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1

METHOD AND APPARATUS FOR
DETERMINING PATHS BETWEEN
SOURCE/DESTINATION PAIRS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s based upon and claims the benefit of
priority under 35 U.S.C. §119(e) from U.S. Ser. No. 61/645,
937, filed May 11, 2012, the entire contents of which are

incorporated herein by reference.

FIELD OF THE EMBODIMENTS OF TH
INVENTION

L1

The present embodiments of the invention relates to a
method and apparatus for determining paths between source/

destination pairs.

DISCUSSION OF THE BACKGROUND

Intelligent routing has been applied to various fields in
recent years. For example, such routing has been imple-
mented for large area networks such as the Internet and to
small area networks such as (on-chip) networks for super-
computers.

In the field of large area networks, the last few years have
witnessed the adoption of the Internet as the preferred trans-
port medium for services of critical importance for business
and individuals. In particular, an increasing number of time-
critical services such as trading systems, remote monitoring
and control systems, telephony and video conferencing place
strong demands on timely recovery from failures. For these
applications, even short outages 1n the order of a few seconds
will cause severe problems or impede the user experience.
This has fostered the development of a number of proposals
for more robust routing protocols, which are able to continue
packet forwarding immediately after a component failure,
without the need for a protocol re-convergence. Such solu-
tions add robustness either by changing the routing protocol
so that the routing protocol installs more than one next-hop
towards a destination 1n the forwarding table, or by adding
backup next-hops a posteriori to the forwarding entries found
by a standard shortest path routing protocol. Unfortunately,
few of these solutions have seen widespread deployment, due
to added complexity or incompatibility with existing routing
protocols.

In the field of small area networks, high-performance and
cluster computing systems have become more common.
These systems rely heavily on the efficiency of the intercon-
nection network. In latter years, the sizes of such systems
have become so big that the network also needs to be able to
function in the presence of faulty components. This has led to
the study and implementation of various methods for routing,
around faults that appear while the system 1s running.

Such fault tolerant routing consists of two elements. The
first 1s a method for finding a routing function that 1s efficient
for semi-regular topologies, 1.e. topologies such as meshes,
tor, and {fat-trees where some components have been
removed due to malfunctions. Ideally this method should be
fast—so that the system can commence normal operation as
soon as possible after the fault. Furthermore, 1t should be
eificient, so that the degradation of performance in the pres-
ence ol the fault 1s minimal. Finally, 1t should not require
more virtual channels for deadlock freedom than the routing,
algorithm needs for the fault free case. The second element of
tault tolerant routing 1s a method for transitioning between the
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old and the new routing function without causing deadlock. It
1s well known that even 11 the old and the new routing func-

tions are deadlock free by themselves, an uncontrolled tran-
sition between the two can cause deadlocks.

Unfortunately, there 1s a huge gap between the ideal
described above and the current state of the art. Computing a
new routing function when a fault has occurred 1s not at all
fast. For systems such as Ranger, Atlas, and JuRoPa that are
based on InfiniBand and use the OFED OpenSM subnet man-
ager, the execution time for the routing algorithms (minhop,
Up*/Down™) 1s in the range of hundreds of seconds to 15 min.
Furthermore, the routing functions that come out of the recal-
culation are based on Topology Agnostic methods, that dis-
regard the carefully planned routing strategies, which have
been made for the fault free case. For this reason, they either
require additional virtual channels, or they lead to a severe
drop in performance, or both. Regarding reconfiguration
between the old and the new routing function, the picture 1s
equally bleak. Even though several mechanisms for deadlock
free dynamic reconfiguration have been proposed, none of
them are implemented 1n current hardware. Runtime recon-
figuration 1n Infiniband simply updates the forwarding tables
in the switches 1n the network with the values calculated by
the routing function and makes no provisions for guarantee-
ing a deadlock free transition. A common solution to this
problem 1s to use static reconfiguration. This requires the
entire fabric to be drained of all traffic and shut down before
the reconfiguration commences. A far more efficient solution
1s to change the routing tables 1n the network on-the-ly. This
requires carelul handling by the routing algorithm of the
transient dependencies that occur when the routing tables are
updated.

SUMMARY OF THE INVENTION

With regard to the field of large area networks, the present
embodiments presents an intelligent routing method desig-
nated as Permutation Routing as novel and flexible approach
for calculating multiple loop-iree next-hops 1n networks with
traditional hop-by-hop forwarding.

Permutation Routing 1s based on the observation that rout-
ing in any network consists of using a set of resources (links
and nodes) 1n sequence. A routing strategy can therefore be
expressed as a permutation of the nodes that are mnvolved 1n
traffic forwarding to a destination. Routing will be loop-iree
as long as traflic can only be forwarded in one direction with
respect to the node ordering in this permutation. One 1mpor-
tant goal 1s to use Permutation Routing to create a routing that
maximizes single link fault coverage.

Permutation Routing can be used to create various routing,
strategies. For istance, Permutation Routing can provide a
simple backtracking algorithm that constructs a permutation
of routers for each destination, and a simple forwarding rule
that enables generation of forwarding tables based on the
permutations. The properties of the resulting routing are
determined by the constraints that are used at each step 1n the
permutation construction. The mput to the construction algo-
rithm 1s the topology information that 1s collected by a stan-
dard link state routing protocol, and hence no new control
plane signaling 1s needed with Permutation Routing.

Remarkably, permutation routing can easily be integrated
with existing intradomain routing protocols, and can be used
to augment the shortest path routing tables with additional
forwarding entries. The constraints 1n the permutation con-
struction can be designed so that the resulting routing 1s
compatible with normal shortest path routing, while still
offering significantly more forwarding options than the exist-
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ing LEFA. With multiple loop-iree alternates for a given pri-
mary next-hop, OSPF or IS-IS may employ some of them as
unequal-cost primary paths and the rest as back-up paths. In
the case of multiple primary paths, packets can be distributed
evenly among paths or with more mtelligent load balancing
methods.

With regard to the field of small area networks, the present
embodiments present a novel mechanism for intelligent rout-
ing. The mechanism 1s 1n essence topology agnostic, and 1t 1s
designed with a plug-1n architecture to enable topology spe-
cific additions that increase the fault tolerance for the specific
topology. For meshes, tori, and fat-trees it 1s able to guarantee
toleration of one link fault, and 1t has a good probability
distribution for the toleration of multiple faults. The mecha-
nism 1s able to quickly react and reconfigure the network after
a topology change. Another characteristic of the mechanism
1s that 1t only changes the paths for the flows that are directly
disconnected by the change. Finally, the mechanism does not
require any additional virtual channels, and the new paths for
the disconnected flows are compatible with the existing paths
in the network 1n such a way that deadlock free dynamic
reconfiguration 1s guaranteed. The reconfiguration mecha-
nism 1s compatible with existing technology such as Infini-
Band as 1t requires no specific functionality in the network
clements. The algorithm 1s completely contained 1n the node
responsible for configuring the network, and 1t can therefore
casily be implemented and be put 1into production.

Accordingly, the present invention provides, inter alia, 1n
an embodiment, a method of determining paths 1n a network
topology. The method includes a step of providing a source/
destination pair representing a source and a destination in the
network topology, providing a channel list comprising a topo-
logical ordering of channel 1dentifiers representing commu-
nication channels in the network topology, and providing at
least one path connecting the source and the destination based
on the channel list.

In an embodiment of the method the step of providing a
channel list further includes the steps of selecting from the
topology a first path connecting the source and destination,
identifyving channel identifiers for channels along the first
path, determining dependencies between the channel 1denti-
fiers based on a deadlock-free routing algorithm, and con-
structing the channel list by topologically ordering the chan-
nel 1dentifiers according to the dependencies.

In an embodiment of the method, any dependency from
one channel to another 1n the channel list only points to a
channel identifier with a higher position 1n the channel list.

In an embodiment of the method the steps of selecting and
identifying turther includes the steps of recerving an 1ndica-
tion of a failure of the first path 1n the topology, and 1dentify-
ing channel identifiers for the failed path.

In an embodiment of the method the second path avoids the
failure.

In an embodiment of the method the step of providing a
source/destination pair includes the step of selecting the
source/destination pair from the topology based on a pre-
defined trailic pattern provided by an application.

In an embodiment of the method the step of providing a
source/destination pair includes the step of selecting the
source/destination pair from the topology based on traiffic
load for at least one network router or switch.

An embodiment of the method further includes storing the
at least one provided path in a routing table.

An embodiment of the method further includes replacing,
in a routing table, the first path with the at least one provided
path.
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In an embodiment of the method the step of determining,
dependencies further includes steps of generating a new valid
channel list in which channels dependencies from the first
path are removed, and generating at least one path based on
the new valid channel list.

In an embodiment of the method the step of generating the
new valid channel list further includes the step of moving the
target channel of a dependency to a higher position in the
channel list, and repeating the step of moving for any follow-
ing dependencies.

In an embodiment of the method the step of providing at
least one path further includes the step of searching the topol-
ogy to create a route around the first path using only legal
turns.

In an embodiment of the method, the searching utilizes a
shortest path algorithm.

In an embodiment of the method the step of providing at
least one path further includes the step of searching the topol-
ogy to create a route around the first path using legal turns,
and 11 necessary 1llegal turns.

In an embodiment of the method the shortest path algo-
rithm 1s Dijkstra shortest path algorithm.

In an embodiment of the method the shortest path algo-
rithm obtains the shortest path between the source and the
destination considering constraints of the channel list and any
pre-existing routing table entries for the source and destina-
tion.

In an embodiment of the method the shortest path algo-
rithm 1s implemented on a reverse path from the destination to
the source.

In an embodiment of the method the shortest path algo-
rithm utilizes a cost function which considers a number of
hops, anumber of illegal turns performed on the path from the
source to the destination, and an index of all illegal turns
utilized by the shortest path algorithm.

In an embodiment of the method the step of providing at
least one path further includes the steps of selecting, from a
pre-computed set of paths, at least one path compatible with
the channel list.

The present mvention provides, mter alia, 1n an embodi-
ment, an additional method of determining paths 1n a network
topology. The additional method including steps of providing
at least one source/destination pair, each pair representing a
source and a destination 1n the topology, providing a node list
comprising a topological ordering of node 1dentifiers repre-
senting communication nodes 1n the network topology, and
providing at least one path connecting the source and the
destination based on the node list.

In an embodiment of the additional method the step of
providing a node list further includes the steps of a) selecting
a {irst position 1n the node list, b) selecting a destination from
the at least one source/destination pairs, ¢) associating the
selected destination with the first position, d) determining a
subset of nodes, the subset comprising nodes directly con-
nected to the destination, e) selecting a current position in the
node list higher than the first position, 1) selecting, based on a
constraint function, a next node from the subset, g) associat-
ing the next node with the current position, h) for each
selected node 1n the subset, extending the subset with a next
subset including further nodes connected to the selected node,
1) selecting a further position 1n the node list higher than the
first and current positions, the further position hereafter being
the current position, and 1) repeating steps 1)-1) until all nodes
in the topology have been associated with a position 1n the
node list.

In an embodiment of the additional method further
includes the steps of selecting a source from the topology,
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identifying the position of the source 1n the node list, gener-
ating at least one path from the selected source to the desti-
nation based on traversing the node list from the 1dentified
position to the first position.

In an embodiment of the additional method, the constraint
function 1s defined to realize a routing objective.

In an embodiment of the additional method the step of
generating the at least one path further includes the step of
generating a plurality of paths.

In an embodiment of the additional method, the routing
objective comprises an objective to maximize routing choices
at each node.

In an embodiment of the additional method, the routing
objective comprises an objective to balance the tratfic load of
cach link at each node.

An embodiment of the additional method further includes
the step of storing the at least one path connecting the source
and the destination 1n one or more routing tables in at least one
network router or switch.

In an embodiment of the additional method the step of
providing at least one path further includes the step of gener-
ating at least one path connecting the source and the destina-
tion of each pair based additionally on a predefined traific
pattern utilizing the at least one path.

In an embodiment of the additional method the step of
providing at least one path further includes the step of gener-
ating at least one path connecting the source and the destina-
tion of each pair based additionally on a traffic load utilizing
the at least one path.

In an embodiment of the additional method the step of
providing at least one path further includes the step of select-
ing, from a pre-computed set of paths, at least one path com-
patible with the node list.

In an embodiment of the additional method the step of
associating further includes the step of storing an identifier of
the node at the current position in the node list.

The present mvention provides, nter alia, 1n an embodi-
ment, a further additional method of determining paths 1n a
network topology. The further additional method including
the steps of providing at least one source/destination pair,
cach pair representing a source and a destination 1n the topol-
ogy, providing a channel list comprising a topological order-
ing of channel identifiers representing communication chan-
nels 1n the network topology, and providing at least one path
connecting the source and the destination based on the chan-
nel list.

In an embodiment of the further additional method the step
of providing a channel list further includes the steps of a)
selecting a {first position in the channel list, b) selecting a
destination from the at least one source/destination pairs, c)
associating the selected destination with the first position, d)
determining a subset of channels, the subset comprising chan-
nels whose egress node 1s the destination, €) selecting a cur-
rent position in the channel list higher than the first position,
1) selecting, based on a constraint function, a next channel
from the subset, g) associating the next channel with the
current position, h) for each selected channel 1n the subset,
extending the subset with a next subset including further
channels whose egress node 1s the ingress node of the selected
channel, 1) selecting a further position 1n the channel list
higher than the first and current positions, the further position
hereafter being the current position, and 1) repeating steps
1)-1) until all channels 1n the topology have been associated
with a position 1n the channel list.

An embodiment of the further additional method further
comprises the steps of selecting a source from the topology,
identifying channels whose ingress node 1s the source, 1den-
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tifying positions associated with the identified channels, and
generating at least one path from the selected source to the
destination based on traversing the channel list from the 1den-
tified positions to a position associated with a channel whose
egress node 1s the destination.

In an embodiment of the further additional method the
constraint function 1s defined to realize a routing objective.

In an embodiment of the further additional method the step
of generating the at least one path includes the further step of
generating a plurality of paths.

In an embodiment of the further additional method the
routing objective comprises an objective to maximize routing
choices at each node.

In an embodiment of the further additional method the
routing objective comprises an objective to balance the traific
load of each channel.

An embodiment of the further additional method includes
the step of storing the at least one path connecting the source
and the destination 1n one or more routing tables in at least one
network router or switch.

In an embodiment of the further additional method the step
of providing at least one path further includes the step of
generating at least one path connecting the source and the
destination of each pair based additionally on a predefined
traffic pattern utilizing the at least one path.

In an embodiment of the further additional method the step
of providing at least one path further includes the step of
generating at least one path connecting the source and the
destination of each pair based additionally on a traffic load
utilizing the at least one path.

In an embodiment of the further additional method the step
of providing at least one path further includes the step of
selecting, based on the channel list, the at least one path from
a pre-computed set of paths.

In an embodiment of the further additional method each
associating comprises storing an 1dentifier of the channel at
the current position 1n the channel list.

The present mvention provides, inter alia, in an embodi-
ment, an additional method of determining paths 1n a network
topology including providing a plurality of source/destina-
tion pairs, each pair representing a source and a destination in
the network topology, providing a channel list comprising a
topological ordering of channel 1dentifiers representing com-
munication channels 1n the network topology, and providing
at least one path connecting the source and the destination
based on the channel list.

The present mvention provides, inter alia, in an embodi-
ment, an additional method of determining paths 1n a network
topology including the steps ol providing a plurality of
source/destination pairs representing at least one source and a
plurality of destinations in the topology, for each destination:
providing a node list comprising a topological ordering of
node identifiers representing communication nodes in the
network topology, and providing at least one path connecting
the source and the destination based on the node list.

The present invention provides, inter alia, a device for
determining paths 1n a network topology. The device provides
a source/destination pair representing a source and a destina-
tion 1n the network topology, provides a channel list compris-
ing a topological ordering of channel identifiers representing
communication channels in the network topology, and pro-
vides at least one path connecting the source and the destina-
tion based on the channel list.

The present mvention provides, iter alia, a device for
determining paths 1n a network topology. The device provides
at least one source/destination pair, each pair representing a
source and a destination in the topology, provides a node list
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comprising a topological ordering of node 1dentifiers repre-
senting communication nodes 1n the network topology, and

provides at least one path connecting the source and the
destination based on the node list.

The present invention provides, inter alia, a device for
determining paths 1n a network topology. The device provides
at least one source/destination pair, each pair representing a
source and a destination 1n the topology, provides a channel
list comprising a topological ordering of channel 1dentifiers
representing communication channels in the network topol-
ogy, and provides at least one path connecting the source and
the destination based on the channel list.

