12 United States Patent

Scheevel

US009380022B2

US 9,380,022 B2
“Jun. 28, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)
(73)

(%)

(21)
(22)
(65)

(63)

(1)

(52)

(58)

SYSTEM AND METHOD FOR MANAGING
CONTENT VARIATIONS IN A CONTENT
DELIVER CACHE

Applicant: Open Text S.A., Luxembourg (LU)

Inventor: Mark R. Scheevel, Austin, TX (US)
Assignee: Open Text S.A., Luxembourg (L U)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent 1s subject to a terminal dis-
claimer.
Appl. No.: 14/860,147
Filed: Sep. 21, 2015
Prior Publication Data
US 2016/0014075 Al Jan. 14, 2016

Related U.S. Application Data

Continuation of application No. 14/477,728, filed on
Sep. 4, 2014, now Pat. No. 9,160,709, which 1s a
continuation of application No. 13/619,861, filed on

Sep. 14, 2012, now Pat. No. 8,850,138, which 1s a

(Continued)
Int. CL.
GO6F 12/08 (2016.01)
HO4L 29/12 (2006.01)
(Continued)
U.S. CL
CpPC ... HO4L 61/6009 (2013.01); GO6F 17/30861

(2013.01); GO6F 17/30887 (2013.01); GO6F
17/30902 (2013.01); HO4L 67/42 (2013.01);
GO6F 12/08 (2013.01)

Field of Classification Search

CPC GO6F 17/30861; GO6F 17/30; HO4L
61/6009; HO4L 67/42; HO4L 29/12; HO4L

29/06

USPC e, 711/141, 159

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4/1993 Gramlich et al.
12/1995 Halliwell et al.

(Continued)

5,202,982 A
5473772 A

FOREIGN PATENT DOCUMENTS

WO WO 2008014635 Al * 2/2008 GOO6F 9/44521

tttttttttt

OTHER PUBLICATIONS

Paul, Sanjoy et al., “The Cache-and-Forward Network Architecture
for Efficient Mobile Content Delivery Services in the Future
Internet,” First ITU-T Kaleidoscope Academic Conference for Inno-
vations in NGN—Future Network and Services, 7 pages, May 12-13,

2008.*
(Continued)

Primary Examiner — Pierre-Michel Bataille
(74) Attorney, Agent, or Firm — Sprinkle IP Law Group

(57) ABSTRACT

Embodiments disclosed herein provide a high performance
content delivery system in which versions of content are
cached for servicing web site requests containing the same
uniform resource locator (URL). When a page 1s cached,
certain metadata 1s also stored along with the page. That
metadata mcludes a description of what extra attributes, 1
any, must be consulted to determine what version of content
to serve 1n response to a request. When a request 1s fielded, a
cache reader consults this metadata at a primary cache
address, then extracts the values of attributes, 1f any are speci-
fied, and uses them 1n conjunction with the URL to search for
an appropriate response at a secondary cache address. These
attributes may include HT'TP request headers, cookies, query
string, and session variables. If no entry exists at the second-
ary address, the request 1s forwarded to a page generator at the

back-end.

20 Claims, 8 Drawing Sheets

701~

RECEIVE REQUEST R1 FOR PAGE M1

t

703-

COMPUTE PRIMARY ADDRESS
BASED ON URL OF PAGE £1

y

705~

SEARCH FOR FAGE P1 AT
FRIMARY ADDRESS

| 707
NO

ENTRY

7

YES

FOUHD AT PRIMARY
ADDRESS

711~

EXAMINE METADATA OF ENTRY

709
¥ 713
i FORWARD |
REQUEST R ‘

TO PAGE
GENERATOR
A

REQUEST

R1 SUBJECT TO VARIATION
HEGOTIATION

?

YES

MO

P
4

717

EXTRACT PARAMETERS
QF REQLIEST RT

RETRIEVE PAGE P1 AT
FRIMARY ADDRESS

¥

¥

7197

COMPUTE SECONDARY
ADDRESS BASED ON LRL AND
EXTRACTED PARAMETERS

RETURMN PAGEF1 IN |
RESFOMNSE TO
REQUEST R

Y
NO ENTRY
FOUND AT SECONDARY
ADDRESS
IF

727

723

RETRIEVE A VARIATION OF PAGE
F1 FROM SECONDARY ADDRESS

¥

7257

RETURN A WARIATION OF PASE P1
IN RESPONSE TQ REQUEST R1

US 9,380,022 B2

Page 2
Related U.S. Application Data 8,438,336 B2~ 5/2013 Fung et al.
_ _ o 8,452,925 B2 5/2013 Shepstone et al.
continuation of application No. 12/208,072, filed on 8,463,998 Bl 6/2013 Scheevel
Sep. 10, 2008, now Pat. No. 8,463,998, which is a 8,832,387 B2 9§20;4 Mélllrtm elt al.
continuation-in-part of application No. 11/825,909, g’gg?’égg E% 2 /382 E;[:a_r?;eet .
filed on Jul. 10, 2007, now Pat. No. 7,818,506, which1s 9:150:709 R? 10/2015 Scheevel
a continuation-in-part of application No. 10/733,742, 2001/0032254 Al 10/2001 Hawkins
filed on Dec. 11, 2003, now Pat. No. 7,360,025 2001/0034771 Al 10/2001 Hutsch et al
2001/0037407 Al 11/2001 Dragulev et al.
(60) Provisional application No. 60/433,408, filed on Dec. 2002/0065912 Al 52002 Catchpole et al.
132002 2002/0165877 Al 11/2002 Malcolm et al.
" ' 2002/0178187 A1 11/2002 Rasmussen et al.
2002/0194219 Al 12/2002 Bradley et al.
(51) Int. Cl. 2003/0078964 Al 4/2003 Parrella, Sr. et al.
GO6F 17/30 (2006.01) 2003/0217117 A1 11/2003 Dan et al.
HO4L 29/06 (2006.01) 2004/0030697 Al 2/2004 Cochran et al.
2004/0030746 Al 2/2004 Kavacheri et al.
: 2004/0107319 Al 6/2004 D’Orto et al.
(56) References Cited 2004/0205165 Al 10/2004 Melamed et al.
2004/0205452 Al 10/2004 Fitzsimmons et al.
U.s. PATENT DOCUMENLS 2006/0136472 Al 6/2006 Jujjurn et al.
. 2006/0184572 Al 8/2006 Meek
5,504,879 A 4/1996 Elsenberg et al. 2006/0271671 A 11/2006 H;I?SGII
5,946,697 A 81999 Shen 2010/0306314 Al 12/2010 O’Connell et al.
6,026,413 A 2§2000 Cﬁaﬂeﬂgef 2011/0035553 Al 2/2011 Shepstone
0,025,175 A 2/2000 Chow et al. 2012/0011324 Al 1/2012 Fung et al.
6,128,627 A * 10/2000 Mattisoovvnenen. GO6F 17/30315 2013/0013725 Al 1/2013 Scheevel
| . 707/999.202 2013/0024622 Al 1/2013 Martin et al.
0,138,128 A 10/2000 Perkowitz et al. 2014/0344225 Al 11/2014 Martin et al.
6,151,607 A 11/2000 Lomet 2014/0379842 Al 12/2014 Scheevel
6,151,624 A 11/2000 Teare et al.
0,178,461 Bl 1/2001 Chan et al. OTHER PUBLICATIONS
6,192,415 Bl 2/2001 Haverstock et al.
g 2?2 g%ﬁz‘ E 31%88 (Sjl}llalllllbroom Chen et al., “Wormhole Caching with HTTP PUSH Method for
1 1 allenger . . L.
6.256.712 Bl 7/9001 Challenger Satellite-Based Web Content Multicast and Replication System”
6,263,403 B1 7/2001 Traynor Workshop 99, pp. 1-14, 1999.
6,272,492 Bl 82001 Kay et al. Fielding et al. “Caching in HTTP” part of “Hypertext Transfer Pro-
6,286,043 B1 ~ 9/2001 Cuomo et al. tocol—HTTP/1.1,” The Internet Society, 20 pages, Ch. 13, 1999.
6,408,360 Bi“ 6/2002 Chamberlain et al. Dias et al., “A Smart Internet Caching System” by University of
6,487,641 B1 11/2002 Cusson et al. Moratu Sri Lanka, 13 1906,
6,571,246 Bl 5/2003 Anderson et al. OTatiive, ST Lal PaSes,
6,591,266 Bl 7/2003 T.i et al. Office Action 1ssued for U.S. Appl. No. 10/733,798, mailed on May
6,615,263 B2 9/2003 Dulai et al. 51,2006, 14 pages.
6,651,217 Bl 11/2003 Kennedy et al. Office Action 1ssued for U.S. Appl. No. 10/733,798, mailed on Jan. 3,
y pp
6,697,844 Bl 2/2004 Chan et al. 2006, 9 pages.
6,701,425 Bl 3/2004 Harvey, 111 et al. Office Action issued for U.S. Appl. No. 10/733,742, mailed on Aug.
6,725,333 Bl 4/2004 Degenaro 22,2007, 14 pages.
6,754,621 Bl 6/2004 Cunningh t al.
6:760:813 R1 717004 “}anng . Office Action issued for U.S. Appl. No. 10/733,742, mailed on Feb. 7,
6,772,203 Bl 8/2004 Feiertag et al. 2007, 12 pages.
6,785,769 Bl 8/2004 Jacobs et al. Office Action 1ssued for U.S. Appl. No. 10/733,742, mailed on Sep.
6,850,941 Bl 2/2005 White et al. 15, 20006, 8 pages.
6,879,528 B2 4/2005 Takeuchi et al. Office Actionissued for U.S. Appl. No. 10/733,742, mailed on Jun. 6,
7,013,289 B2 3/2006 Horn 2006 15 pages.
7,024,452 Bl 4/2006 O’Connell et al.
7050161 B2* 5/2006 DiXit ..o GO6F 12/0888 Office Action 1ssued for U.S. Appl. No. 10/733,742, mailed on Jan.
7,096,418 Bl 8/2006 Singhal Of]CGACthHlSSUGdfOI‘U S. Appl. No. 11/701,193, mailed on Oct. 2,
7,_ 37,009 B1 11/2006 Gordon et al. 2008, 9 pages.
7,146,415 Bl 12/2006 Do Office Action issued for U.S. Appl. No. 11/701,193, mailed on Mar.
7,188,216 Bl 3/2007 Rajkumar et al. 31, 2009, 9 pages.
7,251,681 Bl 7/2007 Gourlay
7284.100 B2 10/2007 Slegel et al. ;)(;f(;;e;ctlon 1ssued for U.S. Appl. No. 11/825,909 mailed Sep. 29,
7.325,045 Bl 1/2008 Manber et al. PaSes.
7.343.422 B2 3/2008 Garcia-I una-Aceves Office Action 1ssued for U.S. Appl. No. 11/701,193, mailed Oct. 22,
7,360,025 Bl 4/2008 O’Connell et al. 2009, 10 pages.
7,395,279 B2* 7/2008 Iyengar GOO6F 17/30215 Office Action 1ssued for U.S. Appl. No. 11/825,909 mailed Mar. 5,
| 711/133 2010, 11 pages.
7,398,304 BZ 7/2008 Smith et al. Office Actionissued for U.S. Appl. No. 12/819,985 mailed on Aug. 2,
7,596,564 Bl 9/2009 O’Connell et al. 2010, 9 pages
7,752,394 Bl 7/2010 Rajkumar et al. L o .
7.818.506 Bl 10/2010 Shepstone Office Action for U.S. Appl. No. 12/904,937, mailed Jan. 5, 2011, 8
7,899,991 B2 3/2011 Rajkumar pases. _
8,041,893 Bl 10/2011 Fung Office Action for U.S. Appl. No. 12/212,414, mailed May 10, 2011,
8,312,222 B1 11/2012 Martin et al. 10 pages.
8,380,932 BI 2/2013 Martin et al. Office Action for U.S. Appl. No. 12/208,934, mailed May 10, 2011,
8,429,169 B2 4/2013 Koopmans et al. 11 pages.

