US009390076B2
a2 United States Patent (10) Patent No.:  US 9,390,076 B2
Ingole et al. 45) Date of Patent: Jul. 12, 2016
(54) MULTI-PART AND SINGLE RESPONSE (56) References Cited
IMAGE PROTOCOL
U.S. PATENT DOCUMENTS
(71) Applicant: MicrOSOft TEChIIOlOgy LicenSing'J LLC? 55845!‘084 A 3K 12/1998 Cordell ““““““““““ GO6Q 30/02
Redmond, WA (US) 709/232
5,852,439 A * 12/1998 Musgrove ............. GO6F 3/0481
(72) Inventors: Harshal Ingole, Mountain View, CA ) | 715/764
(US); Sarah Ferraro, Mountain View, 0,053,522 A 42000 Krishna ........... GUOF 1;/135(3332
CA (US); Gilberto Aristides Apodaca _
Aragon, Hayward, CA (US); (Continued)
Christopher Hayworth, Richmond OTHER PUBLICATIONS
(CA); Szymon Gizecki, Mountain View,
CA (US) “PowerPoint Web Editor Data Protocol”, Published on: Feb. 11,
2013, Available at: http://download.microsoft.com/download/1/6/F/
(73) Assignee: Microsoft Technology Licensing, LLC. [6F4E321-AAGB-4FA3-8AD3-E94C895A3C97/[MS-PWEDPS].
Redmond, WA (US) pdi.
(Continued)
( *) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 Primary Examiner — Laurie Ries
U.S.C. 154(b) by 222 days. (74) Attorney, Agent, or Firm — Julie Kane Akhter; Tom
Wong; Micky Minhas
(21) Appl. No.: 13/911,539 . d
57 ABSTRACT
(22) Filed: Jun. 6, 2013 ( _) _ _ _ _
This disclosure describes systems and methods for displaying
(65) Prior Publication Data 1mages on a browser. When a user opens a page/slide in a web
application, a web application client generates a unique 1den-
US 2014/0365863 Al Dec. 11,2014 tifier for each 1image on the page, combines the 1dentifiers for
cach 1image 1n a URL, and forwards the URL to a web appli-
(51)  Int. CL. H cation server. The web application server then parses the
GO6L 17700 (2006'();‘) request and follows the URL to render and/or fetch each
GO6L 17722 (2006'();‘) requested 1mage. The web server encodes the requested
GOOF 17/30 (2006.01) images, combines the encoded 1mages 1n a response string,
(52) U.S. Cl. and returns the response string to the browser. The browser
CPC ... Goor 17/2247(2013.01); GO6F 17/30247 parses the response string to display the requested images and
_ _ (201_3 01); GO6F 17/30902 (2013.01) adds each encoded 1image to a content data model for the web
(58) Field of Classification Search application. In embodiments, the browser stores the response

CPC ...l GO6F 17/2247, GO6F 17/24; GO6F
17/302477;, GOG6F 17/3028
USPC e 715/234

See application file for complete search history.

500
\ Parse View Element

502

Have Image(s)
Been Requested
Before? 504

string 1n a browser cache for subsequent retrieval and display
of one or more 1mages.

20 Claims, 11 Drawing Sheets

Generate URL for
Each New Image

Raquest 506
N :
g vch Im | Retrieve Previous
| R: cuest E : Image Request from
| requestas URL Cache 520
, | l
Cache Image Send Image Retrieve Encoded
Request Efﬂ Request to Response from
q Server 312 Browser Cache 522
Receive Encoded > Parse Encoded
Response 514 Response 516

Display Requested
Image on Browser

218




US 9,390,076 B2

Page 2
(56) References Cited 2011/0161952 A1* 6/2011 Poddar .................... GOG6F 9/455
717/173
U.S. PATENT DOCUMENTS 2012/0036264 Al1* 2/2012 Jang ................ GO6F 17/30902
709/226
6,833.865 B1* 12/2004 Fuller ............... GO6F 17/30247 2012/0166435 Al1* 6/2012 Graham ............ GO6F 17/30017
348/231.2 | 707/728
7,032,168 B1* 4/2006 Gerace ............... G06Q 30/0277 2012/0170856 Al* 7/2012 Yamaguchi ...... GOG6F 17/30268
705/14.73 382/224
7,050,654 B2 5/2006 Tunetta et al. 2012/0291071 Al* 11/2012 Seo ......cooeeev..... HO4N 21/26283
7,340,499 Bl 3/2008 Casella | 725/41
7.870.190 B2 1/2011 Takakura et al. 2012/0311623 Al* 12/2012 Davis ....coooeevvvnnnneen, HO4N 5/765
7,890,858 Bl 2/2011 Graham et al. | 725/18
8,010,624 B2 /2011 Scott et al. 2012/0311723 Al1* 12/2012 Bntt, Jr. ............ GO6F 17/30023
9,135,227 B2* 9/2015 Warila .........c............ GO6F 8/24 | 726/28
2002/0033844 Al*  3/2002 Levy ..cccovvvvvvennn.. GO6F 21/10 2013/0111327 Al1* 5/2013 Tsutsuietal. ................ 715/234
715/744 2013/0260727 Al* 10/2013 Knudson ................ G06Q 30/00
2003/0009527 Al*  1/2003 Mclntyre ....... GOGF 17/30247 -~ 455/414.1
709/206 2013/0304604 Al1* 11/2013 Hoffman ............ G06Q 30/0621
2003/0028543 Al1* 2/2003 Dusberger ........ GO6F 17/30244 705/26.5
2004/0177147 Al1* 9/2004 Joshietal. .................... 709/227
2005/0080871 Al 4/2005 Dinh etal OTHER PUBLICATIONS
2005/0091311 A1* 4/2005 Lundetal. .................... 709/203 cn A e " . .
2005/0234983 A1* 10/2005 Plastina ... ... GO6F 17/30247 Minimize Round-Trip Times”, Published on: May 5, 2012, Avail-
2005/0250548 Al* 11/2005 White ... 455/566 able at: https://developers.google.com/speed/docs/best-practices/
2005/0276442 Al* 12/2005 Alasia ................... GO6T 1/0028 rit#Spritelmages. | | |
382/100 “Best Practices for Speeding up Your Web Site”, Retrieved on: Apr. 1,
2006/0206795 Al 9/2006 Hess et al. 2013, Available at: http://developer.yahoo.com/performance/rules.
2007/0065045 Al1* 3/2007 Iwasaki ................ GO6K 9/6203 html.
382/305 “Image Stitching”, Retrieved on: Apr. 5, 2013, Available at: http://
2008/0222273 Al1* 9/2008 Lakshmanan ..... GO6F 17/30247 en.wikipedia.org/wiki/Image _stitching.
. 709/219 International Search Report and Written Opinion Issued in PCT
200970007018 AL* 172009 Tkeda .o GOGE 173028 Application No. PCT/US2014/040162, Mailed Date: Nov. 28, 2014,
12 Pages.
3
200970316005 ALT 1272009 10 oo G06F31478/?2002;l F{ PCT 2nd Written Opinion in International Application PCT/US2014/
2010/0283640 Al* 11/2010 Esbensen .......... GOGF 17/2217 V40162, mailed Apr. 23, 2015, 8 pgs. .
341/106 PCT International Preliminary Report on Patentability in Interna-
2011/0066676 Al* 3/2011 Kleyzit ............. GO6F 17/30902 tional Application PCT/US2014/040162, mailed Sep. 10, 2015, 9
709/203 pgs.
2011/0153351 Al1*  6/2011 Vesper .........ceeeevnnn. G06Q) 10/10
705/2 * cited by examiner



Y11
oberl0)1Q

US 9,390,076 B2

Sheet 1 of 11

301

Jul. 12, 2016

901

001

U.S. Patent

ocT
puayoeg

clLL
JEYNETS

8TT
puadjoeg
pageue|\

orT
PUIUO.I

1 Ol

40))