It 1s to be understood that both the foregoing general
description of the invention and the following detailed
description are exemplary, but are not restrictive, of the mven-
tion.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

Other objects, features and advantages of the present
invention will become more apparent from the following
detailed description when read in conjunction with the
accompanying drawings, 1n which:

FI1G. 1 1llustrates a view of a source/destination pair;

FIGS. 2a-d illustrate a network topology with different
Directed Acyclic Graphs;

FIG. 3 illustrates the basic assignment procedure for a
backtracking algorithm;

FI1G. 4 1llustrates a tree representing the search space S of
a permutation assignment problem;

FIG. 5 illustrates the percentage of nodes having at least
two next-hops for different routing methods;

FIG. 6 1llustrates the mean and variance for the number of
next-hops for ditferent topologies;

FIG. 7 illustrates the average path stretch regarding for
different routings;

FIG. 8 illustrates the relative running time for different
topologies;

FIG. 9A 1llustrates a method of implementing permutation
routing according to one embodiment of the present disclo-
SUre;

FIG. 9B 1illustrates a block diagram according to one
embodiment of the present disclosure;

FI1G. 10 illustrates fast rerouting 1n node base routing and
interface based routing;

FI1G. 11 illustrates routing tables of incoming interfaces of
two exemplary nodes;

FI1G. 12 illustrates a topology and a corresponding trans-
formed graph and modified transformed graph:;

FIG. 13 1llustrates the basic assignment procedure for a
backtracking algorithm 1n the present embodiment;

FI1G. 14 illustrates a graph showing the next-hop distribu-
tion of all interface destination (I-D) pairs;

FIG. 15 illustrates a fraction of primary intertace destina-
tion pairs with at least two routing options;

FIG. 16 1llustrates a fraction of secondary interface desti-
nation pairs with at least two routing options;

FIGS. 17A-F illustrate the path length distribution and
average path length 1n hops;

FIG. 18 illustrates a comparison of running time between
two different routing schemes across multiple topologies;

FIG. 19A illustrates a method of implementing permuta-
tion routing according to one embodiment of the present
disclosure:

FIG. 19B illustrates a block diagram according to one
embodiment of the present disclosure;
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FIG. 20 illustrates a channel list formed based on depen-
dencies from a 4-node ring;

FIG. 21 1llustrates an example of reordering of the channel
list to allow the turns necessary to connect the topology after
a failure;

FIG. 22 illustrates a comparison between different varia-

tions of the dynamic quick reconfiguration mechamism 1n a
10x10 mesh;

FIG. 23 illustrates an evaluation of the scalability of a
solution for a mesh using different mesh sizes;

FI1G. 24 illustrates the fraction of flows that are atfected by
the reconfiguration for each fault;

FIG. 25 illustrates a torus fault-tolerant capability;

FIG. 26 illustrates a fat tree fault tolerance comparison;

FIG. 27A 1llustrates a method of implementing dynamic
quick reconfiguration according to one embodiment of the
present disclosure;

FIG. 27B illustrates a block diagram according to one
embodiment of the present disclosure; and

FIG. 28 illustrates computer hardware implementation
according to one embodiment of the disclosure.

DETAILED DESCRIPTION OF TH.
INVENTIONS

(L]

Referring now to the drawings wherein like reference num-
bers designate 1dentical or corresponding parts throughout
the several views and more particularly to FIG. 1 thereof,
there 1s 1llustrated a general 1llustration of a source/destina-
tion pair 1,2. Between the source/destination pair 1,2 are
shown multiple paths 3, some paths having a flow 4.

A path 3 15 a sequence of links and switches that connect a
source/destination pair 1,2. The data that 1s sent from the
source to the destination along a path 3 1s a flow 4. A source/
destination pair 1,2 may have more than one path 3 between
them, and they may have zero or more active tlows 4.

The present disclosure includes multiple embodiments
covering both the field of small area networks and the field of
large area networks.

In one embodiment applicable to, at least, the field of large
area networks, the concepts of source/destination pairs are
discussed 1n the context of capturing scenarios where source/
destination pairs need to have more than one path.

In another embodiment applicable to, at least, the field of
small area networks, the concepts of source/destination pairs
are discussed 1n the context situations where source/destina-
tion pairs have O or 1 flows.

In the first embodiment, which can be applied to the field of
large area networks, for example, there 1s described the
example of Permutation Routing, which can be used to create
various routing strategies. For instance, Permutation Routing
can provide the ability to implement robust routing schemes
such as Next-Hop Optimal Routing.

Routing, 1n the present context, refers to the assignment of
a set of next-hops for each destination node 1n each switch or
router node. In this example, traffic transiting a node 1s treated
in the same way as tralfic originating at the node. In the
present example, routing 1s designed to be loop-iree, and
hence a given routing corresponds to a Directed Acyclic
Graph (DAG) rooted at each destination node consisting of
the links and nodes involved 1n packet forwarding. With mul-
tipath routing, each node may have several outgoing links in
the DAG for a destination. A routing where all links are
included 1n each DAG 1s referred to as a full connectivity
routing. With a given network topology, many different high
or full connectivity routings can normally be constructed.
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However, they will have different properties with respect to
failure recovery and load balancing.

FIGS. 2a-d show a simple network topology, with 4 differ-
ent DAGs for the destination node d. In FIG. 2a, DAG-1 1s
given by shortest path routing with equal-cost multi-path
routing (“ECMP”") using the link weights indicated in the
figure. Node ¢ can split 1ts traflic over two next-hops, while

the other nodes have only a single next-hop towards d. Links
(a, b), (¢, b) and (c, 1) are left 1dle, and are neither used for

backup or load balancing. The DAGs 1n FI1G. 25, FI1G. 2¢ and
FIG. 2d are all full-connectivity routing graphs, where all
links can be used for packet forwarding. They differ, however,
in their distributions of next-hops. In DAG-2, shown 1n FIG.
2b, there are three nodes (a, € and 1) that have only a single
next-hop towards d. DAG-3, shown 1n FIG. 2¢, has only two
such nodes (a and e). DAG-2 and DAG-3, shown 1n FIGS. 25
and 2c, respectively, are both compatible with shortest path
routing, because they contain all directed links of DAG-1
shown 1n FIG. 2a. DAG-4, shown 1n FIG. 24, 1s not compat-
ible with shortest path routing. In particular, by changing the
direction of the link (c, ), the number of nodes with a single
next-hop has been reduced to one (the minimum value).

To maximize the single link fault coverage and load-bal-
ancing capabilities of a network, it 1s helpful to ensure that
there 1s more than one next-hop available for as many S-D
pairs (1.e. source-destination pairs) as possible. This leads to
the following optimization criterion for Next-Hop Optimal
Routing (NHOR).

An NHOR 1s a full-connectivity routing that maximizes
number of S-D pairs that have at least two next-hops towards
a destination.

As 1llustrated by the example above, an NHOR will not
always be compatible with shortest path routing. For that
reason, the Shortest-Path compatible NHOR (NHOR-SP),
which 1s a full-connectivity routing that maximizes number of
S-D pairs that have at least two next-hops while containing
the DAG calculated by a shortest path algorithm, can be used.

Permutation Routing can be described by a series of func-
tions which 1llustrate the operation of this novel routing
scheme.

For istance, considering a network modeled as a con-
nected graph G=(V, E) where V 1s aset of nodes and E = VxV
1s the set of links (edges) 1in the network’s topology. A con-
nected link from node 1 to node j 1s denoted by (1,7).

The assignment of next-hops for each destination can be
considered individually. For adestinationd&V, let R ~(V,E )
be a routing function for packets destined to destination d,
where E ; 1s a set of directed links constructed on E. In R,
node 1 1s called a next-hop of node 1 11 there exists a directed
link between node 1 and node j, denoted by (1i—1). Thus, R ,1s
a DAG rooted at destination d.

The routing function R , contains all valid paths to d, and
cach path can be considered as a sequence of nodes from a
specific source to d. At each node, packet forwarding 1s the
process ol sending packets to a next-hop 1n such a sequence.

Permutation Routing can be used as a tool to find such
sequences with the goal of realizing NHOR.

For a given network topology G=(V, E), a permutation P of
nodes 1s an arrangement of all nodes 1n V 1nto a particular
order.

Node 1<node 1 1s set to denote that node j occurs before
node 11n permutation P. The goal 1s to construct permutations
that realize a certain routing strategy.

A permutation P 1s a routing permutation for R, 1f all
next-hops of each node occur before it in P: V(1i—7)EE : 1<i.

According to this definition, the destination node d waill
always be the first node in a routing permutation for R ..

[
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Nodes further out in the routing permutation will be topologi-
cally farther from the destination.

In addition, any loop-iree routing function R ; can always
be represented by a routing permutation 1n which d 1s at the
left-most position.

This 1s the case because a loop-iree routing function R _~

(V, E ) 1s a DAG, rooted at d. When 1€V 1s arranged 1nto a
sequence such that 1t E , contains a directed link (1—7), then j
appears before 1 1n that sequence, such an arrangement can be
calculated by a topological sort algorithm. Destination d&V
1s the only node that does not have any outgoing link. Fol-
lowing the above ordering, node d, hence, has been placed at
the first position of the sequence.

In general, there can be more than one valid routing per-
mutation for one routing function R ,. Starting with a routing
permutation P, another valid routing permutation P' can be
generated by swapping two consecutive nodes that are not
connected by a directed link to each other. For instance, both
permutations {dabec f} and {d b a e ¢ f} are valid routing
permutations for DAG-1, shown 1n FIG. 2a.

In the reverse process, routing tables can be generated from
arouting permutation, given a forwarding rule that defines the
relationship between neighboring nodes. In the present
example a greedy forwarding rule 1s utilized for constructing
the routing table, 1n which all topological neighbors of anode
that occur betfore the node, 1n the routing permutation, are
installed as next-hops. Note that this forwarding rule will
result 1n a full connectivity routing, where all links 1n the
topology are potentially used for traffic forwarding to all
destinations. This will maximize the potential for load bal-
ancing and failure recovery. More restrictive forwarding rules
could also be considered, which would result 1n a sparser
DAG. This can sometimes be beneficial in order to avoid
excessively long paths, or to limit the number of next-hops for
a particular destination.

With the given forwarding rule, different routing permuta-
tions will result 1n routing functions with different robustness
characteristics.

Finding a routing permutation that can realize NHOR 1s
considered to be NP-hard (non-deterministic polynomial-
time hard). However, the present embodiment presents an
algorithm that produces routing permutations that approxi-
mate NHOR.

In the algorithm, which can be implemented by a micro-
processor, a topology G=(V, E) of N nodes (IVI=N) 1s con-
sidered. All of the N nodes are uniquely 1dentified by a num-
ber from 1 to N. In addition, P={p,, p-, . .. , p» isa set of N
variables 1n a fixed order from p, to p., with respective
domains D={D,,D.,, ..., D,}. D, is set as the candidate set
for each variable p,. A candidate set consists of the nodes that
can be assigned to variable p,.

A routing permutation P 1s constructed by successively
assigning a node u€D), to each variable p,&P. Such assign-
ment 1s said to be valid 1f it satisfies a specific constraint
function C(u) which 1s defined to realize the selected routing
objective.

FIG. 3 illustrates the basic assignment procedure for vari-
able p,, ; 30 1n which two key functions Update 31 and Select
32 work as filters to control the assignment. In the figure, each
pair <p,, u> 33 represents an assignment of the node u, to
variable p,. The assignment of nodes to a subset of variables
P05 ..., SPgivenby {<p,,u,>,...,<p,, u>}1is called
partial routing permutation with 1 nodes. For simplicity, this 1s

abbreviated to f;:..
This basic assignment procedure has been embedded 1nto
the backtracking algorithm to obtain the routing permutation
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P. The algorithm calls function Select 32 (with built-in con-
straint function C(u)) which goes through D, to find a valid
node for the current variable p.. If Select 32 succeeds in
finding a valid assignment, the algorithm calls function
Update 31 to generate domain D, , and proceeds to next
variable p,, ,. Otherwise, a backtrack step will be executed to
revisit the variable p,_,. The algorithm terminates 1f a routing,

permutation P of N nodes, also denoted by E}M 1s found or a
tailure notification returns 11 all backtracks are examined but
no solution 1s found under C(u).

If the constraint function C allows 1t, the backtracking
algorithm will find one routing permutation P among all
possible solutions by searching through the search space
shaped by the number of variables 1n P and their domains of
values. In a naive implementation, the domain for variable

p,., consists of (N-1) nodes that have not been placed 1n E}I..

Based on that observation, the search space S of the per-
mutation assignment problem has a form of a tree of depth N
40 rooted at the mitial state <p,, d> as illustrated in FIG. 4.

Solutions p , are located at the tree’s leaves. Two connected
states 1n the search space refer to two 1stances of p, and p,_ ;.
Assume that t operations are needed on average to move from
state p, to state p,, ,. The complexity 1n the best case when no
backtrack step 1s needed (backtrack-free) 1s O(txN). In the
other extreme, 11 there 1s only one solution and the “wrong”
choice 1s always made, the complexity would be O(txN!).

The naive implementation described above results 1n high
computational complexity, and 1s only feasible for small
topologies. Hence, 1t 1s usetful to guide the search 1n order to
avold exploring the entire search space. For instance, 1n one
aspect of the present embodiment, the constraint function
C(u) may be simple, 1 order to reduce computational com-
plexity. In another aspect of the present embodiment, the
domain D, may be limited by taking C(u) into account.

The aspects of the present embodiment described above
can be used to construct two high robustness routings that
approximate NHOR and NHOR-SP. Specifically, these rout-
ing schemes are labeled approximate NHOR and approxi-
mate NHOR-SP.

With Permutation Routing using greedy forwarding, a
node 1 p, (1>2) has at least two next-hops 11 1t has at least two
topological neighbors that occur before it in the routing per-
mutation. The Approximate NHOR (“ANHOR”) algorithm
maximizes the number of nodes where this is the case.

The partial routing permutation FI. represents a loop-tree
routing sub-graph towards destination d, denoted by R /=(V{(

p.).E (p,)where V(p,)is thesetofinodesin p .andE (p,)
1s the set of directed edges formed by applying the greedy

forwarding rule defined 1n section 3 on E:.. To achieve highly
robust routing, the node selected for variable p, , to form the

partial routing permutation FH . 1s the node with the maxi-

mum number of topological neighbors already placed 1n E:..
Correspondingly, the number of directed edges of the routing

sub-graph formed by the partial routing permutation p,_ ,,
resulted from the assignment <p,_,, u>, 1s maximized:

max

Yue Dy

(1)

|Ed(ﬁi+1)| — |Ed(ﬁja < ﬁfﬂa u >

For a more efficient implementation, a counter c[u] can be
maintained for each node u. This counter denotes the number
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of outgoing links from u to f):.. In other words, c[u] corre-
sponds to the number of next-hops node u will have 11 1t 1s
selected as the next assignment 1n the routing permutation.
The constraint function C ,,.,,-(1) 1s derived to realize the
expression (1) noted above as follows:

True 1if clu] = maxy,ep. | c[V]

i+1
False

Cantor(u) = { otherwise

The constraint function C , -, ,~(1) implies that the domain
D.., includes all nodes that have at least one topological

neighbor 1n E}I.. The domain 1s, therefore, updated following
the recursive relation:

D;1y =D U{vE VI (1,9)EE} {u1) 2)

where u 1s the node that has been assigned to variable p, 1n
the 1-th assignment.

The computational complexity of ANHOR 1s the product
of the average number of operations to make a move between
two successive states and the total number of states visited in
the search space.

The constraint function C ,,;,z(1) gives a backtrack-1ree
algorithm for all connected 1input topologies.

This reality can be illustrated by contradiction. For
instance, when the algorithm with the constraint function

C , ~vor(1) 15 not backtrack-iree, this means that constraint
function returns False for all u€D, ; at some 1teration. That
can not happen because all nodes in domain D, _, always have

at least one next-hop in E}f and that would always accord with
clul=max,p c|v]=l.

(iven the backtrack-free property of the present algorithm,
the complexity of calculating a permutation for each destina-
tion 1s O(IE[+Nx|DI), where |DI| denotes the average size of
the domain. Typically, ID| depends solely on the average node
degree of the network topology. In dense topologies, the total
complexity of calculating routing permutations for all desti-
nations can approach O(N®). The backtrack-free property
also provides low memory consumption because it does not
need to store temporary partial routing permutations.

In the example of Approximate NHOR-SP (ANHOR-SP),
R >“=(V.E_>*) denotes the shortest path tree towards desti-
nation d. A routing permutation P whose routing function
R ~(V, E ) 1s an ANHOR-SP if R , satisfies two constraints in
following order:

1. R, contains R *, meaning all routing choices for any
node in R > are also valid routing choices for the same node
inR .

2. ANHOR-SP uses the same selection criterion as
ANHOR 1n order to maximize the number of S-D pairs with
at least two next-hops.

The construction of such a routing permutation P 1s based
on the assignment procedure described 1n F1G. 3. To this end,
the shortest path compatibility constraint 1s implemented in
function Update 31 to limit the size of domain D,_, for vari-
ablep,, , and the connectivity constraint will be formalized by
a constraint function C ,,,-»~_<p(1) and realized in function
Select 32. Clearly, the constraint function C . ror.cp(U) 1S
identical to C . nor10).

The next node 1n routing permutation P 1s selected among,
nodes that have all their shortest path next hops towards d

already placed in 5:.‘ Formally, R >7"=(V (5:.), E > (f;:.)) 1S
the shortest path tree of V(p ) nodes and R *7* =R . The
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domain D, , forvanablep,_, includes all nodes u such that the

I+ 1

assignment <p,, ,, U>, resulting in FM, tulfills:

SPI+1] SP
R, CR;

C,,[ V] 1s the number of shortest path next-hops placed in E}i
and n [v] 1s the total number of shortest path next-hop that
can be calculated from R ¥ of node v. The domain D, , for
variable p,, ; follows the recursive relation:

I+1

D, =D UVEV ey, [vi=ng [V uf (3)

where u 1s the node that has been assigned to variable p,.

The constraint function C | »7o»_<p(1) gives backtrack-free
algorithm for all connected input topologies.

