG. 8 1s a block diagram of a system 1n which an embodi-
ment of the disclosure may operate.

FIG. 9 1s a block diagram of a system 1n which an embodi-
ment of the disclosure may operate.

FIG. 10 1s a block diagram of a System-on-a-Chip (SoC) 1n
accordance with an embodiment of the present disclosure

FIG. 11 1s a block diagram of an embodiment of an SoC
design 1n accordance with the present disclosure.

FIG. 12 illustrates a block diagram of one embodiment of
a computer system.

DETAILED DESCRIPTION

Embodiments of the disclosure implement techniques to
create secure Original Equipment Manufacturer (OEM) 1den-
tifiers (IDs) 1n a processing device. OEMs manufacture prod-
ucts or components that are purchased by another company
and retailed under that purchasing company’s brand name.
Implementations of the disclosure provide for creation of the
secure OEM IDs and the derivation of OEM keys and device-
specific keys based on the secure OEM IDs for purposes of
security and authentication. More specifically, implementa-
tions of the disclosure mtroduce a one-way hashing function
to the processing device to, when provided a secret OEM key
by an OEM system, generate an OEM public ID that 1s pro-
grammed 1nto one-time programmable memory (e.g., eFuse)
ol the processing device. An OEM system may refer to one or
more computing devices maintained and run by the OEM. In
addition, implementations of the disclosure utilize the gener-
ated and embedded OEM public ID of the processor to derive
OEM keys and device-specific keys for use by OEM-owned
security firmware running on the processing device.

The secure OEM IDs of implementations of the disclosure
improve mventory management for hardware platform ven-
dors (e.g., processing device vendor, System-on-a-Chip
(SoC) vendor, chipset vendor) and provides flexibility 1n
security offerings provided by the hardware platform ven-
dors. The existing OEM ID solutions are usually limited due
to the hardware platform vendor’s responsibility of handling
programming of the OEM ID on the manufacturing end.
Furthermore, the existing solutions are often inflexible 1n
terms ol security offerings that a hardware platform vendor
can provide and/or support. For example, current hardware
platform vendors maintain control of security firmware in
order to preserve a chain of trust for security authentications
and so on.

In comparison, the secure OEM IDs of the disclosure allow
the hardware platform vendor to implement the one-way
hashing function for all manufactured products, regardless of
the OEM utilizing the product, while still supporting pro-
gramming of the processing device with OEM-specific public
IDs that are under the control of the recerving OEM. Further-
more, the OEM-specific public IDs programmed by the
OEMs 1nto the processing device using the one-way hashing

US 9,390,246 B2

3

function can be utilized i the derivation of OEM keys and
device-specific keys that allow OEM-owned security firm-
ware to run on the processing device, without exposing hard-
ware-platform specific secrets (such as global keys of the
hardware platform vendors) and the OEM-specific OEM
keys. In the case of any OEM-owned security firmware vul-
nerability, these OEM keys and device-specific keys prevent
class attacks on OEM devices and attacks on other OEMs.

Although the following embodiments may be described
with reference to specific integrated circuits, such as 1 com-
puting platforms or microprocessors, other embodiments are
applicable to other types of integrated circuits and logic
devices. Similar techniques and teachings of embodiments
described herein may be applied to other types of circuits or
semiconductor devices. For example, the disclosed embodi-
ments are not limited to desktop computer systems or Ultra-
books™. And may be also used 1n other devices, such as
handheld devices, tablets, other thin notebooks, systems on a
chip (SOC) devices, and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net protocol devices, digital cameras, personal digital assis-
tants (PDAs), and handheld PCs. Embedded applications
typically include a microcontroller, a digital signal processor
(DSP), a system on a chip, network computers (NetPC), set-
top boxes, network hubs, wide area network (WAN) switches,
or any other system that can perform the functions and opera-
tions taught below.

Although the following embodiments are described with
reference to a processor, other embodiments are applicable to
other types of mtegrated circuits and logic devices. Similar
techniques and teachings of embodiments of the disclosure
can be applied to other types of circuits or semiconductor
devices that can benefit from higher pipeline throughput and
improved performance. The teachings of embodiments of the
disclosure are applicable to any processor or machine that
performs data manipulations. However, the present disclo-
sure 1s not limited to processors or machines that perform 512
bit, 256 bit, 128 bit, 64 bit, 32 bit, or 16 bit data operations and
can be applied to any processor and machine in which
manipulation or management of data 1s performed. In addi-
tion, the following description provides examples, and the
accompanying drawings show various examples for the pur-
poses of 1llustration. However, these examples should not be
construed 1n a limiting sense as they are merely intended to
provide examples of embodiments of the present disclosure
rather than to provide an exhaustive list of all possible imple-
mentations of embodiments of the present disclosure.

As more computer systems are used 1n internet, text, and
multimedia applications, additional processor support has
been introduced over time. In one embodiment, an instruction
set may be associated with one or more computer architec-
tures, including data types, instructions, register architecture,
addressing modes, memory architecture, interrupt and excep-
tion handling, and external input and output (I/0).

In one embodiment, the mstruction set architecture (ISA)
may be implemented by one or more micro-architectures,
which includes processor logic and circuits used to 1mple-
ment one or more instruction sets. Accordingly, processors
with different micro-architectures can share at least a portion
of a common 1nstruction set. For example, Intel® Pentium 4
processors, Intel® Core™ processors, and processors from
Advanced Micro Devices, Inc. of Sunnyvale Calif. imple-
ment nearly identical versions of the x86 1nstruction set (with
some extensions that have been added with newer versions),
but have different internal designs. Similarly, processors
designed by other processor development companies, such as

ARM Holdings, Ltd., MIPS, or their licensees or adopters,

10

15

20

25

30

35

40

45

50

55

60

65

4

may share at least a portion a common instruction set, but may
include different processor designs. For example, the same
register architecture of the ISA may be implemented 1n dif-
ferent ways 1n different micro-architectures using new or
well-known techniques, including dedicated physical regis-
ters, one or more dynamically allocated physical registers
using a register renaming mechanism (e.g., the use of a Reg-
ister Alias Table (RAT), a Reorder Buifer (ROB) and a retire-
ment register file. In one embodiment, registers may include
one or more registers, register architectures, register files, or
other register sets that may or may not be addressable by a
soltware programmer.

In one embodiment, an instruction may include one or
more 1nstruction formats. In one embodiment, an instruction
format may indicate various fields (number of bits, location of
bits, etc.) to specily, among other things, the operation to be
performed and the operand(s) on which that operation 1s to be
performed. Some mstruction formats may be further broken
defined by instruction templates (or sub formats). For
example, the instruction templates of a given 1nstruction for-
mat may be defined to have different subsets of the instruction
format’s fields and/or defined to have a given field interpreted
differently. In one embodiment, an nstruction 1s expressed
using an mstruction format (and, 1f defined, 1n a given one of
the instruction templates of that instruction format) and speci-
fies or indicates the operation and the operands upon which
the operation will operate.

FIG. 1 illustrates a processing device 100 1n accordance
with which implementations may operate, where the process-
ing device 100 (e.g., processor and/or CPU) implements cre-
ation of secure OEM IDs 1n a processing device. In one
implementation, the processing device 100 1s part of a Sys-
tem-On-A-Chip (SoC) and may include an execution envi-
ronment 110. Execution environment 110 provides support
for operations (“micro-operations” or “uops”) executed by
the processing device 100. In one implementation, the execu-
tion environment 1s a trusted execution environment (1 EE) on
an SoC.

In one mmplementation, the execution environment 110
provides for creation of a secure OEM 1D via programming of
the processing device 100 by the OEM at the OEM {facility.
Programming of the OEM ID 1s a single time event occurring
through a one-way function, such as one-way cryptographic
hash tunction 120. The one-way cryptographic hash function
120 may be a hash function that takes an arbitrary block of
data and returns a fixed size bit string, where 1t 1s infeasible to
determine (e.g., reverse engineer) what the mput data was
from the output bit string. In one implementation, the one-
way cryptographic hash function 120 1s a secure SHA hash
algorithm. In some implementations, the one-way crypto-
graphic hash function 120 can be implemented as a hardware
block 1n an eFuse controller or as a trusted software function
in an eFuse driver of the execution environment 100.

In one implementation, one-way cryptographic hash func-

[

tion 120 transforms an OEM specific secret key 1035, main-
tained by the OEM at the OEM secure facility, into an OEM -
specific public ID 135. As the programming of the OEM 1D
135 happens as a one-time event through the one-way cryp-
tographic hash function 120, an OEM ID 135 cannot be
programmed 1n the execution environment 100 without
knowing the corresponding secret OEM key 105.