U.S. Patent Jul. 12, 2016 Sheet 2 of 11 US 9,390,076 B2

Display Image(s) 232

IMAGE MANAGER 202

View
Element Request image(s)
206 208 URL CACHE

| |
| |
| |
| |
| |
’ =)
| response 210 |
| |
| |
| |
| |

Web Application
Client 203

Computing Device 201

FRONTEND 216

Image Handler 222

Encode image
232

Server Cache

Fetch Image(s) 778

230
FILE
MANAGED BACKEND 218 STORAGE
226
Render
Image(s) 224

BACKEND 22

Web Application Server 21

FIG. 2A



U.S. Patent Jul. 12, 2016 Sheet 3 of 11 US 9,390,076 B2

200

Parse Response/
Generate URL 205 Add Images to
DOM 217
WEB

APPLICATION 203

Parse URL 207/
Encode Image(s) 211/

Combine into Response
213

Render Image(s)
209

SERVER 215

FIG. 2B



U.S. Patent Jul. 12, 2016 Sheet 4 of 11 US 9,390,076 B2

300
from Browser 302 /

Receive Image Request(s)

|
| Parse Image Request(s)
: 304

_——_——_—_——_

Has Image Been Requested
Before? 306

Render Image 308

Store Image in File Storage Fetch Image from Cache
310 318

Fetch Image From File Encode Image 314

Storage 312

Send Encoded Response
to Browser 316

FIG. 3



U.S. Patent

Jul. 12, 2016 Sheet 5 of 11

Receive Image Request(s)

from Browser 402

|
Parse Image Request(s) |
404 |

|

Render Images 406

Store Image in File Storage
408

Fetch Image From File
Storage 410

Encode Image 412

Send Encoded Response
to Browser 414

FIG. 4

400

US 9,390,076 B2



U.S. Patent Jul. 12, 2016 Sheet 6 of 11 US 9,390,076 B2

500
\ Parse View Element

202

Have Image(s)
Been Requested
Before? 504

Generate URL for

Each New Image
Request 506

Batch Image : Retrieve Previous
|
|
|

Image Request from
URL Cache 520

| Request 508

e e — — — -

Send Image Retrieve Encoded
Request to Response from
Server 512 Browser Cache 522

Cache Image
Request 510

Receive Encoded Parse Encoded
Response 514 Response 516

Display Requested
Image on Browser
218

FIG. 5



U.S. Patent Jul. 12, 2016 Sheet 7 of 11 US 9,390,076 B2

Receive Edited
Image Request 602

600

Generate URL with
New Version
Number for Each
Image Request 604

Batch Image

I
I
| Requests 606 |
L - — — I

Cache Image Send Image Request
Request 608 to Server 610

Retrieve Encoded
Response 612

Parse Encoded
Response 614

Display Requested
Edited Image on
Browser 616



U.S. Patent Jul. 12, 2016 Sheet 8 of 11 US 9,390,076 B2

COMPUTING DEVICE

OPERATING SYSTEM
705

REMOVABLE
STORAGE

709

PROGRAM MODULES

APPLICATIONS

PRESENTATION NON-REMOVABLE

APPLICATION STORAGE
71

i ——

INPUT DEVICE(S)
PROCESSING UNIT 15

OUTPUT DEVICE(S)

714

COMMUNICATION
CONNECTIONS

- 716

105

OTHER COMPUTING
DEVICES

71

FIG. 7 —



U.S. Patent Jul. 12, 2016 Sheet 9 of 11 US 9,390,076 B2

830
800
\ 825 =i C 800
820
815
805
810 — . I . .— 810
I' O }
sas— ][ JL I JC I I 1011
N B

Mobile Computing Device

FIG. 8A



U.S. Patent Jul. 12, 2016 Sheet 10 of 11 US 9,390,076 B2

802
MEMORY 862
/" — 1866
/ APPS \
860 PROCESSOR : 119
: /| PRESENTATION |
v | APPLICATION |
— :ﬂ | '
. I
0% DISPLAY Y 64

PERIPHERAL
DEVICE PORT

\ 0S T
<« /1
368
I STORAGE

POWER 70
SUPPLY

835

KEYPAD

rw
oy
-
l _d

A
\/

c

\J Y. 'b

VIDEO AUDIO RADIO INTERFACE LED
INTERFACE INTERFACE | AYER
20

(6 374

372 T

FIG. 8B



U.S. Patent Jul. 12, 2016 Sheet 11 of 11 US 9,390,076 B2

TABLET MOBILE
COMPUTING COMPUTING

GENERAL
COMPUTING

DEVICE DEVICE
210 300

DEVICE
105

SERVER

PRESENTATION
APPLICATION

INSTANT SOCIAL
DIRECTORY WEB MAILBOX MESSAGING| |[NETWORKING

SERVICES PORTAL SERVICES STORES SERVICES
922

924 926 928 930

FIG. 9



US 9,390,076 B2

1

MULTI-PART AND SINGLE RESPONSE
IMAGE PROTOCOL

BACKGROUND

Traditionally, when a webpage opens, the HyperText
Markup Language (HI'ML) for the webpage contains uni-
form resource locators (URLs) that point to a path for each
image. However, 1n some cases, browsers may be used for
editing, creating, and viewing images using a web application
that requires 1mages to be dynamically generated by a server
during a session, €.g., web applications such as, but not lim-
ited to, PowerPoint® or other graphics-intensive programs.
For applications that use dynamically generated images,
these URLs cannot exist in the mitial HTML because the
images do not yet have locations to fetch from. Instead, these
web applications must first send a request to the server to get
a location for each image. Upon receipt of the request, the
web application server renders each 1mage, stores the ren-
dered 1mages in a server cache, and generates a URL {for
retrieving each image from the server cache. The web appli-
cation server then returns the URL {for retrieving each
requested 1mage 1n a response to the browser. Upon receipt,
the web application client adds the URL for each image to the
document object model (DOM) in the proper location. There-
after, the browser uses these URLs as the locations from
which to fetch each image for display on the webpage. Spe-
cifically, upon recerving an image request from the browser
referencing a URL, the web application server returns the
requested 1mage 1n a response as a .Jpeg (Joint Photographic
Experts Group), .png (Portable Network Graphics), .gif
(Graphics Interchange Format), BMP (bitmap), or any other
appropriate 1mage file format to the browser. The browser
thereatter displays the webpage with the requested 1image.

In some cases, for instance when a user returns to a page or
slide of the web application that was previously viewed and
has not been edited, the web application client may retrieve
the URLs for the previously requested images from the con-
tent data model (or DOM). Moreover, the browser may have
stored the image files for the previously requested images 1n
a browser cache. If so, the browser may display the previously
requested 1images without forwarding a request to the web
application server.

Traditionally, as described above, because the URL for
retrieving an 1mage was generated by the web application
server, the web application client was required to obtain the
URL betore 1t could request and display an image. That 1s, the
first time an 1mage was displayed on the browser, at least two
requests to the web application server were required: a first
request to obtain the URL for the image and a second request
referencing the URL to fetch the image for display. Accord-
ingly, traditional methods may demonstrate inefliciencies 1n
rendering and displaying images on a browser.

It 1s with respect to these and other general considerations
that embodiments have been made. Also, although relatively
specific problems have been discussed, 1t should be under-
stood that the embodiments should not be limited to solving
the specific problems 1dentified 1n the background.

SUMMARY

This Summary 1s provided to mtroduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to
identify key features or essential features of the claimed sub-
ject matter, nor 1s 1t mtended to be used to limit the scope of
the claimed subject matter.

10

15

20

25

30

35

40

45

50

55

60

65

2

Embodiments of the present disclosure provide a method
and system for displaying images on a browser. For example,
when a user opens apage (or slide) 1n a web application, a web
application client generates a unique identifier for each image
on the page, combines the identifiers for each image ina URL
(which 1s a request string), and forwards the URL to a web
application server. The web application server then parses the
request, generates each image (1n some cases, fetching one or
more 1mages from a file storage disk), encodes the images,
combines the encoded images i1n a response string, and
returns the response string to the browser. The response string,
1s then parsed to retrieve and display each image on the
browser. In embodiments, the browser stores the response
string 1n a browser cache. When the user returns to the same
page, for example, the browser may retrieve the response
string from the browser cache for subsequent retrieval and
display of the images. Thus, in embodiments, repeated
requests to the server are eliminated, thus displaying images
faster.

Specifically, m embodiments, a method for displaying one
or more 1mages 1n a web application on a browser 1s provided.
The method comprises determiming to display a first image on
the browser, wherein the first image was not previously dis-
played on the browser. The method further comprises gener-
ating a first identifier that 1s specific to a first image and
sending an 1mage request for the first image to a server,
wherein the image request references the first identifier. Addi-
tionally, the method comprises receiving a response contain-
ing encoded 1image data for the first image and displaying the
first image on the browser.