For instance, constraint function C  ,or op(l) always

returns True unless D, 1s empty. D, can never be empty before
all nodes have been placed in the permutation. It D, 1s empty,

there 1s no node that has all 1ts shortest path descendants 1n E}I..
In other words, the shortest path DAG R > can be followed

from any node that has not been placed and a next-hop node

that 1s not placed 1n f’: can always be found. However D,
being empty is impossible. Specifically, since R ;* is con-
nected and loop-iree, any path along the shortest path DAG
will eventually reach the destination, which 1s the first node
that was placed 1n the permutation.

The computational complexity of ANHOR-SP towards
one destination includes two parts: the shortest path calcula-
tion using Dyjkstra’s algorithm and routing permutation con-
struction. Due to the property of backtrack-freedom, with
sparse topologies the complexity of second part towards one
destination would be O(EI+IE > 1+NxIDI) where [DI
denotes the average size of the domain. In dense topologies,
the total complexity of calculating routing permutations for
all destinations can approach O(N°).

Thus, with a low computational complexity, ANHOR-SP
can be implemented on a per-router basis 1n Open Shortest
Path First (OSPF) or Intermediate System To Intermediate
System (IS-IS) networks. To ensure a consistent permutation
routing 1n the entire network, constraint function C ;- or_<r
(u) will return the same node 1n each assignment among
possible selections. This tie can be broken by letting the
highest router ID be selected. The highest router ID denotes

the largest number numerically. For instance, 192.168.1.2
would be higher than 172.16.3.2, and 172.16.3.2 would also

be higher than 172.16.2.1.

The presently disclosed algorithms have been applied to a
large area network scenario and the advantageous results have
be measured. In particular, the performance of the proposed
algorithms have been evaluated by measuring how well the
algorithms realize NHOR with respect to NHOR being a
tull-connectivity routing that maximizes number of S-D pairs
that have at least two next-hops towards a destination.

Since multipath routing leads to path inflation, the path
length distribution 1s also measured. ANHOR and ANHOR -
SP are compared to standard shortest path routing with
ECMP, and to Loop Free Alternate Routes (“LEA™).

In the present example, six representative network topolo-
gies from the Rocketiuel project have been selected for the
evaluation. The topologies are listed in Table 1 1n 1ncreasing
order of their average node degrees.
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TABL

(Ll

1

Network topologies

AS Name Nodes Links Avg. Degree
1221 Telstra ™ (au) 104 151 2.90
1755 Ebone ™ (eu) 87 161 3.70
3967 Exodus ™ (us) 79 147 3.72
3257 Tiscali ™ (eu) 161 328 4.07
6461 Abovenet ™ (us) 138 372 5.40
1239 Sprint ™(us) 315 972 6.17

The results for ECMP and LFA depended heavily on the
link weight settings used in the topologies. To obtain realistic
link weight settings, a local search heuristic was run with a

link load objective function, using a traific matrix generated
by a gravity model. For AS1239 (Sprint™), unit link weights

were used, because the above noted local search heuristic did
not scale to a topology of this size.

In order to evaluate the robustness, multipath capability
was considered. FIG. 5 shows the fraction of nodes with at
least two next-hops with the different routing methods. It can
be observed that the multipath capability varies strongly
between topologies; 1t 1s generally higher in more well-con-
nected networks. ANHOR achieves a significant improve-
ment over ECMP and LFA 1n all networks.

It should be noted that the number of next-hops achieved
with ANHOR 1s independent of the link weight settings,
while ANHOR-SP i1s constrained to including the shortest
paths 1n the routing. ANHOR-SP performance 1s close to
ANHOR, and gives a clear improvement over LFA (by up to
28% 1n AS1239). This shows that Permutation Routing can
give a significant gain compared to existing solutions, while
being compatible with shortest path routing with realistic link
welght settings.

For reference, FIG. 5 also shows the fraction of nodes in
cach topology with a node degree larger than 1. Nodes with a
degree of 1 can not have more than 1 next-hop to any desti-
nation.

FIG. 6 shows the mean and variance for the number of
next-hops at each router 1n the six topologies reviewed 1n the
present example. For increased robustness and load-balanc-
ing, 1t 1s generally good to have a high mean and a low
variance 1n the number of next-hops. If this variance 1s high,
it means that a few nodes have a high number of next-hops,
while others might be lett with only one.

Both ANHOR and ANHOR-SP produce full connectivity
routings, which means that the mean number of next-hops
across all S-D pairs will be equal to half the average node
degree 1n the tepele gy. The mean 1s somewhat lower for LFA
and ECMP, meamng that some links are not used for packet
torwarding. The variance, however, 1s lower with ANHOR
than with ANHOR-SP and LFA. This shows how ANHOR
achieved a better (more uniform) next-hop distribution than
the other routings.

There are good reasons to limit the number of next-hops
that are 1nstalled 1n the forwarding table for a particular des-
tination. Installing more than a few next-hops will not give
much benefit with respect to robustness or load-balancing. It
will, however, require faster memory 1n the forwarding table,
and may lead to the unnecessary inclusion of paths that are
much longer than the shortest path.

Hence, an example 1s considered in which the number of
next-hops for a particular destination 1s limited to at most K.
A Routing Efficiency coellicient 1s defined, which denotes the
fraction of bidirectional links that are used for tratfic forward-
ing with a given K.
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RE=2xI|E_(K)I/|E]| (4)

where |E _(K)I 1s the number of directed links 1n the routing
DAG when each node can have at most K next-hops and |E| 1s
the number of bidirectional links in the network topology.
According to this definition, O=RE=<].

Table 2 shows the RE values for three values of K 1n the
selected topologies. The given value 1s the average over all
S-D pairs. It can be seen that for all routing methods, a higher
K gives a higher RE value. ANHOR and ANHOR-SP give the
highest RE values, sometimes with a significant improvement
over ECMP and LFA even for K=2. The RE values 1n more
well-connected topologies (AS1239) are lower than 1n sparse
topologies. Such topologies contain a high number of nodes
with a very high degree (39% nodes has their degrees greater
than 15 1n AS1239), and a low K will hence exclude many
valid (but often unnecessary) paths.

TABLE 2

Routing Efficiency coetfficient
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The present embodiment presents Permutation Routing as
a method for increased robustness in IP networks with tradi-
tional hop-by-hop forwarding. The present embodiment can
also be used to generate routings that give a significant boost
in number of nodes that have at least two forwarding options
to a destination. The present embodiment 1s able to add
robustness. This 1s the case, at least, because Permutation
Routing bases its construction solely on topology information
and hence no new control plane signaling 1s required. In
addition, Permutation Routing allows a tunable K where K=1
while still being compatible with traditional link-state routing,
protocols. In the same category, Protection Routing presents
a two-phase heuristic to produce a routing for a given traffic
demand 1n a centralized routing system. In phase 1, the heu-
ristic seeks to minimize number of unprotected nodes towards
a destination while minimizing a cost function. Although

AS1221 AS1755 AS3967 AS3257 AS6461
K=2 ECMP 0.74 0.61 0.61 0.54 0.43
LFA 0.80 0.79 0.77 0.77 0.62
ANHOR-SP 0.86 0.84 0.85 0.76 0.67
ANHOR 0.94 0.90 0.95 0.81 0.81
K=3 ECMP 0.76 0.62 0.62 0.54 0.46
LFA 0.86 0.90 0.87 0.82 0.77
ANHOR-SP 0.92 0.95 0.94 0.88 0.85
ANHOR 0.98 0.99 1.00 0.95 0.95
K=4 ECMP 0.77 0.62 0.63 0.54 0.47
LFA 0.90 0.94 0.91 0.88 0.85
ANHOR-SP 0.96 0.99 0.97 0.93 0.93
ANHOR 1.00 1.00 1.00 0.99 0.99

High path diversity increases robustness and allows for
more load balancing. However, 1t has a cost in terms of path
inflation and increased load 1n the network 1t traffic 1s sent
over non-shortest paths. When considering the distribution of
path lengths, hop counts should be considered since this
metric 1s mdependent of the link weight settings. FIG. 7
shows the average path stretch regarding K=3 with different
routings, where the length of each valid path has been nor-
malized with the shortest path length for that S-D pair. The
superior path diversity in ANHOR and ANHOR-SP can be
observed but comes at the cost of some path mflation. Nev-
ertheless, the average path lengths are still comparable to
those of shortest path routing. It should be noted that the path
inflation introduced with multipath routing can be amelio-
rated with more intelligent load balancing methods.

The complexity of the disclosed algorithms depends on the
number of nodes, links and on how eftliciently the size of the
candidate set can be reduced. The average size of candidate
set turns out to be approximately 5 times (AS1735) to 12
times (AS1239) higher than their corresponding average
node degrees 1n the exemplary topologies.

FIG. 8 shows the relative running time of each routing
method as compared with ECMP, across six topologies. The
AS topologies are listed in an 1ncreasing order of number of

nodes. The results are achieved with an Intel Core 2 CPU
6300 (@ 1.86 GHz machine. ANHOR has a low running time

that 1s comparable to a normal ECMP routing computation.
For all destinations, the total time difference 1s less than 10%
for all topologies. As for ANHOR-SP, calculating routing
permutations for all destinations takes four times less time
than ECMP. Across all topologies, the memory consumption
never exceeds 6 MB.
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AS1239

0.49
0.49
0.5%
0.60
0.56
0.57
0.75
0.80
0.60
0.601
0.65
0.92

Routing Permutations share the goal of mimimizing the num-
ber of nodes with only one forwarding option, next-hops can
be evenly distributed among nodes rather than performing
traffic optimization for a specific traffic demand. Finding a
routing that optimizes for a given load function is less impor-
tant for the Internet where traific matrix elements vary sig-
nificantly with time. Instead, 1n the Internet context, the avail-
able forwarding options can be optimized for more intelligent
load balancing methods that are more responsive to tratfic
variation.

The Permutation Routing 1s an approach for calculating
more robust routing while being compatible with existing
links state routing protocols. An algorithm can be used to
construct routing permutations. Routings that optimize dii-
ferent objectives can be implemented by modifying the selec-
tion criteria that are used 1n the construction algorithm.

Permutation Routing 1s to maximize the survivability 1n a
network with traditional hop-by-hop forwarding. In addition,
as 1s noted above, permutation routings outperform existing
multipath approaches such as ECMP and LFA 1n terms of
robustness and path diversity. In addition, the complexity of
calculating routing permutations 1s comparable to that of
standard link state routing.

The method of implementing permutation routing 1s
described with respect to the flow chart illustrated in F1G. 9A.

In step 91, determine the nodes connected to the destina-
tion.

In step 92, determine the subset ol nodes to be considered.

In step 93, determine for each of the nodes 1n the subset,
whether the node 1s a valid node, 11 so, proceed to next step, 1
not, abandon the respective node.

In step 94, for each valid node 1n the subset, determine a
next step set of nodes connected thereto.
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In step 95, for each next step node in the next step set of
node return to step 92.

In the ANHOR and ANHOR-SP schemes, the subset of

nodes to be considered 1n step 92 1s reduced. In addition, the
determination of whether the node 1s a valid node 1n step 93 1s
based on a fturther function C ,»,-(0) O C ,rr70n <p(1).

Once the paths are determined they can be stored 1n one or
more routing tables 1n respective routers/switches. The per-
mutations can be obtained using a distributed algorithm that
creates the routing tables 1n the routers/switches. Hybrid solu-
tions of this 1s also available. For instance, the paths can be
decided by applications using the paths. For example, an
application for streaming media data, e.g. a film, or a sports
event, may result in a choice of different paths than an appli-
cation for transierring files, such as Dropbox™.

FI1G. 9B illustrates a microprocessor implemented control-
ler 10 which determines the routes based on the ANHOR and
ANHOR-SP schemes. For instance, the controller 10 deter-
mines the routes between the source 1 and destination 2 and
distributes the determined paths to the routers 9. The control-
ler 10 thus maximizes the number of paths between each
source 1 and destination 2 pair, such that packets do not loop
in the network. This maximization provides toleration of
taults 1n the network and avoids problems created by looping.

As 1s noted above, 1n the field of large area networks,
Permutation Routing can provide the ability to implement
additional robust routing schemes. In the present embodi-
ment, there 1s described a new routing method that combines
the concept of routing permutations with interface-specific
forwarding. This interface based Permutation Routing aims
to maximize the fast rerouting coverage for IP networks by
grving multiple loop-iree alternates for each imncoming nter-
face ofthe router. In addition, the interface based Permutation
Routing method shares with ECMP and LFA certain features.
For instance, the present interface based Permutation Routing
method does not require the network operator to change the
traditional hop-by-hop forwarding strategy that 1s optimized
for the fault free case. Further, the method does not require
addition of fault-information included 1n the packet header
and does not suffer from routing loops, even when there are
multiple faulty components 1n the network. Finally, the inter-
face based Permutation Routing method works with the exist-
ing standard link state routing protocols such as OSPF or
IS-IS.

As 1s noted above, Permutation Routing 1s a highly flexible
approach for calculating multiple loop-iree next-hops 1n net-
works with the traditional hop-by-hop forwarding. Permuta-
tion Routing 1s based on the fact that any routing strategy can
be expressed as a permutation (sequence) of nodes that are
involved 1n traific forwarding to a destination. The routing
ensures that loops are avoided when packets are forwarded 1n
one direction towards destination regarding to node ordering
in the permutation. Correspondingly, a simple forwarding
rule 1s proposed to generate forwarding tables based on per-
mutations. Permutation Routing only takes the topology
information that 1s collected by a standard link state routing
protocol as the mput for its construction, and hence no new
control plane signaling 1s needed.

This Permutation Routing 1s used in the present embodi-
ment to create a robust routing that maximizes the number of
interface-destination (I-D) pairs that have more than one
available next-hop. A backtracking algorithm 1s used to con-
struct the ordering of nodes in the permutation. The properties
of the resulting routing are determined by defined constraints
which are used to govern the creation of the permutation.
Permutation Routing 1s a powerful abstraction that can be
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used to implement many different routing objectives for IP
networks with either node specific forwarding or interface
specific forwarding.

Conventional topologies are inconvenient for directly cal-
culating an interface based routing, where next-hops associ-
ate with an incoming interface. According, in the present
embodiment the given topology 1s pre-processed to achieve a
new directed graph, from which routing tables for incoming
interfaces are easily computed. Specifically, each node 1n the
new graph represents a directed link of the original topology
and the connectivity among those nodes 1s induced from the
connectivity of the given topology. The graph transformation
allows existing routing algorithms, e.g. ECMP and LFA, and
Permutation Routing to be reused to construct routing tables
for incoming interfaces with different degree of robustness.

Interface specific forwarding has the ability to increase
routing robustness for IP networks. The present embodiments
implement interface specific forwarding using Interface
Next-hop Optimal Routing 1INHOR) as the main objective
function for a robust 1nterface based routing.

To help ease the description, networking terms are intro-
duced herewith that will be used 1n the following embodi-
ment. A directed link from node 1to node 7, denoted by (1—1),
1s an incoming interface to node 1 and an outgoing interface of
node 1. A routing 1s an assignment of a set of next-hops for
cach destination node for each trailic source. A routing is
loop-1iree 1n the present embodiment and hence a given rout-
ing corresponds to a Directed Acyclic Graph (DAG) rooted at
cach destination node consisting of the links and nodes
involved 1n packet forwarding. With multipath routing, each

node may have several outgoing links 1 the DAG for a
destination.

In IP networks with interface-specific forwarding, packets
are routed based on both the incoming interface and the
destination address 1n the IP header. To do that, each line-card
in the router will maintain 1ts own distinct forwarding table
that maps each network destination to eligible outgoing inter-
faces. These forwarding tables are distributed by a routing
controller 100 shown 1n FIG. 19B, where routing protocols
(e.g. OSPF or IS-IS) are used to populate the routing tables. In
one embodiment, the forwarding engines are integrated into
interface cards in the distributed mode. In interface based
routing, packets for a given destination can be forwarded in
both directions of a bidirectional link without necessarily
causing loops. This ability can help increase robustness over
traditional IP routing especially when the network topologies
are not well-connected.

For mstance, FIG. 10q illustrates a simple topology with
s1x nodes and eight bidirectional links with their correspond-
ing link weights. FIG. 105 1s a shortest path tree (SP'T) rooted
at destination 1. Shortest path trees are usually sparse and thus
less robust against network component failures. Provided that
a node 1s fast reroute protected 11 1t has at least two next-hops,
no node in FIG. 106 1s protected (gray shadowed nodes).
Other routing methods, e.g. LFA, can improve SPT by grow-
ing non-shortest path branches to form a better-connected
routing graph, mandatorily a DAG. FIG. 10c¢ 1illustrates such
a DAG rooted at node 1. FIG. 10c¢ 1s the most robust loop-iree
routing graph that traditional IP routing can provide on the
given topology because growing any more directed link will
cause loops. For example, if link (1, 3) fails, node 3 must
discard 1ts incoming traflic. Any attempt to reroute packets to
node 2 would form a loop between node 2 and node 3, until
link (1, 3) recovers from the failure. Consequently, node 3 and
node 5 are not protected for possible single failures in the

example of FIG. 10c.
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These problems are addressed and rerouting accomplished
successiully 1n the network using interface-specific forward-

ing as shown in FIG. 104 and FIG. 10e. In FIG. 10d, the
failure of link (1, 3) does not interrupt data tlow 111 from node
5. Instead, node 3 routes flow 111 to node 2. Being aware of the
incoming intertace of flow 111, node 2 forwards 1t to destina-

tion 1. Stmilarly, the failure of link (1, 2), 1n FIG. 10e, triggers
node 2 to reroute incoming tlow IV to node 3, from which 1t

would be successtully delivered at node 1. The two scenarios,
FIG. 104 and FIG. 10e, will be fulfilled 11 routing tables
towards destination 1 are installed at interfaces of node 2 and
node 3 as 1n FIG. 11. Note that those next-hops indicated as
primary are used when they are available.