US 9,380,022 B2

Page 3
(56) References Cited Office Action for U.S. Appl. No. 12/208,934, mailed Mar. 27, 2012,
11 pages.
OTHER PUBLICATIONS Office Action for U.S. Appl. No. 12/212,414, mailed Mar. 28, 2012,
10 pages.
Office Action for U.S. Appl. No. 12/904,937, mailed May 25, 2011, Office Action for U.S. Appl. No. 12/212,414, mailed Sep. 17,2012, 6
9 pages. pages.
Office Action for U.S. Appl. No. 12/904,937, mailed Sep. 2, 2011, 11 Office Action for U.S. Appl. No. 13/620,396, mailed Dec. 3, 2013, 9
pages. pages.
Office Action for U.S. Appl. No. 12/208,072, mailed Sep. 23, 2011, Office Action for U.S. Appl. No. 13/619,861, mailed Dec. 3, 2013, 9
10 pages. pages.
Office Action for U.S. Appl. No. 12/208,934, mailed Oct. 17, 2011, Office Action 1ssued for U.S. Appl. No. 14/447,082, mailed Oct. 6,
11 pages. 2014, 10 pages.
Office Action for U.S. Appl. No. 12/212,414, mailed Oct. 17, 2011, Office Action 1ssued for U.S. Appl. No. 14/477,728, mailed Nov. 25,
11 pages. 2014, 6 pages.

Oflice Action 1ssued for U.S. Appl. No. 12/904,937 mailed Dec. 1,
2011, 10 pages. * cited by examiner

US 9,380,022 B2

Sheet 1 of 8

Jun. 28, 2016

o
L]
 —
>
Q.
=
-
O
|
=
=,
—
O

U.S. Patent

o
Lil
—
—
Q..
=
-
-
-
O
e
-
<

160

U.S. Patent Jun. 28, 2016 Sheet 2 of 8 US 9,380,022 B2

204
168 —
N 06
|
FIG. 2
208
170
REQUEST HPD - ENABLED

e

120 £ RESPONSE 30

REQUEST
CLENT [} T o NniER —
25 20
FlG. 3

3

2(]
CACHE CACHE
READER CACHE MANAGER
4/

0
=l
CAPTURE DEPENDENCY
65 FILTER MANAGER
60
70

46
43 . 44
PAGE ‘?70
GENERATOR

FIG. 4

U.S. Patent Jun. 28, 2016 Sheet 3 of 8 US 9,380,022 B2

800

RECEIVE A CACHE ENTRY 3 l BANNER 801 I
—— NAV \
GENERATE A CACHE ADDRESS wﬁﬁﬂo
| FOR THE CACHE ENTRY USING 32
A MESSAGE DIGEST FUNCTION 803
. ANNEL 1
STORE THE CACHE ENTRY IN A ANNEL 2
DIRECTORY OF THE CACHE *
BASED ON PREFIXES OF THE 53 e
GENERATED CACHE ADDRESS INKA LINK 2
FIG. 5 _
FIG. 8
940
CLIENT e
120
905 ~J sEcURITY LAYER
CACHE < CACHE
910 ~_\WeR-TIER READER CACHE MANAGER
30 29 20
CAPTURE DEPENDENCY
FILTER MANAGER
69 60
920 ~_ APPLICATION-TIER
| PAGE ‘\
GENERATOR 170
{0

FIG. 9

U.S. Patent Jun. 28, 2016 Sheet 4 of 8 US 9,380,022 B2

25
51\1 FILESYSTEM CACHE
5C/7C/C9 - ENTRY E1 ... -
ENTRY E2 ...
ENTRY E3
METADATA (e.g., REQ PAGE (e.g., P1000)
METADATA. TEMPLA’
METADATA etc.)
© 623
621 .
N 013 'S

22/0F/3D ENTRY E1

METADATA (e.q., REQUEST | VARIATION SCHEME
| METADATA. TEMPLATE
METADATA, etc.)

C 0 C

ENTRY E7

METADATA (e.g., REQUEST | PAGE (e.g., P100, VERSION:
METADATA, TEMPLATE GOLD-LEVEL)
METADATA, etc.)

0

£

625

2

ENTRY E9

METADATA (e.qg., REQUEST
METADATA, TEMPLATE
METADATA, eic.)

PAGE (e.g., P200, VERSION:
SILVER-LEVEL)

W

o

62/

Q

FlG. 6

U.S. Patent Jun. 28, 2016 Sheet 5 of 8 US 9,380,022 B2

70T~ RECEIVE REQUEST R1 FOR PAGE P1

/(03 COMPUTE PRIMARY ADDRESS
BASED ON URL OF PAGE P1

705 SEARCH FOR PAGE P1 AT
PRIMARY ADDRESS

Q7

ENTRY

FOUND AT PRIMARY

ADDRESS
?

YES
/13

NO

FORWARD

REQUEST
REQUEST Rt NO
T0 PAGE R1 SUBJECT TO VARIATION

GENERATOR NEGO-I;IATION
710
YES
EXTRACT PARAMETERS RETRIEVE PAGE P1 AT
(17 OF REQUEST RT PRIMARY ADDRESS

COMPUTE SECONDARY RETURN PAGE P1 IN
719 ADDRESS BASED ON URL AND RESPONSE TO
EXTRACTED PARAMETERS REQUEST R1

/27

ENTRY
FOUND AT SECONDARY
ADDRESS
7

RETRIEVE A VARIATION OF PAGE
723 P1 FROM SECONDARY ADDRESS
RETURN A VARIATION OF PAGE P1
(25 IN RESPONSE TO REQUEST R

FIG. 7

U.S. Patent Jun. 28, 2016 Sheet 6 of 8 US 9,380,022 B2

1000

703~ cOMPUTE PRIMARY ADDRESS FROM URL

707

ENTRY
EXISTS AT PRIMARY
ADDRESS

NO

727
/

RETURN PAGE
AT PRIMARY

ADDRESS TO
REQUESTOR

10095

USES
SESSION-VARIABLE
VARIATION?