In further embodiments, a computer-readable medium
storing 1nstructions for generating one or more 1mages for
display 1n a web application on a browser 1s provided. The
instructions when executed causing a computing device to
perform a method comprising receiving an image request for
a first image from a browser, the 1image request referencing a
first identifier and following the first identifier to retrieve the
first 1mage. The method further comprises generating
encoded 1mage data for the first image and sending the
encoded 1mage data for the first image in a response to the
browser.

In further embodiments, a computing system 1s provided.
The computing system comprises at least one processor and
at least one memory storing instructions that when executed
by the at least one processor cause the computing system to
perform a method for displaying one or more 1images in a web
application on a browser. The method comprises determining

to display a first image on the browser, wherein the first image
was not previously displayed on the browser and generating a
first 1dentifier that 1s specific to the first image. The method
turther comprises sending an image request for the first image
to a server, wherein the 1image request references the first
identifier. Additionally, the method comprises receiving a
response containing encoded 1image data for the first image
and displaying the first image on the browser.

These and various other features as well as advantages
which characterize the systems and methods described herein
will be apparent from a reading of the following detailed
description and a review of the associated drawings. Addi-
tional features are set forth 1n the description which follows,
and 1n part will be apparent from the description, or may be
learned by practice of the technology. The benefits and fea-
tures of the technology will be realized and attained by the
structure particularly pointed out in the written description
and claims hereof as well as the appended drawings.




US 9,390,076 B2

3

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a network system for displaying images
ol a web application on a browser.

FIG. 2A 1llustrates a block diagram of an embodiment of a
system architecture used for generating, retrieving, and dis-
playing images using a web application on a browser.

FIG. 2B illustrates a block diagram of an embodiment of a
system architecture for generating and retrieving images
from a server using a web application on a browser.

FIG. 3 illustrates a method for generating, storing, and
encoding an 1mage by a web application server.

FI1G. 4 illustrates a method for generating an edited image
by the web application server.

FI1G. 5 1llustrates a method for requesting and displaying an
image by a web application client.

FIG. 6 1llustrates a method for requesting and displaying an
edited 1mage by the web application client.

FIG. 7 1s a block diagram 1illustrating example physical
components of a computing device with which embodiments
of the mvention may be practiced.

FI1G. 8 A illustrates one embodiment of amobile computing
device executing one or more embodiments disclosed herein.

FIG. 8B 1s a simplified block diagram of a mobile comput-
ing device with which embodiments of the present invention
may be practiced.

FI1G. 9 1s a simplified block diagram of a distributed com-
puting system in which embodiments of the present invention
may be practiced.

DETAILED DESCRIPTION

Various embodiments are described more fully below with
reference to the accompanying drawings, which form a part
hereof, and which show specific exemplary embodiments.
However, embodiments may be implemented 1in many differ-
ent forms and should not be construed as limited to the
embodiments set forth herein; rather, these embodiments are
provided so that this disclosure will be thorough and com-
plete, and will tully convey the scope of the embodiments to
those skilled 1n the art. Embodiments may be practiced as
methods, systems or devices. Accordingly, embodiments may
take the form of a hardware implementation, an entirely soft-
ware 1implementation or an implementation combining soft-
ware and hardware aspects. The following detailed descrip-
tion 1s, therefore, not to be taken 1n a limiting sense.

FI1G. 1 illustrates a system for displaying images of a web
application on a browser. The system 100 includes a first
client 102, a second client 104, a third client 106, and a fourth
client 108. Although four clients are shown, 1t 1s contemplated
that fewer or additional clients may access the server 112
through the network connection 110. Each client represents a
user capable of accessing the web application via a web
browser through the network connection 110 using a comput-
ing device. The web browser may include a browser cache. In
other embodiments, the browser may be more limited, e.g., on
thin clients such as smart phones and tablets which may not
have browser cache functionality. Example computing
devices are described 1in further detail with reference to FIGS.
7-9. In this embodiment, the frontend 116, managed backend
118, and backend 120 operate on the server 112. Although

three server parts are shown and described, 1t 1s contemplated

10

15

20

25

30

35

40

45

50

55

60

65

4

that fewer or additional parts may operate on the server 112.
Thus, in some embodiments, one or more servers may be used
to 1mplement aspects of this disclosure. The server also
includes one or more processors and system memory 114,
including file storage and/or caches.

FIG. 2A 1llustrates a block diagram of an embodiment of a
system architecture 200 used for generating, retrieving, and
displaying images 1 a web application on a browser. As
shown 1n FIG. 2A, the system architecture 200 includes a
computing device 201, a web application client 203 operating
thereon, and a web application server 112. The system archi-
tecture 200 further includes an 1image manager 202 and a
browser 204 operating on the computing device 201. For
simplicity, computing device 201 1s used as a reference and 1s
meant simply as an illustration; however, any client comput-
ing device 102-108 as described with reference to FIG. 1 can
also be used.

As shown 1n FIG. 2A, the web application client includes
an 1image manager 202. A view element 206 may be called as
a result of an action by a user using a web application oper-
ating on a computing device 201. User actions include, but are
not limited to, adding a new shape to a slide (or page), chang-
ing the theme of one or more slides, or viewing (or opening)
a new slide. In embodiments, the view element 206 may
include get requests for one or more 1mages.

Based on the view element 206, the web application client
203 generates an 1mage request that identifies a list of
resources that need to be fetched from the web application
server 2135. The image request includes metadata 1dentifiers
such as a presentation 1dentifier, a session 1dentifier, a reso-
lution, and at least one item 1dentifier. For example, the image
request may be in the form of a hypertext transfer protocol
(http) request (or URL) as follows:

http://sarahjonesdev2/p/
edittmageHandler.ashx?Pid=jifewlsck&sid=1enkbisld
&res=67.89&item=sld3sp4bg.jidise&item=sld5bg.jidsiels

In the 1image request above, the presentation identifier (P1d)
1s “yitewlsck,” the session i1dentifier (Sid) 1s “1enkbisld,” and
the resolution (res) (also referred to as device size) 1s “67 by
89.” Moreover, the 1image request above 1s a batched 1image
request including two 1tem 1dentifiers, the first item 1dentifier
1s “sld3sp4bg.jidise™ (1.e., slide 3, shape 4, background, ver-
s10on jidise) and the second 1tem 1dentifier 1s “sld5bg.jidsiels”
(1.e., slide 35, background, version jidsiels). Each 1tem 1denti-
fler 1s unique to an 1mage. In embodiments, the identifiers are
combined 1into a URL which includes the information neces-
sary to locate or render the requested 1mages on the web
application server 215. For example, based on the image
request above, the URL for the first item (or first 1mage) 1s:
“Pid=pntewlsck&sid=ienkbisld&res=67.89&1tem=sld3sp
4bg.jidise” and the URL for the second item (or second
image) 1s:  “‘Pid=jifewlsck&sid=1enkbisld&res=67.89&
item=sld3bg.jtdsiels.” Thus, mn embodiments, an image
request having one item 1dentifier 1s referred to as an 1image
URL request and an 1image request having more than one item
identifier 1s referred to as a batched image URL request. In
embodiments, a batched image URL request may be parsed
by the web application server to locate or render more than
one 1mage based on following the URL for each image.

In this embodiment, the image manager 202 recerves
requests from the web application client 203 and communi-
cates with the web application server 2135 through the browser
204. The image manager 202 executes a plurality of functions
including, but not limited to, requesting 208 one or more
images, sending requests to the web application server 215,
and parsing 210 responses recerved from the web application
server 215, The image manager 202 also includes a URL




US 9,390,076 B2

S

cache 212 that stores individual image URL requests and
batched image URL requests for later use. The URL cache
212 1s described 1n further detail below.

Also as shown 1n FIG. 2A, the browser 204 includes a
browser cache 214 that stores encoded image responses
received Irom the web application server 215. The encoded
image responses may 1nclude one encoded 1mage (encoded
image response) 1n response to an image URL request, or
more than one encoded image (batched encoded image
response) 1n response to a batched image URL request. The
browser cache 214 1s responsible for storing encoded image
responses and batched encoded 1image responses until the

browser session closes. The browser cache 214 1s described in
further detail below.