If both link (1, 3) and link (1, 2) fail at the same time, both

flows will be discarded at node 2. Flow 1V ftravels on path
4—2—=3—2 before 1t would be stopped atnode 2. Loops will
not occur when each interface 1s equipped with loop-iree
next-hops towards the destination and the incoming flow 1s
discarded when there 1s no available next-hop for the corre-
sponding incoming interface.

In order to maximize the fault tolerance and load-balancing
capabilities of a network, a routing should provide more than
one available next-hop for as many I-D pairs as possible. In
addition, such routing will contain the shortest path tree to be
compatible with the standard link state routing protocols. In
light of the features, the following optimization criterion has
been developed for Interface Next-hop Optimal Routing (1N-

HOR).
Definition 1:

(G1ven a routing, the outgoing interface on the shortest path
tree 1s called the primary interface (pl) and the outgoing
interfaces not on the shortest path tree are called secondary
interfaces (sI). An iINHOR 1s an interface based routing that
contains the shortest path tree and satisfies the two following
conditions 1n order:

1) The number of pI-D pairs that have at least two next-
hops 1s maximized.

2) The number of sI-D pairs that have at least two next-hops
1s maximized.

Nodes employ their primary interfaces to forward packets
when the network 1s fault-free. The secondary interfaces are
used as back-ups for fast rerouting purposes when a primary
interface fails. The definition implies that fault tolerance
capability 1s maximized for primary interfaces first and there-
after for secondary interfaces.

iINHOR 1s able to increase robustness for IP networks
especially when line-cards have loop-free routing forwarding
tables. Therefore a method 1s discussed herewith that helps
construct DAGs for interfaces directly from given a topology.

The network topology 1s modeled as a directed graph
G=(V, E) where V 1s the set of nodes and E 1s the set of
directed links (edges). Let N and M denote the cardinality of
set V and E, respectively. The directed link (u—v) consists of
the head node u and the tail node v. Let ¢ =(17, £) be the

directed graph generated from G by employing two following
transformation definitions.

Definition 2:

Each directed link 1n E has been transformed into anode in
7.

The node i 37, which 1s directed link (u—=v) 1n E, 1s
denoted by [u, v]. Let # (lu, vl) and 7 (Iu, vl) be two opera-

tors which apply on the node [u, v] to extract head node and
tail node of the corresponding directed link (u—v).
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Definition 3:

Two nodes i, '€V form a directed edge (i—j) in £ if and
only if # (1)=7 ().
! For convenience, nodes are sometimes denoted in the new directed graphs
with single letters.

Following Def. 2 and Det. 3 1n that sequence, the directed
graph & =(77, £€) has been identified thoroughly. Let A
& =(a,;) be the adjacency-matrix that represents for & :

1
ﬂjj = 0

Following theorems describe some consequences of the
defined graph transformation. Theorem 1 and Theorem 2
prove that the transformation rules preserve subset relation-
ship and acyclic property of a directed graph while Theorem

3 provides the cardinalities of the sets of nodes and links of the
transiformed graph for the given topology.

H() =1())

otherwise

Theorem 1:
Let G,=(V,, E,) and G=(V, E) be two directed graphs and
G .=(y,, £, and ¢=(17, £) be two transtormed graphs,

with respect to Det. 2 and Det. 3 1n such order, of G, and G,
respectively. If G, =G, then &, € 6.

Prootf:

It 1s proved that 37, = 37 and £, = £ hold.

(1) It 1s trivial that 37, © 97 because £, € £.

(11) Assuming that arbitrary directed links (a—b)EE, and
(b—c)CE,, (Ia, bl—Ib, cl)& £, are present 1n the transformed
domain. Because E, € FE, then (a—b)EFE and (b—c)&E and
(la, bl—=Ib, cl)& £ inthe transformed domain. That means £ ,
c£.

Theorem 2:
The transformed graph, with respect to Def. 2 and Def. 3 1n
such order, of a directed acyclic graph 1s also a directed
acyclic graph.

Proof:

The proot 1s by contradiction. D 1s denoted by the given
directed acyclic graph and Z by the directed graph generated
from D with respect to Det. 2 and Def. 3 in such order. It 1s
assumed that 2 contains a loop, namely the loop 1s la, bl —|b,
cl— ...—|y, z]—=|z,a] where a, b, c. ..y, zare nodes in D.
In addition, the loop implies that there exists a path a—=b—
C ... —=>y—z—a which 1s another loop 1n D. Since D 1s
dlrected acyclic graph, the assumption 1s broken.

Theorem 3:

(Given directed graph G=(V, E), the directed graph & =( 77,
£ ) generated from G with respectto Del. 2 and Def. 3 1n such
order 1s satisiied:

1) & =M where A 1s the number of nodes 1n 7.

2) M =2 _ ¥ d > where M is the number of links in
£ and d  1s the network degree of node u&Vv.

Prootf:

(1) 1s trivial due to the Def. 2.

(2) 1s proved by examining each node u&V. Let d, be the
network degree of node u and N.(u)={vEV: (u—=v)EE} be
the set of neighboring nodes of u. It 1s observed that there are
d  directed link incident at u and d , directed links departing
from u. Via Def. 3, each node [v,, u]EV, where u&EN -(v,),
will have d neighboring nodes. Therefore, 1n & , there are d
nodes and d,* directed links involving node u. That means
number of links A =2 _ 'd *.

Although &' =( 7, £) may appear to be a proper graph for
calculating a loop-iree routing tables towards a certain desti-
nation node, it 1s, however, infeasible since & does not

include any node that can corresponds to the real destination




US 9,379,971 B2

21

node. For the routing computation purpose & 1s modified and
G =(yp . €, )1sdenoted by the modified transtormed graph.
17, results from adding virtual node u into 37 and £ , results
from augmenting £ with virtual directed links that depart
from nodes [v,, u] (WEN ;(v,)) and terminate at virtual node u
while taking away from £ those directed links that depart
trom nodes [v;, u] and terminate at nodes [u, v,] (v,.ENs(u)).

Those removed directed links will not contribute to routing,
towards u.

V=YV J{u} where ueV
{SH =& UA([vi, 4]l = )} /A([vi, u] = [u, v;]}

FIG. 1256 shows the directed graph generated from the
topology in FIG. 124. The transformed graph (TG) includes 6
nodes and 12 directed links. It 1s larger than the original
topology 1n both the number of nodes and 1n the number of
directed links. FIG. 12¢ 1s the modified transformed graph
(MTG) towards node 1 with the added virtual node 1 and two
virtual links 1n dotted lines.

An existing node based routing algorithm can be applied
tfor traditional IP forwarding on the directed graph &  to
extract routing entries at each node 1n 37 towards destination
u. The resulting routing table at each node 1s the actual routing,
table for each incoming interface.

However, a more robust interface based routing for IP
networks can be applied using iINHOR. For instance, let
G ~(py ., &, be the modified transtormed graph for the
destination d, which 1s calculated from the given network
topology. A routing function for destination d 1s determined
using R =(V, E ) where V=177 ;and E ,c £ .. In R , nodej1s
called a next-hop of node 1 if there exists a directed link
between node 1 and node j. R, will be a DAG rooted at
destination d.”

2 R, is also used to denote this DAG.

Looking at the assignment of next-hops for each destina-
tion 1ndividually without a loss of generality, 1t can be seen
that the routing function R , contains all valid paths to d, each
of which 1s a sequence ol nodes from the specific source to d.
At each node, the packet 1s forwarded to a next-hop 1n such a
sequence.

Permutation Routing can be used as a tool to find such
sequences with the goal of realizing INHOR. This can be seen
through the following definitions.

Definition 4:

Fora given MTG towardsd, ¢ —~( 7 ,, £ ;), a permutation

P of nodes 1s an arrangement of all nodes in 37 ; 1nto a par-
ticular order.

Writing 1<1 to denote that 1 occurs before 1 1n P, the goal 1s
to construct permutations that realize a certain routing strat-
egy.

Definition 3:

A permutation P 1s a permutation routing for R, if all
next-hops of each node occur before it in P: V (i—9)EE ; 1<A.

According to this definition, the destination node d waill
always be the first node in a routing permutation for R ,.
Nodes further out 1n the routing permutation will be topologi-
cally farther from the destination. Following lemma confirms
the existence of such sequence of all nodes in R .

Lemma 1:

Any loop-iree routing function R ; can always be repre-
sented by a sequence of nodes in which d 1s at the left-most
position.
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Proof:

A loop-free routing function R _=(V, E ,)1s a DAG, rooted at
d. Let arrange 1€V 1nto a sequence such that 1 E , contains a
directed link (1—1), then j appears before 1 1n that sequence.
Such an arrangement can be calculated by a topological sort
algorithm.

Destination d&V 1s the only node that does not have any
outgoing links. Following the above ordering, node d has
been placed at the left-most position of the sequence.

In general, there could be more than one valid permutation
routing for one routing function R . Starting with a permuta-
tion routing P, another permutation routing P' can be gener-
ated by swapping two consecutive nodes that are not con-
nected by a directed link to each other.

In the reverse process, routing tables can be generated from
a permutation routing, given a forwarding rule that defines the
relationship between neighboring nodes. A greedy forward-
ing rule has been used for constructing the routing table 1n the
present example. This rule causes all directional neighbors of
a node that occur before 1t 1n the routing permutation to be
installed as next-hops. This will maximize the potential for
load balancing and failure recovery. More restrictive forward-
ing rules could also be considered, which would result 1n a
sparser DAG. This can sometimes be beneficial 1n order to
avold excessively long paths, or to limit the number of next-
hops for a particular destination.

Since permutation routing has been proven to represent a
routing function, such routing function will be i1dentified
when 1ts corresponding permutation routing 1s constructed.
Moreover, permutation routing can realize INHOR. However
finding this permutation routing is an NP-hard problem.
Thus, an algorithm 1s needed to produce permutation routings
that approximate iINHOR. This algorithm 1s described as fol-
lows.

For instance, with respect to a generic algorithm, let P={p,,
Do, - .., PN .} beaset of & 'variables in a fixed order from
p, to p & ., with respective domains D={D,,D,, ..., Dx .}.
D. 1s referred to as the candidate set for each variable p,. A
candidate set consists of the nodes that can be assigned to
variable p,. Note that A" '1s the number of nodes 1n the MTG.

A routing permutation P 1s constructed by successively
assigning a node u€D, to each variable p,. Such assignment 1s
said to be valid i 1t satisfies a specific constraint function C(u)
which 1s defined to realize the selected routing objective.

FIG. 13 1llustrates the basic assignment procedure for vari-
able p,. , 30 in which two key tunctions Update 31 and Select
32 work as filters to control the assignment. Like reference
numbers with FIG. 3 have been used as the backtracking
algorithm used in the present embodiment 1s the same. In FIG.
13, each pair {p,, u,) 33 represents an assignment of the node
u, to variable p,. The assignment of nodes to a subset of

variables {p,, ps, . . . , p,} =P given by {{p,, u,}, . . .,
{p,, 1} } is called partial routing permutation with i nodes. For

simplicity, this 1s abbreviated to 5:..

This basic assignment procedure has been embedded nto
the backtracking algorithm (Algorithm A) shown below to
obtain the routing permutation P. The algorithm calls function
Select 32 (with built-in constraint function C(u)) which goes
through D, to find a valid node for the current variable p, (line
6). If Select 32 succeeds 1n finding a valid assignment, the
algorithm calls function Update 31 to generate domain D, ,
(line 11) and proceeds to next vanable p, ,. Otherwise, a
backtrack step will be executed to revisit the variable p,_,
(line 8). The algorithm terminates 1f a routing permutation P
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of & " nodes, also denoted by p ., 1s found or a failure
notification returns 1f all backtracks are examined but no
solution 1s found under C(u).

ALGORITHM A

Input: MTG G, =V, E)
Output: Either a solution or failure notification

1 V'y <=V, \ {d]
2 1< 1
3 D; < {d}
4 D' < D,
5 while 1 = 1= A/" do
6 p; < Select
7 if p, = null then
8 | 1<—1-1
9 else
10 | <=1+ 1
11 | Update
12 if 1 = 0 then
13 | return failure
14 else
15 |

return Pas

If the constraint function C allows 1t, the backtracking
algorithm will find one permutation routing P among all
possible solutions by searching through the search space
shaped by the number of variables 1n P and their domains of
values. The complexity of backtracking algorithm has a wide
variety.

As was discussed 1n the first embodiment above, when no
backtrack step 1s needed (backtrack-iree), the complexity 1s
O(tx & ') where t 1s the total computational complexity of
tfunctions Update and Select. In another extreme, 1f there 1s
only one solution and the “wrong’ choice 1s always made, the
complexity would be O(tx A" '!). Hence, 1t 1s important guide
the search to avoid exploring the entire search space. Two
main mechanisms are used to reduce the search space:

1) C(u) should be simple to reduce the computational com-
plexity.

2) Domain D, can be limited by taking C(u) into account.

In the present embodiment, a constraint function C(u) 1s
used to approximate 1INHOR, this approximation is called
AINHOR. From the obtained C(u), corresponding permuta-
tion routing 1s constructed by using described algorithm
framework.

With regard to the constraint function C(u), let G=(V, E)
denote the given network topology and R ;¥’=(V, E ;¥7) be the
SPT towards the destination d. To construct permutation rout-
ing for INHOR, both G and R ;#* will be transformed into new
directed graphs with respect to Det. 2 and Def. 3. The result-
ing graphs for the destinationd are ¢ ~(7/ .. £ ;) and R ;"
respectively. In addition, R ¥’ E , (according to Theorem 1)
and R ;**is a DAG towards d (according to Theorem 2). R ;’#*
1s called the transformed shortest path tree (TSPT).

The partial routing permutation 5:- represents a loop-free
routing sub-graph towards destination d, denoted by R /=(V{(
FI.),E d(f;l.)) where V(f;:.) 1s the set of'1 nodes 1n T):. and E c,i(f::.)
1s the set of directed edges formed by applying the greedy

torwarding rule defined above on E}I.. To achieve a robust
routing while containing R ;***, the node selected for variable

p,., to form the partial routing permutation, p,,, should be
the node with the maximum number of directional neighbors

already placed 1n E}I.. In addition, E}i must contain R ;* w1

which 1s a subset of TSPT after the (1+1)-th assignment.
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Correspondingly, the number of directed edges of the routing

. . . —
sub-graph formed by the partial routing permutation p,_,,
resulting from the assignment {p,_ ,,u), are maximized:

|E4(Piy )l = max |Es(P;, {pis1, w)) (1A)

Yuch;

and

sptit+l spi
R SRy

d (2A)

For a more efficient implementation, a counter c[u] 1s
maintained for each node u. This counter denotes the number

of outgoing links from u to FI.. In other words, c[u] corre-
sponds to the number of next-hops node u will have 11 1t 1s
selected as the next assignment 1n the routing permutation.
The constraint function C(u) 1s derived to realize expression

(1) and (2) as follows:

( True 1t cfu] = maxy,ep,, , c[v]
C(H) — and R;pr,i—l—l C R;pr
 False otherwise

Constraint function C(u) 1s complicated and thus may not
result 1n an efficient search. Thus, C(u) can be made more
simple by not using expression (2A) in C(u). Instead, expres-
sion (2A) will be used to reduce domain D, , 1n expression
(1A). Let D*__, be the reduced domain readily for assignment
(1+1)-th, the new constraint function C*(u) 1s re-written as
follows:

True 1if clu] = maxy,. Dt | c[v]

C*(u) = {
False

otherwise

Because D*, , 1s usually smaller than D, ,, the search
space would be reduced.

The dervation of domain D*,, from which a node satisfy-
ing C*(u) 1s selected 1s described as follows.

In a connected graph, expression (1A) implies that the

domain D,_, includes all nodes that have at least one topo-

I+1°

logical neighbor (following the directed edge) 1n 5:-- The
domain 1s, therefore, updated following the recursive rela-
tion:

D,,,=DU{VE V J(v—u)E E ;}/{u} (3A)

where u 1s the node that has been assigned to variable p, in the
1-th assignment.

Domain D,_, 1s usually large when 1 increases. Expression
(2A) 1s used to divide D,_ ; into smaller domains, providing a
more eificient search. Let D,_, “ be the subset of D, , such that
D.. ,“ contains all the candidate nodes on the TSPT which

have all their shortest path next-hops towards d already placed

n E:.. Let ¢, |v] be the number of shortest path next-hops

placed 1n 5:. and n_ [v] be the total number of shortest path
next-hop that can be calculated from R ;*? of node v. The
domain D, ,“ for variable p,_, follows the recursive relation:

7+1

D, *=DfUVED,, e [v]=ng,[v] i\ u} (4A)

where u 1s the node that has been assigned to variable p, 1n the
1-th assignment.
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Therestof D, _; includes nodes on the TSPT different from
those in D, ,“ and nodes not on the TSPT. Let D, ,” be the

I+1

latter, 1t 15 calculated as follows:
Dz’+lb:Dz'bU{vEDz'+l|P¢Rdspr}\{u} (SA)

where u 1s the node that has been assigned to variable p, in the
1-th assignment.