An OEM can generate secret OEM keys 105 for them-
selves and use them for programming their unique OEM
public IDs 135 stored 1n one-time programmable storage 130
of the execution environment 110. The one-time program-
mable storage 130 may include specialized storage that 1s
programmed once solely via the one-way cryptographic hash

US 9,390,246 B2

S

function 120 and tamper prootf so that 1t cannot be changed
during the lifetime of the architecture 100. In one implemen-
tation, the one-time programmable storage 130 1s a bank of
fuses, or eFuses. As such, the OEM public ID 135, once
programmed, cannot be produced by anyone else that does
not know the secret OEM key 103. The secret OEM key 105

may remain 1n a secure server of the OEM, while the hard-
ware architecture 100 contains the OEM public ID 135.

The OEM public ID 135 programmed 1n the processing
device 100 can be used by an OEM software asset to recog-
nize genuine hardware before allowing execution to proceed.
When an OEM software asset containing the OEM public ID
starts to execute, 1t can read the OEM public ID 135 from the
processing device 100. If the ID values match, then execution
of the OEM software asset continues. I the ID values do not
match, then an error condition occurs and execution is halted.

FIG. 2 1s a flow diagram illustrating a method 200 for
generating a secure OEM ID programmed 1n a processing
device via one-way hash function according to an implemen-
tation of the disclosure. Method 200 may be performed by
processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soit-
ware (such as instructions run on a processing device), firm-
ware, or a combination thereof. In one embodiment, method
200 1s performed by processing device 100 of FIG. 1.

Method 200 begins at block 210 where a secret OEM key
1s rece1ved as mput to a one-way cryptographic hash function
of the processing device. The secret OEM key may be main-
tained and provided by an OEM that receives the processing
device as part of a hardware platform to execute OEM assets.
The one-way cryptographic hash function may be a hash
function that takes an arbitrary block of data and returns a
fixed size bit string, where it 1s infeasible to determine (e.g.,
reverse engineer) what the mput data was from the output bit
string. In one implementation, the one-way cryptographic
hash function 1s a secure SHA hash algorithm. At block 220,
the one-way cryptographic hash function transforms the
secret OEM key into an OEM-specific public ID.

Then, at block 230, the OEM public ID 1s routed from the
one-way cryptographic hash function via a single path to
one-time programmable storage. In one implementation, the
one-time programmable storage 1s configured to only be pro-
grammable via the one-way cryptographic function. Lastly, at
block 240, the OEM public ID 1s stored in the one-time
programmable storage. The one-time programmable storage
1s persistent storage that 1s temper proot for the lifetime of the
processing device, so that the storage ol the OEM public ID in
the processing device 1s secure.

FIG. 3A an exemplary processing device 300 1n accor-
dance with which implementations may operate, where the
processing device 300 implements derivation of OEM keys
for use by OEM-owned security firmware 1n a processing
device. In one implementation, the processing device 300 1s
part of an SoC and may include an execution environment
110, which 1s the same as 1ts counterpart described with
respect to FI1G. 1.

Processing device 300 utilizes a one-way cryptographic
hash function 120 and the OEM public ID 135, which are the
same as their counterparts discussed with respect to FIG. 1, as
part of a security model provided by a hardware platform
vendor to protect hardware platform secrets, such as a global
security key 310 (*global key™), while allowing an OEM
vendor to own, control, sign, and/or modily security firmware
330 on the processing device that utilizes the hardware plat-
form secrets. This may be referred to as a mixed-mode own-
ership model for security firmware 330. In one implementa-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion, the global key 310 1s the same among all hardware
devices generated for a particular hardware-platiorm vendor.

In situations where a hardware platform vendor of the
processing device 300 allows an OEM to own or otherwise
impact a chain of trust of security firmware 330 on the pro-
cessing device, a key derived by the security firmware from
the global key 310 cannot be trusted. This 1s because the
security firmware 330 handling the global key 310 1s owned
by a different entity than the global key 310. In addition, use
of global key 310 directly by OEM securnity firmware 330
opens the hardware platform and the OEM up to class attacks.

Processing device 300 addresses this mixed-mode owner-
ship mode preventing the global key 310 from being directly
accessed by security FW 330 and removing the direct use of
the global key 310 from any authentication steps by security
firmware 330. In one implementation, a unique derived OFE
key 320 may be generated for use by OEM security firmware
330 for security and authentication purposes. The OEM key
320 may be generated using the embedded one-way crypto-
graphic hash function 120 described above with respect to
FIG. 1. The one-way cryptographic hash function 120 trans-
forms inputs including a hardware platform-owned global
key 310 embedded 1n the processing device and the OE
public ID 135 programmed into the processing device 300, as
described above with respect to FIGS. 1 and 2.

As discussed above, the OEM has control over the creation
of the OEM public ID 135 that 1s programmed into processing
device 300. This OEM public ID 135 cannot be re-produced
or programmed at the processing device 300 without knowing
the secret OEM key 105 (discussed above with respect to FIG.
1). As a result, the OEM key 320 cannot be re-produced by
any other entity than the OEM without knowmg the secret
OEM key 105 and the global key 310 (which 1s hardware
platform vendor protected). Implementations of the disclo-
sure deliver robust protection even 1f one OEM 1s careless
with the security firmware 330 by keeping the hardware plat-
form vendor secrets (e.g., global key 310) safe (As security
firmware does not read this global key 310 directly). This
global key 310 protection offers the additional benefit of
protecting other OEMs from attack as well.

In some implementations, the OEM key 320 1s also sent to
an OEM security environment 335. The OEM security envi-
ronment 335 may be one or more computing devices (e.g.,
server devices) operated and managed by the OEM to provide
security services, such as authentication and verification ser-
vices Tor the OEM. Further explanation of the OEM security
environment 335 1s discussed below with respect to FIG. 3C.

FIG. 3B 1s a block diagram 1llustrating an example pro-
cessing device 305 1n accordance with which implementa-
tions may operate, where the processing device 305 imple-
ments derivation of a device-specific key for use by OEM-
owned security firmware in a processing device. In one
implementation, the processing device 305 1s part of an SoC
and may include an execution environment 110, which 1s the
same as 1ts counterpart described with respect to FIG. 1.

Processing device 305 implements a key ladder 340 to
protect the global key 310 and OEM key 320 from OE
security firmware 330. Key ladder 340 1s a hardware compo-
nent of processing device 305 that generates key materials
and derives keys. By introducing one-way cryptographic hash
function 120 to the key ladder 340, implementations of the
disclosure create a secure device authentication scheme for a
mixed-mode ownership model of security firmware 330.

As shown 1n FIG. 3B, the OEM public 1D 135 and global
key 310 are transformed by one-way cryptographic has func-
tion 120 mto OEM key 320 similar to processing device 300
of F1G. 3A. However, key ladder 340 further utilizes one-way

US 9,390,246 B2

7

cryptographic hash function 120 to combine additional key
materal to protect the global key 310 and OEM key 320 from
being revealed to the OEM securnity firmware 330. The key
ladder 340 further utilizes a device-specific secret key, known
as root key 360, as input to the one-way cryptographic hash
function 120 to generate a device public ID 350. The root key
360 1s a unique key specific to the device of processing device
305 that 1s programmed into fuses of processing device 3035
by the hardware platform vendor. The device public ID 350 1s
combined with the OEM key 320 as mnput to the one-way
cryptographic hash function 120 to generate a derived device
key 370. The device key 370 1s sent to OEM security firmware
330 within execution environment 110, in order for OEM
security firmware 330 to generate an authentication token 375
from the device key 370. In one implementation, the authen-
tication token 375 1s generated via a cryptographic operation
at the OEM security firmware 330. The authentication token
375, along with the device public 1D 350, 1s sent to OEM
security environment 335 to verily the authentication per-
tformed by processing device 303, as discussed further below
with respect to FIG. 3C.

As a result, 1n a worst-case scenario where a security flaw
1s exposed 1n the security firmware 330, the security model
provided by processing device 305 reveals only one device’s
secret key (e.g., device key 370) so this prevents class attacks
on other devices. As vulnerabilities in OEM security firm-
ware 330 cannot be used to compromise the OEM key 320 of
the global key 310, class attacks against all OEM devices
having the global key 310 are avoided, as well as avoiding
attacks against other OEMSs than the exposed OEM.