In embodiments, the web application server 215 includes a
frontend 216, a managed backend 218, and a backend 220.
The web application server 2135 also includes file storage 226
that 1s 1n data communication with the managed backend 218
and the backend 220. File storage may comprise, but 1s not
limited to, volatile storage (e.g., random access memory),
non-volatile storage (e.g., read-only memory), flash memory,
or any combination. For simplicity, web application server
215 15 used as a reference and 1s meant simply as an 1llustra-
tion, however server 112 as described with reference to FIG.
1 can also be used. In embodiments, a single server without a
frontend, managed backend, and backend may also be used.

According to embodiments, the frontend 216 further com-
prises an Image Handler 222 that 1s responsible for parsing
the request sent by the image manager 202 and for redirecting
individual image requests to the managed backend 218. Addi-
tionally, the Image Handler 222 may forward responses pro-
duced by the managed backend 218 up to the browser 204.

In further embodiments, the backend 220 1s responsible for
receiving new image requests from the managed backend
218, rendering 224 the requested images, and storing the
newly rendered 1mages in file storage 226.

The managed backend 218 includes a server cache 228 for
storing 1mages rendered by the backend 220 that 1s 1n com-
munication with file storage 226. In operation, the managed
backend 218 1s responsible for receiving image requests from
the frontend 216, fetching 230 the requested 1mages, encod-
ing 232 requested images 1nto a base64 string, and returning
the base64 string to the Image Handler 222.

As explained above, upon recerving the 1mage requests
from the frontend 216, the managed backend 218 retrieves
images that were previously requested by fetching 230 the
requested 1mage from the server cache 228. The managed
backend 218 also communicates with the backend 220, which
1s responsible for rendering 1images not previously requested
and/or rendering 1mages previously requested and currently
edited. The rendered images are thereatfter stored 1n file stor-
age 226 and/or server cache 228 for retrieval by the managed
backend 218. After retrieving the 1mage(s), the managed
backend 218 encodes 232 the image data (for example, 1n a
base64 string) and returns 1t to the Image Handler 222 for
forwarding to browser 204. In embodiments, base64 encod-
ing enables the managed backend 218 to append several
image data files together to send as a single response to the
browser 204 (e.g., 1n a batched encoded response). Moreover,
base64 encoding 1s widely recogmized by browsers. In other
embodiments, other image encoding formats which allow for
batching and which are widely recognized, whether currently
known or developed in the future, may be utilized. In some
embodiments, the managed backend may send the encoded
response (or the batched encoded response) directly to the

browser 204.

10

15

20

25

30

35

40

45

50

55

60

65

6

Upon receipt, the browser 204 stores the encoded response
in browser cache 214. In some embodiments, the browser
cache 214 stores each encoded response (or batched encoded
response) recerved during a web application session. In fur-
ther embodiments, once a user closes the browser 204, the
session ends and the browser cache 214 1s purged.

In embodiments, upon receipt of the encoded response (or
batched encoded response), the 1mage manager 202 parses
the response into 1ts individual images, and sends those
images to the browser 204 to be displayed. In further embodi-
ments, the encoded response (or batched encoded response)
includes all of the necessary information for displaying the
image 1n the browser. For example, the encoded response may
include the item 1dentifier for each 1image (corresponding to
the 1tem identifier provided i1n the orniginal image URL
request), along with a width, a height, x and y offset, and the
encoded 1image data (e.g., base64 1image data).

As noted above, the URL cache 212 stores the image URL
requests and batched image URL requests. According to
embodiments, when a subsequent request 206 1s received for
an 1mage (for example, when a user subsequently returns to
view a slide or page), the image manager 202 may detect that
the 1image was previously requested. In this case, the image
manager 202 may locate the previous image URL request for
that image 1n the URL cache 212. In some cases, the image
may have been individually requested (1.e., an 1mage URL
request). In other cases, the image may have been requested in
a batched image URL request. In either case, the previous
request (whether individual or batched) may be retrieved
from the URL cache 212. Thereaftter, the previous request can
be mapped to the encoded response (or batched encoded
response) stored in the browser cache 214 that was returned
for the previous request. In embodiments, the previous
encoded response (or batched encoded response) may be
parsed to obtain the image data and the image may be re-
displayed without sending a request to the web application
server 2135. By utilizing the browser cache 214, the system
200 can display previously requested images without re-re-
questing the 1image from the web application server 215.

FIG. 2B illustrates a block diagram of another embodiment
of a system architecture 200 for generating and retrieving
images from a server 215 using a web application 203 on a
browser 204.

As shown in FIG. 2B, 1n embodiments, the web application
203 generates 205 animage URL request for retrieving one or
more 1mages from server 215. The generated image URL
request includes identifiers to the specific image(s ) requested.
That 1s, if a single image 1s requested, the image URL request
includes a single 1dentifier for the requested image. If more
than one 1mage 1s requested, the image URL request includes
an 1dentifier for each requested 1mage (1.¢., a batched image
URL request). The web application 203 thereafter sends the
image URL request (or the batched image URL request) to the
server 215.

In embodiments, the server parses 207 the image URL
request (or the batched image URL request) and renders 209
the requested 1image(s). Thereafter, server 215 encodes 211
the rendered 1mage(s) and combines 213, 1f necessary, the
encoded 1mage(s) 1n an encoded response. That 1s, if a single
image was requested, encoded data for the single image 1s
provided in the encoded response. Alternatively, if more than
one 1mage was requested, encoded data for each requested
image 1s provided 1n a batched encoded response.

The response 1s sent back to the web application 203,
wherein the web application 203 parses the encoded response
and adds the encoded 1mage(s) to a DOM 217 1n a proper
location for each requested 1mage.




US 9,390,076 B2

7

FIG. 3 illustrates a method 300 for generating, storing, and
encoding an 1image by a web application server (for example,
web application server 215).

Method 300 begins at operation 302 1n which a request for
an 1mage 1s received by a web application server (e.g., by
frontend 216 of web application server 215) from a browser
(c.g., browser 204). As described above, an 1mage URL
request comprises a unique i1dentifier for the 1mage that 1s
understood by the web application server (e.g., an 1tem 1den-
tifier). For example, the image URL request may include
information for rendering and/or locating the image on the
web application server, as described above.

In embodiments, the item 1dentifier for the image may be
combined with several other item identifiers in a batched
image URL request. Hence, 1n optional operation 304 (1den-
tified by dashed lines), if a batched 1image URL request was
received 1 operation 302, the batched image URL request
may be parsed into individual image URLs.

In operation 306, cach image URL 1s evaluated to deter-
mine whether the corresponding 1mage was requested before.
In embodiments, this determination may be performed by
checking a server cache (e.g., server cache 228) or file storage
(e.g., file storage 226) for the requested 1image. If the image 1s
not located in file storage or 1n a server cache, it may be
determined that the image has not been requested before and
the method proceeds to operation 308. Alternatively, 1t the
image 1s located 1n file storage or 1n a server cache, 1t may be
determined that the image has been requested betfore and the
method proceeds to operation 318. In operation 308, a back-
end of the web application server (e.g., backend 220) may
render the requested image by parsing the image URL request
to obtain metadata that specifies parameters for rendering the
image. In embodiments, after generating the 1mage, the ren-
dered image 1s stored 1n the file storage (e.g., file storage 226)
in operation 310. In embodiments, the image may also be
stored 1n a server cache (e.g., server cache 228).

In operation 312, the rendered 1image may be retrieved from
the file storage or the server cache. In some embodiments, a
managed backend (e.g., managed backend 218) may retrieve
the rendered 1mage from file storage or the server cache.

In embodiments, the managed backend encodes the ren-
dered image 1n operation 314. In other embodiments, another
component or module running on the server encodes the
rendered 1mage in operation 314. In some embodiments, the
rendered 1mage may be encoded as a base64 string, which
includes suificient image data for displaying the image on the
browser.

In operation 316, the encoded 1image data 1s packaged 1n a
response and forwarded to the browser. As explained above, 1T
a batched image URL request was received 1n operation 302,
the encoded 1image data for each requested 1mage 1s combined
in a batched encoded response that corresponds to the batched
image URL request. Thus, the batched encoded response
includes a list of images, including an 1tem 1dentifier for each
image, a width and height for each image, an x and y offset
from the document position for each 1image, and the encoded
string for each 1image (e.g., a base64 encoded string).