Function Update

1 D, < D;\{u}
2 for v € y,such that (v —u) € E,; do
3 clv]=clv]+1
4 if v & D, then
5 | D, < D, U [v]
6 D%, < D%\ [u]
7 D" < D"\[u]
8 forv € D, do
9 if (v —=u) € R¥’, then
10 Cop [V] == C, V] +1
11 if ¢, [v] = n,, [v] then
12 | D% <« D% U {v}
13 clse
14 | D®, < D% U {v}
15 c?, ., < maxVveED? ¢[v]
16 c? <« maxVvuED?, c[v]

The described update domain process 1s implemented in
the Update function. First node u, which has just been added
in the permutation routing, 1s removed from D, in line 1 (and
also from D,* and D,” in lines 6 and 7, respectively). The for
loop of lines 2-5 considers all nodes v 1n 37 , such that
(v—=u)c £ , to update D, following (3A) and counter c[v].
Another for loop of lines 8-14 goes through all nodes in D, and
divides them in two groups: D,* following (4A) and D,” fol-
lowing (5A). As an input for constraint function C*(u),
MaXy,cpe ¢[V] and maxy,ep» c[v] 1s calculated 1n lines
15-16.

One node from one of two domain groups 1s then selected
that satisties C*(u) and 1s placed 1n the permutation. Two
strategies are utilized: first choosing a node 1n D 1f 1t 1s not
empty or first choosing a node in D,” if it is not empty. The
resulting routing in both cases will contain TSPT. However,
the latter will increase the number of next-hops for primary
links because 1t places 1n the permutation all possible second-
ary links, which can become next-hops for primary links,
before primary links. This selection strategy 1s implemented
in the Select function.

Function Select

1 if D, = Othen
2 D'bf “— DE"I_
3 while D'”, = 0 do
4 an arbitrary node u from D',
5 D', < D"\ {u}
6 ifc[u] =c” ., then
7 | return u
8 else
9 D'HI. - D‘f"i
10 while D", = 0do
11 an arbitrary node u from D',
12 D""II. < D'ﬂi Y {11}
13 ifcfu] =¢“,,_ then
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-continued

Function Select

14 | |
|

return u

15 return null

The Select function will realize constraint function C*(u)
with two steps 1n a strict order. The number of next-hops for
primary links 1s first maximized by going through sub-do-
main D,” to select a node that satisfies C*(u) (line 3-7). Note
that C*(u) 1s simply a comparison between c[u] and pre-
computed ¢___” (line 6). If D.” is empty, a node in D is
selected that satisfies C*(u) (lines 10-14). Again, C*(u) 1s
simply a comparison between c[u] and pre-computed ¢ “
(line 13). The returned node u 1s assigned to variable p, 1n

Algorithm A.

The computational complexity of AiINHOR 1s the product
of the average number of operations to make a move between
two successive states and the total number of states visited in
the search space.

Proposition 1:

The selection rule defined 1n function Select gives a back-
track-free algorithm for all connected 1nput directed graph.

Proof:

The proof 1s by contradiction. Assume that the algorithm
with the selection rule defined 1in function Select 1s not back-
track-free. This could happen in two following cases:

(1) C*(u) returns False at some iteration for all u€D,” or for
all ueD,” if D.” is empty. That can not happen because all
nodes in domain D,” or domain D,” always have at least one

next-hop 1n Fi.

(i) Both D,” and D are empty in some iteration. It is
shown here that both D,” and D% can never be empty at the
same time before all nodes have been placed 1n the permuta-
tion. If this 1s the case, there exists only candidate nodes on

TSPT, but do not have all 1ts shortest path descendants 1n f’:..
In other words, the shortest path DAG R ;* can be followed
from any node that has not been placed and always find a

next-hop node that 1s not placed 1n Ff. But this 1s impossible:
since R ;#° is connected and loop-free, any path along the
shortest path DAG will eventually reach the destination,
which 1s the first node that was placed 1n the permutation.

The computational complexity of AINHOR towards one
destination includes two parts: the shortest path calculation
using Dijkstra’s algorithm and routing permutation construc-
tion. Due to the property of backtrack-freedom, with sparse
topologies the complexity of second part towards one desti-
nation would be O(l £ J|+IE 7|+ A& 'x|DI) where |1DI| denotes
the average size of the domains. In dense topologies, the total
complexity of calculating routing permutations for all desti-
nations can approach O(.A *) where & '=M+1 (M is the
number of directed links 1n the given topology).

The backtrack-1ree property also gives a low memory con-
sumption because 1t does not need to store temporary partial
routing permutations.

The presently disclosed algorithms have been applied to a
large area network scenario and the advantageous results have
been measured. In particular, the performance of the pro-
posed algorithms have been evaluated by measuring the rout-
ing robustness of AINHOR 1n terms of the improved number
ol next-hops for primary interfaces and for secondary inter-
faces. Since adopting secondary interfaces for packet trans-
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portation can lead to path inflation, the hop-count path length
distribution has also been taken into account with various
allowed number of next-hops for each mmcoming interface.
The computational complexity of the schemes has also been
considered by verilying running time for the algorithms to
generate routing tables for all I-D pairs.

Similar to the first embodiment noted above, six represen-
tative network topologies from the Rocketiuel project have
been considered for evaluation. For each topology, all nodes
that will not contribute to routing (e.g. single degree node)
have been removed. The refined topologies are bi-connected
graphs, listed in Table A 1n increasing order of their average
node degrees.

TABLE A

Network topologies

AS Name Nodes Links Avg. Degree
1221 Telstra(au) 50 194 3.88
3967 Exodus(us) 72 280 3.89
1755 Ebone(eu) 75 298 4.00
3257 Tiscali(eu) 115 564 4.90
6461 Abovenet(us) 129 726 5.60
1239 Sprint{us) 284 1882 6.62

The transformation rules are applied on each topology to
achieve new graphs from which permutation routing of inter-
faces 1s calculated. Table B shows six transformed graphs 1n
increasing order of their average node degrees.

TABLE B

Transformed graphs

AS Name Nodes Links Avg. Degree
1755 Ebone(eu) 298 1432 4.80
3967 Exodus(us) 280 1372 4.90
1221 Telstra(au) 194 1030 5.30
6461 Abovenet(us) 726 5434 7.50
3257 Tiscali(eu) 564 4378 7.76
1239 Sprint{us) 1882 25988 13.81

ECMP and LFA each base a path calculation on link

weights. To obtain realistic link weight settings, a local search
heuristic 1s implemented to optimize link load objective func-
tion under traflic matrix generated by the gravity model. For
AS1239, unit link weights are used, because the local search
heuristic does not scale to a topology of this size. Note that
permutation routing of links will work with any link weight
settings. This approach 1s used to show the performance with
“typical” link weights.

The AiINHOR scheme will now be compared with standard

shortest path routings ECMP, LFA and ANHOR-SP scheme

described 1n the first embodiment above.

The robustness of all mentioned routing methods are evalu-
ated 1n terms of links, instead of nodes. Similar to what 1s
described above with regard to permutation routing of inter-
faces, directed link (1i—) 1s called the primary outgoing inter-
face, or ssmply primary link, towards destination d if node 7 1s
the next-hop of node 1 and (1—7) 1s on the SPT towards d.
Otherwise, j 1s called the secondary next-hop of node 1 and
(1—1) 1s a secondary link towards d.

FI1G. 14 shows CDF curves, average and variance values
for the number of next-hops at each interface for all I-D pairs
in the 6 topologies. It can be observed that both average and
variance values are rather small compared to corresponding,
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node degrees of transformed graphs. For increased robustness
and load-balancing, it 1s, however, good for those values not
to be significantly high.

Moreover, there are good reasons to limit the number of
next-hops that are installed 1n the forwarding tables at each
interface for a particular destination. Installing more next-
hops will not give much benefit with respect to robustness or
load-balancing. Adding more next-hops will, however,
require faster memory 1n the forwarding table, and may lead
to the unnecessary inclusion of paths that are much longer
than the shortest path. Therefore, those iterfaces with high
number of next-hops will likely have some of their next-hops
involved in packet forwarding. Thus network resources are
wasted when next-hop distribution, resulting from a routing,
1s more spread out.

Another important property of AINHOR 1s the ability to
provide high fraction of number of interfaces with at least two
next-hops. In FIG. 14, AiINHOR offers above 97% of all
interfaces that have at least two next-hops for topologies with
node degrees greater than 4. Those fractions are lower for
weak-connected networks such as AS1221 and AS1753. As
stated earlier, a few interfaces, which are on the shortest paths
for packet forwarding, are selected when network are fault-
free. The primary interfaces are then distinguished from sec-
ondary interfaces and are evaluated separately.

FIG. 15 shows fraction of primary interfaces with at least
two next-hops under the AINHOR method. It can be observed
that the fractions vary slightly across six topologies and are
above 97%. Specifically, AS6461 and AS3257 provide 100%
primary links with two next-hops. The good results come
from the properties of interface based routing and 1ts opera-
tion on the bi-connected graph. For instance, a node with at
least two outgoing links will have an increased chance of
having at least two next-hops.

AINHOR gives a clear improvement over LFA and even an
improvement over ANHOR-SP. It shows that permutation
routing of interfaces can provide significant gain compared to
existing solutions, while being compatible with shortest path
routing with realistic link weight settings.

To increase fault-tolerant capability, secondary interface
also will have at least two next-hops. Those next-hops might
be either primary interfaces or secondary interfaces. FI1G. 16
shows fractions of secondary interface with at least two next-
hops of LFA, ANHOR-SP and AiINHOR. It can be observed
that AINHOR also 1s an improvement over LFA and ANHOR -
SP. Note that the fractions of secondary interfaces are lower
than those of primary interfaces shown 1n FIG. 15. This result
reflects the optimization strategy where the fractions of the
primary interfaces are maximized before those of the second-
ary interfaces.

AINHOR also has significantly improved the multipath
capability that allows for more load balancing or fault-toler-
ance. However, adopting secondary interfaces for packet for-
warding possibly leads to high path inflation which can
increase path failure probability and traific load over non-
shortest paths. For this reason, the distribution of path length
for different allowed numbers of next-hops for each interface,
denoted by K has been considered. Specifically, the path
lengths 1n terms of hop counts have been reviewed, since this
metric 1s independent ol the link weight settings. Note that the
longest path corresponding to K for each S-D pair has been
measured. In other words, the upper bounds for path length
for each S-D pair have been shown even though packets might
travel on shorter paths 1n practice (where all primary links
from source to the destination do not simultaneously fail).

FIG. 17 shows the distributions of path length 1n hop for
K=1, 2 and 3. For K=1, all paths from source nodes to desti-
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nations will take the shortest paths because each node has at
least one primary interface on the shortest path tree. The
average value of shortest path length 1s the left-most vertical
line in each sub-figure. Increasing K to 2 and 3 will allow
more longer paths and therefore shift the average path length

(vertical lines) to the right. Of all topologies, the average
values only increase from 7.5% (AS1239) to 40% (AS6461)

for K=2 and up to 100% (AS6461) for K=3. These path
lengths are still comparable to those of shortest path routing.

The time complexity of the proposed algorithms for gen-
erating routing tables depends on the numbers of nodes and
links of the given imnput graph and how well the sizes of the
candidate sets are limited. Criteria to minimize those sets at
cach assignment have been implemented 1n the Update tunc-
tion.

FIG. 18 shows the relative running time of the AiINHOR
method with respect to ECMP across six topologies. The AS
topologies are listed 1n an increasing order of node degrees.
The results are achieved with an Intel Core 2 CPU 6300 @
1.86 GHz machine. For the first five topologies, the relative
running times are less than ten times. The result for AS1239
1s more than 30 times worse. Increase 1n both the number of
nodes and the number of directed links in the transformed
graph contribute to this increase. However, using this topol-
ogy 1s still computationally feasible.

The running time can be reduced by not including shortest
paths in the routing. Such a routing 1s denoted as AINHOR *,
In FIG. 18, AiINHOR* improves the running time by up to
30% for AS1239.

A method of implementing permutation routing, and par-
ticularly of implementing the generation of the channel list to
be used to determine paths, 1s described with respect to the
flow chart illustrated in FIG. 19A.

In step 190, a first position in a channel list 1s selected.
In step 191, a destination 1s selected from the at least one
source/destination pairs.

In step 192, the selected destination 1s associated with the
first position.

In step 193, a subset of channels 1s determined, the subset
comprising channels whose egress node 1s the destination.

In step 194, a current position 1s selected in the channel list
higher than the first position.

In step 195, a next channel from the subset1s selected based
on a constraint function C(u) or C*(u).

In step 196, the next channel 1s associated with the current
position.

In step 197, for each selected channel in the subset, the
subset 1s extended with a next subset including further chan-
nels whose egress node 1s the ingress node of the selected
channel.

In step 198, a further position 1s selected 1n the channel list
higher than the first and current positions, the further position
hereafter being the current position.

In step 199, steps 195-198 are repeated until all channels in
the topology have been associated with a position i the
channel list.

Once the channel list 1s determined at least one path con-
necting a source and a destination 1s provided based on the
channel list. Once the at least one path 1s determined these one
or more paths can be stored 1n one or more routing tables 1n
respective routers/switches. The permutations can be
obtained using a distributed algorithm that creates the routing
tables 1in the routers/switches. Hybrid solutions of this 1s also
available. For instance, the paths can be decided by applica-
tions using the paths. For example, an application for stream-
ing media data, e.g. a film, or a sports event, may result in a
choice of different paths than an application for transferring
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files, such as Dropbox™., It should also be noted that a node
list can be created using similar methods.

FIG. 19B illustrates a microprocessor implemented con-
troller 100 which determines the routes based on the AiN-
HOR and AiINHOR?* schemes. For instance, the controller

100 determines the routes between the source 10 and desti-
nation 20 and distributes the determined paths to the routers
90. The controller 1s programmed based on the above noted
schemes. The controller 100 thus maximizes the number of
paths between each source 10 and destination 20 pair, such
that packets do not loop 1n the network. This maximization
provides toleration of faults 1n the network and avoids prob-
lems created by looping.

With regard to the field of small area networks, the present
embodiments present an intelligent routing method desig-
nated as dynamic quick reconfiguration (DQR).

The approach described herein does not require virtual
channels or any complex reconfiguration protocol to enforce
a progressive update of routing tables or use tokens. In addi-
tion, 1t does not require any topology specific or topology
agnostic routing algorithm to generate the new routing func-
tion. Instead, this functionality 1s included 1n the dynamic
reconfiguration mechanism 1n an efficient manner, with a
plug-1n architecture to easily support specific topologies.

In order to provide an efficient and deadlock free imple-
mentation of the DQR mechanism, a data structure 1s pro-
vided for handling channel dependencies 1n the network. Two
channels (first and second) are said to be dependent 11 the first
channel could be held while the second channel 1s requested.

In one embodiment, 1n order to create new paths to recon-
nect the network after a topology change (fault), the recon-

figuration mechanism 1s initially aware of all existing depen-
dencies 1n the network.

Although other methods of handling channel dependencies
are possible, one method for handling channel dependencies
1s using a Channel Dependency Graph (CDG) which 1s a
directed graph where the vertices V represent channels and
the directed edges E represent dependencies from one vertex
to another. A possible deadlock 1s 1dentified as a cycle 1n the
CDG. Using this data structure to create new paths 1n a net-
work involves checking if any of the new dependencies intro-
duced by the path into the CDG leads to a cycle. The search
for a cycle 1n the CDG has complexity O(IEl). In order to find
a new deadlock free path for some source destination patr, 1t
1s necessary to explore a number of possible paths and check
for cycles 1n the CDG for every possibility.

For a large topology, the number of possible paths from a
single source destination pair 1s very high. For instance, 1n a
20%x20 mesh, the largest number of shortest paths for a single
source/destination pair (where source and destination are
located at diagonal corners) 1s

18
( ]:3.53x101“.
19

The size of the problem 1s further increased by the fact that,
for the existing channel dependencies and the set of topology
changes, the only possible deadlock free paths might be non-
minimal. This 1s clearly not a scalable algorithm.

Motivated by this, a “channel list” 1s introduced. The chan-
nel list represents one possible arrangement of all channels in
the topology such that any dependency from one channel to
another only “points upwards” in the list, 1.e. to a channel with
a higher position in the channel list (1.e. a higher listed chan-
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nel list position). Hence, there are no dependencies to the first
channel, and there are no dependencies from the last channel.

An example channel list for a simple 4-node ring 1s pre-
sented 1n FIG. 20. In this figure, each channel 1s denoted by
the pair source node/destination node (AB 1s the channel from
A to B).

A channel list can be implemented as an addressable array
data structure, 1n which the elements of the array contain
channel identifiers. The elements can in addition contain
channel dependencies. Alternatively, the dependencies can be
derived from already existing routing tables. The order of the
channel list indicates which dependencies are allowable.

It should be noted that a hash or a linked list data structure
could be used instead of the array data structure but would
perform the same function as the array data structure
described herein.

With regard to channel dependencies in the network, there
1s described input and output channels. An input channel, or
output channel, 1s referred to relative to a switch. Therefore an
<input channel, output channel> pair 1s a pair of channels
attached to the same switch, and 1n such a way that a stream
can enter on the mput channel and leave the switch through
the output channel. The pair <input channel, destination
node>1s also relative to a switch and a stream, where a stream,
whose destination 1s the destination node, enters the switch
through the mput channel. The notation <input channel, des-
tination node> captures an element of freedom, 1n that the
output channel from the switch to be taken by this stream 1s
not yet decided. It an <input channel, output channel> pair 1s
obtained, and the information, that the output channel i1s no
longer available (or no longer operational), 1s obtained, the
<input channel, destination node> pair may be considered
instead, so that an alternative output channel can be deter-
mined.