FIG. 3C 1s a block diagram 1illustrating an OEM security
environment 335 utilized for verifying an authentication
based on a derived device-specific key, in which an 1mple-
mentation of the disclosure may operate. OEM security envi-
ronment 335 may include one or more computing devices,
such as server devices, used to provide security services, such
as authentication of hardware devices and verification of
device authentication procedures. In one implementation,
OEM security environment 335 receives the OEM key 320
from FIG. 3 A and the device public ID 350 and authentication
token 375 from FIG. 3B, and applies a same one-way cryp-
tographic hash function 120 as implemented by the process-
ing device 300, 305 used by OEM. OEM security environ-
ment 335 then re-produces a device key 380. The reproduced
device key 380 1s used by device authentication component
390 to reproduce the cryptographic operation performed by
OEM security firmware 330 1n FIG. 3B and vernily the authen-
ticity of authentication token 375. This 1s one example of a
verification process that OEM security environment may per-
torm for keys produced by processing devices 300, 303 uti-
lized by OEM. Implementations of the disclosure may
encompass other authentication and verification procedures
that an OEM may perform.

FIG. 4A 1s a tlow diagram illustrating a method 400 for
deriving OEM keys for use by OEM-owned security firmware
in a processing device according to an implementation of the
disclosure. Method 400 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (such
as 1nstructions run on a processing device), firmware, or a
combination thereof. In one embodiment, method 400 1s per-
formed by processing device 300 of FIG. 3A.

Method 400 begins at block 410 where an OEM public ID
embedded 1n the processing device 1s retrieved for use as
input to a one-way cryptographic hash function. The OEM
maintains control over the creation of the OEM public ID that
1s embedded into the processing device by providing a secret

5

10

15

20

25

30

35

40

45

50

55

60

65

8

OEM key to the one-way cryptographic hash function 1n
order to generate the OEM public ID at the processing device.
As discussed above, this OEM public ID cannot be re-pro-

duced or programmed at the processing device without know-

ing the secret OEM key maintained by the OEM.

At block 420, a global key embedded in the processing
device 1s retrieved for use as mput to the one-way crypto-
graphic hash function. The global key may be a hardware-
plattorm owned secret key used by the processing device for
security and authentication purposes. At block 430, a derived
OEM key 1s generated by the one-way cryptographic hash
function using the OEM public ID and the global key. Lastly,
at block 440, the OEM key 1s provided to OEM-owned secu-
rity firmware and/or to an OEM secure environment for use in
authentication and security purposes.

FIG. 4B 15 a flow diagram illustrating a method 450 for
deriving a device-specific key for use by OEM-owned secu-
rity firmware 1n a processing device according to an 1imple-
mentation of the disclosure. Method 450 may be performed
by processing logic that may comprise hardware (e.g., cir-
cuitry, dedicated logic, programmable logic, microcode,
etc.), software (such as instructions run on a processing
device), firmware, or a combination thereot. In one embodi-

ment, method 450 1s performed by processing device 305 of

FIG. 3B.

Method 450 begins at block 455 where an OEM public 1D
embedded 1n the processing device 1s retrieved for use as
input to a one-way cryptographic hash function. The OEM
maintains control over the creation of the OEM public ID that
1s embedded into the processing device by providing a secret
OEM key to the one-way cryptographic hash function 1n
order to generate the OEM public ID at the processing device.
As discussed above, this OEM public ID cannot be re-pro-
duced or programmed at the processing device without know-
ing the secret OEM key maintained by the OEM.

At block 460, a global key embedded in the processing
device 1s retrieved for use as mput to the one-way crypto-
graphic hash function. The global key may be a hardware-
platiorm owned secret key used by the processing device for
security and authentication purposes. The global key may be
the same for all hardware platform manufactured by a par-
ticular vendor. At block 465, a dertved OEM key 1s generated
by the one-way cryptographic hash tunction using the OEM
public ID and the global key.

At block 470, a device public ID 1s generated by the one-
way cryptographic hash function using a root key. In one
implementation, the root key 1s a unique key specific to the
individual processing device that 1s programmed 1nto fuses of
the processing device by the hardware platform vendor. Sub-
sequently, at block 475, a device key 1s generated by the
one-way cryptographic hash function using the OEM key and
the device public ID. At block 480, the device key are pro-
vided to OEM security firmware within an execution envi-
ronment of the processing device for a cryptographic opera-
tion to generate an authentication token from the device key.
Lastly, at block 485, the authentication token and the device
public ID are provided to an OEM security environment for
use 1n authentication, verification, and other security pur-
poses.

FIG. 5A 1s a block diagram illustrating a micro-architec-
ture for a processor 500 that implements creating secure
OEM IDs 1n accordance with one embodiment of the disclo-
sure. Specifically, processor 500 depicts an in-order architec-
ture core and a register renaming logic, out-of-order 1ssue/
execution logic to be included 1n a processor according to at

least one embodiment of the disclosure.

US 9,390,246 B2

9

Processor 500 includes a front end unit 530 coupled to an
execution engine unit 550, and both are coupled to a memory
unit 570. The processor 500 may include a reduced nstruc-
tion set computing (RISC) core, a complex instruction set
computing (CISC) core, a very long instruction word (VLIW)
core, or a hybrid or alternative core type. As yet another
option, processor 500 may include a special-purpose core,
such as, for example, a network or communication core,
compression engine, graphics core, or the like. In one
embodiment, processor 500 may be a multi-core processor or
may part ol a multi-processor system.

The front end unit 530 includes a branch prediction unit
532 coupled to an instruction cache unit 534, which 1s
coupled to an instruction translation lookaside builer (TLB)
536, which 1s coupled to an mstruction fetch unit 538, which
1s coupled to a decode unit 540. The decode unit 540 (also
known as a decoder) may decode instructions, and generate as
an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are dertved from, the original instructions. The decoder
540 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only memo-
ries (ROMs), etc. The instruction cache unit 534 is further
coupled to the memory unit 570. The decode unit 540 1s
coupled to a rename/allocator unit 552 in the execution
engine unit 530.

The execution engine unit 550 includes the rename/alloca-
tor unit 352 coupled to a retirement unit 554 and a set of one
or more scheduler unit(s) 556. The scheduler unit(s) 556
represents any number of different schedulers, including res-
ervations stations (RS), central instruction window, etc. The
scheduler unit(s) 356 1s coupled to the physical register file(s)
unit(s) 558. Each of the physical register file(s) units 538
represents one or more physical register files, different ones
of which store one or more different data types, such as scalar
integer, scalar tloating point, packed integer, packed tloating
point, vector integer, vector tloating point, etc., status (e.g., an
instruction pointer that 1s the address of the next instruction to
be executed), etc. The physical register file(s) unit(s) 558 1s
overlapped by the retirement unit 554 to illustrate various
ways 1n which register renaming and out-of-order execution
may be implemented (e.g., using a reorder buffer(s) and a
retirement register file(s), using a future file(s), a history
builer(s), and a retirement register file(s); using a register
maps and a pool of registers; etc.).

In one implementation, processor 100 may be the same as
processors 100, 300, and 305 described with respect to FIGS.
1, 3A, and 3B. In particular, the execution engine unit 350
may include a one-way hash function 590 that 1s the same as
one-way cryptographic hash function 120 described with
respect to FIGS. 1, 3A, and 3B, to implement creating secure
OEM 1Ds described with respect to implementations of the
disclosure.

Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspective.
The registers are not limited to any known particular type of
circuit. Various different types of registers are suitable as long
as they are capable of storing and providing data as described
herein. Examples of suitable registers include, but are not
limited to, dedicated physical registers, dynamically allo-
cated physical registers using register renaming, combina-
tions of dedicated and dynamically allocated physical regis-
ters, etc. The retirement unit 354 and the physical register
file(s) unit(s) 558 are coupled to the execution cluster(s) 560.

10

15

20

25

30

35

40

45

50

55

60

65

10

The execution cluster(s) 560 includes a set of one or more
execution units 362 and a set of one or more memory access
units 564. The execution units 562 may perform various
operations (e.g., shifts, addition, subtraction, multiplication)
and operate on various types of data (e.g., scalar floating
point, packed integer, packed floating point, vector integer,
vector tloating point).