If, 1n operation 306, 1t 1s determined that the 1mage was
previously requested, the web application server (e.g., via the
managed backend 218) fetches the image from the server
cache (e.g., server cache 228) 1n operation 318. The method
300 then proceeds to operations 314 and 316, as described
above.

As should be appreciated, the particular steps of method
300 described above are not exclusive and, as will be under-
stood by those skilled in the art, the particular ordering of
steps as described herein 1s not intended to limit the method,

10

15

20

25

30

35

40

45

50

55

60

65

8

¢.g., steps may be performed in differing order, additional
steps may be performed, and disclosed steps may be excluded
without departing from the spirit of the present disclosure.

FIG. 4 illustrates a method 400 for generating an edited
image by a web application server (e.g., web application
server 215).

Method 400 begins at operation 402 1n which an 1image
request 1s recerved by a web application server (e.g., by fron-
tend 216) from a browser (e.g., browser 204). In this embodi-
ment, the 1image request 1s for an 1mage that was previously
rendered, but currently edited. As described above, an 1image
URL request comprises a unique 1dentifier (1.e., 1item 1denti-
fier) for the edited image that 1s understood by the application
server. For example, the image URL request may include
information for rendering the edited image on the web appli-
cation server, including an 1tem 1dentifier that specifies a slide
number (or page number), a shape number, a shape back-
ground, a version, and a device size. In this embodiment, the
item 1dentifier within the image URL request 1s similar to the
item 1dentifier 1n an 1itial image URL request for the original
image, however now includes a new version indicating the
requested 1mage 1s an edited version of the original image.

As discussed above, the URL for the edited image may be
combined with several other image URLs 1n a batched image
URL request. Hence, 1n optional operation 404, (identified by
dashed lines), 1f a batched image URL request was received 1n
operation 402, the batched image URL request may be parsed
into individual image URLs.

In operation 406, a backend of the web application server
(e.g., backend 220) may render the edited 1image by parsing
the 1mage URL request to obtain metadata that specifies
parameters for rendering the edited image. In embodiments,
alter generating the edited image, the rendered edited image
1s stored 1n the file storage (e.g., file storage 226) in operation
408. In embodiments, the edited 1image may also be stored 1n
a server cache (e.g., server cache 228).

In operation 410, the rendered edited image may be
retrieved from the server cache or the file storage. In some
embodiments, a managed backend (e.g., managed backend
218) may retrieve the rendered edited image from file storage
or the server cache.

In embodiments, the managed backend encodes the ren-
dered edited image in operation 412. In other embodiments,
another component or module running on the web application
server encodes the rendered edited image 1n operation 412. In
some embodiments, the rendered edited image may be
encoded as a base64 string, which includes suilicient image
data for displaying the edited image on the browser.

In operation 414, the encoded 1image data 1s packaged 1n a
response and forwarded to the browser. As explained above, 1T
a batched image URL request was received 1n operation 402,
the encoded image data for each requested 1mage 1s combined
in a batched encoded response that corresponds to the batched
image URL request. Thus, the batched encoded response
includes a list of 1images, such as the item identifier for each
image, a width and height for each 1image, an x and y offset
from the document position for each 1image, and an encoded
string for each requested image (e.g., a base64 encoded
string). In this case, as described with respect to the 1image
URL request, the 1item 1dentifier for the edited image in the
encoded response references the new version for the edited
image.

As should be appreciated, the particular steps of method
400 described above are not exclusive and, as will be under-
stood by those skilled in the art, the particular ordering of
steps as described herein 1s not intended to limit the method,
¢.g., steps may be performed in differing order, additional




US 9,390,076 B2

9

steps may be performed, and disclosed steps may be excluded
without departing from the spirit of the present disclosure.
FI1G. 5 illustrates a method 500 for requesting and display-
Ing one or more 1mages by a web application client (e.g., web
application client 203).
Method 500 begins at operation 502 in which a view ele-

ment 1dentifying one or more 1images 1s called in response to
an action by the user.

In operation 304, 1t 1s determined whether image request(s)
for the one or more 1mages were previously generated. For
example, an 1image manager associated with the web appli-
cation client (e.g., 1image manager 202) may determine
whether 1mage request(s) for the one or more 1mages were
previously generated by checking a URL cache (e.g., URL
cache 212). As explained above, 1n embodiments, the URL
cache stores image URL requests and batched image URL
requests which were previously generated.

If image requests for the one or more 1images were not
previously generated, for example 11 the user opened a new
page or slide of the web application or if one or more 1mages
have been edited, an image URL request may be generated for
cach of the one or more 1mages in operation 506. As described
above, an 1image URL request includes a list of resources to
tetch including a presentation 1dentifier, a session 1dentifier, a
resolution, and an item identifier. In embodiments, an 1tem
identifier 1s unique to an 1mage and therefore can be used to
locate the requested 1image on the web application server. In
embodiments, the item i1dentifier includes one or more of: a
page number or slide number, a shape number, a shape back-
ground, a version, and a device size. For example, an 1tem
identifier may be 1n the following format:

TABL

(L]

1

Item Identifier Description

sld3spdbg.fies.55.55 Slide 3, Shape 4, Background, Version
jfies, Device size 55 by 35

Slide 5, Thumbnail, Version ses,
Device size 35 by 55

Slide 5, Background, Version bdsev,

Device size 67 by 89

sld5thmb.{ses.55.55

sld5bg.bdsev.67.89

In embodiments, if more than one new image display
request 1s received, the item 1dentifier for each image may be
combined 1n a batched image URL request in optional opera-
tion 508. In some embodiments, although multiple 1tem 1den-
tifiers may be combined in a batched image URL request,
there may be size limitations on the number of item 1dentifiers
that may be batched. Accordingly, there may be a limit on the
number of images that may be requested from the web appli-
cation server in a batched image URL request.

In further embodiments, the generated image URL request
(or batched image URL request) 1s stored in a URL cache
(e.g., URL cache 212) 1n operation 510.

In operation 512, subsequently or simultancously with
operation 510, the generated image URL request (or batched
image URL request) 1s sent to the web application server
(e.g., web application server 215) to render 1mages and/or
fetch 1images from a server cache.

In operation 314, an encoded response (or a batched
encoded response) 1s received by the web application client.
In some embodiments, the encoded response (or the batched
encoded response) 1s also stored 1 a browser cache (e.g.,
browser cache 214) on the browser. In embodiments, an
encoded response includes the 1tem 1dentifier for the image, a
width and height for the image, an x and y offset from the
document position for the image, and encoded image data for

10

15

20

25

30

35

40

45

50

55

60

65

10

the 1mage (e.g., a base64 encoded string). In further embodi-
ments, a batched encoded response includes a list of encoded
images, the 1item 1dentifier for each image, a width and height
for each 1mage, an x and v ofiset from the document position
for each image, and encoded 1image data for each image (e.g.,
a base64 encoded string).

In operation 3516, the encoded response or the batched
encoded response 1s parsed to determine where and how to
display each requested image. In embodiments, the encoded
response (or the batched encoded response) may include sut-
ficient information to display each image on the browser, as
described above.

In operation 518, the one or more 1mages identified 1n the
view element 1n operation 502 are displayed in the browser.

I1 1t 1s determined that image request(s) for the one or more
images were previously received in operation 504, the
method 500 proceeds to operation 520. In operation 520, a
previously generated image URL request for each of the one
or more 1mages 1s retrieved from the URL cache. In some
embodiments, each of the one or more images was previously
requested 1n one previously generated image URL request (or
a batched image URL request). In other embodiments, at least
some o the one or more 1images were previously requested 1n
different 1mage URL requests (or batched image URL
requests). Moreover, in some embodiments, at least some of
the one or more 1mages were previously requested i a
batched 1image URL request with other images for which
display requests are not currently recerved. According to
embodiments, a previously generated image URL request for
an image may be 1identified by any suitable means, e.g., based
on an 1tem 1dentifier the 1mage that 1s contained 1n a corre-
sponding 1mage URL request.