The <anput channel, output channel> pairs 1n the fault free
case come from the streams that the application (such as a
parallel computation, a web-server, or other network appli-
cation) generates, and the paths that the original routing func-
tion 1mplies. These pairs are known to (or can be computed
by) a fabric manager, which stores original paths. When the
fabric manager 1s informed about a link fault, 1t can compute
which <input channel, output channel> pairs are affected.
These pairs are then processed as 1 they were <input channel,
destination node> pairs, while the fabric manager computes
new output channels that reconnects the stream. The 1nfor-
mation about a link fault received by the fabric manager
includes a message from a switch reporting to the fabric
manager that one of 1ts connected links 1s not working prop-
erly. A fabric manager will then compute/identify all the
paths/tflows that are affected by the fault.

It 1s clear that 11 1t 1s possible to arrange the channels for a
topology 1n a channel list, the routing function that built the
dependencies 1s deadlock free. There cannot be a cycle 1n a
linear sequence of dependencies. The task of arranging the
channels mitially can be achieved using a linear programming
solver. Every dependency in the CDG can be represented as
an inequality, where the first channel of a dependency has an
index (1.e. position) less than the second channel of the depen-
dency. The linear programming solution to these sets of
inequalities 1s a valid channel list given the channel depen-
dencies and routing algorithm.

The task of arranging the channels can also be achieved by
applying a topological sorting algorithm on a CDG, resulting
in a linear ordering of channels, also called a topological
ordering.

Constructing the channel list 1s not more efficient than
searching for cycles 1n a CDG. However, once the channel list
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has been constructed, 1t serves as a valuable tool for creating
new deadlock free paths. In fact, any new path that can be
created by moving only upwards 1n the channel list (1.e. the
next hop channel 1s always above the current channel in the
channel list), 1s by design deadlock free. By combining this
property with a path searchmg algorithm such as Dijkstra’s
shortest path algonthm it 1s possible to find a deadlock free
shortest path given the existing dependencies 1n the channel
list 1n an efficient manner.

The channel lists contain channel 1dentifiers. A channel can
conceptually be viewed as a link 1n the network, each physical
link can be (and i1s often) implemented as a set of virtual
channels. In these cases, the channel identifier 1n a channel list
represents a virtual channel.

A channel list arrangement represents only a single possi-
bility out of a large number of possible channel list arrange-
ments. This means that for a gtven channel list there might not
exist a deadlock free path for a specific source/destination
pair, even though the path mtroduces no cyclic dependencies
into the CDG. In this case, the fabric manager can check
whether certain illegal dependencies may be permitted by
rearranging the channel list. To permit a new dependency, the
target channel of the new dependency 1s relocated to a higher
position in the channel list. Furthermore, every channel to
which the target channel has dependencies that are now below
the target channel are also relocated to higher positions. This
process continues until the channel list again 1s valid. The
present embodiment describes two algorithms for checking
whether a dependency can be permitted in the channel list,
and for updating the channel list with the new dependency.

It should be noted that although the channel list 1s used to
construct the routing function, 1n some cases, an existing
routing function can be used as a starting point. For instance,
when a well functioning routing function is available for the
fault free case, and another function 1s needed that avoids the
use of a faulty component, but otherwise changes as little as
possible. Another example starts with the shortest path rout-
ing function, and extends 1t with as many alternative paths as
possible, while still containing the shortest paths.

The reconfiguration mechanism described in the present
embodiment 1s designated Dynamic Quick Configuration
(DQR) because 1t 1s high-speed and the new paths are com-
patible with the existing routing function. These properties
are guaranteed by the channel list described above, which
ensures that any new dependency introduced by the new paths
1s compatible with the already existing dependencies, 1.e.
there can be no deadlock. Furthermore, the high-speed of the
reconiiguration mechanism comes from the fact that 1t waill
only reconfigure paths that have become disconnected. All
other paths will remain the same, minimizing the impact on
the network. The mechanism does not require virtual chan-
nels for deadlock freedom, but where these are used by the
routing algorithm, these can be utilized to increase the search
space for a valid path by allowing to move a path between
different virtual channels.

The reconfiguration mechanism 1s 1n 1ts simplest form a
topology agnostic mechanism that can be applied to any
topology and routing function. The degree of fault tolerance
depends on the topology and routing function used, and it can
be enhanced by adding a topology specific “plug-in” to the
mechanism. This plug-in will use topology specific informa-
tion to 1dentily a set of turns (dependencies) that can be safely
added to the existing routing function to guarantee connec-
tivity without introducing deadlocks. I, for some reason, this
mechanism fails (for instance i1 there are more failures than 1t
1s designed to tolerate), the core topology agnostic function-
ality 1n DQR takes over with some probability of success.
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The DQR mechanism consists of two parts. The first part 1s
the mechanism responsible for building the channel list struc-
ture based on the dependencies caused by the paths that were
set up by the routing algorithm. This task can be quite time
consuming in large networks. Fortunately the task can be run
in the background after network configuration has completed,
in advance of any topology changes/faults.

The second part 1s the reconfiguration mechanism 1tself.
This 1s mvoked whenever the subnet manager detects a
change 1n the network topology that requires some paths to be
rerouted.

The general view of the algorithm 1s as follows:

1) Construct the channel list as soon as initial routing 1s
complete;

2) Wait for topology change/failure;

3) Identily all disconnected paths;

4) Calculate new paths using the preconfigured channel
list.

The present embodiment reviews topologies which do
have cycles 1n them 1n order to 1dentily efficient ways ol using
these topologies in non-cyclic ways. In particular, when the
algorithm has succeeded, this results 1n structures that are
topologically sortable.

The first part of the DQR algorithm includes generating the
channel list. The first step 1s to 1dentity all the flows 1n the
network and the dependencies these cause between channels.

In the present example, 1t 1s assumed that the applications
running on the network 1s fairly small 1n number (most often
only one). One reason why 1dentifying all the flows in the
network 1s practical, 1s that there will be some S/D pairs for
which there are no flows, thus no routing path between these
pairs need be created. However, the present embodiment 1s
not limited to a small number of applications but can be
applied to any number of applications.

The term channels 1s used to encompass all channels
including the virtual channels that might be utilized in the
network. The result of this step 1s a list of channels (including,
virtual channels) and an indication of which channels these
channels are dependent on. Based on this list, the channel list
1s constructed such that every channel 1s below (has lower
index than) all channels to which the respective channel has
dependencies. This may be accomplished using a linear pro-
gramming solver where each dependency 1s directly trans-
lated to an 1nequality 1n the linear problem.

The second part of the algorithm 1s the reconfiguration
mechanism itself. The first objective 1s to 1dentity all the flows
(source/destination pairs) that are disconnected because of
the fault. Once this 1s done, the next step 1s to generate new
paths for the disconnected tlows. In order to generate the new
paths, there 1s described three exemplary options:

1) Create a topology agnostic local reroute around the
tailed element and have all flows (if possible) use this reroute
for connectivity.

2) Enable topology specific turns in the channel list to
guarantee connectivity through a topology specific plug-in.

3) Reroute all disconnected flows end-to-end.

The performance of these options depends on the topology.
As will be 1llustrated 1n detail below, the local reroute option
works well for mesh and torus topologies, while the end-to-
end reroute works better for fat trees. For guaranteed fault
tolerance 1n the mesh, however, the topology specific plug-in
should be considered.

When finding a new path for a disconnected flow, 1t 1s often
necessary to introduce illegal turns into the channel list to
create connectivity. For instance, 1f a link fails 1n a mesh that
relies on XY routing, an illegal YX turn can be used to create
a new path. Similarly, for fat trees that require switch to
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switch connectivity, a single link fault can lead to the need for
introducing new downward to upward turns at different
places 1n the topology which are illegal for the original rout-
ing algorithm. Consequently, the function that finds new
paths for the disconnected flows can contain a mechanism to
check whether a turn can be made legal by rearranging the
channel list or not. Dyjkstra’s shortest path algorithm can be
used to generate the shortest possible paths for the discon-
nected flows given the constraints of the channel list and
existing paths.

In generating the shortest possible path, different options
are available. For instance, the path can be 1n the same virtual
layer as the orniginal one or, alternatively the path can be
moved to a different layer. Further, each illegal turn can be
considered separately, or 1n combination with other illegal
turns existing on the same path.

Each of these options represent trade-offs between run-
time complexity and fault tolerance probability. Searching for
paths 1n all virtual layers increases the runtime, but also
increases the probability of finding a connected, deadlock
free path. Similarly, checking the legality of a single 1llegal
turn against the channel list 1s a relatively simple operation,
while checking the sequence of legal turns required for a
specific path 1s more complex. However, this added complex-
ity leads to an increased probability that the resulting path 1s
deadlock free.

The process for rerouting the affected paths 1s described
below.

The main algorithm for quickly reconfiguring the network
1s as follows:

1) Identity all disconnected flows F;

2) IT a plug-1n 1s enabled, execute 1t to enable the required
turns by reordering the channel list;

3) For each disconnected flow, find a valid path with the
current channel list using Dijkstra’s shortest path algorithm
with the following modifications:

a) Ensure that the next channel to be tested for a path 1s (or

can be made) valid 1n the channel list

b) Include the number of turns that have to be enabled in the

cost function to prefer paths with fewer turns

¢) Include the specific new turns in the cost function to

preference turns that have already been enabled by other
paths

d) Once a path has been selected, rearrange the channel list

to enable the required turns;

4) Finally, update routing tables.

The core of the algorithm 1s the search for the new paths

using Dijkstra shortest path algorithm. IT a topology specific
plug-1n 1s utilized, this 1s a straightforward effort since there
will always be a path that requires no additional turns to be
enabled 1n the channel list (this has been taken care of by the
plug-1n).
The 1dea for the plug-in 1s to always ensure that the local
paths around the disconnected link go towards the center of
the mesh. So, instead of creating an arbitrary local reroute
around a link, a specific rule for how to select this path 1s
added. Furthermore, the turns required to enter and exit this
path are enabled at either end of the failed link. In this manner,
once the local reroute has been successtully established
together with the additional turns, the subsequent search for
paths for the disconnected flows can proceed without having
to enable any new 1llegal turns. Of course, the agnostic reroute
may be kept as a fallback mechanism 11 the plug-in mecha-
nism fails.

IT a topology specific plug-in 1s not available, or the current
topology 1s not supported by the plug-in (e.g. too many
faults), the path search performed by the shortest path algo-
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rithm will include paths that enable one or more 1llegal turns
in the channel list. For the sake of speed, this 1s only done 11 1t
1s reasonable to conclude that the resulting path will be
shorter than any previously tested paths.

The algorithm also determines whether an 1llegal turn can
be enabled and, based on the determination, subsequently
reorders the channel list. An illegal turn creates a downward
dependency 1n the channel list. However, 1t might be possible
to reorder the channel list so that all dependencies again
moved upwards. An example of this 1s presented in FIG. 21,
where one link 1n the previous example of the 4-node ring
shown 1n FIG. 20 has been removed. To restore connectivity,
previously non-existent turns have to be used which lead to a
downward dependency in the channel list. By moving the
target channel of this dependency upwards 1n the channel list,
and repeating this for the following dependencies, a new valid
channel list 1s created.

The local reroute option can be viewed as a topology
agnostic plug-in that tries to enable the necessary turns to
create a legal path around the failed element. Slmllarly,
whether to search for a path in the same virtual layer, or in
other virtual layers can be implemented by considering the
channel list for the different virtual layers separately and
testing each one through a separate run of the shortest path
algorithm.

Whether to consider each illegal turn separately, or com-
bined with the others, 1s implemented by the shortest path
algorithm by keeping a local copy of the channel list, which 1s
continuously updated with the enable turns.

Complexity of the resulting reconfiguration function 1s
O(IF|T|[VI log IV1), where F is the number of flows that are
rerouted, T 1s the small subset of channels that are moved in
the channel list, and V 1s the number of switches/nodes 1n the
network. The exact values of the number of flows that need to
be rerouted, F, are very low, and are discussed below.

The main algorithm for quickly reconfiguring the network
1s presented as also illustrated herein as Algorithm 1.

The algorithm first identifies all the flows that are affected
by the fault. If the local reroute or topology specific plug-in 1s
cnabled, the algorithm creates the appropriate paths and
inserts the resulting dependencies into the channel list. This
mechanism can either add specific paths to the channel list, or
just enable specific turns by rearranging the channel list
accordingly. This also specifies where the algorithm 1s
allowed to attempt to create new 1llegal turns. For instance, if
the topology agnostic local path mechanism 1s used, the only
turns the path search algorithm can introduce are the ones
required to enter or exit the local path, and for plug-ins, only
the plug-in might be allowed to create new turns.

Then, for each disconnected tlow, the D1jkstra shortest path
algorithm 1s invoked to get the shortest path between the
source and destination of the flow given the constraints of the
channel list and pre-existing routing table entries for the
current destination (this 1s necessary to support routing algo-
rithms that only consider the current switch and the destina-
tion for the routing decisions). If the Dnkstra solution (a
vector of previous hops for every node 1n the network to reach
f.destination) has already been computed for the destination,
and the algorithm 1s currently testing the same virtual layer as
was used to place the previous flow with the same destination,
the existing Dijkstra solution can be reused. If the previous
Dijkstra solution for the same destination was calculated for
one set of virtual channels, the same solution might not be
valid for a different set of virtual channels, therefore the
solution 1s recalculated.

In order to ensure that all flows with the same destination
use the same output from a grven switch, the Dijkstra algo-
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rithm 1s run on the reverse paths, 1.e. the destination of the
flow 1s the source 1n the Dijkstra algorithm and the source of
the flow becomes the Dijkstra destination.

The function GE'T_PATH builds a path from the source to
the destination for flow { given a Dijkstra solution for f.des-
tination. The function also has to reorder the channel listif the
path contains any previously illegal turns that have been intro-
duced by get_dijkstra_paths. This 1s done by traversing the
path from the source to the destination, and whenever the
index of the next hop channel 1s less than or equal to the
current channel, the index of the next hop channel and all
following channels in the dependency chains following this
are increased so that they are one larger than the previous
channel 1n the chain. The exact algorithm 1s listed as Algo-
rithm 4.

In other words, the function GET_PATH traverses the list
of previous hops which 1s the output of the Di1jkstra algorithm
to create the path for the given source and destination.

The heavy lifting of the DQR algorithm 1s done by the
function get_dijkstra_paths, listed as Algorithm 2. This
exemplary implementation of the Dijkstra algorithm contains
two 1mportant modifications to generate paths that are com-
pliant with the channel list and previous routing table entries.
This exemplary implementation of Dijkstra 1s one way of
generating paths. An ordinary Dijkstra-implementation, or
any variant thereof containing any other cost-metric may also
be used.

In the exemplary implementation, the cost function 1s not
simply the number of hops, but rather a 3-tuple consisting of
the values (hops; 1llegal_turns; i1llegal_turn_index). Hops1s a
cost metric indicating the number of hops to the destination,
illegal_turns 1s the number of 1llegal turns performed on the
path from the source to the destination, and illegal_turn_in-
dex 1s the smallest index of the 1llegal turns performed on the
path 1n a list of all the illegal turns included in the Dijkstra
solution. This ensures that paths are grouped towards the
same legal turn, which minimizes the number of such turns
and 1ncreases the probability of finding a set of deadlock free
paths. The cost matrix w used by RELAX contains ‘1 for
every two connected nodes 1n the topology. The cost vector
for every assigned path contains the 3-tuple defined above,
and the RELAX function keeps track of the number of illegal
turns performed on the path by checking whether the turn 1s in
the allowed-turns vector. Similarly, the 1llegal turn_index 1s
the smallest index 1n allowed_turns of the 1llegal turns for the
current path. When cost tuples are compared, the values at the
first index are compared first. If these are 1dentical, the values
of the second index are compared, and 11 these also are 1den-
tical, the values of the third index are compared. In this
manner, a long path without illegal turns 1s preferred over a
short one containing one or more illegal turns.