While some embodiments may include a number of execu-
tion units dedicated to specific functions or sets of functions,
other embodiments may include only one execution unit or
multiple execution units that all perform all functions. The
scheduler unit(s) 556, physical register file(s) unit(s) 558, and
execution cluster(s) 560 are shown as being possibly plural
because certain embodiments create separate pipelines for
certain types ol data/operations (e.g., a scalar integer pipe-
line, a scalar floating point/packed integer/packed tloating
point/vector iteger/vector tloating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unt, physical register file(s) unit, and/or execution cluster—
and 1n the case of a separate memory access pipeline, certain
embodiments are implemented 1n which only the execution
cluster of this pipeline has the memory access unit(s) 364). It
should also be understood that where separate pipelines are
used, one or more of these pipelines may be out-of-order
1ssue/execution and the rest mn-order.

The set of memory access units 564 1s coupled to the
memory unit 370, which may include a data prefetcher 580, a
data TLB unit 572, a data cache unit (DCU) 574, and a level
2 (L2) cache unit 576, to name a few examples. In some
embodiments DCU 574 1s also known as a first level data
cache (L1 cache). The DCU 574 may handle multiple out-
standing cache misses and continue to service incoming
stores and loads. It also supports maintaiming cache coher-
ency. The data TLB unit 572 1s a cache used to improve virtual
address translation speed by mapping virtual and physical
address spaces. In one exemplary embodiment, the memory
access units 564 may include a load unit, a store address unat,
and a store data unit, each of which i1s coupled to the data TLB
unit 372 1 the memory unit 570. The L2 cache umit 576 may
be coupled to one or more other levels of cache and eventually
to a main memory.

In one embodiment, the data prefetcher 580 speculatively
loads/pretetches data to the DCU 574 by automatically pre-
dicting which data a program 1s about to consume. Prefetech-
ing may refer to transferring data stored in one memory
location of a memory hierarchy (e.g., lower level caches or
memory) to a higher-level memory location that 1s closer
(e.g., vields lower access latency) to the processor before the
data1s actually demanded by the processor. More specifically,
prefetching may refer to the early retrieval of data from one of
the lower level caches/memory to a data cache and/or prefetch
butiler before the processor 1ssues a demand for the specific
data being returned.

The processor 500 may support one or more instructions
sets (e.g., the x86 1nstruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so 1n a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core 1s sitmultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and

US 9,390,246 B2

11

decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming 1s described in the context of
out-of-order execution, 1t should be understood that register
renaming may be used 1n an 1n-order architecture. While the
illustrated embodiment of the processor also includes a sepa-
rate 1nstruction and data cache units and a shared .2 cache
unit, alternative embodiments may have a single internal
cache for both instructions and data, such as, for example, a
Level 1 (1) internal cache, or multiple levels of internal
cache. In some embodiments, the system may 1include a com-
bination of an internal cache and an external cache that 1s
external to the core and/or the processor. Alternatively, all of
the cache may be external to the core and/or the processor.

FIG. 5B 1s a block diagram 1llustrating an in-order pipeline
and a register renaming stage, out-of-order 1ssue/execution
pipeline implemented by processing device 500 of FIG. 5A
according to some embodiments of the disclosure. The solid
lined boxes 1n FIG. 5B illustrate an in-order pipeline, while
the dashed lined boxes illustrates a register renaming, out-oi-
order 1ssue/execution pipeline. In FIG. 3B, a processor pipe-
line 500 1includes a fetch stage 502, a length decode stage 504,
a decode stage 506, an allocation stage 508, a renaming stage
510, a scheduling (also known as a dispatch or issue) stage
512, aregister read/memory read stage 514, an execute stage
516, a write back/memory write stage 518, an exception
handling stage 522, and a commut stage 524. In some embodi-
ments, the ordering of stages 502-524 may be different than
illustrated and are not limited to the specific ordering shown
in FIG. 5B.

FI1G. 6 1llustrates a block diagram of the micro-architecture
for a processor 600 that includes logic circuits to create secure
OEM IDs 1n accordance with one embodiment of the disclo-
sure. In some embodiments, an instruction in accordance with
one embodiment can be implemented to operate on data ele-
ments having sizes of byte, word, doubleword, quadword,
etc., as well as datatypes, such as single and double precision
integer and tloating point datatypes. In one embodiment the
in-order front end 601 1s the part of the processor 600 that
fetches 1nstructions to be executed and prepares them to be
used later 1n the processor pipeline.

The front end 601 may include several units. In one
embodiment, the mstruction prefetcher 626 fetches instruc-
tions from memory and feeds them to an 1nstruction decoder
628 which in turn decodes or interprets them. For example, 1n
one embodiment, the decoder decodes a received 1nstruction
into one or more operations called “micro-instructions™ or
“micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the mstruction 1nto an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations 1n accordance with one embodiment. In
one embodiment, the trace cache 630 takes decoded uops and
assembles them into program ordered sequences or traces 1n
the uop queue 634 for execution. When the trace cache 630
encounters a complex instruction, the microcode ROM 632
provides the uvops needed to complete the operation.

Some 1nstructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, 1f more than four micro-ops
are needed to complete an instruction, the decoder 628
accesses the microcode ROM 632 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction decoder
628. In another embodiment, an instruction can be stored
within the microcode ROM 632 should a number of micro-
ops be needed to accomplish the operation. The trace cache

5

10

15

20

25

30

35

40

45

50

55

60

65

12

630 refers to an entry point programmable logic array (PLA)
to determine a correct micro-instruction pointer for reading
the micro-code sequences to complete one or more nstruc-
tions 1n accordance with one embodiment from the micro-
code ROM 632. After the microcode ROM 632 finishes
sequencing micro-ops for an instruction, the front end 601 of
the machine resumes fetching micro-ops from the trace cache
630.

The out-of-order execution engine 603 i1s where the
instructions are prepared for execution. The out-of-order
execution logic has a number of builers to smooth out and
re-order the tlow of mstructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine bullers and
resources that each uop needs 1n order to execute. The register
renaming logic renames logic registers onto entries 1n a reg-
ister file. The allocator also allocates an entry for each vop 1n
one of the two uop queues, one for memory operations and
one for non-memory operations, in front of the instruction
schedulers: memory scheduler, fast scheduler 602, slow/gen-
eral floating point scheduler 604, and simple floating point
scheduler 606. The vop schedulers 602, 604, 606, determine
when a uop 1s ready to execute based on the readiness of their
dependent iput register operand sources and the availability
of the execution resources the uvops need to complete their
operation. The fast scheduler 602 of one embodiment can
schedule on each half of the main clock cycle while the other
schedulers can only schedule once per main processor clock
cycle. The schedulers arbitrate for the dispatch ports to sched-
ule vops for execution.

Register files 608, 610, sit between the schedulers 602,
604, 606, and the execution units 612, 614, 616, 618, 620,
622, 624 1n the execution block 611. There 1s a separate
register {ile 608, 610, for integer and tloating point opera-
tions, respectively. Each register file 608, 610, of one embodi-
ment also includes a bypass network that can bypass or for-
ward just completed results that have not yet been written into
the register file to new dependent uops. The integer register
file 608 and the floating point register file 610 are also capable
of communicating data with the other. For one embodiment,
the integer register file 608 1s split into two separate register
files, one register file for the low order 32 bits of data and a
second register file for the high order 32 bits of data. The
floating point register file 610 of one embodiment has 128 bit
wide entries because floating point instructions typically have
operands from 64 to 128 bits 1n width.

The execution block 611 contains the execution units 612,
614, 616, 618, 620, 622, 624, where the instructions are
actually executed. This section includes the register files 608,
610, that store the integer and tloating point data operand
values that the micro-instructions need to execute. The pro-
cessor 600 of one embodiment 1s comprised of a number of
execution units: address generation unit (AGU) 612, AGU
614, fast ALU 616, fast ALU 618, slow ALU 620, floating
point ALU 622, tloating point move unit 624. For one
embodiment, the floating point execution blocks 622, 624,
execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point ALU 622 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present disclosure, instructions mvolving a tloat-
ing point value may be handled with the floating point hard-
ware.

In one embodiment, the ALU operations go to the high-
speed AL U execution units 616, 618. The fast ALLUs 616, 618,
of one embodiment can execute fast operations with an effec-
tive latency of half a clock cycle. For one embodiment, most

US 9,390,246 B2

13

complex integer operations go to the slow ALU 620 as the
slow ALU 620 includes integer execution hardware for long
latency type of operations, such as a multiplier, shifts, flag
logic, and branch processing. Memory load/store operations
are executed by the AGUs 612, 614. For one embodiment, the
integer AL Us 616, 618, 620, are described in the context of
performing integer operations on 64 bit data operands. In
alternative embodiments, the ALUs 616, 618, 620, can be
implemented to support a variety of data bits including 16, 32,
128, 256, etc. Sumilarly, the floating point units 622, 624, can
be implemented to support a range of operands having bits of
various widths. For one embodiment, the floating point units
622, 624, can operate on 128 bits wide packed data operands
in conjunction with SIMD and multimedia mstructions.