FORWARD
REQUEST TO
BACK-END

YES

1001

NO

COMPUTE SECONDARY ADDRESS FROM
URL AND REQUEST ATTRIBUTES

19

RETURN PAGE

ENTRY

EXISTS AT SECONDARY >=2 AT SECONDARY
| ADDRESS? ADDRESS TO
' REQUESTOR
/7 o
725

FIG. 10

U.S. Patent Jun. 28, 2016 Sheet 7 of 8 US 9,380,022 B2

1100
CLIENT ;

120

900~ SECURITY LAYER

CACHE

S0w

I I I T S T T G S kel sy bl " ey sy iyt EEEgE EPPEE TR I S T G EaRE Whkblr ek GEEEE EEEaE T . S

CACHE
MANAGER

20

CACHE
READER

30a

DEPENDENCY
MANAGER

60

CAPTURE
FILTER

65

920~ APPLICATION-TIER

PAGE
GENERATOR "1\70
70

FIG. 11

U.S. Patent

708

FORWARD
REQUEST
T0 PAGE

GENERATOR

l
-

Jun. 28, 2016 Sheet 8 of 8

1200

1

COMPUTE PRIMARY
ADDRESS FROM URL

703

707

ENTRY
EXISTS AT PRIMARY

ADDRESS

NO

ENTRY
SUBJECT TG

VARIATIONS
2

YES

COMPUTE SECONDARY
ADDRESS FROM URL

719 AND REQUEST

ATTRIBUTES

NO ENTRY EXISTS

AT SECONDARY

ADDRESS
?

(21

FIG. 12

NO

YES

US 9,380,022 B2

(27

RETURN

PAGE AT

PRIMARY
ADDRESS TO
REQUESTOR

RETURN
PAGE AT
SECONDARY
ADDRESS TO
REQUESTOR

725

US 9,380,022 B2

1

SYSTEM AND METHOD FOR MANAGING
CONTENT VARIATIONS IN A CONTENT
DELIVER CACHE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This 1s a continuation of and claims a benefit of priority
under 35 U.S.C. §120 from U.S. patent application Ser. No.
14/4°777,728, filed Sep. 4, 2014, now U.S. Pat. No. 9,160,709,
entitled “SYSTEM AND METHOD FOR MANAGING
PAGE VARIATIONS IN A PAGE DELIVERY CACHE,”
which 1s a continuation of U.S. patent application Ser. No.
13/619,861, filed Sep. 14,2012, now U.S. Pat. No. 8,850,138,
entitled “SYSTEM AND METHOD FOR MANAGING
PAGE VARIATIONS IN A PAGE DELIVERY CACHE,”
which 1s a continuation of U.S. patent application Ser. No.
12/208,072, filed Sep. 10, 2008, now U.S. Pat. No. 8,463,998,
entitled “SYSTEM AND METHOD FOR MANAGING
PAGE VARIATIONS IN A PAGE DELIVERY CACHE,”
which 1s a continuation-in-part application of U.S. patent
application Ser. No. 11/825,909, filed Jul. 10, 20077, now U.S.
Pat. No. 7,818,506, entitled “METHOD AND SYSTEM
FOR CACHE MANAGEMENT,” which 1s a continuation-in-
part application of U.S. patent application Ser. No. 10/733,
742, filed Dec. 11, 2003, now U.S. Pat. No. 7,360,025,
entitled “METHOD AND SYSTEM FOR AUTOMATIC
CACHE MANAGEMENT,” which claims priority from Pro-
visional Application No. 60/433,408, filed Dec. 13, 2002,
entitled “EXTENSIBLE FRAMEWORK FOR CACHING
AND CONFIGURABLE CACHING PARAMETERS.”” All
applications cited within this paragraph are fully incorporated
herein by reference.

TECHNICAL FIELD

This disclosure relates generally to disk-based caching
systems and, more particularly, to high performance content
delivery systems utilizing such caching systems to service
web site requests. Even more particularly, this disclosure
provides systems and methods for managing page variations
in a page delivery cache.

BACKGROUND

Communication of data over computer networks, particu-
larly the Internet, has become an important, if not essential,
way for many organizations and individuals to disseminate
information. The Internet 1s a global network connecting
millions of computers using a client-server architecture in
which any computer connected to the Internet can potentially
receive data from and send data to any other computer con-
nected to the Internet. The Internet provides a variety of
methods 1n which to communicate data, one of the most
ubiquitous of which 1s the World Wide Web, also referred to
as the web. Other methods for communicating data over the
Internet include e-mail, Usenet newsgroups, telnet and FTP.

The World Wide Web 1s a system of Internet servers, typi-
cally called “web servers”, that support the documents and
applications present on the World Wide Web.

Documents, known as web pages, may be transierred
across the Internet according to the Hypertext Transier Pro-
tocol (“HTTP”) while applications may be run by a Java
virtual machine present in an imnternet browser. Web pages are
often organized into web sites that represent a site or location
on the Web. The web pages within a web site can link to one
or more web pages, files, or applications at the same web site

10

15

20

25

30

35

40

45

50

55

60

65

2

or at other web sites. A user can access web pages using a
browser program running on the user’s computer or web-
enabled device and can “click on” links 1n the web pages
being viewed to access other web pages.

Each time the user clicks on a link, the browser program
generates a request and communicates 1t to a web server
hosting web pages or applications associated with the web
site. The web server retrieves the requested web page or
application from an application server or Java server and
returns 1t to the browser program. Web pages and applications
can provide a variety of content, including text, graphics,
interactive gaming and audio and video content.

Because web pages and associated applications can display
content and receive information from users, web sites have
become popular for enabling commercial transactions. As
web sites become more important to commerce, businesses
are mcreasingly mterested 1 quickly providing responses to
user’s requests. One way of accelerating responses to
requests on a web site 1s to cache the web pages or applica-
tions delivered to the requesting user 1n order to allow faster
access time to this content when 1t 1s next requested.

Commercial web sites typically want to serve different
versions of a page to different requesters even though those
requesters all request the same Uniform Resource Locator
(URL). For example, the front page of a site 1s oiten addressed
simply as /index.html or /index.jsp, but the site operator may
wish to deliver different versions of that page depending upon
some property of the requester. Common examples are ver-
sions of a page 1n different languages. The selection of an
appropriate variant to serve 1s commonly known as content
negotiation, which 1s defined 1n the Hypertext Transier Pro-
tocol (HT'TP) specification.

Existing content negotiation schemes (as typified 1n
Request for Comments (RFCs) 2616, 2293, and 2296) apply
to general characteristics of content: the language used 1n the
content, the style of markup, etc. A user-agent (1.e., a client
application used with a particular network protocol, particu-
larly the World Wide Web) can include 1n a request a descrip-
tion of 1ts capabilities and preferences in these areas, and a
server can deduce the best version of content to send 1n
response. For example, a client application may specity, via
headers in an HTTP request, that 1t prefers to receive English,
French, and German content, in that order; i1f the server
receives a request for a page that 1s available only 1n French
and German, 1t will send the French version in response. This
preference will only be applied when there 1s a choice of
representations which vary by language. It’s also possible for
the server to respond with a list of possible options with the
expectation that the client application will then employ 1ts
own algorithm to select one of those options and request it.
These schemes rely on a certain degree of cooperation on the
client application’s part, and concern variations that the client
application can reasonably be expected to be aware of.

Currently, some servers support driven content negotiation
as defined 1n the HI'TP/1.1 specification. Some servers also
support transparent content negotiation, which 1s an experi-
mental negotiation protocol defined 1n RFC 2295 and RFC
2296. Some may oifer support for feature negotiation as
defined in these RFCs. An HT'TP server like Apache provides
access 1o representations of resource(s) within 1ts namespace,
with each representation in the form of a sequence of bytes
with a defined media type, character set, encoding, etc. A
resource 1s a conceptual entity i1dentified by a URI (RFC
2396). Each resource may be associated with zero, one, or
more than one representation at any given time. If multiple
representations are available, the resource 1s referred to as
negotiable and each of 1ts representations 1s termed a variant.

US 9,380,022 B2

3

The ways 1n which the variants for a negotiable resource vary
are called the dimensions of negotiation.

In order to negotiate a resource, a server typically needs to
be given mnformation about each of the variants. In an HT'TP
server, this can be done 1n one of two ways: consult a type map
(e.g., a *.var file) which names the files containing the vari-
ants explicitly, or do a search, where the server does an
implicit filename pattern match and chooses from among the
results. In some cases, representations or variants of resource
are stored 1n a cache. When a cache stores a representation, 1t
associates 1t with the request URL. The next time that URL 1s
requested, the cache can use the stored representation. How-
ever, 1f the resource 1s negotiable at the server, this might
result 1n only the first requested variant being cached and
subsequent cache hits might return the wrong response. To
prevent this, the server can mark all responses that are
returned after content negotiation as non-cacheable by the
clients.