The second addition 1s the ALLOWED TURN function.
This function ensures that any single turn performed 1n the
search for the shortest paths 1s legal. Note that it does not
guarantee that the combination of multiple turns 1s legal. The
contents of this function 1s listed as Algorithm 3. The
ALLOWED TURN function uses the channel indexes to
verily whether the turn 1s legal. There are a number of cases
where turns that are 1llegal in the current channel list can be
introduced to maintain connectivity. The rest of the function
determines whether the current turn (u, v, p[v]) can be 1ntro-
duced into the channel list without introducing a deadlock. In
this case, the second channel of the turn (v, p[v]) will have an
index which 1s smaller than or equal to the first channel (u, v).
For this turn to be legal there can be no dependency chains
leading from (v, p[v]) to (u, v) (the channel sequence guaran-
tees this, but in this case the channel sequence 1s broken by
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reordering the channels to accommodate the turn). To verily
that no such dependency chain exists, all dependencies from
(v, p|v]) are followed to determine if any of these lead to (u,
v). The indexes of the channels 1n the channel list can be used
to prune the length of the followed dependency chains,

38

Dijkstra may be used that has the extra constraint that paths 1n
one direction 1n the channel list are the only allowed paths.
From these set of paths, the new routing table entries can be

obtained.
Exemplary Algorithm 1-—the Main DQR Algorithm:

Require: All channels have been assigned a valid channel ID
1: shortest_ path_ list = dictionary to store computer Dijkstra solutions

%wm&gp@ﬂmwﬁmm

: last_ layer used = dictionary to store the last virtual channel used for a destination
: ' = the set of source/destination pairs disconnected by the fault

: 1f plug-1n exists then

plug-in ()

:end 1f

: 1f option__create_ local__paths or plug-in failed then

for each used virtual layer do

{Create a local reroute path in every virtual layer}
Create_ local paths(fault)

end for

: end 1f

13: foreachfin I do

1f not f.destination 1n shortest path list or last layer used [f.destination] !=

f.layer then

15:

19:
20:

shortest_ path_ list [f.destination]|= GET__DIJKSTRA_ PATHS (G,
f.destination, f.source, f.layer)

16: end 1f
17: f.new_ path = GET__PATH (1, shortest path_ list [f.destination])
18: if not f.new__path and try_ other layers then

for each layer except f.layer do

if not f.destination in shortest_path__ list or last_ layer_used

[f.destination] !=new__layer

then

21: shortest__path_ list [f.destination]=
GET__DIIKSTRA_PATHS (G, f.destination, f.source,
new__layer)

22: end 1f

23: f.layer= new__layer

24: f.new_ path = GET_ PATH ({, shortest_ path_ list [f.destination])

25: end for

26: end 1f

27: end for

28: Update routing tables

because 1 the dependency chain passes the index of (u, v)

without encountering 1t, 1t will never do so. This search 1s
implemented 1n the while loop in ALLOWED_TURN.

ALLOWED_TURN can be further optimized by checking
the cost of the path that will contain the new turn. If the cost
of this new path 1s larger than or equal to the preexisting path
from u, the legality check of the turn need not be executed,
and ALL.OWED TURN returns false.

The listed version of the allowed_turn function only con-
siders the legality of each single turn individually (option 1).
In order to support the second option where the entire
sequence of illegal turns for a given path 1s considered
together, the channel list 1s updated (using the function
update_path 1n Algorithm 4) for each successive 1llegal turn
on the path. This increases the complexity by a relatively
small constant factor (limited by path length) and has a mar-
ginal impact on the fault tolerance probability of the mecha-
nism.

As1s noted above, in order to guarantee that the mechanism
1s able to tolerate at least one fault for a specific topology, 1t 1s
In some cases necessary to supply DQR with a topology
specific plug-in. For a fat tree this 1s not necessary, even when
enabling switch-to-switch routing as 1s shown in the next
section. For a mesh, however, one fault tolerance cannot be
guaranteed with the agnostic mechanism. A simple example
ol how to create such a plug-in for a XY routed mesh topol-
ogy, which 1s also applicable to tor1 with E-Cube routing. This
function 1s called plug-in( ) 1n Algorithm 1.

The result of Algorithm 1 1s to update the routing tables.
When a new channel list has been generated, a version of
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Exemplary Algorithm 2 Function get_dijkstra_paths.

1: get_ dikstra_ paths (G, s, layer)
2: INITIALIZE-SINGLE-SOURCE(QG, s)
3: p 1s a vector containing the previous hop for every v E S
4: allowed_ turns is the list of all illegal turns committed during this run
5:8 <0
0: Q <= (ls]
7:while Q = a2 do
8: u gets EXTRACT__ MIN(Q)
9 S« SU{u}
0 for each vertex v € Adj[u] do
1 it ALLOWED_ TURN (u,v,p[v]) then
12: if not (u,v,p[v]) in allowed__turns then
13: allowed__turns.append ((u,v,p[v]))
14: end 1f
5 RELAX(u, v, w, allowed__ turns)
6 end if
7
8:

end for
end while

Exemplary Algorithm 3 Function ALLOWED_TURN.

1: ALLOWED_ TURN (u,v,p[v]):
2: {Is the turn from u to p[v] through v legal?}

: 1If CHANNEL__ID (CHANNEL (u,v)) < CHANNEL_ ID

(CHANNEL (v,p[v]))

then
4. return ITrue
5: endif
6: 1f length of existing path from u = length of this path including the
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-continued

new turn then
return False
end 1f
if option__create_ local paths and v 1s not connected to a failed
e¢lement then
{Only add legal turns next to the disconnected elements to force
use of the local paths if these are available.}
return False
12: end 1f
13: {The turn is illegal, can it be legalised? }
14: Q «<— CHANNEL(v; p[v])
15: while Q = @ do
¢ < Q0]
1f ¢ = CHANNEL(u; v) then
return False
19: endif
20:

A

[—
<

A e

for each channel d with a dependency from ¢ do
21: if CHANNEL_ID (d) = CHANNEL_ ID (c¢) then
22: Q.append(d)
23: end if
24: end for

25: end while
26: return True

Exemplary Algorithm 4 Function update_path.

1: update__path (path)
2: for each channel ¢ 1n path do
3: if CHANNEL_ ID (¢) = CHANNEL_ ID (c+1) then

4. Q=2c
5: while Q = @ do
0: c < Q|U]
7 for each channel | with a dependency from ¢ do
&: if CHANNEL_ID (¢) = CHANNEL_ 1D ()
9: then
10: CHANNEL_ID (j) < CHANNEL_ID (c)+1
11: Q.append())
12: end if
13: end for
14: end while
15: return
16: endif
17: end for

The reconfiguration algorithm 1s dominated by the modi-
fied Dijkstra function, get_dijkstra_paths, 1n addition to the
time required to 1dentily the network tlows that are discon-
nected by the fault. The complexity of the Dijkstra algorithm
with edges E and vertices V for a sparse graph where |El
« O(IVI?) is O(IEI+IVI log IVI). The ALLOWED_TURN
tfunction will 1n the worst-case examine all edges of the topol-
ogy, although this 1s seldom the case. In fact, the algorithm
tollows the chain of dependencies from the last channel of the
turn until 1t has examined all channels with an index less than
or equal to the first channel 1n the turn. For most typical
network topologies this will be a small subset T of all the
edges 1 the network, I[Tl« O(IEl). Furthermore,
ALLOWED_TURN will 1n this case only run whenever it
will lead to a shorter path. Still, the worst-case complexity of
the modified Dijkstra algorithm is O(IE|[T1+IT|[VIlog IV])=O
(IT[VI log IVI).

The full algorithm also requires that new paths are generated
from the Drykstra solutions, and possibly that the channel
indexes are updated each time new turns are introduced
(GET_PATH). This function has to traverse a subset of all the
channels 1n the network whose size depends on the size and
number of dependency chains. In the worst case there are |E|
channels that have to be traversed. Furthermore, the modified
Dijkstra function 1s run multiple times, once for each desti-
nation that 1s rerouted. If no flow 1s moved to a virtual layer
different from 1ts original layer, this 1s suificient. However, if
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flows are moved between layers to maximize fault tolerance
probability, the modified Dijkstra algorithm may have to run
for every flow that needs to be rerouted. If the number of
rerouted tlows 1s |F|, the complexity of the full reconfigura-
tion portion of the DQR algorithm 1s O(IFI(IEI+IT||VI log
I'V1)). The controlling term 1s O(IF|[T||VI log IV1). The exact
values of the number of flows that need to be rerouted, F, are
very low.

An evaluation of DQR {for several of the most common
topologies, mesh, torus, and fat tree will now be considered.

A purpose of the evaluation 1s to 1llustrate how eflicient the
mechanism 1s at reconfiguring the network with a connected
routing algorithm after a fault event. Several of the options
outlined through the description of the mechanism such as
adding a local reroute path, adding topology specific depen-
dencies, checking the validity of all illegal turns on the path or
just each single turn, and doing this for all paths or just the
local reroute are also considered.

The algorithm has been implemented 1n Python and 1s run
on topologies with routing tables dumped by the latest version
of OpenSM (OFED 1.5.3.2). Every data point in all the fig-
ures represents 500 separate runs which consists of introduc-
ing random faults, reconfiguring, and 11 successtul, introduc-
ing a new fault and so on. The results are presented 1n the next
sections for the different topologies.

The mesh 1s a well-known and simple topology where one
link fault tolerance can be guaranteed. FIG. 22 compares all
the different variations of the DQR mechanism 1 a 10x10
mesh. The x-axis 1s the number of link faults (inserted one
alter the other with reconfiguration 1n between) introduced
into the topology and the Y axis 1s the probability of finding a
connected and deadlock free solution. The keywords “end-
to-end” and “local paths™ signity whether the new paths are
created with or without enforcing a local reroute around the
failed link. “All turns” means that for every path that 1s cre-
ated, all illegal turns along that path have been considered
together, as opposed “single turn” where each turn 1s consid-
ered 1n 1solation. Finally, for *“turn local reroute (fir)” all turns
along a path together are considered, but only for the local
reroute path, not the full paths for the flows, and “mesh
specific” 1s the mesh specific plug-1n variation.

It1s clear from FIG. 22 that the two mesh specific variations
are the only variations that are able to guarantee toleration of
one link fault, and they have the overall best probability of
tolerating further faults. Of these two, the best solution 1s to
consider the sequence of all illegal turns for the local reroute
if the mesh specific plug-in fails. In the middle 1s found the
rest of the vanations around the local topology agnostic
reroute solutions, and the best of these 1s also the one where
all the 1llegal turns are considered on the path together rather
than individually. The worst performance 1s found if the local
reroute 1s not added and all the illegal turns are not considered
on the path together. This 1s because this solution requires
there to be a valid new path for all possible sources for a given
destination, not just the ones that are disconnected by the
fault.

The conclusion 1s that with a topology specific plug-in
mechanism one link fault tolerance 1n a mesh can be guaran-
teed and a reasonable probability of tolerating several more
subsequent faults can be obtained.

To evaluate the scalability of the solution for the mesh, a 5
by 5, 10x10, 15x15, and 20x20 mesh were tested using the
mesh specific plug-in together with single turn local path. The
results are presented in FIG. 23. This figure clearly shows that
connectivity with one fault is able to be guaranteed. Further-
more, the degradation in probabaility 1s similar for every topol-
ogy s1ze which indicates quite good scalability properties.
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To put the complexity of the reconfiguration algorithm into
context, the number of tlows that have to be reconfigured after
a link has failed 1n the 20x20 mesh 1s considered. Specifically,
the fraction 1s quite stable, 1t ranges from 1.7% to 2.2% when
increasing the number of subsequent faults 1n the system from
one to 10. Around 2% of all the flows are configured which

ensures good runtime and scalability for the reconfiguration
algorithm.

Finally, FIG. 24 shows that only a small amount of the
paths in the topology are reconfigured. This shows the frac-
tion of flows that are reconfigured 1n a 20x20 mesh for every
subsequent fault. The X axis 1s the number of faults, and the
Y axis 1s the fraction of tlows that are reconfigured. The figure
clearly shows that less than 2% of the flows are moved 1n the
topology for each fault.

The torus 1s a mesh with wraparound links so that 1t 1s fully
symmetric. This topology cannot be routed without using
virtual channels to guarantee deadlock freedom. A possible
way routing the torus 1s using the E-cube algorithm which
mimics mesh routing and divides the traffic in various por-
tions of the torus into different virtual layers. It 1s then pos-
sible to apply the mesh specific plug-in to every layer in the
torus and achieve approximately the same probability of full
toleration as for the regular mesh. In other words, using the
E-cube routing algorithm DQR can guarantee one fault tol-
erance with a graceful degradation beyond one fault.

Another possible way of routing a torus 1s using LASH.

LLASH 1s a topology agnostic routing algorithm that guaran-
tees shortest path routing and divides contlicting paths (that
may cause deadlock) mto different virtual layers. It 1s there-
fore interesting to see how the topology agnostic DQR
behaves together with the topology agnostic LASH. The
results for a 5 by 5, 10x10, 15x15, and 20x20 torus are
presented in FIG. 25 where every layer 1s searched for a path
for a disconnected flow.
There 1s a striking difference to the mesh probability figure.
No fault tolerance 1s guaranteed, and for the largest torus,
20x20, there 1s only a 33% chance of tolerating a single fault.
The reason for this poor performance 1s that LASH uses
arbitrary shortest paths and tries to pack the resulting paths
into as few layers as possible. This gives very little room for
creating different paths without causing deadlock. The results
for not searching in different virtual layers from the original
are significantly worse.

A two-tier fat tree constructed using 36-port switches has
also been considered. This yields a fat tree with 648 ports. The
current algorithm 1 OpenSM for fat tree routing only pro-
vides deadlock free node to node and node to switch connec-
tivity. Deadlock free switch to switch connectivity 1s not
supported, although 1t 1s required for several management
systems that rely on running IP over Infiniband.

When evaluating the fat tree, the switch to switch paths
have been considered as disconnected and DQR has been
used to reconnect them. Thereafter faults have been intro-
duced as for the other topologies. The challenge with switch
to switch connectivity 1n the fat tree, 1s that 1t involves 1ntro-
ducing U-turns in the leat switches of the tree. Without careful
consideration of where these U-turns are placed, deadlocks
will occur. Including switch to switch communication makes
the evaluation more challenging since link faults 1n a fat tree
without switch to switch connectivity can always be handled
without mtroducing any illegal turns. The fault tolerance 1s
therefore only bounded by the physical connectivity.

The results of the evaluation are presented 1n FIG. 26. For
the fat tree the comparison only uses pure end-to-end routing,
and creates local reroutes around the link fault without any
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topology specific plug-ins (a plug-in 1s not required to guar-
antee that the free connectivity).

First, 1t 1s noted that DQR was able to successtully create
all the necessary switch-to-switch paths. Second, creating a
local reroute around a link fault 1s not a good solution for the
fat tree. In this case single fault tolerance 1s not guaranteed.
The end-to-end algorithm can guarantee connectivity with at
least one link fault, and shows a much smaller degradation
with increasing number of faults.

To summarize, DQR performs better for some topologies
than others, but with topology specific plug-ins connectivity
can be guaranteed. The fat tree with switch-to-switch connec-
tivity 1s supported with the pure topology agnostic solution,
while the mesh and torus topologies require a topology spe-
cific plug-in to guarantee connectivity. Still, even the topol-
ogy agnostic solution could tolerate a single link fault with
93% chance and two faults with 80% chance 1n a mesh. In
these cases the best topology agnostic solution 1s to create a
local path around the faulty elements and check that the entire
sequence of illegal turns on this path 1s deadlock free. The
LASH routing mechanism 1s more difficult to work with
because the tight packing of paths 1nto as few virtual layers as
possible means there 1s little leeway for creating new paths.
However, LASH 1s a very time-consuming algorithm with a
significant deadlock probability when reconfiguring, so 1t 1s
often worthwhile to run DQR before doing a full LASH
reconfiguration on the chance that LASH can be avoided.

Having an efficient and deadlock free reconfiguration algo-
rithm for large interconnection networks i1s important to
maintain good utilization of the computer system. Existing
solutions either require virtual channels or have severe per-
formance 1ssues during the reconfiguration. Furthermore,
these solutions often rely on topology agnostic routing algo-
rithms to create connectivity. In contrast DQR 1s a topology
agnostic dynamic reconfiguration mechanism that guarantees
a deadlock free reconfiguration if connected paths are avail-
able, reconfigures only disconnected paths, requires no vir-
tual channels or reconfiguration protocol for updating for-
warding tables, has simple support for topology specific
functionality through a plug-in architecture to guarantee fault
tolerance, and has low complexity.

The evaluations have shown that with this architecture
connectivity with single faults 1n mesh and torus topologies
can be guaranteed. Fat trees with switch-to-switch connectiv-
ity are supported even with only the topology agnostic solu-
tion.

The method of implementing dynamic quick reconfigura-
tion 1s described with respect to the flow chart illustrated in
FIG. 27A.

In step 170, an 1n1tial routing operation 1s performed.

In step 171, the channel list 1s generated after the initial
routing 1s complete.

In step 172, the system checks for a topology change/
fallure. When no change/failure 1s found, the tlow returns to
step 172. When a change/failure 1s detected, the flow proceeds
to step 173.

In step 173, all disconnected paths are 1dentified.

In step 174, new paths are calculated using the preconfig-
ured channel list.

FIG. 27B illustrates a microprocessor implemented Fabric
Manager 8 which determines the updated paths based, at
least, on the Dynamic Quick Configuration algorithm. When
the Fabric Manager 8 1s informed about a fault by a fault
detecting mechanism, the Fabric Manager 8 1s able to com-
pute what channel pairs are effected and can provide updated
paths for the interrupted path. The fault detecting mechanism
may be located, for example, in the switches/routers. This
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fault detecting mechanism 1s able to detect that a link attached
to the switch/router 1s no longer operating properly or 1s
iactive. When a fault has been detected, a message with
information regarding this fault 1s transmitted to the Fabric
Manager 8.

Features of the invention can be implemented using some
form of computer microprocessor. As one of ordinary skill 1n
the art would recognize, the computer microprocessor can be
implemented as discrete logic gates, as an Application Spe-

cific Integrated Circuit (ASIC), a Field Programmable Gate
Array (FPGA) or other Complex Programmable Logic

Device (CPLD). An FPGA or CPLD implementation may be

coded 1n VHDL, Verilog or any other hardware description
language and the code may be stored 1n an electronic memory
directly within the FPGA or CPLD, or as a separate electronic

memory. Further, the electronic memory may be non-volatile,
such as ROM, EPROM, EEPROM or FLASH memory. The

clectronic memory may also be volatile, such as static or
dynamic RAM, and a processor, such as a microcontroller or
microprocessor, may be provided to manage the electronic
memory as well as the interaction between the FPGA or
CPLD and the electronic memory.