In operation 522, embodiments take advantage of the fact
that encoded responses (or batched encoded responses) are
generally stored 1n a browser cache by the browser upon
receipt. Accordingly, upon retrieving image URL request(s)
(or batched 1mage URL request(s)) from the URL cache, the
corresponding encoded responses (or batched encoded
responses) may be retrieved from the browser cache. In
embodiments, “corresponding” encoded responses refer to
encoded responses which were previously recerved based on
the retrieved 1image URL request(s) (or batched image URL
request(s)). In this case, a request need not be sent to the
server to obtain the images. However, in some embodiments,
for example when the browser 1s running on a thin client (e.g.,
a smart phone or a tablet), this browser cache functionality
may not be available.

In operation 516, as described above, the encoded
response(s) or the batched encoded response(s) retrieved
from the URL cache are parsed to retrieve image data for each
of the previously requested 1mages. In some embodiments,
image data for some of the previously requested images may
be obtained from different encoded responses. Moreover, in
some cases, image data for some of the previously requested
images may be obtained from batched encoded responses that
include 1mage data for images which are not to be displayed.
In this case, the image data for images which are not to be
displayed can be 1gnored. Upon retrieving image data for the
images to be displayed, the method then proceeds to opera-
tion 518 as described above. In this case, operation 518 will
redisplay on the browser the one or more 1mages that were
previously displayed.

As should be appreciated, the particular steps of method
500 described above are not exclusive and, as will be under-
stood by those skilled in the art, the particular ordering of
steps as described herein 1s not intended to limit the method,
¢.g., steps may be performed in differing order, additional




US 9,390,076 B2

11

steps may be performed, and disclosed steps may be excluded
without departing from the spirit of the present disclosure.

FI1G. 6 illustrates a method 600 for requesting and display-
ing an edited image by the web application client (e.g., web
application client 203).

Method 600 begins at operation 602 in which a view ele-
ment identifying one or more 1images 1s called in response to
an action by the user. In this embodiment, the request 1s for an
image that was previously rendered, but currently edited.
Accordingly, a display request for the edited image was not
previously received. In operation 604, an image URL request
may be generated for the edited image. As described above,
an 1mage URL request includes a list of resources to fetch
which includes a presentation identifier, a session identifier, a
resolution, and an item 1dentifier. In embodiments, the 1tem
identifier 1s unique to the edited image and therefore can be
used to locate the edited image on the web application server.
In embodiments, the item 1dentifier includes one or more of:
a slide number (or page number), a shape number, a shape
background, a version, and a device size. In this embodiment,
the 1tem 1dentifier 1n the image URL request 1s similar to the
item 1dentifier 1n an 1mnitial image URL request for the original
image, however now includes a new version indicating the
requested 1mage 1s an edited version of the original image.

In embodiments, 1f more than one new 1mage 1s 1dentified
in the view element, the 1item 1dentifier for each image may be
combined 1n a batched image URL request 1n optional opera-
tion 606. Accordingly, a request for an edited 1mage (or more
than one edited 1image) may be combined 1n a batched image
URL request with other image requests. In some embodi-
ments, although multiple item 1dentifiers may be combined in
a batched image URL request, there may be size limitations
on the number of item 1dentifiers that can be batched.

In further embodiments, the generated image URL request
(or batched image URL request) 1s stored in a URL cache
(e.g., URL cache 212) 1n operation 608.

In operation 610, subsequently or simultaneously with
operation 608, the generated image URL request (or batched
image URL request) 1s sent to the web application server
(e.g., web application server 215) to render 1image(s) and/or
fetch 1image(s) from the server cache.

In operation 612, an encoded response (or a batched
encoded response) 1s recetved from the web application
Server.

In operation 614, the encoded response or the batched
encoded response 1s parsed to determine where and how to
display each requested image. In embodiments, the encoded
response (or the batched encoded response) may include sui-
ficient information to display the edited image on the browser,
as described above. In embodiments, upon parsing the
encoded response (or the batched encoded response), the
encoded image(s) are added to a DOM 1n a proper location for
cach requested 1image.

In operation 616, the one or more edited 1images that are
identified by the view element 1n operation 602 are displayed
in the browser.

As should be appreciated, the particular steps of method
600 described above are not exclusive and, as will be under-
stood by those skilled in the art, the particular ordering of
steps as described herein 1s not intended to limit the method,
¢.g., steps may be performed in differing order, additional
steps may be performed, and disclosed steps may be excluded
without departing from the spirit of the present disclosure.

In addition, the embodiments and functionalities described
herein may operate over distributed systems (e.g., cloud-
based computing systems), where application functionality,
memory, data storage and retrieval and various processing,

10

15

20

25

30

35

40

45

50

55

60

65

12

functions may be operated remotely from each other over a
distributed computing network, such as the Internet or an
intranet. User interfaces and information of various types
may be displayed via on-board computing device displays or
via remote display units associated with one or more comput-
ing devices. For example user interfaces and information of
various types may be displayed and interacted with on a wall
surtace onto which user imterfaces and information of various
types are projected. Interaction with the multitude of comput-
ing systems with which embodiments of the invention may be
practiced include, keystroke entry, touch screen entry, voice
or other audio entry, gesture entry where an associated com-
puting device 1s equipped with detection (e.g., camera) func-
tionality for capturing and interpreting user gestures for con-
trolling the functionality of the computing device, and the
like.

FIGS. 7-9 and the associated descriptions provide a dis-
cussion of a variety of operating environments in which
embodiments of the invention may be practiced. However, the
devices and systems 1llustrated and discussed with respect to
FIGS. 7-9 are for purposes of example and illustration and are
not limiting of a vast number of computing device configu-
rations that may be utilized for practicing embodiments of the
invention, described herein.

FIG. 7 1s a block diagram 1llustrating physical components
(1.e., hardware) of a computing device 105 with which
embodiments of the invention may be practiced. The comput-
ing device components described below may be suitable for
the computing devices described above. In a basic configu-
ration, the computing device 105 may include at least one
processing unit 702 and a system memory 704. Depending on
the configuration and type of computing device, the system
memory 704 may comprise, but 1s not limited to, volatile
storage (e.g., random access memory), non-volatile storage
(e.g., read-only memory), flash memory, or any combination
of such memories. The system memory 704 may include an
operating system 703 and one or more program modules 706
suitable for runming software applications 720 such as a pre-
sentation application 119. The operating system 703, for
example, may be suitable for controlling the operation of the
computing device 105. Furthermore, embodiments of the
invention may be practiced in conjunction with a graphics
library, other operating systems, or any other application
program and 1s not limited to any particular application or
system. This basic configuration 1s 1llustrated in FIG. 7 by
those components within a dashed line 708. The computing
device 105 may have additional features or functionality. For
example, the computing device 105 may also include addi-
tional data storage devices (removable and/or non-remov-
able) such as, for example, magnetic disks, optical disks, or
tape. Such additional storage 1s illustrated in FIG. 7 by a
removable storage device 709 and a non-removable storage
device 710.

As stated above, a number of program modules and data
files may be stored 1n the system memory 704. While execut-
ing on the processing unit 702, the program modules 706
(e.g., the presentation application 119) may perform pro-
cesses including, but not limited to, one or more of the stages
of the methods 300-600 illustrated 1n FIGS. 3-6. Other pro-
gram modules that may be used 1n accordance with embodi-
ments of the present invention may include electronic mail
and contacts applications, word processing applications,
spreadsheet applications, database applications, slide presen-
tation applications, drawing or computer-aided application
programs, €1c.

Furthermore, embodiments of the invention may be prac-
ticed 1n an electrical circuit comprising discrete electronic




US 9,390,076 B2

13

clements, packaged or integrated electronic chips containing
logic gates, a circuit utilizing a microprocessor, or on a single
chip containing electronic elements or microprocessors. For
example, embodiments of the invention may be practiced via
a system-on-a-chip (SOC) where each or many of the com-
ponents illustrated 1n FIG. 7 may be integrated onto a single
integrated circuit. Such an SOC device may include one or
more processing units, graphics units, communications units,
system virtualization units and various application function-
ality all of which are integrated (or “burned’”) onto the chip
substrate as a single integrated circuit. When operating via an
SOC, the functionality, described herein, with respect to the
presentation application 119 may be operated via application-
specific logic mtegrated with other components of the com-
puting device 105 on the single integrated circuit (chip).
Embodiments of the mvention may also be practiced using
other technologies capable of performing logical operations
such as, for example, AND, OR, and NOT, including but not
limited to mechanical, optical, fluidic, and quantum technolo-
gies. In addition, embodiments of the invention may be prac-
ticed within a general purpose computer or 1n any other cir-
cuits or systems.

