12 United States Patent

Feng et al.

US009361458B1

(10) Patent No.:
45) Date of Patent:

US 9,361,458 B1
Jun. 7, 2016

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(51)

(52)

(58)

LOCALITY-SENSITIVE HASH-BASED
DETECTION OF MALICIOUS CODES

(56) References Cited

U.S. PATENT DOCUMENTS

Applicant: Trend Micro Incorporated, Tokyo (IP)

8,151,355 B2 4/2012 Fossen et al.
8,230,510 Bl 7/2012 Yang et al.
Inventors: Hsiang-An Feng, Taipei (TW); Po-I gag%aggi E% g%g% Elfleﬂﬂﬂtﬂ |
A AL e he 370, 1 iles et al.
Wang, Taipei (IW); Ming-Chin 8,375451 Bl 2/2013 Andruss et al.
Zhuang, Taipe1 (1 W) 8,650,638 B2 2/2014 Maet al.
8,683,216 B2 3/2014 Harmonen
Assignee: Trend Micro Incorporated, Tokyo (JP) 8,812,854 B2 82014 Shah et al.
2005/0283838 Al* 12/2005 Saitocoeevvvnnn.e. GO6F 21/563
| | o | 726/24
Notice: Subject to any disclaimer, the term of this 2013/0111591 Al* 5/2013 Topan GO6F 21/563
patent 1s extended or adjusted under 35 726/24

U.S.C. 154(b) by O days.

Appl. No.: 14/509,277

Filed: Oct. 8, 2014

Int. Cl.

HO4L 29/06 (2006.01)

GOol 21/56 (2013.01)

U.S. CL

CPC GO6l’ 21/563 (2013.01); GO6F 2221/034
(2013.01)

Field of Classification Search

P e e, GO6F 21/563

LS P e 726/23

See application file for complete search history.

235

261

* cited by examiner

Primary Examiner — Michael S McNally
(74) Attorney, Agent, or Firm — Okamoto & Benedicto LLP

(57) ABSTRACT

Malicious code 1s detected 1n binary data by disassembling
machine language instructions of the binary data into assem-
bly language instructions. Opcodes of the assembly language
instructions are normalized and formed into groups, with
cach group being a subsequence of a sequence of machine
language 1nstructions of the binary data. The subsequence 1s
delimited by a predetermined machine language instruction.
Locality-sensitive hashes are calculated for each group and
compared to locality-sensitive hashes of known malicious
machine language instructions to detect malicious code 1n the
binary data.

13 Claims, 8 Drawing Sheets

INPUT BUFFER

MACHINE LANGUAGE
INSTRUCTION

251 DISASSEMBLER

262

252

263

ASSEMBLY LANGUAGE
INSTRUCTION

NORMALIZER

NORMALIZED
OPCODE

TEMPORARY

236

264

BUFFER

265
NO

DELIMETER?

266

253~

267

YES

268

HASH
CALCULATOR

LOCALITY
SENSITIVE HASH

U.S. Patent Jun. 7, 2016 Sheet 1 of 8 US 9,361,458 B1

100
101 102 106 104
Processor User Input Data Display
Devices Storage Monitor
103
105 108
Computer
Network 110
Interface SOFTWARE MODULES
109