In one embodiment, the uops schedulers 602, 604, 606,
dispatch dependent operations belfore the parent load has
finished executing. As uops are speculatively scheduled and
executed 1n processor 600, the processor 600 also includes
logic to handle memory misses. If a data load misses 1n the
data cache, there can be dependent operations 1n tlight 1n the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes mnstruc-
tions that use incorrect data. Only the dependent operations
need to be replayed and the independent ones are allowed to
complete. The schedulers and replay mechanism of one
embodiment of a processor are also designed to catch istruc-
tion sequences for text string comparison operations.

The processor 600 also includes logic to implement store
address prediction for memory disambiguation according to
embodiments of the disclosure. In one embodiment, the
execution block 611 of processor 600 may include a store
address predictor (not shown) for implementing store address
prediction for memory disambiguation.

The term “registers” may refer to the on-board processor
storage locations that are used as part of istructions to 1den-
tify operands. In other words, registers may be those that are
usable from the outside of the processor ({from a program-
mer’s perspective). However, the registers of an embodiment
should not be limited 1n meaning to a particular type of
circuit. Rather, a register ol an embodiment 1s capable of
storing and providing data, and performing the functions
described herein. The registers described herein can be imple-
mented by circuitry within a processor using any number of
different techniques, such as dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. In one embodiment, integer reg-
isters store thirty-two bit integer data. A register file of one
embodiment also contains eight multimedia SIMD registers
for packed data.

For the discussions below, the registers are understood to
be data registers designed to hold packed data, such as 64 bits
wide MMX™ registers (also referred to as ‘mm’ registers in
some 1nstances) in microprocessors enabled with MMX tech-
nology from Intel Corporation of Santa Clara, Calif. These
MMX registers, available 1n both integer and floating point
forms, can operate with packed data elements that accompany
SIMD and SSE instructions. Similarly, 128 bits wide XMM
registers relating to SSE2, SSE3, SSE4, or beyond (referred
to generically as “SSEx”) technology can also be used to hold
such packed data operands. In one embodiment, 1n storing
packed data and integer data, the registers do not need to
differentiate between the two data types. In one embodiment,
integer and floating point are either contained in the same
register file or different register files. Furthermore, in one
embodiment, floating point and 1integer data may be stored 1in
different registers or the same registers.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Retferring now to FIG. 7, shown 1s a block diagram 1llus-
trating a system 700 in which an embodiment of the disclo-
sure may be used. As shown 1n FIG. 7, multiprocessor system
700 1s a point-to-point mterconnect system, and includes a
first processor 770 and a second processor 780 coupled via a
point-to-point mnterconnect 750. While shown with only two
processors 770, 780, it 1s to be understood that the scope of
embodiments of the disclosure 1s not so limited. In other
embodiments, one or more additional processors may be
present 1n a given processor. In one embodiment, the multi-
processor system 700 may implement create secure OEM 1Ds
as described herein.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Processor
770 also 1ncludes as part of 1ts bus controller units point-to-
point (P-P) interfaces 776 and 778; similarly, second proces-
sor 780 includes P-P interfaces 786 and 788. Processors 770,
780 may exchange information via a point-to-point (P-P)
interface 750 using P-P interface circuits 778, 788. As shown
in FIG. 7, IMCs 772 and 782 couple the processors to respec-
tive memories, namely a memory 732 and a memory 734,
which may be portions of main memory locally attached to
the respective processors.

Processors 770, 780 may each exchange information with
a chupset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-performance
graphics circuit 738 via a high-performance graphics inter-
tace 739.

A shared cache (not shown) may be included in either
processor or outside ol both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache 11 a processor 1s placed 1nto a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation I/O 1nter-
connect bus, although the scope of the present disclosure 1s
not so limited.

As shown i FIG. 7, various I/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodiment,
second bus 720 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 720 including, for
example, a keyboard and/or mouse 722, communication
devices 727 and a storage unit 728 such as a disk drive or other
mass storage device which may include instructions/code and
data 730, 1n one embodiment. Further, an audio IO 724 may
be coupled to second bus 720. Note that other architectures
are possible. For example, instead of the point-to-point archi-
tecture of F1G. 7, a system may implement a multi-drop bus or
other such architecture.

Retferring now to FIG. 8, shown 1s a block diagram of a
system 800 1n which one embodiment of the disclosure may
operate. The system 800 may include one or more processors
810, 815, which are coupled to graphics memory controller
hub (GMCH) 820. The optional nature of additional proces-
sors 815 1s denoted in FIG. 8 with broken lines. In one
embodiment, processors 810, 815 implement creating secure
OEM IDs according to embodiments of the disclosure.

Each processor 810, 815 may be some version of the cir-
cuit, integrated circuit, processor, and/or silicon integrated
circuit as described above. However, 1t should be noted that it
1s unlikely that integrated graphics logic and integrated
memory control units would exist 1n the processors 810, 815.

FIG. 8 illustrates that the GMCH 820 may be coupled to a

US 9,390,246 B2

15

memory 840 that may be, for example, a dynamic random
access memory (DRAM). The DRAM may, for at least one
embodiment, be associated with a non-volatile cache.

The GMCH 820 may be a chipset, or a portion of a chipset.
The GMCH 820 may communicate with the processor(s) 810,
815 and control interaction between the processor(s) 810, 8135
and memory 840. The GMCH 820 may also act as an accel-
erated bus interface between the processor(s) 810, 8135 and
other elements of the system 800. For at least one embodi-
ment, the GMCH 820 communicates with the processor(s)
810, 815 via a multi-drop bus, such as a frontside bus (FSB)
895.

Furthermore, GMCH 820 1s coupled to a display 845 (such
as a tlat panel or touchscreen display). GMCH 820 may
include an integrated graphics accelerator. GMCH 820 1s
turther coupled to an 1nput/output (I/O) controller hub (ICH)
850, which may be used to couple various peripheral devices
to system 800. Shown for example 1n the embodiment of FIG.
8 1s an external graphics device 860, which may be a discrete
graphics device, coupled to ICH 850, along with another
peripheral device 870.

Alternatively, additional or different processors may also
be present in the system 800. For example, additional proces-
sor(s) 815 may include additional processors(s) that are the
same as processor 810, additional processor(s) that are het-
erogeneous or asymmetric to processor 810, accelerators
(such as, e.g., graphics accelerators or digital signal process-
ing (DSP) units), field programmable gate arrays, or any other
processor. There can be a variety of differences between the
processor(s) 810, 815 1n terms of a spectrum of metrics of
merit including architectural, micro-architectural, thermal,
power consumption characteristics, and the like. These diif-
ferences may eflectively manifest themselves as asymmetry
and heterogeneity amongst the processors 810, 815. For at
least one embodiment, the various processors 810, 815 may
reside 1n the same die package.

Referring now to FIG. 9, shown 1s a block diagram of a
system 900 1n which an embodiment of the disclosure may
operate. FIG. 9 illustrates processors 970, 980. In one
embodiment, processors 970, 980 may implement creating
secure OEM IDs as described above. Processors 970, 980
may include integrated memory and I/O control logic (*“CL”)
972 and 982, respectively and intercommunicate with each
other via point-to-point interconnect 950 between point-to-
point (P-P) interfaces 978 and 988 respectively. Processors
970, 980 cach communicate with chipset 990 via point-to-
point 1interconnects 952 and 954 through the respective P-P
interfaces 976 to 994 and 986 to 998 as shown. For at leastone
embodiment, the CL 972, 982 may include integrated
memory controller units. CLs 972, 982 may include I/O con-
trol logic. As depicted, memories 932, 934 coupled to CLs
972, 982 and 1/0 devices 914 are also coupled to the control
logic 972, 982. Legacy I/O devices 915 are coupled to the
chipset 990 via mterface 996.