SUMMARY

Embodiments disclosed herein can increase the perfor-
mance of a content delivery system servicing web site
requests. In some embodiments, these web site requests are
HTTP requests. Embodiments disclosed herein can allow
developers of business applications to cache different ver-
s10ms of content to be served in response to HT'TP requests for
the same URL. Example versions of a page include pages in
different languages, public content for anonymous users ver-
sus secure content for authenticated users, or different ver-
s1ons for users belonging to different service categories (e.g.,
gold, silver, bronze patrons, or frequent flyers over specific
mileage thresholds).

In some embodiments, the following additional attributes
can be used to determine what version of content to serve:

1. The values of one or more HT'TP request headers.

. The values of one or more HI'TP cookies.

. The value of the HI'TP query string.

. The existence (or lack thereof) of one or more HTTP

request headers.

. The existence (or lack thereof) of one or more HTTP

cookies.

6. The values of one or more session attributes. In some
embodiments, these are J2EE (Java Platiorm, enterprise
edition) session attributes.

In embodiments disclosed herein, when a page 1s cached,
certain metadata 1s also stored along with the page. That
metadata includes a description of what extra attributes, i
any, must be consulted to determine what version of content
to serve 1n response to a request. When a request 1s fielded, a
cache reader consults this metadata, then extracts the values
of the extra attributes, 1f any are specified, and uses them 1n
conjunction with the request URL to select an appropriate
response.

The above-described scheme has many advantages. One
advantage 1s the simplification of the URL structure of a web
site. Previously, the vanation dimensions have to be encoded
into the URLs. For example, a common practice for multi-
lingual sites 1s to segregate the content by adding a language
specifier at the top of the URL space, as with /en/index.jsp,
/Ir/index.jsp, etc. This 1s tractable because 1t’s reasonable to
assume that the language choice applies to all of the pages
under the language specifier, but quickly becomes intractable
when individual pages are subject to different sets ol variation
parameters. Furthermore, it becomes difficult or impossible
for humans to predict or remember URLs. For the same

reason, these schemes also intertere with so-called “search

= I Mo

Lh

10

15

20

25

30

35

40

45

50

55

60

65

4

engine optimization”: the design of URLs that lead to high
relevance ratings for major search engines. Embodiments
disclosed herein can allow a site designer to keep this varia-
tion information out of the URLs themselves, thereby helping
with both of those problems.

These, and other, aspects of the disclosure will be better
appreciated and understood when considered 1n conjunction
with the following description and the accompanying draw-
ings. It should be understood, however, that the following
description, while indicating various embodiments of the dis-
closure and numerous specific details thereof, 1s given by way
of 1illustration and not of limitation. Many substitutions,
modifications, additions and/or rearrangements may be made
within the scope of the disclosure without departing from the
spirit thereof, and the disclosure includes all such substitu-
tions, modifications, additions and/or rearrangements.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this
specification are included to depict certain aspects of the
disclosure. It should be noted that the features 1llustrated 1n
the drawings are not necessarily drawn to scale. A more
complete understanding of the disclosure and the advantages
thereol may be acquired by referring to the following descrip-
tion, taken 1n conjunction with the accompanying drawings in
which like reference numbers indicate like features and
wherein:

FIG. 1 1s a diagrammatic representation of a hardware
configuration of a network implementing embodiments dis-
closed herein;

FIG. 2 1s a diagrammatic representation of a computer-
readable storage medium carrying software code having
instructions implementing embodiments disclosed herein;

FIG. 3 15 a block diagram depicting an embodiment of a
high performance content delivery system 1n communication
with a user-agent;

FIG. 4 1s a block diagram depicting one embodiment of a
content delivery system;

FIG. 5 15 a flow diagram 1llustrating one embodiment of a
caching method 1n which an entry 1s stored 1n a directory of a
filesystem cache based on prefixes ol a message digested
address:

FIG. 6 1s a diagrammatic representation ol one embodi-
ment of a filesystem cache;

FIG. 7 1s a flow diagram 1llustrating one embodiment of a
method for managing page variations in a page delivery
cache;

FIG. 8 depicts one embodiment of an example page;

FIG. 9 1s a block diagram depicting one embodiment of a
content delivery system with a cache reader and a page deliv-
ery cache implemented at the web-tier;

FIG. 10 1s a flow diagram 1llustrating one embodiment of a
control flow of a web-tier cache reader;

FIG. 11 1s a block diagram depicting one embodiment of a
content delivery system with a page delivery cache imple-
mented at the application-tier; and

FIG. 12 15 a flow diagram 1illustrating one embodiment of a

control tflow of an application-tier cache reader.

Skilled artisans appreciate that elements 1n the figures are
illustrated for simplicity and clarity and have not necessarily
been drawn to scale. For example, the dimensions of some of
the elements in the figures may be exaggerated relative to
other elements to help to improve understanding of embodi-
ments of the present disclosure.

DETAILED DESCRIPTION

The disclosure and various features and advantageous
details thereot are explained more tully with reference to the

US 9,380,022 B2

S

exemplary, and therefore non-limiting, embodiments 1llus-
trated 1n the accompanying drawings and detailed 1n the fol-
lowing description. Descriptions of known programming
techniques, computer software, hardware, operating plat-
forms and protocols may be omitted so as not to unnecessarily
obscure the disclosure 1n detail. It should be understood,
however, that the detailled description and the specific
examples, while indicating the preferred embodiments, are
given by way of illustration only and not by way of limitation.
Various substitutions, modifications, additions and/or rear-
rangements within the spirit and/or scope of the underlying,
inventive concept will become apparent to those skilled 1n the
art from this disclosure.

Software 1mplementing embodiments disclosed herein
may be implemented i1n suitable computer-executable
instructions that may reside on a computer-readable storage
medium. Within this disclosure, the term “computer-readable
storage medium”™ encompasses all types of data storage
medium that can be read by a processor. Examples of com-
puter-readable storage media can include random access
memories, read-only memories, hard drives, data cartridges,
magnetic tapes, tloppy diskettes, tlash memory drives, optical
data storage devices, compact-disc read-only memories, and
other appropriate computer memories and data storage
devices.

As used heremn, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, product, article, or apparatus that
comprises a list of elements 1s not necessarily limited only
those elements but may include other elements not expressly
listed or inherent to such process, product, article, or appara-
tus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B 1s satisfied by any one of the
following: A 1s true (or present) and B 1s false (or not present),
A 1s false (or not present) and B 1s true (or present), and both
A and B are true (or present).

Additionally, any examples or 1llustrations given herein are
not to be regarded 1n any way as restrictions on, limits to, or
express definitions of, any term or terms with which they are
utilized. Instead these examples or illustrations are to be
regarded as being described with respect to one particular
embodiment and as illustrative only. Those of ordinary skill in
the art will appreciate that any term or terms with which these
examples or 1illustrations are utilized encompass other
embodiments as well as implementations and adaptations
thereol which may or may not be given therewith or else-
where 1n the specification and all such embodiments are
intended to be included within the scope of that term or terms.
Language designating such non-limiting examples and 1llus-
trations includes, but 1s not limited to: “for example,” “for
instance,” “e.g..” “1n one embodiment,” and the like.

A few terms are defined or clarified to aid 1n understanding
the descriptions that follow. A network includes an 1ntercon-
nected set of server and client computers over a publicly
available medium (e.g., the Internet) or over an internal (com-
pany-owned) system. A user at a client computer may gain
access to the network using a network access provider. An
Internet Service Provider (“ISP”) 1s a common type of net-
work access provider. Many ISPs use proxy caches to save
bandwidth on frequently-accessed web pages. Web page
caches and client-side network file system caches are typi-
cally read-only or write-through only to keep the network
protocol simple and reliable. A network file system 1s basi-
cally a computer file system that supports sharing of files,

printers and other resources as persistent storage over a com-

- B) 4

10

15

20

25

30

35

40

45

50

55

60

65

6

puter network. A cache of recently visited web pages can be
managed by a client computer’s web browser. Some browsers
are configured to use an external proxy web cache, a server
program through which all web requests are routed so that 1t
can cache frequently accessed pages for everyone 1n an orga-
nization. Search engines also frequently make web pages they
have indexed available from their cache, which can be usetul
when web pages are temporarily maccessible from a web
server. Embodiments disclosed herein are directed to cache
management for server-side file system caches that store cop-
1ies of recently requested web content generated by page gen-
eration software at the back end, as opposed to the cache of
recently visited web pages managed by a client computer’s
web browser at the front end.