Computer
Network

FIG. 1

U.S. Patent Jun. 7, 2016 Sheet 2 of 8 US 9,361,458 B1

COMPUTER
COMPUTER
SYSTEM SYSTEM

212
212

210
230
BACKEND 2195
COMPUTER MALICIOUS
SYSTEM CODE
DETECTOR

N -

ENDPOINT
COMPUTER
SYSTEM

FIG. 2

230

MALICIOUS CODE DETECTOR

HASH GENERATOR 250

DETECTION PATTERNS 232
HASH LIST 233

HASH COMPARATOR 234

INPUT BUFFER 235
TEMPORARY BUFFER 236

FIG. 3

U.S. Patent Jun. 7, 2016 Sheet 3 of 8 US 9,361,458 B1

235 INPUT BUFFER

261 MACHINE LANGUAGE
INSTRUCTION

251 DISASSEMBLER

267 ASSEMBLY LANGUAGE
INSTRUCTION
263 NORMALIZED
OPCODE
TEMPORARY
264
265
NO
DELIMETER?
266 YES
268
HASH

207

LOCALITY
SENSITIVE HASH

FIG. 4

U.S. Patent Jun. 7, 2016 Sheet 4 of 8 US 9,361,458 B1

d

RUEIEiE,. BB FDRGGSOS LHEU,Eﬁh-M%a

Wi . B8 BEFFFFFF EBLE [oldl0LL. DRd@1 860
RO4BINESy » BB FLSH ERY

GRaARiEnTIl . 58 FUSH EAX

Jadninhsg o FFEE 1&&i§ﬁ§§ﬁﬂ$ﬁ DUORD PTR DS:[4ED11E]
dindrigRtly . E8 11030008 (S8L [oldlDLi . 8640803804
@ﬁ%ﬁimfaﬂgg FF3E 1BG14bm FUSH THIORD FTR DS: [4B811R]
v lalHE » ES IRCE0HRE [EBEE [oldlOLL. B84803ES
ﬁ&@giﬁgaggs S EEGF E0I

TSR SN | W Tnic] RETH

BgSGiniaE. B9 20HEEREE | HL EEEEEE%

Gfelien®iy . 8ReS F OR

BGARIRNTH o T4 19 ;JE”ﬁHﬂHT ColdI0LL . BB48 1 BF 2
Godetiaireiy . B CEC26R68 (#dil LoldiDLL.S840Dsar
ﬁﬁﬁﬁiﬂﬁ%iég H3 18814868 - P BMHHE PTR DS:[4BG11B1, EOK
SO4EIEETE . 33F8 oo CMF ERX, G

IAGIEESHE .~ T3 91 _ JHE SHlHT LoldiDLL . 88481 &S
SOARIEERE . BE FLORDGE3E gHﬂU”Eﬁﬁﬁh~m

ddaiiiagkingy » B8 FEFFFFFEF ﬁumﬁﬁ [@iﬂEULL AB4BIRET
SIRESRRRUIREE M i) RETH

SR igres 5330 iaﬁiﬁﬂﬁ CﬂP DWORD PTR OS: D4B&Ei1BI, ©
Eﬁ%@iﬁ?ég'ﬁw 78 28 8 SHORT [oldl0LL.B@dEl 124
gl CH . FRES 1E$1%5EEPUSH DWORD PTR DS [4E811R]
SRR R B EE BOCZaRaR | L8kL [oldlOLL. RASQDACY
Jummlinyiy . OBl OR ERX,EAX

ESGIN T LW . 8 LT JE SHBHT E@id]ﬂLL 841 124
Geenlingiy . O HFUSH ERX

USRI IWE . OH O E

gl innly o ES BE0FalER \JWF ARERNELIZ . GetPronessHeap s
GRS R I I PUSH AR

daniiidg . ES @?Eﬁﬁﬁﬁﬁ EH?E C P L LKERNEL 32, HeapFree S
sl 113 - DWORE PTR DS [4Ba118)
HERITIRY : Lo lddGlL. 884005Fa

RIS SRR S L &

US 9,361,458 B1

Sheet 5 of 8

Jun. 7, 2016

U.S. Patent

R
o

o

v

g

aw... o
Lr

o

NS

ottt B kond
ne
" 48 ;

308

i
E

EL.'" H :
T
A O R A X A W A L
=~ I
‘1-‘5
e

A E L t.q ' :
) .13 i .q.
r ¥ - -
T g L dgw | B

o

~

3
X,
G4
L

304

U4777/BE2Y
Ox47778BE27

n}

o

o

?

5
1%,'.;1;! i

DE4R1a

<
L |-‘| k|
A%

w0
il o
2

R R e an et e Y

L=
at“ttmmﬂxﬁtmm1m-

E
L

N L] -
b . 1 +. . . L
k : - ' '
.
! :..'|| =T, - .
- - »
. - - - = L]
. h . o . b
[] i - .
. . 4. h
L]
i L LR e

HDEORD PTR DS: [4Ba11R]

CHLL [oldioll.@a<4RD304

.
b
§
N
|
|
3
'E

e 4

. r” mwm h 111111
. 2 O e Eﬁiﬁﬂﬂ.&.hb

PRy m.u...\hﬂ

A ..w

o

- L .. Y :