Embodiments may be implemented in many different sys-
tem types. FIG. 10 1s a block diagram of a SoC 1000 in
accordance with an embodiment of the present disclosure.
Dashed lined boxes are optional features on more advanced
SoCs. In FIG. 10, an interconnect unit(s) 1012 1s coupled to:
an application processor 1020 which includes a set of one or
more cores 1002A-N and shared cache unit(s) 1006; a system
agent unit 1010; a bus controller unit(s) 1016; an 1ntegrated
memory controller unit(s) 1014; a set or one or more media
processors 1018 which may include mtegrated graphics logic
1008, an 1image processor 1024 for providing still and/or
video camera functionality, an audio processor 1026 for pro-
viding hardware audio acceleration, and a video processor

il

10

15

20

25

30

35

40

45

50

55

60

65

16

1028 for providing video encode/decode acceleration; an
static random access memory (SRAM) unit 1030; a direct
memory access (DMA)unit 1032; and a display unit 1040 for
coupling to one or more external displays. In one embodi-
ment, a memory module may be included in the integrated
memory controller unit(s) 1014. In another embodiment, the
memory module may be mcluded in one or more other com-
ponents of the SoC 1000 that may be used to access and/or
control a memory. The application processor 1020 may
include a store address predictor for implementing creating
secure OEM IDs as described in embodiments herein.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
1006, and external memory (not shown) coupled to the set of
integrated memory controller units 1014. The set of shared
cache units 1006 may include one or more mid-level caches,
such as level 2 (LL2), level 3 (L3), level 4 (LL4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof.

In some embodiments, one or more of the cores 1002A-N
are capable of multi-threading. The system agent 1010
includes those components coordinating and operating cores
1002A-N. The system agent umt 1010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1002A-N and the
integrated graphics logic 1008. The display unit 1s for driving
one or more externally connected displays.

The cores 1002 A-N may be homogenous or heterogeneous
in terms ol architecture and/or instruction set. For example,
some of the cores 1002A-N may be 1n order while others are
out-of-order. As another example, two or more of the cores
1002 A-N may be capable of execution the same 1nstruction
set, while others may be capable of executing only a subset of
that instruction set or a different instruction set.

The application processor 1020 may be a general-purpose
processor, such as a Core™ 13, 15, 17, 2 Duo and Quad,
Xeon™, [tammum™, Atom™ or Quark™ processor, which
are available from Intel™ Corporation, of Santa Clara, Calif.
Alternatively, the application processor 1020 may be from
another company, such as ARM Holdings™, Ltd, MIPS™,
etc. The application processor 1020 may be a special-purpose
processor, such as, for example, a network or communication
Processor, compression engine, graphics processor, Co-pro-
cessor, embedded processor, or the like. The application pro-
cessor 1020 may be implemented on one or more chips. The
application processor 1020 may be a part of and/or may be
implemented on one or more substrates using any of a number
of process technologies, such as, for example, BiICMOS,
CMOS, or NMOS.

FIG. 11 1s a block diagram of an embodiment of a system
on-chip (S0C) design in accordance with the present disclo-
sure. As a specific 1llustrative example, SoC 1100 1s included
in user equipment (UE). In one embodiment, UE refers to any
device to be used by an end-user to communicate, such as a
hand-held phone, smartphone, tablet, ultra-thin notebook,
notebook with broadband adapter, or any other similar com-
munication device. Often a UE connects to a base station or
node, which potentially corresponds 1n nature to a mobile
station (MS) 1n a GSM network.

Here, SOC 1100 includes 2 cores—1106 and 1107. Cores
1106 and 1107 may conform to an Instruction Set Architec-
ture, such as an Intel® Architecture Core™-based processor,
an Advanced Micro Devices, Inc. (AMD) processor, a MIPS-
based processor, an ARM-based processor design, or a cus-
tomer thereot, as well as their licensees or adopters. Cores
1106 and 1107 are coupled to cache control 1108 that 1s

US 9,390,246 B2

17

associated with bus interface unit 1109 and L.2 cache 1110 to
communicate with other parts of system 1100. Interconnect
1110 includes an on-chip interconnect, such as an IOSF,
AMBA, or other imnterconnect discussed above, which poten-
tially implements one or more aspects of the described dis-
closure. In one embodiment, cores 1106, 1107 may imple-
ment creating secure OEM IDs as described in embodiments
herein.

Interconnect 1110 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1130 to interface with a SIM card, a boot ROM 1135 to
hold boot code for execution by cores 1106 and 1107 to
initialize and boot SoC 1100, a SDRAM controller 1140 to
interface with external memory (e.g. DRAM 1160), a flash
controller 1143 to interface with non-volatile memory (e.g.
Flash 1165), a peripheral control 1150 (e.g. Serial Peripheral
Interface) to interface with peripherals, video codecs 1120
and Video iterface 1125 to display and receive mnput (e.g.
touch enabled mput), GPU 1115 to perform graphics related
computations, etc. Any of these interfaces may incorporate
aspects of the disclosure described herein. In addition, the

system 1100 illustrates peripherals for communication, such
as a Bluetooth module 1170, 3G modem 1175, GPS 1180, and

Wi-F11185.

FIG. 12 illustrates a diagrammatic representation of a
machine 1n the example form of a computer system 1200
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine may operate 1n the capacity of a server or a client
device 1n a client-server network environment, or as a peer
machine 1n a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing,
a set of instructions (sequential or otherwise) that specily
actions to be taken by that machine. Further, while only a
single machine 1s illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The computer system 1200 includes a processing device
1202, a main memory 1204 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 1206 (¢.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 1218, which communicate with each other via a
bus 1230.

Processing device 1202 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of mnstruction sets.
Processing device 1202 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. In one embodiment, processing device 1202 may
include one or processing cores. The processing device 1202

10

15

20

25

30

35

40

45

50

55

60

65

18

1s configured to execute the processing logic 1226 for per-
forming the operations and steps discussed herein. In one
embodiment, processing device 1202 1s the same as processor
architecture 100 described with respect to FIG. 1 that imple-
ments creating secure OEM IDs as described herein with
embodiments of the disclosure.

The computer system 1200 may further include a network
interface device 1208 communicably coupled to a network
1220. The computer system 1200 also may include a video
display unit 1210 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 1212
(e.g., a keyboard), a cursor control device 1214 (e.g., a
mouse), and a signal generation device 1216 (e.g., a speaker).
Furthermore, computer system 1200 may include a graphics
processing unit 1222, a video processing unit 1228, and an
audio processing unit 1232,

The data storage device 1218 may include a machine-
accessible storage medium 1224 on which 1s stored software
1226 implementing any one or more of the methodologies of
functions described herein, such as implementing store
address prediction for memory disambiguation as described
above. The software 1226 may also reside, completely or at
least partially, within the main memory 1204 as instructions
1226 and/or within the processing device 1202 as processing,
logic 1226 during execution thereof by the computer system
1200; the main memory 1204 and the processing device 1202
also constituting machine-accessible storage media.

The machine-readable storage medium 1224 may also be
used to store instructions 1226 implementing store address
prediction for creating secure OEM IDs such as described
with respect to processing devices 100, 300, and 305 1n FIGS.
1, 3A, and 3B, and/or a software library contaiming methods
that call the above applications. While the machine-acces-
sible storage medium 1128 1s shown 1n an example embodi-
ment to be a single medium, the term “machine-accessible
storage medium™ should be taken to include a single medium
or multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-accessible stor-
age medium” shall also be taken to include any medium that
1s capable of storing, encoding or carrying a set of instruction
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-accessible storage medium”™
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media.

The following examples pertain to further embodiments.
Example 1 1s a processing device for implementing creation
ol secure Original Equipment Manufacturer (OEM) 1dentifi-
ers (IDs) 1n a processing device. Further to Example 1, the
processing device includes a one-time programmable storage
device and an execution unit, coupled to the one-time pro-
grammable storage device, to implement a one-way crypto-
graphic hash function. The one-way cryptographic hash tunc-
tion 1s to recerve a secret Original Equipment Manufacturer
(OEM) key from an OEM system, generate an OEM public
identifier (ID) from the secret OEM key, and send the OEM
public ID to the one-time programmable storage device for
storage.

In Example 2, the subject matter of Example 1 can option-
ally include wherein the one-way cryptographic hash func-
tion 1s a SHA hash algorithm. In Example 3, the subject
matter of any one of Examples 1-2 can optionally include
wherein the one-time programmable storage device 1s an
cFuse. In Example 4, the subject matter of any one of
Examples 1-3 can optionally include wherein a software asset
of the OEM system compares the OEM public ID stored in the

US 9,390,246 B2

19

processing device to another OEM public ID of the software
asset to determine whether to execute the software asset on
the processing device.