Alternatively, the computer microprocessor may execute a
computer program including a set of computer-readable
instructions that perform the functions described herein, the
program being stored in any of the above-described non-
transitory electronic memories and/or a hard disk drive, CD,
DVD, FLASH drive or any other known storage media. Fur-
ther, the computer-readable instructions may be provided as a
utility application, background daemon, or component of an
operating system, or combination thereof, executing 1n con-
junction with a processor, such as a Xenon processor from
Intel of America or an Opteron processor from AMD of
America and an operating system, such as Microsoft VISTA,
UNIX, Solaris, LINUX, Apple, MAC-OSX and other oper-
ating systems known to those skilled in the art.

In addition, the mvention can be implemented using a
computer based system 1000 shown in FIG. 28. The computer
1000 1includes a bus B or other communication mechanism for
communicating information, and a processor/CPU 1004
coupled with the bus B for processing the information. The
computer 1000 also includes a main memory/memory unit
1003, such as a random access memory (RAM) or other
dynamic storage device (e.g., dynamic RAM (DRAM), static
RAM (SRAM), and synchronous DRAM (SDRAM)),
coupled to the bus B for storing information and instructions
to be executed by processor/CPU 1004. In addition, the
memory unit 1003 may be used for storing temporary vari-
ables or other intermediate information during the execution
of mnstructions by the CPU 1004. The computer 1000 may
also turther include aread only memory (ROM) or other static
storage device (e.g., programmable ROM (PROM), erasable
PROM (EPROM), and electrically erasable PROM (EE-
PROM)) coupled to the bus B for storing static information
and 1nstructions for the CPU 1004.

The computer 1000 may also include a disk controller
coupled to the bus B to control one or more storage devices for
storing information and instructions, such as mass storage
1002, and drive device 1006 (e.g., floppy disk drive, read-only
compact disc drive, read/write compact disc drive, compact
disc jukebox, tape drive, and removable magneto-optical
drive). The storage devices may be added to the computer
1000 using an approprate device iterface (e.g., small com-
puter system interface (SCSI), integrated device electronics
(IDE), enhanced-IDE (E-IDE), direct memory access
(DMA), or ultra-DMA).
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The computer 1000 may also include special purpose logic
devices (e.g., application specific integrated circuits (ASICs))
or configurable logic devices (e.g., simple programmable
logic devices (SPLDs), complex programmable logic devices
(CPLDs), and field programmable gate arrays (FPGAs)).

The computer 1000 may also include a display controller
coupled to the bus B to control a display, such as a cathode ray
tube (CRT), for displaying information to a computer user.
The computer system includes input devices, such as a key-
board and a pointing device, for interacting with a computer
user and providing information to the processor. The pointing
device, for example, may be a mouse, a trackball, or a point-
ing stick for communicating direction information and com-
mand selections to the processor and for controlling cursor
movement on the display. In addition, a printer may provide
printed listings of data stored and/or generated by the com-
puter system.

The computer 1000 performs at least a portion of the pro-
cessing steps ol the mvention 1n response to the CPU 1004
executing one or more sequences of one or more structions
contained 1n a memory, such as the memory unit 1003. Such
instructions may be read into the memory unit from another
computer readable medium, such as the mass storage 1002 or
a removable media 1001. One or more processors in a multi-
processing arrangement may also be employed to execute the
sequences of instructions contained 1n memory unit 1003. In
alternative embodiments, hard-wired circuitry may be used in
place of or 1n combination with software nstructions. Thus,
embodiments are not limited to any specific combination of
hardware circuitry and software.

As stated above, the computer 1000 includes at least one
computer readable medium 1001 or memory for holding
istructions programmed according to the teachings of the
invention and for containing data structures, tables, records,
or other data described herein. Examples of computer read-
able media are compact discs, hard disks, tfloppy disks, tape,
magneto-optical disks, PROMs (EPROM, EEPROM, flash
EPROM), DRAM, SRAM, SDRAM, or any other magnetic
medium, compact discs (e.g., CD-ROM), or any other
medium from which a computer can read.

Stored on any one or on a combination of computer read-
able media, the present invention includes software for con-
trolling the main processing unit, for driving a device or
devices for implementing the invention, and for enabling the
main processing unit to interact with a human user. Such
soltware may include, but 1s not limited to, device drivers,
operating systems, development tools, and applications sofit-
ware. Such computer readable media further includes the
computer program product of the present invention for per-
forming all or a portion (if processing 1s distributed) of the
processing performed in implementing the invention.

The computer code elements on the medium of the present
invention may be any interpretable or executable code mecha-
nism, including but not limited to scripts, interpretable pro-
grams, dynamic link libranies (DLLs), Java classes, and com-
plete executable programs. Moreover, parts of the processing
of the present invention may be distributed for better pertor-
mance, reliability, and/or cost.

The term “computer readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to the CPU 1004 for execution. A computer readable
medium may take many forms, including but not limited to,
non-volatile media, and volatile media. Non-volatile media
includes, for example, optical, magnetic disks, and magneto-
optical disks, such as the mass storage 1002 or the removable
media 1001. Volatile media includes dynamic memory, such
as the memory unit 1003.
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Various forms of computer readable media may be
involved 1n carrying out one or more sequences of one or
more instructions to the CPU 1004 for execution. For
example, the instructions may nitially be carried on a mag-
netic disk of a remote computer. An iput coupled to the bus
B can recerve the data and place the data on the bus B. The bus
B carries the data to the memory unit 1003, from which the
CPU 1004 retrieves and executes the instructions. The
instructions recerved by the memory unit 1003 may option-
ally be stored on mass storage 1002 either before or after
execution by the CPU 1004.

The computer 1000 also includes a communication inter-
tace 1005 coupled to the bus B. The communication interface
1004 provides a two-way data communication coupling to a
network that 1s connected to, for example, a local area net-
work (LAN), or to another communications network such as
the Internet. For example, the communication interface 1005
may be a network interface card to attach to any packet
switched LAN. As another example, the communication
interface 1005 may be an asymmetrical digital subscriber line
(ADSL) card, an integrated services digital network (ISDN)
card or a modem to provide a data communication connection
to a corresponding type of communications line. Wireless
links may also be implemented. In any such implementation,
the communication interface 1005 sends and recerves electri-
cal, electromagnetic or optical signals that carry digital data
streams representing various types ol information.

The network typically provides data communication
through one or more networks to other data devices. For
example, the network may provide a connection to another
computer through a local network (e.g., a LAN) or through
equipment operated by a service provider, which provides
communication services through a communications network.
The local network and the communications network use, for
example, electrical, electromagnetic, or optical signals that
carry digital data streams, and the associated physical layer
(e.g., CAT 5 cable, coaxial cable, optical fiber, etc). More-
over, the network may provide a connection to, and the com-
puter 1000 may be, a mobile device such as a personal digital
assistant (PDA) laptop computer, or cellular telephone.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the inventions.
Indeed the novel methods and systems described herein may
be embodied in a variety of other forms; furthermore, various
omissions, substitutions, and changes 1n the form of the meth-
ods and systems described herein may be made without
departing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such forms
or modifications as would fall within the scope and spirit of
the inventions.

The mvention claimed 1s:
1. A method of determining paths 1 a network topology
using a computer including a microprocessor, comprising:

providing at least one source/destination pair, each pair
representing a source and a destination in the topology;

providing a node list comprising a topological ordering of
node i1dentifiers representing communication nodes in
the network topology;

providing at least one path connecting the source and the
destination based on the node list;

selecting a source from the topology;

identifying the position of the source in the node list; and

generating at least one path from the selected source to the
destination based on traversing the node list from the
identified position to a first position.
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2. The method according to claim 1, wherein the providing
a node list further comprises:

a) selecting the first position 1n the node list;

b) selecting a destination from the at least one source/

destination pairs;

c) associating the selected destination with the first posi-
tion;

d) determining a subset of nodes, the subset comprising,
nodes directly connected to the destination;

¢) selecting a current position in the node list higher than
the first position;

1) selecting, based on a constraint function, a next node
from the subset:;

g) associating the next node with the current position;

h) for each selected node 1n the subset, extending the subset
with a next subset including further nodes connected to
the selected node:

1) selecting a further position in the node list higher than the
first and current positions, the further position hereafter
being the current position; and

1) repeating steps 1)-1) until all nodes 1n the topology have
been associated with a position 1n the node list.

3. The method according to claim 2, wherein the constraint

function 1s defined to realize a routing objective.

4. The method according to claim 3, wherein generating the
at least one path comprises generating a plurality of paths.

5. The method according to claim 4, wherein the routing,
objective comprises an objective to maximize routing choices
at each node.

6. The method according to claim 4, wherein the routing
objective comprises an objective to balance the traflic load of
cach link at each node.

7. The method according to claim 1, further comprising:

storing the at least one path connecting the source and the
destination 1n one or more routing tables 1n at least one
network router or switch.

8. The method according to claim 1, wherein the providing,
at least one path further comprises:

generating at least one path connecting the source and the
destination of each pair based additionally on a pre-
defined traffic pattern utilizing the at least one path.

9. The method according to claim 1, wherein the providing,

at least one path further comprises:

generating at least one path connecting the source and the
destination of each pair based additionally on a traffic
load utilizing the at least one path.

10. The method according to claim 1, wherein the provid-

ing at least one path comprises:

selecting, from a pre-computed set of paths, at least one
path compatible with the node list.

11. The method according to claim 2, wherein the associ-
ating comprises storing an identifier of the node at the current
position 1n the node list.

12. A method of determining paths 1n a network topology
using a computer including a microprocessor, comprising:

providing at least one source/destination pair, each pair
representing a source and a destination in the topology;

providing a channel list comprising a topological ordering
of channel identifiers representing communication
channels 1n the network topology;

providing at least one path connecting the source and the
destination based on the channel list; and

selecting a source from the topology;

identilying channels whose 1ingress node 1s the source;

identifying positions associated with the identified chan-
nels:
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generating at least one path from the selected source to the
destination based on traversing the channel list from the
identified positions to a position associated with a chan-
nel whose egress node 1s the destination.

13. The method according to claim 12, wherein the provid-

ing a channel list further comprises:

a) selecting a first position 1n the channel list;

b) selecting a destination from the at least one source/
destination pairs;

¢) associating the selected destination with the first posi-
tion;

d) determining a subset of channels, the subset comprising
channels whose egress node 1s the destination;

¢) selecting a current position in the channel list higher than
the first position;

1) selecting, based on a constraint function, a next channel
from the subset:

g) associating the next channel with the current position;

h) for each selected channel 1n the subset, extending the
subset with a next subset including further channels
whose egress node 1s the mngress node of the selected
channel;

1) selecting a further position in the channel list higher than
the first and current positions, the further position here-
aiter being the current position; and

1) repeating steps 1)-1) until all channels 1n the topology
have been associated with a position 1n the channel list.

14. The method according to claim 13, wherein the con-
straint function 1s defined to realize a routing objective.

15. The method according to claim 14, wherein generating
the at least one path comprises generating a plurality of paths.

16. The method according to claim 15, wherein the routing
objective comprises an objective to maximize routing choices
at each node.

17. The method according to claim 15, wherein the routing
objective comprises an objective to balance the traflic load of
cach channel.

18. The method according to claim 12, further comprising:

storing the at least one path connecting the source and the
destination 1n one or more routing tables 1n at least one
network router or switch.

19. The method according to claim 12, wherein the provid-
ing at least one path further comprises:

generating at least one path connecting the source and the
destination of each pair based additionally on a pre-
defined traffic pattern utilizing the at least one path.

20. The method according to claim 12, wherein the provid-

ing at least one path further comprises:

generating at least one path connecting the source and the
destination of each pair based additionally on a traflic
load utilizing the at least one path.

21. The method according to claim 12, wherein the provid-

ing at least one path comprises:

selecting, based on the channel list, the at least one path
from a pre-computed set of paths.

22. The method according to claim 13, wherein each asso-
ciating comprises storing an identifier of the channel at the
current position 1n the channel list.

23. A device for determining paths 1n a network topology,
comprising;

a microprocessor configured to

provide at least one source/destination pair, each pair rep-
resenting a source and a destination in the topology,

provide a node list comprising a topological ordering of
node identifiers representing communication nodes in
the network topology,
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provide at least one path connecting the source and the
destination based on the node list,

select a source from the topology,

identify the position of the source 1n the node list, and

generate at least one path from the selected source to the
destination based on traversing the node list from the
identified position to a first position.

24. The device according to claim 23, wherein the micro-

processor 1s configured to provide the node list by being

turther configured to

a) select the first position 1n the node list,

b) select a destination from the at least one source/destina-
tion pairs,

¢) associate the selected destination with the first position,

d) determine a subset of nodes, the subset comprising
nodes directly connected to the destination,

¢) select a current position in the node list higher than the
first position,

1) select, based on a constraint function, a next node from
the subset,

g) associate the next node with the current position,

h) for each selected node 1n the subset, extend the subset
with a next subset including further nodes connected to
the selected node,

1) select a further position in the node list higher than the
first and current positions, the further position hereafter
being the current position, and

1) repeat 1)-1) until all nodes in the topology have been
associated with a position 1n the node list.

25. The device according to claim 24, wherein the con-

straint function 1s defined to realize a routing objective.

26. The device according to claim 235, wherein the micro-
processor 1s configured to generate the at least one path by
being turther configured to generate a plurality of paths.

277. The device according to claim 26, wherein the routing,
objective comprises an objective to maximize routing choices
at each node.

28. The device according to claim 26, wherein the routing,
objective comprises an objective to balance the traffic load of
cach link at each node.

29. The device according to claim 23, further comprising:

storing the at least one path connecting the source and the
destination i1n one or more routing tables 1n at least one
network router or switch.

30. The device according to claim 23, wherein the micro-
processor 1s configured to provide at least one path by being

turther configured to
generate at least one path connecting the source and the
destination of each pair based additionally on a pre-
defined traffic pattern utilizing the at least one path.

31. The device according to claim 23, wherein the micro-
processor 1s configured to provide at least one path by being
turther configured to

generate at least one path connecting the source and the

destination of each pair based additionally on a traffic
load utilizing the at least one path.

32. The device according to claim 23, wherein the micro-
processor 1s configured to provide at least one path by being
turther configured to

select, from a pre-computed set of paths, at least one path

compatible with the node list.

33. The method according to claim 24, wherein the micro-
processor 1s configured to associate the selected destination
with the first position or associate the next node with the
current position by being further configured to store an 1den-
tifier of the node at the current position 1n the node list.
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34. A device for determining paths 1n a network topology,
comprising:

a microprocessor configured to

provide at least one source/destination pair, each pair rep-
resenting a source and a destination in the topology,

provide a channel list comprising a topological ordering of
channel 1dentifiers representing communication chan-
nels 1n the network topology,

provide at least one path connecting the source and the
destination based on the channel list,

select a source from the topology,

identily channels whose ingress node 1s the source,

identify positions associated with the 1dentified channels,
and

generate at least one path from the selected source to the
destination based on traversing the channel list from the
identified positions to a position associated with a chan-
nel whose egress node 1s the destination.

35. The device according to claim 34, wherein the micro-
processor 1s configured to provide a channel list by being
turther configured to

a) select a first position 1n the channel list,

b) select a destination from the at least one source/destina-
tion pairs,

¢) associate the selected destination with the first position,

d) determine a subset of channels, the subset comprising
channels whose egress node 1s the destination,

¢) select a current position 1n the channel list higher than
the first position,

1) select, based on a constraint function, a next channel
from the subset,

g) associate the next channel with the current position,

h) for each selected channel 1n the subset, extend the subset
with a next subset including further channels whose
egress node 1s the mgress node of the selected channel,

1) select a further position 1n the channel list higher than the
first and current positions, the further position hereafter
being the current position, and

1) repeat 1)-1) until all channels 1n the topology have been
associated with a position in the channel list.
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36. The device according to claim 35, wherein the con-
straint function 1s defined to realize a routing objective.

377. The device according to claim 36, wherein the micro-
processor 1s configured to generate the at least one path by
being further configured to generate a plurality of paths.

38. The device according to claim 37, wherein the routing,

objective comprises an objective to maximize routing choices
at each node.

39. The device according to claim 37, wherein the routing

objective comprises an objective to balance the traflic load of
cach channel.

40. The device according to claim 34, wherein the micro-
processor 1s further configured to

store the at least one path connecting the source and the

destination in one or more routing tables 1n at least one
network router or switch.

41. The device according to claim 34, wherein the micro-
processor 1s further configured to provide at least one path by
being turther configured to

generate at least one path connecting the source and the

destination of each pair based additionally on a pre-
defined traffic pattern utilizing the at least one path.

42. The device according to claim 34, wherein the micro-
processor 1s Turther configured to provide at least one path by
being turther configured to

generate at least one path connecting the source and the

destination of each pair based additionally on a traffic
load utilizing the at least one path.

43. The device according to claim 34, wherein the micro-
processor 1s further configured to provide at least one path by
being further configured to

select, based on the channel list, the at least one path from

a pre-computed set of paths.

44. The device according to claim 35, wherein the micro-
processor 1s configured to associate the selected destination
with the first position or associate the next channel with the
current position by being further configured to store an 1den-
tifier of the channel at the current position 1n the channel list.

¥ o # ¥ ¥



	Front Page
	Drawings
	Specification
	Claims