JEE e 2%

f.2 o b) g 4
bidra S 1 b

e | e Mt th. OFF £
75 N it e o s
0 R i . - eda O

e M " P, . .. Faler ;.h _._.._r.__. i
8 KRR f B Hs BN - ot e b i ¥ “~ M
25 e 824 o mhed g ﬁ b I

| y ;! Ry H | E EE H,.r{“ ? u T Yy W
Y L AV xﬁﬁgﬁﬂaﬁmﬁmhﬁu e “B..,“ i 1 “M__m i o
iy : m.ﬁrmh.. ﬁ G i mm

wu

oo n = a-._ﬂ_.ﬂg

4
)
o EEAY
%
L

EH_, T P
T TY e e o
a2 _..h..._mw!- L.mm.w.m‘ ..rn.....-”n ___-u___.u_
?Uﬂh&ﬂiﬁﬂ.ﬂ.ﬂﬁuﬂL.imf

ﬁﬂﬂﬂﬂﬁﬂﬂa

i
Y
d
g
a
a
¥
4
0

Sy |
' ;3
PUSHAD MOV L

['
LR FR B L B R
LU o (.

_L1C38MD8
E5 1RCIBHES

=l
Ei
o F
14

Lo “-“‘-NHH“*\.%"—‘\-“‘M‘H'M"‘

8 BEFFFFFF

L l".i' - .

SRROEEFRF

B FRRYRWEG

&

.: :_T E@@ﬁ,mmq
M.. . .1 n __.1__ ﬁ.....v.h -_.u..?.. e
ﬂ-...]-l.i-r.__ I-.l Il-.i. .u..l.- .F.l_ .-_

__.ﬁ-._

"n-.
lu
4
>

"‘-.-,

'-..

'I'I.u
‘I

)

1“32

3:1“

L% 8

-, p m w WY 5
-tIu h.m __..__..m “ .__._..“ n—..___..___-.-_ F..J.-.___ 4 ﬂs.i.h_-.__:1 h..___H_q.
il ".dl.ul P alal® u__ﬂ_.. JMH..-. lh.-_l __....-I.I L TR E R R Y E RN R N R T .
[..-r 1 * - r - - - 1 +r - ¢ - Pl H .
.m.._l._-.lt__-u .--r..-__..ila ﬁ”ilir-. # .luah--.-# J_ U v. W.I...--n_._lu ..-u.r.Lr \1.......&.-—. 1- - v - N T " et g Q “1.._._
- rw L] F a P r
L...ll_.. .._.H.H..Ll. hl.ﬁ_rl..m .-1._.......1._ Hlﬂl.l._..____. ..__'...1..!.1 ...-i..n.l rxs .u l.-..I.vu t..-HI[_. . F .p..._
. o e
T = 13 W w. T &, o l. o - L
- 1. ‘_._.._..p [] A r 11U_-| 1;.. [q." .: R Sl "l .- A . - s
-__..h.,u ur LM m.i..u...-___ _.F.u.:___ _.-.h.u.___..._. .__n ___. ... ___..q-_.__ _.......u__r._ _._l.i.l__ . “r, . N
_..I.;.-.Illn ri-_l.-...ﬂf ._1._-...!.._] _.l_-‘lu..m‘_._...._. 1u1+ ‘...-...I__..a.-l.- J..H.-“...- ..-..l.\.“..l I....n .I_-I.t.__- .“” ”.“ ..”.-.. - A_...." ._..m....
. | oF . A ’ - " " L - e
:.__.-H.I...‘. :.H. 'R ._.li-:.. ﬂ...-.h ..1..-...-... -....__._...1 i i _-__.uﬂ....u .11._-._:. . ; r L R
RSO N I S0Y NP I B ML O __.b.rm Sk e e - S
11.___.Ld.__..__u...‘__f s e S, e H.___q.__.u ey A R . o
_.1.1“.,.__.__..__. 1|.l. -M ..__. u ..m_.l.lll-__ i!.".!-.__.. .“ 11 “- .I._T 1 ..n.u ﬂl-!-h UI.-..-_.-_ ...u_. 1.."..“_”.. l..“...H.q“- ' ._.. m_. ..
SO A FRRE AN E
A
-, ...1.1....-.__.______.I.. 1.."“..._.. -.h..“...r ' l..-.
LA l“.— ! I..u-.. -...i ' !.l”.'.h 14
o .