In Example 3, the subject matter of any one of Examples
1-4 can optionally include wherein when the OEM public ID
does not match the another OEM public 1D of the software
asset, an error condition 1s returned and the software asset 1s
not executed by the processing device. In Example 6, the
subject matter of any one of Examples 1-5 can optionally
include wherein the one-way cryptographic hash function
turther to recerve the OEM public ID from the one-time
programmable storage device, recerve a global key embedded
in the processing device, generate an OEM key using the
OEM public ID and the global key as inputs, and provide the
OEM key to security firmware executed by the processing
device, wherein the security firmware 1s owned by the OEM
system. In Example 7, the subject matter of any one of
Examples 1-6 can optionally include wherein the OEM key 1s
used by the security firmware to authenticate the device.

In Example 8, the subject matter of any one of Examples
1-7 can optionally include wherein the one-way crypto-
graphic hash function further to generate an OEM key using
the OEM public ID and a global key as inputs, wherein the
global key 1s embedded 1n the processing device, generate a
device public ID from a root key of the processing device,
generate a device key from the OEM key and the device
public key, and provide the device public ID and an authen-
tication token that 1s dernived from the device key to security
firmware executed by the processing device, wherein the
security firmware 1s owned by the OEM system. In Example
9, the subject matter of any one of Examples 1-8 can option-
ally include wherein the authentication token and the device
public ID are used by the security firmware to authenticate the
device. All optional features of the apparatus described above
may also be implemented with respect to the method or pro-
cess described herein.

Example 10 1s a method for creation of secure Original
Equipment Manufacturer (OEM) 1dentifiers (IDs) 1n a pro-
cessing device comprising receiving, by a one-way crypto-
graphic hash function executed by a processing device, a
secret Original Equipment Manufacturer (OEM) key from an
OEM system, generating, by the one-way cryptographic hash
tfunction, an OEM public identifier (ID) from the secret OEM
key, and sending the OEM public ID to the one-time program-
mable storage device for storage. In Example 11, the subject
matter ol Example 10 can optionally include wherein the
one-way cryptographic hash function 1s a SHA hash algo-
rithm. In Example 12, the subject matter of any one of
Examples 10-11 can optionally include wherein the one-time
programmable storage device 1s an eFuse.

In Example 13, the subject matter of any one of Examples
10-12 can optionally include wherein a software asset of the
OEM system compares the OEM public ID stored in the
processing device to another OEM public ID of the software
asset to determine whether to execute the software asset on
the processing device. In Example 14, the subject matter of
any one of Examples 10-13 can optionally include wherein
when the OEM public ID does not match the another OEM
public ID of the software asset, an error condition 1s returned
and the software asset 1s not executed by the processing
device.

In Example 15, the subject matter of any one of Examples
10-14 can optionally include recerving, by the one-way cryp-
tographic hash function, the OEM public ID from the one-
time programmable storage device, receiving, by the one-way
cryptographic hash function, a global key embedded 1n the
processing device, generating, by the one-way cryptographic

10

15

20

25

30

35

40

45

50

55

60

65

20

hash function, an OEM key using the OEM public ID and the
global key as inputs, and providing the OEM key to security
firmware executed by the processing device, wherein the
security firmware 1s owned by the OEM system. In Example
16, the subject matter of any one of Examples 10-15 can
optionally include wherein the OEM key 1s used by the secu-
rity firmware to authenticate the device.

In Example 17, the subject matter of any one of Examples
10-16 can optionally include generating, by the one-way
cryptographic hash function, an OEM key using the OEM
public ID and a global key as inputs, wherein the global key 1s
embedded 1n the processing device, generating, by the one-
way cryptographic hash function, a device public ID from a
root key of the processing device, generating, by the one-way
cryptographic hash function, a device key from the OEM key
and the device public key, and providing the device public ID
and an authentication token to security firmware executed by
the processing device, wherein the security firmware 1s
owned by the OEM system. In Example 18, the subject matter
of any one of Examples 10-17 can optionally include wherein
the authentication token and the device public ID are used by
the security firmware to authenticate the device.

Example 19 1s a system for implementing creation of
secure Original Equipment Manufacturer (OEM) 1dentifiers
(IDs) 1n a processing device. In Example 19, the system
includes a memory and a processing device communicably
coupled to the memory. Further to Example 19, the process-
ing device to implement a one-way cryptographic hash tunc-
tion to receive a secret Original Equipment Manufacturer
(OEM) key from an OEM system, generate an OEM public
identifier (ID) from the secret OEM key, and send the OEM
public ID to the one-time programmable storage device for
storage.

In Example 20, the subject matter of Example 19 can
optionally include wherein the one-way cryptographic hash
function 1s a SHA hash algorithm. In Example 21, the subject
matter ol any one of Examples 19-20 can optionally include
wherein the one-time programmable storage device 1s an
cFuse. In Example 22, the subject matter of any one of
Examples 19-21 can optionally include wherein a software
asset of the OEM system compares the OEM public ID stored
in the processing device to another OEM public ID of the
software asset to determine whether to execute the software
asset on the processing device.

In Example 23, the subject matter of any one of Examples
19-22 can optionally include wherein when the OEM public
ID does not match the another OEM public ID of the software
asset, an error condition 1s returned and the software asset 1s
not executed by the processing device. In Example 24, the
subject matter of any one of Examples 19-23 can optionally
include wherein the one-way cryptographic hash function
further to recerve the OEM public ID from the one-time
programmable storage device, recerve a global key embedded
in the processing device, generate an OEM key using the
OEM public ID and the global key as inputs, and provide the
OEM key to security firmware executed by the processing
device, wherein the security firmware 1s owned by the OEM
system.

In Example 23, the subject matter of any one of Examples
19-24 can optionally include wherein the OEM key 1s used by
the security firmware to authenticate the device. In Example
26, the subject matter of any one of Examples 19-25 can
optionally include wherein the one-way cryptographic hash
function further to generate an OEM key using the OEM
public ID and a global key as inputs, wherein the global key 1s
embedded in the processing device, generate a device public
ID from a root key of the processing device, generate a device

US 9,390,246 B2

21

key from the OEM key and the device public key, and provide
the device public ID and an authentication token to security
firmware executed by the processing device, wherein the
security firmware 1s owned by the OEM system. In Example
2’7, the subject matter of any one of Examples 19-26 can
optionally include wherein the authentication token and the
device public ID are used by the security firmware to authen-
ticate the device. All optional features of the system described
above may also be implemented with respect to the method or
process described herein.

Example 28 1s a non-transitory computer-readable medium
for implementing creation of secure Original Equipment
Manufacturer (OEM) identifiers (IDs) 1n a processing device.
In Example 28, the non-transitory machine-readable medium
includes data that, when accessed by a processing device,
cause the processing device to perform operations compris-
ing recerving, by a one-way cryptographic hash function
executed by a processing device, a secret Original Equipment
Manufacturer (OEM) key from an OEM system, generating,
by the one-way cryptographic hash function, an OEM public
identifier (ID) from the secret OEM key, and sending the
OEM public ID to the one-time programmable storage device
for storage.

In Example 29, the subject matter of Example 28 can
optionally include wherein the one-way cryptographic hash
function 1s a SHA hash algorithm. In Example 30, the subject
matter of any one of Examples 28-29 can optionally include
wherein the one-time programmable storage device 1s an
cFuse. In Example 31, the subject matter of any one of
Examples 28-30 can optionally imnclude wherein a software
asset ol the OEM system compares the OEM public ID stored
in the processing device to another OEM public 1D of the
software asset to determine whether to execute the software
asset on the processing device. In Example 32, the subject
matter ol any one of Examples 28-31 can optionally include
wherein when the OEM public ID does not match the another
OEM public ID of the software asset, an error condition 1s
returned and the software asset 1s not executed by the pro-
cessing device.

In Example 33, the subject matter of any one of Examples
28-32 can optionally include recerving, by the one-way cryp-
tographic hash function, the OEM public ID from the one-
time programmable storage device, recerving, by the one-way
cryptographic hash function, a global key embedded in the
processing device, generating, by the one-way cryptographic
hash function, an OEM key using the OEM public ID and the
global key as inputs, and providing the OEM key to security
firmware executed by the processing device, wherein the
security firmware 1s owned by the OEM system. In Example
34, the subject matter of any one of Examples 28-33 can
optionally include wherein the OEM key 1s used by the secu-
rity firmware to authenticate the device.