Within this disclosure, the term “software component”
refers to at least a portion of a computer program (1.e., a
soltware application). Specifically, a soltware component can
be a piece of code that when executed by a processor causes
a machine to perform a particular function. Examples include
a content delivery soltware component, a content manage-
ment soltware component, a page generation software com-
ponent, or the like. Different software components may reside
in the same computer program or 1n different computer pro-
grams on the same computer or different computers.

Reference 1s now made 1n detail to the exemplary embodi-
ments of the disclosure, examples of which are 1llustrated 1n
the accompanying drawings. Wherever possible, the same
reference numbers will be used throughout the drawings to
refer to the same or like parts (elements).

FIG. 1 illustrates an exemplary architecture and includes
external network 11 that can be bi-directionally coupled to
client computer 120 and content delivery system (“CDS”)
140. CDS 140 can be bi-directionally coupled to database 13.
An mternal network 15 can be bi-directionally coupled to
CDS 140, content management system (“CMS”) 160, and
actor computer 180. CMS 160 can be bi-directionally coupled
to databases 17 and 19, each of which may contain data
objects and metadata regarding those objects 1n tables within
those databases. CDS 140, CMS 160, and databases 13, 17,
and 19 may be part of a network site. Note that FIG. 1 1s a
simplification of a hardware configuration.

Within each of CDS 140 and CMS 160, a plurality of
computers (not shown) may be mterconnected to each other
over internal network 15 or a combination of internal and
external networks. For simplification, a single system 1is
shown for each of CDS 140 and CMS 160. Other systems
such as a page generator, an application server, etc., may be
part of CDS 140, CMS 160, or additional systems that are
bi-directionally coupled to the internal network 15.

A plurality of other client computers 120 may be bi-direc-
tionally coupled to external network 11, and a plurality of
actor computers 180 may be coupled to internal network 15.
Actor computers 180 may include personal computers or
workstations for individuals that use internal network 185.
These individuals may include content developers, editors,
content reviewers, webmasters, information technology spe-
cialists, and the like. Many other alternative configurations
are possible and known to skilled artisans.

Client computer 120 can include central processing unit
(“CPU”) 122, read-only memory (“ROM™) 124, random
access memory (“RAM”) 126, hard drive (“HD™") or storage
memory 128, and input/output device(s) (“1/07) 129. 1/0O 129
can include a keyboard, monitor, printer, electronic pointing
device (e.g., mouse, trackball, etc.), or the like. Client com-
puter 120 can include a desktop computer, a laptop computer,
a personal digital assistant, a cellular phone, or nearly other
device capable of communicating over a network. Actor com-

US 9,380,022 B2

7

puter 180 may be similar to client computer 120 and can
comprise CPU 182, ROM 184, RAM 186, HD 188, and /O

189.

CDS 140 can include a server computer comprising CPU
142, ROM 144, RAM 146, HD 148, and /O 149, and CMS
160 can include a server computer comprising CPU 162,
ROM 164, RAM 166, HD 168, and /O 169. CDS 140 or CMS
160 may have one or more of a content delivery software
component, a page generator software component, a content
management software component, and the like. In some
embodiments, the page generator software component 1s a
subcomponent of the content delivery software component.

Each of the computers in FIG. 1 may have more than one
CPU, ROM, RAM, HD, I/O, or other hardware components.
For simplicity, each computer 1s illustrated as having one of
cach of the hardware components, even if more than one 1s
used. The content and 1ts metadata, 11 any, may be located
within any or all of CDS 140, CMS 160, and databases 13,17,
and 19. During staging, a user at actor computer 180 may have
access to proxy objects for the content. After staging, data
objects may be copied into database 13 via CDS 140, so that
the data object may be accessed quicker by CDS 140 to
respond to requests from client computer 120. Another
advantage 1s that this separation of content items and proxies
allows CDS 140 to deliver one version of a content 1tem (or
collection of content items) while the “original” undergoes
modification in CMS 160.

Each of computers 120, 140, 160, and 180 1s an example of
a data processing system. ROM 124, 144,164, and 184; RAM
126, 146, 166, and 186; HD 128, 148, 168, and 188; and
databases 13,17, and 19 can include media that can be read by
CPU 122, 142, 162, or 182. Therefore, these types of memo-
ries include computer-readable storage media. These memo-
ries may be internal or external to computers 120,140, 160, or
180.

Portions of the methods described herein may be imple-
mented in suitable software code that may reside within ROM
124,144,164, 0r 184, RAM 126,146,166, 0r 186, or HD 128,
148, 168, or 188. In addition to those types of memories, the
instructions 1 an embodiment disclosed herein may be con-
tained on a data storage device with a different computer-
readable storage medium, such as a hard disk. FIG. 2 1llus-
trates a combination of software code elements 204, 206, and
208 that are embodied within a computer-readable storage
medium 202, on HD 168. Alternatively, the instructions may
be stored as software code elements on a Direct-Access Stor-
age Device (DASD) array, magnetic tape, floppy diskette,
optical storage device, or other appropriate data processing
system readable medium or storage device.

In an illustrative embodiment, the computer-executable
instructions may be lines of compiled C**, Java, or other
language code. Other architectures may be used. For
example, the functions of one computer may be distributed
and performed by multiple computers. Additionally, a com-
puter program or its software components with such code
may be embodied 1n more than one computer-readable
medium, each of which may reside on or accessible by one or
more computers.

In the hardware configuration above, the various software
components and subcomponents, including content delivery,
page generator, and content manager, may reside on a single
server computer or on any combination of separate server
computers. In alternative embodiments, some or all of the
soltware components may reside on the same server com-
puter. For example, the content delivery software component
and the page generator software component could reside on
the same server computer. In some embodiments, the content

10

15

20

25

30

35

40

45

50

55

60

65

8

delivery software component and the page generator software
component reside at different levels of abstraction. In some
embodiments, the page generator software component 1s part
ol the content delivery service provided by the content deliv-
ery software component.

Communications between any of the computers 1n FIG. 1
can be accomplished using electronic, optical, radio-ire-
quency, or other signals. For example, when a user 1s at client
computer 120, client computer 120 may convert the signals to
a human understandable form when sending a communica-
tion to the user and may convert input from a human to
appropriate electronic, optical, radio-frequency, or other sig-
nals to be used by client computer 120, systems 140 or 160, or
actor computer 180. Similarly, when an operator 1s at CMS
160, its server computer may convert the signals to a human
understandable form when sending a communication to the
operator and may convert mnput from a human to appropriate
clectronic, optical, radio-frequency, or other signals to be
used by computers 120 or 180 or systems 140 or 160.

Attention 1s now directed to systems and methods for high
performance cache management. These systems and methods
may be used to manage cached content to be delivered to an
end user at a client computer, increasing the performance of
content delivery for a web site.

FIG. 3 1s a simplified diagrammatical representation of a
distributed computing environment where high performance
delivery (HPD)-enabled system 170 resides. Within the dis-
tributed computing environment, a plurality of computers
(not all are shown 1n FIG. 3) may be interconnected to each
other, including web server(s), application server(s), etc. For
simplification, a single system 1s shown for system 170. Sys-
tem 170 can include a server computer comprising CPU,
ROM, RAM, HD, and I/O as described above. In some
embodiments, system 170 may comprise a content delivery
soltware component, which comprises a page generator soft-
ware subcomponent, a content management software com-
ponent, an applications software component, and the like. In
the example of FIG. 3, system 170 1s shown to comprise
request handler 30, cache 25, and cache manager 20 to illus-
trate scenarios involving these components. For example, in a
cache hit scenario, request handler 30 can access cache 25 and
return cached response 40 1n response to request 30. Addi-
tional components of system 170 are shown in FIG. 4 to
illustrate a cache miss scenario.

Cache manager 20 can dynamically update content stored
in cache 25 based upon conditions other than a request for
similar content. More specifically, using metadata stored 1n
the cache with a piece of content, cache manager 20 may
regenerate a request, and update the cached content. Cache
manager 20 may be registered with an application manager
which informs cache manager 20 when content has been
updated. Updating the cache may be done 1n the background,
without recerving a new request from a user; this allows
content 1n the cache to be kept current and may drastically
improve the performance and response time of a web site.
This application manager may be part of a content deploy-
ment agent coupled to a content management system. The
deployment agent may recerve updated content, and the appli-
cation manager may take notice when content has been
updated on the deployment agent. The application manager
may also be responsible for the assembly of content to be
delivered by an application server in response to a request
from a user. Embodiments of an example application man-

ager are described 1n the above-referenced U.S. patent appli-
cation Ser. No. 11/825,909, entitled “METHOD AND SYS-
TEM FOR CACHE MANAGEMENT”, filed Jul. 10, 2007,

now U.S. Pat. No. 7,818,506. Examples of how a request can

US 9,380,022 B2

9

be regenerated and used to update cached content can be
found 1 U.S. Pat. No. 7,360,025, enfitled “METHOD AND

SYSTEM FOR AUTOMATIC CACHE MANAGEMENT,”
the content of which 1s incorporated herein by reference.