111111
o r a

U.S. Patent Jun. 7, 2016 Sheet 6 of 8 US 9,361,458 B1

DETECTION PATTERN
232-1

J

FIG. 9

BINARY

DATA LOCALITY SENSITIVE HASHES HASH LIST MATCHING HASHES
361
HASH 1
HASH 2
SAMPLE A DASH 5
HASH 9
®
®
e
®

FIG. 10

U.S. Patent Jun. 7, 2016 Sheet 7 of 8 US 9.361.458 B1

BINARY
DATA LOCALITY SENSITIVE HASHES HASH LIST MATCHING HASHES

371
=

37
—

FIG. 11

READ MACHINE LANGUAGE INSTRUCTION
FROM SEQUENCE OF MACHINE LANGUAGE 401
INSTRUCTIONS

DISASSEMBLE MACHINE LANGUAGE INSTRUCTION 402
INTO ASSEMBLY LANGUAGE INSTRUCTION

NORMALIZE OPCODE OF ASSEMBLY LANGUAGE 403
INSTRUCTION

GROUP TOGETHER NORMALIZED OPCODES OF

SUBSEQUENCE OF THE MACHINE LANGUAGE 404
INSTRUCTIONS
GENERATE LOCALITY—SENSITIVE HASH OF 405

GROUP OF NORMALIZED OPCODES

FIG. 12

U.S. Patent

Jun. 7, 2016 Sheet 8 of 8

GENERATE LOCALITY-SENSITIVE HASH FOR EACH
SUBSEQUENCE OF A SEQUENCE OF MACHINE
LANGUAGE INSTRUCTIONS

IDENTIFY LOCALITY-SENSITIVE HASH THAT IS
PRESENT IN LISTING OF REFERENCE LOCALITY-
SENSITIVE HASHES OF MALICIOUS CODES

DETERMINE IF IDENTIFIED LOCALITY-SENSITIVE

HASHES MATCH REFERENCE LOCALITY-SENSITIVE
HASHES OF ONE OR MORE DETECTION PATTERNS

FIG. 13

US 9,361,458 B1

411

412

413

US 9,361,458 Bl

1

LOCALITY-SENSITIVE HASH-BASED
DETECTION OF MALICIOUS CODES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer secu-
rity, and more particularly but not exclusively to methods and
systems for detecting malicious codes.

2. Description of the Background Art

Computer viruses, worms, Trojans, rootkits, and spyware
are examples of malicious codes that have plagued computer
systems throughout the world. Various antivirus software
have been developed to combat malicious codes. A typical
antivirus software includes patterns of known malicious
codes; the antivirus software looks for these patterns 1n data
being evaluated. One problem with this approach i1s that a
pattern for detecting a particular malicious code may be 1net-
fective 1n detecting variants or slightly changed version of the
malicious code. Although separate patterns may be created
for the malicious code and its variants, this increases the
storage and processing requirements of the antivirus soft-
ware. Furthermore, there may be a delay between detecting a
variant of malicious code and creating a pattern for the vari-
ant.

SUMMARY

In one embodiment, malicious code 1s detected 1n binary
data by disassembling machine language nstructions of the
binary data into assembly language instructions. Opcodes of
the assembly language instructions are normalized and
tformed into groups, with each group being a subsequence of
a sequence of machine language instructions of the binary
data. The subsequence 1s delimited by a predetermined
machine language instruction. Locality-sensitive hashes are
calculated for each group and compared to locality-sensitive
hashes of known malicious machine language instructions to
detect malicious code in the binary data.

These and other features of the present invention will be
readily apparent to persons of ordinary skill in the art upon
reading the entirety of this disclosure, which includes the
accompanying drawings and claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic diagram of a computer that may
be employed with embodiments of the present invention.

FI1G. 2 shows a schematic diagram of a system for detecting,
malicious codes 1n accordance with an embodiment of the
present invention.

FIG. 3 shows a schematic diagram of a malicious code
detector 1n accordance with an embodiment of the present
invention.

FIG. 4 shows a flow diagram of an example operation of a
hash generator that generates locality-sensitive hashes for
detecting malicious codes 1n accordance with an embodiment
ol the present 1nvention.