The computing device 105 may also have one or more input
device(s) 712 such as a keyboard, a mouse, a pen, a sound
input device, a touch mput device, etc. The output device(s)
714 such as a display, speakers, a printer, etc. may also be
included. The aforementioned devices are examples and oth-
ers may be used. The computing device 105 may include one
or more communication connections 716 allowing commu-
nications with other computing devices 718. Examples of
suitable communication connections 716 include, but are not
limited to, RF transmitter, recerver, and/or transceiver cir-
cuitry; umversal serial bus (USB), parallel, and/or serial
ports.

The term computer readable media as used herein may
include computer storage media. Computer storage media
may 1nclude volatile and nonvolatile, removable and non-
removable media implemented 1n any method or technology
for storage of information, such as computer readable imstruc-
tions, data structures, or program modules. The system
memory 704, the removable storage device 709, and the non-
removable storage device 710 are all computer storage media
examples (1.e., memory storage.)

Computer storage media may include RAM, ROM, elec-
trically erasable read-only memory (EEPROM), flash
memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other article of manufacture
which can be used to store iformation and which can be
accessed by the computing device 105. Any such computer
storage media may be part of the computing device 105.
Computer storage media does not include a carrier wave or
other propagated or modulated data signal.

Communication media may be embodied by computer
readable instructions, data structures, program modules, or
other data 1n a modulated data signal, such as a carrier wave or
other transport mechanism, and includes any information
delivery media. The term “modulated data signal” may
describe a signal that has one or more characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communica-
tion media may include wired media such as a wired network
or direct-wired connection, and wireless media such as acous-
tic, radio frequency (RF), infrared, and other wireless media.

FIGS. 8 A and 8B 1llustrate amobile computing device 800,
for example, a mobile telephone, a smart phone, a tablet

10

15

20

25

30

35

40

45

50

55

60

65

14

personal computer, a laptop computer, and the like, with
which embodiments of the invention may be practiced. With
reference to FIG. 8 A, one embodiment of amobile computing
device 800 for implementing the embodiments 1s illustrated.
In a basic configuration, the mobile computing device 800 1s
a handheld computer having both mput elements and output
clements. The mobile computing device 800 typically
includes a display 805 and one or more input buttons 810 that
allow the user to enter information into the mobile computing
device 800. The display 805 of the mobile computing device
800 may also function as an 1nput device (e.g., a touch screen
display). If included, an optional side mput element 815
allows further user input. The side input element 815 may be
a rotary switch, a button, or any other type of manual 1nput
clement. In alternative embodiments, mobile computing
device 800 may incorporate more or less mput elements. For
example, the display 805 may not be a touch screen 1n some
embodiments. In yet another alternative embodiment, the
mobile computing device 800 1s a portable phone system,
such as a cellular phone. The mobile computing device 800
may also 1clude an optional keypad 835. Optional keypad
835 may be a physical keypad or a “soft” keypad generated on
the touch screen display. In various embodiments, the output
clements include the display 803 for showing a graphical user
interface (GUI), a visual indicator 820 (e.g., a light emitting
diode), and/or an audio transducer 825 (e.g., a speaker). In
some embodiments, the mobile computing device 800 incor-
porates a vibration transducer for providing the user with
tactile feedback. In yet another embodiment, the mobile com-
puting device 800 incorporates mput and/or output ports,
such as an audio mput (e.g., a microphone jack), an audio
output (e.g., a headphone jack), and a video output (e.g., a
HDMI port) for sending signals to or receiving signals from
an external device.

FIG. 8B i1s a block diagram illustrating the architecture of
one embodiment of a mobile computing device. That 1s, the
mobile computing device 800 can incorporate a system (1.¢.,
an architecture) 802 to implement some embodiments. In one
embodiment, the system 802 1s implemented as a “smart
phone” capable of running one or more applications (e.g.,
browser, e-mail, calendaring, contact managers, messaging,
clients, games, and media clients/players). In some embodi-
ments, the system 802 1s integrated as a computing device,
such as an integrated personal digital assistant (PDA) and
wireless phone.

One or more application programs 866 may be loaded 1nto
the memory 862 and run on or 1n association with the oper-
ating system 864. Examples of the application programs
include phone dialer programs, e-mail programs, personal
information management (PIM) programs, word processing
programs, spreadsheet programs, Internet browser programs,
messaging programs, and so forth. The system 802 also
includes a non-volatile storage areca 868 within the memory
862. The non-volatile storage area 868 may be used to store
persistent information that should not be lost it the system 802
1s powered down. The application programs 866 may use and
store information 1n the non-volatile storage area 868, such as
¢-mail or other messages used by an e-mail application, and
the like. A synchromization application (not shown) also
resides on the system 802 and 1s programmed to interact with
a corresponding synchronization application resident on a
host computer to keep the information stored i1n the non-
volatile storage areca 868 synchronized with corresponding
information stored at the host computer. As should be appre-
ciated, other applications may be loaded into the memory 862
and run on the mobile computing device 800, including the
presentation application 119 described herein.




US 9,390,076 B2

15

The system 802 has a power supply 870, which may be
implemented as one or more batteries. The power supply 870
might further include an external power source, such as an AC
adapter or a powered docking cradle that supplements or
recharges the batteries.

The system 802 may also include a radio 872 that performs
the function of transmitting and receiving radio frequency
communications. The radio 872 facilitates wireless connec-
tivity between the system 802 and the “outside world,” via a
communications carrier or service provider. Transmissions to
and from the radio 872 are conducted under control of the
operating system 864. In other words, communications
received by the radio 872 may be disseminated to the appli-
cation programs 866 via the operating system 864, and vice
versa.

The visual indicator 820 may be used to provide visual
notifications, and/or an audio interface 874 may be used for
producing audible notifications via the audio transducer 825.
In the 1llustrated embodiment, the visual indicator 820 1s a
light emitting diode (LED) and the audio transducer 825 1s a
speaker. These devices may be directly coupled to the power
supply 870 so that when activated, they remain on for a
duration dictated by the notification mechanism even though
the processor 860 and other components might shut down for
conserving battery power. The LED may be programmed to
remain on indefinitely until the user takes action to indicate
the powered-on status of the device. The audio interface 874
1s used to provide audible signals to and receive audible
signals from the user. For example, 1n addition to being
coupled to the audio transducer 8235, the audio interface 874
may also be coupled to a microphone to recerve audible input,
such as to facilitate a telephone conversation. In accordance
with embodiments of the present invention, the microphone
may also serve as an audio sensor to facilitate control of
notifications, as will be described below. The system 802 may
turther include a video intertace 876 that enables an operation
of an on-board camera 830 to record still images, video
stream, and the like.

A mobile computing device 800 implementing the system
802 may have additional features or functionality. For
example, the mobile computing device 800 may also include
additional data storage devices (removable and/or non-re-
movable) such as, magnetic disks, optical disks, or tape. Such
additional storage 1s 1llustrated in FIG. 8B by the non-volatile
storage area 8608.

Data/information generated or captured by the mobile
computing device 800 and stored via the system 802 may be
stored locally on the mobile computing device 800, as
described above, or the data may be stored on any number of
storage media thatmay be accessed by the device via theradio
872 or via a wired connection between the mobile computing
device 800 and a separate computing device associated with
the mobile computing device 800, for example, a server com-
puter in a distributed computing network, such as the Internet.
As should be appreciated such data/information may be
accessed via the mobile computing device 800 via the radio
872 or via a distributed computing network. Similarly, such
data/information may be readily transterred between comput-
ing devices for storage and use according to well-known
data/information transfer and storage means, including elec-
tronic mail and collaborative data/information sharing sys-
tems.

FI1G. 9 1llustrates one embodiment of the architecture of a
system for providing detection and grouping of graphics ele-
ments 1 a fixed format document to one or more client
devices, as described above. Content developed, interacted
with, or edited 1n association with the presentation applica-

10

15

20

25

30

35

40

45

50

55

60

65

16

tion 119 may be stored 1n different communication channels
or other storage types. For example, various documents may
be stored using a directory service 922, a web portal 924, a
mailbox service 926, an instant messaging store 928, or a
social networking site 930. The presentation application 119
may use any of these types of systems or the like for enabling
data utilization, as described herein. A server 920 may pro-
vide the presentation application 119 to clients. As one
example, the server 920 may be a web server providing the
presentation application 119 over the web. The server 920
may provide the presentation application 119 over the web to
clients through a network 915. By way of example, the client
computing device may be implemented as the computing
device 105 and embodied 1n a personal computer, a tablet
computing device 910 and/or a mobile computing device 900
(e.g., a smart phone). Any of these embodiments of the client
computing device 105, 910, 900 may obtain content from the
store 916.