10

U.S. Pat. No. 7,360,025, entitled “METHOD AND SYSTEM
FOR AUTOMATIC CACHE MANAGEMENT.”” In some
embodiments, the metadata stored with the generated content
in cache 25 may comprise almost any data obtained 1n con-

Within this disclosure, content may be an application or 5 junction with the generation of the cache content. For

piece of data provided by a web site such as a HyperText
Markup Language (HTML) page, Java application, or the
like. In many cases, one piece of content may be assembled
from other pieces of content chosen based on a request 1niti-
ated by a user of the web site. As an example, a user on client
computer or web-enabled device 120, through a browser
application running thereon, may send request 50 for content
over network 11 to request handler 30. Request handler 30
may be a software component of system 170. In some
embodiments, request handler 30 further implements the
function of a cache reader (CR). The requested content may
be a page or a fragment thereof. This page may be associated
with a web site or aweb portal. The request may be 1n the form
of an HTTP request containing a URL referencing the page as
1s known 1n the art.

The end user’s request 1s fielded by CR 30. CR 30 checks
cache 235 to see whether a previously-cached response can be
used to satisty the request; 1f so, 1t returns that previously-
cached response (a cache hit) back to the user via client
computer or web-enabled device 120. If no previously-
cached response 1s applicable or can be found 1n cache 25, 1t
1s a cache miss.

FI1G. 4 1s a block diagram 1llustrating a cache miss scenario.
In this case, the request 1s forwarded to capture filter (CF) 65
and then on to page generator (PG) 70, which 1s responsible
for actually generating the new response. Once generated,
that new response 1s returned to the end user via CF 65 and CR
30, and 1t 1s also submitted to cache 235 via dependency
manager (DM) 60 and cache manager (CM) 20. More spe-
cifically, at step 41, request handler/cache reader 30 reads
cache 25 and no applicable previously-cached response can
be found in cache 25. At step 42, handler/cache reader 30
proxies the user’s request for content to capture filter 65. At
step 43, capture filter 65 may parse the request into a suitable
form for further processing by other software components of
system 170, set up caching context, and pass control to page
generator 70. At step 44, page generator 70 operates to gen-
crate a new page or a piece of content responsive to the user’s
request, annotates the caching context, and returns the gen-
erated content and related information to capture filter 65. At
step 45, capture filter 65 returns the generated content to
request handler 30, which then communicates the content
back to the user via client computer or web-enabled device
120. At step 46, capture filter 65 can supply the newly gener-
ated content and dependency information associated there-
with to dependency manager 60. Dependency manager 60
records the dependency information 1n a dependency data-
base and, at step 47, communicates the generated content and
information associated therewith to cache manager 20. Cache
manager 20 then, at step 48, puts (writes) the newly generated
content in cache 25. In most cases, incoming requests contain
a variety of template data and parameters associated with the
request. For example, the request may contain a Universal
Resource Locator (URL), originating locale, a query string,
or perhaps a user-agent string indicating the type of browser
initiating the request. In some embodiments, these template
metadata and request metadata are stored with the generated
content 1n cache 25. These template metadata and request
metadata can be used to regenerate a request that 1s 1dentical
to the original request from the end user. The regenerated
request can be used to automatically update the cache inde-
pendent of user requests as described 1n the above-referenced

10

15

20

25

30

35

40

45

50

55

60

65

example, as described 1n the above-referenced U.S. patent
application Ser. No. 11/825,909, entitled “METHOD AND

SYSTEM FOR CACHE MANAGEMENT”, filed Jul. 10,
2007, now U.S. Pat. No. 7,818,506, the metadata stored with
the generated content 1n cache 235 may comprise rule sensi-
tivities associated with the generation of the cached content.
These rule sensitivities allow a cache manager to dynamically
update cached content based upon conditions other than a
request for similar content, including the addition of new
content associated with the cached content or alternations or
updates to content used to generate the cached content.

By saving 1n cache 25 a copy of the content generated for a
first user, system 170 can serve that copy to a second user 11 1t
can be determined that the second user 1s making an equiva-
lentrequest. This way, system 170 does not need to regenerate
that content airesh for each user. In embodiments disclosed
herein, the addresses of entries 1n the cache are not the same
as the uniform resource locators (URLs) that users use to
request content. Instead, the address of an entry 1s a message-
digest of the entry’s URL and any relevant variation informa-
tion for that URL. An URL 1s a compact string of characters
used to represent a resource available at a network location.
Examples of relevant variation information may include
request header values such as locale, language, version, eftc.
associated with the URL.

FIG. 5 15 a flow diagram depicting one embodiment of a
caching method exemplifying how the address of a cache
entry can be generated. At step 51, the content manager
receives a new entry to be stored in the cache. As described
above with reference to FIG. 4, the new entry may contain a
new page that has been dynamically generated at the back end
by a page generator 1n response to an end user’s request for
content. The new page may have an URL /site/products.html.
At step 52, the content manager may operate to generate a
cache address for the new entry using a message-digest func-
tion.

A message-digest function 1s a cryptographic hash func-
tion that converts an arbitrary length input into a fixed length
result such that the probability of two different inputs produc-
ing the same output 1s vanishingly small. A reliable message-
digest function should produce two outputs that are signifi-
cantly different even for small differences 1n the two inputs. In
one embodiment, Message-Digest algorithm 5 (MD)S5) 1s uti-
lized. MD5 produces a 128-bit hash value which 1s typically
expressed as a 32-digit hexadecimal number. For example,
the URL /site/products.html produces a cache address of
220F3D1E99AC1691909C4D11965AF27D, while the URL
/site/products2.html (which differs only by the addition of a
single character) produces a cache address of
SCTCC94AAI91EAERS0CDI9C20B5CF44668. As one of
ordinary skill in the art can appreciate, other quality message-
digest functions can also be utilized.

At step 53, the cache entry 1s stored 1n a directory of the
cache using prefixes of the cache address thus generated. In
embodiments disclosed herein, prefixes of the cache address
are used as directory names 1n the cache and all entries are
stored 1n the leaves of the directory tree. Thus, following the
above example, the first entry might wind up 1n a directory
named 22/0F/3D while the second entry might wind up in a
directory named 5C/7C/C9. In this way, the entries 1n any
particular directory are extremely unlikely to be related to one
another 1 any significant way. The randommness of the

US 9,380,022 B2

11

addresses 1s useful for balancing purposes: 1t ensures that no
one directory will be overloaded with entries, regardless of
how many variants of a single URL might exist.

FIG. 6 1s a diagrammatic representation of one embodi-
ment of cache 25, which 1s a filesystem-based cache and
which differs from database- and memory-based caches. A
fillesystem-based cache 1s sometimes referred to as a disk-
based cache. A filesystem 1s a mechanism for the storage,
hierarchical organization, manipulation, navigation, access,
and retrieval of computer files and data contained therein. A
fillesystem generally has directories which associate files with
file names. In the example of FIG. 6, cache 25 has a plurality
of directories, including directory 611 and directory 621.
Unlike conventional filesystem caches, directories 1n cache
25 are created based on prefixes of computed cache
addresses. In some embodiments, directories in cache 25 have
the same, fixed lengths. In some embodiments, each of the
directories 1n cache 25 may have one or more entries.
Although F1G. 6 shows entries E1, E2, and E3 are placed next
to each other under directory 611, this needs not be the case.
Cache addresses for these entries may not be consecutive. In
some embodiments, cache addresses for entries 1n a directory
may have the same, fixed lengths. Following the above
example, cache address 613 may consist of 32-digit hexadeci-
mal number: SC7CC94AA191EAES0CDI9C20B5CF44668.

In some embodiments, cache 25 stores copies ol pages that
have been provided to client 120 through response(s) 40 to
previous request(s) 50. This way, system 170 can quickly
service anew request for a page if 1t can be determined that the
new request 1s asking for the same page. However, in some
cases, 1t may be desirable to serve a variation of the page even
il the requester 1s requesting the same page. For example, 1t
may be that user A 1s a gold-level customer and user B 15 a
silver-level customer and they both want to view a marketing
page containing certain market promotions. System 170 may
specily that gold-level customers should be presented with a
variation of the marketing page containing gold-level promo-
tions and that silver-level customers should be presented with
another variation of the marketing page containing silver-
level promotions. In some embodiments, such a presentation
decision 1s made by a page generator component ol content
delivery system 170. System 170 may store these variants 1n
cache 25 for high performance delivery of content to end
users.

In embodiments disclosed herein, Page Generator (PG) 70
1s responsible for actually generating pages and their varia-
tions. While PG 70 creates a page, it also records information
about the page’s vaniations, 1.e., whether the page varies
according to request headers, query string, cookie values, or
session values. In some embodiments, PG 70 records one or
more of the following mformation about the page’s varia-
tions:

The values of one or more HI'TP request headers.