FIG. 5 shows an example sequence of machine language
instructions stored in an mput builer 1n accordance with an
embodiment of the present invention.

FIG. 6 shows a subsequence of the machine language
instructions shown 1n FIG. 5.

FI1G. 7 graphically 1llustrates an example of generating a
locality-sensitive hash for a subsequence of machine lan-
guage mstructions in accordance with an embodiment of the
present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 graphically illustrates another example of generat-
ing a locality-sensitive hash for another subsequence of

machine language instructions in accordance with an
embodiment of the present invention.

FIG. 9 shows a detection pattern 1n accordance with an
embodiment of the present invention.

FIG. 10 graphically illustrates detection of malicious codes
in binary data in accordance with an embodiment of the
present invention.

FIG. 11 graphically illustrates detection of malicious codes
in binary data in accordance with an embodiment of the
present 1nvention.

FIG. 12 shows a flow diagram of a computer-implemented
method of generating locality-sensitive hashes for detecting
malicious code 1n binary data in accordance with an embodi-
ment of the present invention.

FIG. 13 shows a tlow diagram of a computer-implemented
method of detecting malicious codes 1n binary data 1n accor-
dance with an embodiment of the present invention.

The use of the same reference label 1n different drawings
indicates the same or like components.

DETAILED DESCRIPTION

In the present disclosure, numerous specific details are
provided, such as examples of apparatus, components, and
methods, to provide a thorough understanding of embodi-
ments of the invention. Persons of ordinary skill in the art waill
recognize, however, that the invention can be practiced with-
out one or more of the specific details. In other instances,
well-known details are not shown or described to avoid
obscuring aspects of the mnvention.

Referring now to FIG. 1, there 1s shown a schematic dia-
gram ol a computer 100 that may be employed with embodi-
ments of the present invention. The computer 100 may be
employed as an endpoint computer system, a backend com-
puter system, and other computers described below. The com-
puter 100 may have fewer or more components to meet the
needs of a particular application. The computer 100 may
include one or more processors 101. The computer 100 may
have one or more buses 103 coupling 1ts various components.
The computer 100 may include one or more user input
devices 102 (e.g., keyboard, mouse), one or more data storage
devices 106 (e.g., hard dnive, optical disk, Unmiversal Serial
Bus memory), a display monitor 104 (e.g., liquid crystal
display, tlat panel monitor), a computer network interface 105
(e.g., network adapter, modem), and a main memory 108
(e.g., random access memory). The computer network inter-
face 105 may be coupled to a computer network 109, which in
this example includes the Internet.

The computer 100 1s a particular machine as programmed
with software modules 110. The software modules 110 com-
prise computer-readable program code stored non-transitory
in the main memory 108 for execution by the processor 101.
As an example, the software modules 110 may comprise a
malicious code detector when the computer 100 1s employed
as an endpoint computer system.

The computer 100 may be configured to perform 1ts func-
tions by executing the software modules 110. The software
modules 110 may be loaded from the data storage device 106
to the main memory 108. An article of manufacture may be
embodied as computer-readable storage medium including
instructions that when executed by the computer 100 causes
the computer 100 to be operable to perform the functions of
the software modules 110.

FIG. 2 schematically shows a system for detecting mali-
cious codes 1n accordance with an embodiment of the present

US 9,361,458 Bl

3

invention. In the example of FIG. 2, the system 1ncludes a
backend computer system 210 and an endpoint computer
system 215. The endpoint computer system 215 and the back-
end computer system 210 may communicate with each other
and with other computers, such as computer systems 212,
over a computer network, which may include the Internet.
The endpoint computer system 215 may comprise one or
more computers for detecting malicious codes by, for
example, running a malicious code detector 230.

As 1s well-known, a machine language instruction (also
known as “binary struction”) 1s an 1nstruction that 1s
directly executed by the computer’s processor. An assembly
language instruction 1s a more human-readable form of a
machine language instruction. An operation code (hereimnafter
“opcode”) 1s the portion of a machine language instruction or
assembly language 1instruction that specifies the operation to
be performed by the processor.