In Example 35, the subject matter of any one of Examples
28-34 can optionally include generating, by the one-way
cryptographic hash function, an OEM key using the OEM
public ID and a global key as inputs, wherein the global key 1s
embedded 1n the processing device, generating, by the one-
way cryptographic hash function, a device public ID from a
root key of the processing device, generating, by the one-way
cryptographic hash function, a device key from the OEM key
and the device public key, and providing the device public ID
and an authentication token to security firmware executed by
the processing device, wherein the security firmware 1s
owned by the OEM system. In Example 36, the subject matter
of any one of Examples 28-35 can optionally include wherein
the authentication token and the device public ID are used by
the security firmware to authenticate the device.

10

15

20

25

30

35

40

45

50

55

60

65

22

Example 37 1s an apparatus for implementing creation of
secure Original Equipment Manufacturer (OEM) 1dentifiers
(IDs) 1n a processing device comprising means for receiving
at aone-way cryptographic hash, a secret Original Equipment
Manufacturer (OEM) key from an OEM system, means for
generating at the one-way cryptographic hash function an
OEM public identifier (ID) from the secret OEM key, and
means for sending the OEM public ID to the one-time pro-
grammable storage device for storage. In Example 38, the
subject matter of Example 37 can optionally include the appa-
ratus further configured to perform the method of any one of
the Examples 11 to 18.

Example 39 1s at least one machine readable medium com-
prising a plurality of instructions that 1n response to being
executed on a computing device, cause the computing device
to carry out a method according to any one of Examples
10-18. Example 40 1s an apparatus for creation of secure
Original Equipment Manufacturer (OEM) identifiers (IDs) 1n
a processing device, configured to perform the method of any
one of Examples 10-18. Example 41 1s an apparatus for
implementing creation of secure Original Equipment Manu-
tacturer (OEM) identifiers (IDs) 1n a processing device com-
prising means for performing the method of any one of claims
10 to 18. Specifics 1n the Examples may be used anywhere 1n
one or more embodiments.

While the disclosure has been described with respect to a
limited number of embodiments, those skilled 1n the art will
appreciate numerous modifications and variations there from.
It 1s intended that the appended claims cover all such modi-
fications and variations as fall within the true spirit and scope
of this disclosure.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design 1n a number of manners. First, as 1s useful
in simulations, the hardware may be represented using a
hardware description language or another functional descrip-
tion language. Additionally, a circuit level model with logic
and/or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
speciiying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be
stored 1n any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design 1s transmitted,
to the extent that copying, butlering, or re-transmission of the
clectrical signal 1s performed, a new copy 1s made. Thus, a
communication provider or a network provider may store on
a tangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present disclo-
sure.

A module as used herein refers to any combination of
hardware, soitware, and/or firmware. As an example, a mod-
ule includes hardware, such as a micro-controller, associated
with a non-transitory medium to store code adapted to be
executed by the micro-controller. Therefore, reference to a
module, 1n one embodiment, reters to the hardware, which 1s
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in

US 9,390,246 B2

23

another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, i vet
another embodiment, the term module (1n this example) may
refer to the combination of the microcontroller and the non-

transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
soltware, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering,
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that 1s not
operating 1s still ‘configured to” perform a designated task 11 1t
1s designed, coupled, and/or interconnected to perform said
designated task. As a purely illustrative example, a logic gate
may provide a 0 or a 1 during operation. But a logic gate
‘configured to” provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or O.
Instead, the logic gate 1s one coupled 1n some manner that
during operation the 1 or 0 output 1s to enable the clock. Note
once again that use of the term °‘configured to’ does not
require operation, but mstead focus on the latent state of an
apparatus, hardware, and/or element, where 1n the latent state
the apparatus, hardware, and/or element 1s designed to per-
form a particular task when the apparatus, hardware, and/or
clement 1s operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and or
‘operable to,” 1n one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, 1n one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element 1s not operating
but 1s designed 1n such a manner to enable use of an apparatus
in a specified manner.

A value, as used herein, includes any known representation
ol a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values 1s
also referred to as 1°s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
O refers to alow logic level. In one embodiment, a storage cell,
such as a transistor or tlash cell, may be capable of holding a
single logical value or multiple logical values. However, other
representations ol values 1n computer systems have been
used. For example the decimal number ten may also be rep-
resented as a binary value of 910 and a hexadecimal letter A.
Therefore, a value includes any representation of information
capable of being held 1n a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer to
a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, 1.¢. reset, while an updated value potentially includes a
low logical value, 1.¢. set. Note that any combination of values
may be utilized to represent any number of states.

10

15

20

25

30

35

40

45

50

55

60

65

24

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via mnstruc-
tions or code stored on a machine-accessible, machine read-
able, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (1.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-

accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);

ROM; magnetic or optical storage medium; tlash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)
signals (e.g., carrier waves, inirared signals, digital signals);
etc., which are to be distinguished from the non-transitory
mediums that may recerve mformation there from.

Instructions used to program logic to perform embodi-
ments of the disclosure may be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information 1n a form readable by a
machine (e.g., a computer), but 1s not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used 1n the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
clectronic 1mstructions or information in a form readable by a
machine (e.g., a computer).

Reference throughout this specification to “one embodi-

ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment 1s included 1n at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment™ 1n various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifications
and changes may be made thereto without departing from the
broader spirit and scope of the disclosure as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an 1illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

What 1s claimed 1s:
1. A processing device, comprising:
a security firmware device;

US 9,390,246 B2

25

a one-time programmable storage device having a secure
memory to store an Original Equipment Manufacturer
(OEM) key associated with the processing device; and

a hardware execution core, operatively coupled to the one-
time programmable storage device, to:
receive, Irom the one-time programmable storage

device, an OEM public identifier for an OEM system:;
produce an OEM key by applying a first cryptographic
hash function to the OEM public 1dentifier and a glo-
bal key associated with a vendor of the OEM system;
produce a device public 1dentifier by applying a second
cryptographic hash function to a root key associated
with the OEM system:;
produce a device key by applying a third cryptographic
hash tunction to the OEM key and the device public
1dentifier; and
provide the device key to the secunity firmware device,
wherein the security firmware device authenticates the OEM
system using an authentication token derived from the device
key.

2. The processing device of claim 1, wherein each of the
cryptographic hash functions comprises a SHA hash algo-
rithm.

3. The processing device of claim 1, wherein the one-time
programmable storage device 1s an eFuse.

4. The processing device of claim 1, wherein responsive to
authentication of the OEM system, execute a software asset of
the OEM system on the processing device.

5. The processing device of claim 1,

wherein the global key 1s embedded 1n the processing
device.

6. A method, comprising;:

receiving, by a hardware execution core of a processing
device comprising a security firmware device and a one-
time programmable storage device, an Original Equip-
ment Manufacturer (OEM) public identifier for an OEM
system:

producing an OEM key by applying a first cryptographic
hash function to the OEM public identifier and a global
key associated with a vendor of the OEM system;

10

15

20

25

30

35

26

producing a device public identifier by applying a second
cryptographic hash function to a root key associated
with the OEM system:;
producing a device key by applying a third cryptographic
hash function to the OEM key and the device public
identifier; and
providing, by the hardware execution core, the device key to
the secunity firmware device, wherein the security firmware
device authenticates the OEM system using an authentication
token derived from the device key.
7. The method of claim 6, wherein each of the crypto-
graphic hash functions comprises a SHA hash algorithm.
8. The method of claim 6, wherein the one-time program-
mable storage device 1s an eFuse.
9. The method of claim 6, wherein
the global key 1s embedded 1n the processing device.
10. An system comprising:
a security firmware device;
a memory to store an Original Equipment Manufacturer
(OEM) key; and
a processing device communicably coupled to the memory,
the processing device to:
recerve an OEM public identifier for an OEM system:;
produce an OEM key by applying a first cryptographic
hash function to the OEM public identifier and a global
key associated with a vendor of the OEM system:;
produce a device public 1dentifier by applying a second
cryptographic hash function to a root key associated
with the OEM system;
produce a device key by applying a third cryptographic
hash function to the OEM key and the device public
identifier; and
provide the device key to the security firmware device,
wherein the secunity firmware device authenticates the
OEM system using an authentication token derived from
the device key.
11. The system of claim 10, wherein each of the crypto-
graphic hash functions comprises a SHA hash algorithm.
12. The system of claim 10, wherein
the global key 1s embedded 1n the processing device.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