Embodiments of the present invention, for example, are
described above with reference to block diagrams and/or
operational 1llustrations of methods, systems, and computer
program products according to embodiments of the mmven-
tion. The functions/acts noted in the blocks may occur out of
the order as shown 1n any flowchart. For example, two blocks
shown 1n succession may in fact be executed substantially
concurrently or the blocks may sometimes be executed 1n the
reverse order, depending upon the functionality/acts
involved.

The description and 1llustration of one or more embodi-
ments provided 1n this application are not intended to limit or
restrict the scope of the invention as claimed in any way. The
embodiments, examples, and details provided 1n this applica-
tion are considered suilicient to convey possession and enable
others to make and use the best mode of claimed invention.
The claimed 1invention should not be construed as being lim-
ited to any embodiment, example, or detail provided in this
application. Regardless of whether shown and described 1n
combination or separately, the various features (both struc-
tural and methodological) are intended to be selectively
included or omitted to produce an embodiment with a par-
ticular set of features. Having been provided with the descrip-
tion and 1illustration of the present application, one skilled 1n
the art may envision variations, modifications, and alternate
embodiments falling within the spirit of the broader aspects of
the general inventive concept embodied 1n this application
that do not depart from the broader scope of the claimed
invention.

What 1s claimed 1s:
1. A method for displaying one or more 1images 1n a web
application on a browser, the method comprising:

determining to display a first image on the browser,
wherein the first image was not previously displayed on
the browser;

generating an 1mage request including metadata identifiers
for the first image, the metadata identifiers comprising: a
presentation 1dentifier, a session 1dentifier, a resolution,
and a first item 1dentifier, wherein the first item 1dentifier
1s unique to the first image;

storing the image request 1n a URL cache;

sending, to a server, the 1image request for a rendered first
1mage;

receving a response including: the first item 1dentifier, a
size of the first image, a position of the first image, and
encoded 1image data of the first image;

storing the response 1n a browser cache; and

displaying the first image on the browser.



US 9,390,076 B2

17

2. The method of claim 1, further comprising;

determining to display a second image on the browser,

wherein the second 1image was not previously displayed
on the browser:;

generating a second item 1dentifier that 1s specific to the

second 1mage;

sending a batched image request for the first image and the

second 1mage to the server, wherein the batched image
request references the first item 1dentifier and the second
item 1dentifier;

receiving a batched response containing encoded image

data for the first image and encoded 1mage data for the
second 1mage;

storing the batched response 1n the browser cache; and

displaying the first 1image and the second image on the

browser.

3. The method of claim 2, further comprising;

storing the batched image request for the first image and the

second 1mage.

4. The method of claim 3, further comprising;

determining to redisplay the second 1mage on the browser;

retrieving the stored batched image request for the first
image and the second 1mage;

based on the stored batched 1mage request, retrieving the

response containing the encoded image data for the first
image and the encoded image data for the second 1image
from the browser cache;

parsing the response to obtain the encoded 1mage data for

the second 1mage; and

redisplaying the second image on the browser.

5. The method of claim 1, further comprising;

receiving a second display request to redisplay the first

image on the browser;

retrieving, from the URL cache, the stored image request

for the first image;

based on the stored 1mage request, retrieving, from the

browser cache, the response containing the encoded
image data for the first image; and

redisplaying the first image on the browser.

6. The method of claim 1, wherein the 1image request com-
prises information for rendering or fetching the first image.

7. The method of claim 1, wherein the first item 1dentifier
turther 1dentifies one or more of:

a slide;

a shape;

a background;

a device size; and

a version.

8. The method of claim 1, wherein the image request
including the first item 1dentifier 1s 1n the form of a uniform
resource locater (URL).

9. The method of claim 1, wherein the encoded image data
of the first image 1s provided 1n a base64 format.

10. The method of claim 1, further comprising:

generating an edit image request for displaying an edited

first image 1ncluding an edited 1tem identifier different
from the first item 1dentifier;

caching the edit image request;

sending, to the server, the edit image request;

receiving a response; and

displaying the requested edited first image.

11. A computer-readable medium storing instructions for
generating one or more 1images for display in a web applica-
tion on a browser, the istructions when executed causing a
computing device to perform a method, comprising:

receiving a batched image request for a first image and a

second 1image from a browser, the batched image request

10

15

20

25

30

35

40

45

50

55

60

65

18

comprising metadata identifiers for the first image and
the second 1mage, the metadata identifiers including a
presentation 1dentifier, a session 1dentifier, a resolution,
and a first identifier of the first image and a second
identifier of the second 1mage;

tollowing the first identifier to retrieve the first image and

following the second identifier to retrieve the second
1mage;

generating encoded immage data for the first image and

encoded 1image data for the second image; and

sending a batched response to the browser, the batched

response including: the first identifier of the first image,
a si1ze of the first image, a position of the first 1image,
encoded 1image data of the first image; the second 1den-
tifier of the second 1mage, a size of the second 1image, a
position of the second image, and encoded 1mage data of
the second 1mage.

12. The computer-readable medium of claim 11, wherein
following the first identifier to retrieve the first image further
comprises fetching the first image from an 1mage cache.

13. The computer-readable medium of claim 11, wherein
following the first identifier to retrieve the first image further
comprises rendering the first image.

14. The computer-readable medium of claim 11, wherein
the encoded 1image data for the first image 1s provided 1n a
base64 format.

15. The computer-readable medium of claim 11, further
comprising;

determining that the first image has not been previously

requested;

rendering the first image, wherein rendering the first image

comprises parsing the batched image request to obtain

the first item 1dentifier, which includes metadata that

specifies parameters for rendering the first image; and
storing, 1n file storage, the first image.

16. A computing system comprising:

at least one processor; and

at least one memory storing instructions that when

executed by the at least one processor cause the comput-

ing system to perform a method for displaying one or

more 1mages 1 a web application on a browser, the

method comprising:

determining to display a first image on the browser,
wherein the first image was not previously displayed
on the browser;

generating an 1mage request including metadata 1dent-
fiers for the first image, the metadata identifiers com-
prising: a presentation identifier, a session identifier, a
resolution, and a first item 1dentifier, wherein the first
item 1dentifier 1s unique to the first image;

storing the 1mage request 1n a browser cache;

sending the 1mage request to a server;

receiving a response including: the first item 1dentifier, a
s1ze of the first image, a position of the first image, and
encoded 1mage data of the first image;

storing, 1n the browser cache, the response containing,
encoded 1mage data;

displaying the first image on the browser;

determining to redisplay the first image on the browser;

retrieving the stored image request for the first image
from the browser cache;:

based on the stored i1mage request, retrieving the
response containing the encoded 1mage data for the
first image from the browser cache; and

redisplaying the first image on the browser.




US 9,390,076 B2

19

17. The computing system of claim 16, further comprising:

determining to display a second image on the browser,
wherein the second 1image was not previously displayed
on the browser;

generating a second item 1dentifier that 1s specific to the
second 1mage;

sending a batched image request for the first image and the
second 1mage to the server, wherein the batched 1mage
request references the first item 1dentifier and the second
item 1dentifier;

receiving a batched response containing encoded image
data for the first image and encoded 1mage data for the
second 1mage;

storing the batched response 1n the browser cache; and

displaying the first 1image and the second image on the
browser.

18. The computing system of claim 17, further comprising:

storing the batched image request for the first image and the

second 1mage.

10

15

20

19. The computing system of claim 18, further comprising;:
determining to redisplay the second image on the browser;

retrieving the stored batched image request for the first
image and the second 1mage;

based on the stored batched image request, retrieving the
batched response from the browser cache;

parsing the response to obtain the encoded 1image data for
the second 1mage; and

redisplaying the second image on the browser.
20. The computing system of claim 16, wherein the first

item 1dentifier turther 1dentifies one or more of:

a slide:

a shape;

a background;

a device size: and
a version.



	Front Page
	Drawings
	Specification
	Claims