The values of one or more HI'TP cookies.

The value of the HT'TP query string.

The existence (or lack thereof) of one or more HI'TP
request headers.

The existence (or lack thereot) of one or more HT'TP cook-
1e8.

The values of one or more session variables. In some
embodiments, these are J2EE (Java Platform, enterprise edi-
tion) session variables.

When the page 1s placed in the cache, the accumulated
metadata about the varniation scheme 1s also placed in the
cache. If the page 1sn’t subject to any variations, the page and
the metadata are located at the same cache address, which 1s

a function of the page’s URL only. For example, suppose

10

15

20

25

30

35

40

45

50

55

60

65

12

Page P1000 of FIG. 6 1s not subject to any page variations, 1t
1s stored with 1ts metadata at cache address 613, which 1s
computed using the page’s URL. If the page 1s subject to any
variations, the metadata 1s placed in the cache at the same
address as before (1.¢., the address 1s a function of the URL
only); this address 1s known as the primary address. However,
the page 1tself 1s located at a different address, the secondary
address, which 1s a function of the URL and the values of the
variation parameters for that particular request.

A vanation scheme represents a logical family of pages,
and each member of that family lives at a different secondary
address. The primary address holds the variation scheme and
does not hold a member of the family. If a page exists at the
primary address, that page 1s not subject to variation, by
definition. For example, suppose Page P100 of FIG. 6 1s
subject to a variation scheme requiring providing different
levels of content to end users based on the level of their
subscriptions. The metadata and variation scheme for Page
P100 may be placed 1n the cache at Primary Address 623,
which 1s computed based solely on the URL of Page P100.
Suppose the request for content 1s from a customer with a
gold-level subscription and as such a gold-level version of
Page P100 i1s to be served to that customer. As shown 1n FIG.
6, this gold-level version of Page P100 1s not placed in the
cache at Primary Address 623. Rather, it 1s placed 1n Entry E7
at Secondary Address 625 which 1s computed using the URL
of Page P100 and the value of at least one variation parameter
related to the gold-level subscription. The variation parameter
value 1s extracted from the request. As shown 1in FIG. 6, 1n this
case, no page 1s placed with the metadata of Page P100 at
Primary Address 623. If the request for content 1s from a
customer with a silver-level subscription, a silver-level vari-
ant (1.e., P200) 1s served to that customer. As shown 1n FIG. 6,
Page P200 1s not placed 1n the cache at Primary Address 623.
Rather, 1t 1s placed in Entry E9 at Secondary Address 627
which 1s computed using the URL of Page P100 and the value
ol at least one varnation parameter related to the silver-level
subscription extracted from the request. In this case, both
P100 and P200 are variants 1n the same variation scheme.

A method for managing page varnations in a page delivery
cache will now be described 1n detail with reference to FI1G. 7.
After CR 30 recerves Request R1 for Page P1 (step 701), CR
30 computes a cache address (Primary Address) based solely
on the URL referencing Page P1 (step 703). CR 30 then
searches the cache for an entry at Primary Address (step 705)
and determines whether Page P1 1s found at Primary Address
(step 707). If there 1s no entry of Page P1 at Primary Address,
the request 1s immediately forwarded to PG 70 (step 709). If
there 1s an entry, CR 30 examines the entry metadata (step
711) and determines whether requests for that URL are sub-
ject to variation negotiation based on page variation informa-
tion 1n the entry metadata (step 713). If Request R1 1s not
subject to variation negotiation, the cached page 1s retrieved
from the same location (step 715) and served as the response
to Request R1 (step 727). It the entry metadata indicates that
Request R1 1s subject to variation negotiation (step 717), CR
30 extracts the request parameters indicated by the metadata
and uses the extracted request parameters 1n conjunction with
the URL referencing Page P1 to compute a secondary cache
address (Secondary Address) for locating a variation of Page
P1 (step 719). CR 30 then searches the cache and determines
il a page (1.e., a variation of Page P1) 1s found at Secondary
Address (step 721). If so, CR 30 retrieves that page (step 723)
and returns 1t to satisty Request R1 (step 725). If no page
exists at Secondary Address, Request R1 1s forwarded, via CF
65, to PG 70 (step 709). PG 70 then generates the requested
page and returns 1t to CR 30 via CF 65. CR 30 serves the

US 9,380,022 B2

13

newly generated page, which 1s a vanation of Page P1, in
response to Request R1 and CF 63 sends a copy to DM 60 as
described above.

When PG 70 generates a page, it also records metadata and
dependency information associated with the page. As will be
turther described below with reference to FIG. 8, a page may
have zero or more dependencies. Each dependency may con-
tain a reference to the page and a reference to one or more
objects. In addition to the page 1tself and 1ts associated meta-
data, any dependencies accumulated while generating the
page 1s also recorded by DM 60. DM 60 then sends the page
and 1ts associated metadata to CM 20. Following the above
example 1n which the newly generated page 1s a variation of
Page P1, CM 20 stores the metadata at Primary Address and
the newly generated page at Secondary Address. Exemplary
metadata stored at Primary Address may include, but 1s not
limited to, page variation, request metadata, template meta-
data, and so on.

FIG. 8 depicts one embodiment of an example page. Page
800 can be generated using a template and a plurality of
objects, including content objects and code objects. Exem-
plary content objects may contain text, audio, still image,
video, multi-media, etc. Exemplary code objects may include
various JSPs (Java Server Pages) servlets, active server pages
(ASPs), scripts such as VB Scripts or JScripts, ADOs (Ac-
tiveX Data Objects), etc. Code objects control the appearance
of page 800 or otherwise operate on content objects. A tem-
plate object may define the layout and/or presentation style of
page 800. In the example of FIG. 8, across the top ol page 800
1s banner area or section 801, on the left 1s navigation menu
arca 803, footer area 807 appears at the bottom of page 800,
and body section 8035 occupies the remaining space of page
800. Content conveyed by content objects are presented
through areas 801, 803, 805, and 807 as controlled by code
objects. Page 800 can therefore be dependent upon content
objects and code objects for content, appearance, functional-
ity, or combinations thereof. For additional teachings on page
generation, readers are directed to U.S. patent application Ser.
No. 10/338,746, filed May 20, 2003, entitled “CENTRAL-
I[ZED CONTROL OF CONTENT MANAGEMENT TO
PROVIDE GRANULAR ENTERPRISE-WIDE CONTENT
MANAGEMENT,” which 1s incorporated herein by refer-
ence.

In embodiments disclosed herein, cache readers can be
located at the web-tier or at the application-tier of a configu-
ration. Cache readers at the web-tier have no convenient
access to session variables because the sessions are stored 1n
the application-tier. Thus, although a web-tier cache reader
can successiully resolve references to variations that involve
only request headers, query string, or cookies 1n the variation
scheme, 1t cannot readily resolve references to variations that
involve session values 1n the vaniation scheme. In some
embodiments, session value variation schemes require that a
cache reader be deployed in the application-tier. When a
web-tier cache reader recerves a request for a page subject to
session-variable variations, when 1t consults the cache at the
primary address 1t will either get a cache miss or 1t will find a
metadata entry that indicates that the requested page uses a
session-variable variation scheme. In either case, it simply
forwards the request to the back-end. There the request i1s
ficlded by the application-tier cache reader. That cache reader
handles the request as 1t would any other. It first computes the
primary address for the request and probes its cache; 11 1t finds
no entry it forwards the request to the page generator, and if 1t
finds an entry 1t examines the metadata to determine whether
a variation scheme 1s in effect. In this case a variation scheme
1s 1n effect, so 1t uses the metadata to determine what request

10

15

20

25

30

35

40

45

50

55

60

65

14

and session data are needed to compute the secondary
address, and then 1t probes the cache at that secondary
address. If an entry exists, it uses that entry to satisiy the
request, and 1f no entry exists 1t forwards the request to the
page generator. The web-tier cache reader and the applica-
tion-tier cache reader can be associated with different caches,
or they can share the same cache.

FIG. 9 1s a block diagram depicting one embodiment of
configuration 900. In the example embodiment shown 1n FIG.
9, content delivery system 170 comprises CR 30, cache 25,
and CM 20 implemented at web-tier 910 and PG 70, CF 65,
and DM 60 mmplemented at application-tier 920. Security
layer 905 represents a firewall behind which content delivery
system 170 resides.

FIG. 10 1s a flow diagram 1illustrating one embodiment of
high level control flow 1000 of CR 30 implemented at web-
tier 910. After CR 30 receives a request for page, 1t computes
a primary cache address based on the URL contained in the
request (step 703). CR 30 then searches cache 25, which 1s
also implemented at web-tier 910 as shown 1n FIG. 9, and
determines whether any entry exists at the primary address
computed from the URL (step 707). If there 1s no entry at the
primary address, the request 1s immediately forwarded to
application-tier 920 at the back-end (step 709). If there 1s an
entry, CR 30 examines the entry metadata and determines
whether the entry 1s subject to vanations (step 713). If not, the
cached page at the primary address 1s retrieved and returned
as the response to the request (step 727). If CR 30 determines
that the entry at the primary address 1s subject to vanations, 1t
checks to see 1f session-variables are involved 1n the variation
scheme (step 1001). If no session-variables are involved, CR
30 computes the secondary address using the URL contained
in the request and attributes extracted from the request (step
719). CR 30 then searches the cache and determines 1f a page
1s found at the secondary address (step 721). If a page 1s found
at the secondary address, CR 30 retrieves that page and
returns 1t to satisty the request (step 725). If no page exists at
the secondary address, the request 1s forward to application-
tier 920 at the back-end (step 709). If CR 30 determines that
session-variables are involved 1n the variation scheme at step
1001, 1t simply forwards the request to the back-end (step
1005). At the back-end, the request 1s fielded by an applica-
tion-tier cache reader.

FIG. 11 1s a block diagram depicting one embodiment of
configuration 1100. In the example embodiment shown 1n
FIG. 11, content delivery system 170 comprises CR 30w
implemented at web-tier 910 and CR 30a, cache 25, CM 20,
PG 70, CF 65, and DM 60 implemented at application-tier
920. Secunity layer 905 represents a firewall behind which
content delivery system 170 resides. In the example embodi-
ment shown 1n FIG. 11, CR 30w and CR 30a share the same
cache 25.

FIG. 12 15 a flow diagram illustrating one embodiment of
high level control flow 1200 of CR 30a implemented at appli-
cation-tier 920. After CR 30q receives a request for page
torwarded from CR 30w, CR 30q again computes a primary
cache address based on the URL contained in the request (step
703). CR 30a then searches cache 25, which 1s implemented
at application-tier 920 as shown in FIG. 11, and determines
whether any entry exists at the primary address computed
from the URL (step 707). I there 1s no entry at the primary
address, the request 1s immediately forwarded to PG 70 (step
709). I there 1s an entry, CR 30a determines whether the entry
1s subject to variations (step 713). If not, the cached page at
the primary address 1s retrieved and returned as the response
to the request (step 727). If CR 30q determines that the entry
at the primary address 1s subject to variations, including ses-

US 9,380,022 B2

15

sion-variations, 1t computes the secondary address using the
URL contained 1n the request and attributes, including ses-
sion-variables, extracted from the request (step 719). CR 30qa
then searches the cache and determines 1f a page 1s found at
the secondary address (step 721). If so, CR 30a retrieves that
page and returns 1t to satisty the request (step 725). If no page
exists at the secondary address, the request 1s forward to PG
70 (step 709). PG 70 then generates a new page and records
the variation information accordingly. The newly generated
page, which 1s a version of the requested page, 1s returned to
the requester and a copy of the variation 1s placed at the
secondary address as described above.

As 1t will be appreciated by one skilled 1n the art, CR30qa
can be implemented 1n several ways. In some embodiments,
CR30a may function the same way as CR30w. This type of
implementation has the advantage that CR30a works the
same way regardless of whether CR30w exists or not. In some
embodiments, CR30w may forward information that could
help to reduce the workload on CR30a. For example, 1n some
cases where requests are forwarded by CR 30w, CR 30w may
have already calculated the primary address and checked for
entry at that address before forwarding a request to the back-
end. In some cases, CR 30w may also have already deter-
mined that the request 1s subject to variations (step 713)
betfore forwarding the request to the backend. Thus, CR30w
may simply forward the information with the request to
CR30q. This way, CR30a would not have to calculate the
primary address, check for entry at that address, and/or deter-
mine 11 the request 1s subject to varniations.

Although the present disclosure has been described 1n
detail herein with reference to the 1llustrative embodiments, 1t
should be understood that the description 1s by way of
example only and 1s not to be construed in a limiting sense. It
1s to be further understood, therefore, that numerous changes
in the details of the embodiments disclosed herein and addi-
tional embodiments will be apparent to, and may be made by,
persons of ordinary skill in the art having reference to this
description. Accordingly, the scope of the present disclosure
should be determined by the following claims and their legal
equivalents.

What 1s claimed 1s:

1. A method for high performance content delivery, the
method comprising:

subsequent to finding an entry at a first cache address of a

cache responsive to a request from a client device, deter-

mining that the request from the client device 1s subject

to variation negotiation, the determining performed by a

high performance delivery (HPD)-enabled system

embodied on one or more server machines, the HPD-

enabled system further performing:

extracting at least one variation parameter from the
request;

computing a second cache address based at least par-
tially on the at least one variation parameter extracted
from the request; and

accessing the cache at the second cache address to locate
a variation of content residing at the first cache
address of the cache for delivery to the client device.

2. The method according to claim 1, wherein the determin-
ing comprises examining metadata associated with the con-
tent residing at the first cache address of the cache.

3. The method according to claim 1, wherein the at least
one variation parameter 1s extracted from the request as indi-
cated by metadata associated with the content residing at the
first cache address of the cache.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

4. The method according to claim 1, wherein when no entry
1s found at the second cache address of the cache, a new
variation of the content 1s generated and delivered to the client
device.

5. The method according to claim 1, further comprising:

determining whether session-variables are to be used 1n

computing the second cache address, wherein the sec-
ond cache address 1s computed by a first cache reader of
the HPD-enabled system when no session-variables are
to be used and wherein the second cache address 1s
computed by a second cache reader of the HPD-enabled
system when session-variables are to be used.

6. The method according to claim 1, wherein the cache 1s a
fllesystem-based cache and wherein directories in the filesys-
tem-based cache are created based on prefixes of computed
cache addresses.

7. The method according to claim 1, wherein the first cache
address and the second cache address are hexadecimal num-

bers of same fixed length.

8. A high performance delivery (HPD)-enabled system,
comprising;

at least one processor;

at least one non-transitory computer readable medium; and

stored 1nstructions embodied on the at least one non-tran-

sitory computer readable medium and translatable by

the at least one processor to perform:

subsequent to finding an entry at a first cache address of
a cache responsive to a request from a client device,
determining that the request from the client device 1s
subject to variation negotiation;

extracting at least one variation parameter from the
request;

computing a second cache address based at least par-
tially on the at least one vanation parameter extracted
from the request; and

accessing the cache at the second cache address to locate
a variation of content residing at the first cache
address of the cache for delivery to the client device.

9. The system of claim 8, wherein the determining com-
prises examining metadata associated with the content resid-
ing at the first cache address of the cache.

10. The system of claim 8, wherein the at least one variation
parameter 1s extracted from the request as indicated by meta-
data associated with the content residing at the first cache
address of the cache.

11. The system of claim 8, wherein when no entry 1s found
at the second cache address of the cache, a new variation of
the content 1s generated and delivered to the client device.

12. The system of claim 8, wherein the instructions are
turther translatable by the at least one processor to perform:

determining whether session-variables are to be used 1n

computing the second cache address, wherein the sec-
ond cache address 1s computed by a first cache reader
when no session-variables are to be used and wherein the
second cache address 1s computed by a second cache
reader when session-variables are to be used.

13. The system of claim 8, wherein the cache 1s a filesys-
tem-based cache and wherein directories 1n the filesystem-
based cache are created based on prefixes of computed cache
addresses.

14. The system of claim 8, wherein the first cache address
and the second cache address are hexadecimal numbers of
same fixed length.

15. A computer program product comprising at least one
non-transitory computer readable medium storing instruc-
tions translatable by at least one processor to perform:

US 9,380,022 B2

17

subsequent to finding an entry at a first cache address of a
cache responsive to a request from a client device, deter-
mining that the request from the client device 1s subject
to variation negotiation;

extracting at least one variation parameter from the
request;

computing a second cache address based at least partially
on the at least one variation parameter extracted from the

request; and
accessing the cache at the second cache address to locate a

variation of content residing at the first cache address of

the cache for delivery to the client device.

16. The computer program product of claim 15, wherein
the determining comprises examining metadata associated
with the content residing at the first cache address of the
cache.

17. The computer program product of claim 15, wherein
the at least one varation parameter 1s extracted from the

10

15

18

request as indicated by metadata associated with the content
residing at the first cache address of the cache.

18. The computer program product of claim 135, wherein
when no entry 1s found at the second cache address of the
cache, a new variation of the content 1s generated and deliv-
ered to the client device.

19. The computer program product of claim 135, wherein
the instructions are further translatable by the at least one
processor to perform:

determiming whether session-variables are to be used 1n

computing the second cache address, wherein the sec-
ond cache address 1s computed by a first cache reader
when no session-variables are to be used and wherein the
second cache address 1s computed by a second cache
reader when session-variables are to be used.

20. The computer program product of claim 15, wherein
the first cache address and the second cache address are
hexadecimal numbers of same fixed length.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