In one embodiment, the endpoint computer system 215
detects malicious codes, such as a sequence ol malicious
machine language instructions, by receiving a sequence of
machine language mstructions from files, main memory, etc.,
disassembling the machine language nstructions into assem-
bly language 1nstructions, normalizing the operation codes of
the assembly language istructions, forming groups of nor-
malized opcodes of the assembly language instructions, and
generating a locality-sensitive hash for each group of normal-
1zed opcodes. In one embodiment, a group of normalized
opcodes comprises normalized opcodes of assembly lan-
guage 1nstructions of a subsequence of machine language
instructions. Subsequences of the sequence of machine lan-
guage istructions may be separated by a delimiter, which
may comprise a predetermined machine language nstruc-
tion. To detect malicious codes, the locality-sensitive hashes
of the sequence of machine language instructions may be
compared to locality-sensitive hashes of known malicious
sequences of machine language instructions, 1.e., known
malicious codes.

In one embodiment, the malicious code detector 230 1s
implemented 1n software. As can be appreciated, the mali-
cious code detector 230 may also be implemented in hard-
ware (e.g., application specific integrated circuit, hardwired
logic circuits) or combination of hardware and soitware. As
shown 1n FIG. 3, the malicious code detector 230 may com-
prise a hash generator 250, detection patterns 232, a hash list
233, and a hash comparator 234. The components of the
malicious code detector 230 may comprise software modules
executed by the processor of the endpoint computer system
215 and stored 1n computer-readable storage medium, such as
main memory.

In one embodiment, the hash generator 250 generates a
locality-sensitive hash for each subsequence of a sequence of
machine language instructions. In one embodiment, the
sequence of machine language instructions are stored 1n an
input buifer 235. The input butfer 235 and a temporary butifer
236 may comprise pre-allocated locations 1n main memory,
for example. In general, the sequence of machine language
instructions may be from a file, memory, and binary buffers.
A group of normalized opcodes of a subsequence of the
sequence of machine language instructions may be collected
in the temporary butler 236. A locality-sensitive hash may be
generated for the group of normalized opcodes 1n the tempo-
rary buifer 236.

The detection patterns 232 comprise patterns and rules for
detecting malicious codes. In one embodiment, a detection
pattern 232 specifies one or more locality-sensitive hashes of
known malicious codes that when all found 1n binary data,

5

10

15

20

25

30

35

40

45

50

55

60

65

4

such as a sequence ol machine language nstructions, indicate
presence ol malicious code 1n the binary data.

A locality-sensitive hash of known malicious code 1s also
referred to herein as a “reference locality-sensitive hash.” A
locality-sensitive hash of binary data being evaluated for
malicious code 1s also referred to herein as a “target locality-
sensitive hash.” The hash comparator 234 compares a target
locality-sensitive hash to a reference locality-sensitive hash
to determine 1f the target and reference locality-sensitive hash
match, 1.e., 1dentical locality-sensitive hashes. In one embodi-
ment, binary data 1s deemed to be malicious code 1f and only
il all of the reference locality-sensitive hashes of a particular
detection pattern 232 have matching locality-sensitive hashes
in the binary data.

The hash list 233 may comprise a listing ol reference
locality-sensitive hashes of all of the detection patterns 232 1n
the endpoint computer system 215. The hash list 233 1s
optional but speeds up the process of matching target locality-
sensitive hashes with reference locality-sensitive hashes by
providing a single listing to be checked. Otherwise, a target
locality-sensitive hash will have to be checked against every
detection pattern 232. More specifically, if a target locality-
sensitive hash does not have a matching reference locality-
sensitive hash in the hash list 233, the target locality-sensitive
hash 1s not 1n any of the detection patterns 232 and may thus
be dropped from further processing.

FIG. 4 shows a tlow diagram of an example operation of the
hash generator 250 1n accordance with an embodiment of the
present invention. In the example of FIG. 4, the hash genera-
tor 250 comprises a disassembler 251, a normalizer 252, and
a hash calculator 253.

As 1s well-known, an assembler translates (“assembles™)
an assembly language instruction into a machine language
istruction; a disassembler performs the opposite function,
which 1s to translate (“disassembles”) a machine language
instruction mto an assembly language instruction. In the
example of FIG. 4, the disassembler 251 disassembles a
machine language instruction into an equivalent assembly
language instruction. More specifically, binary data compris-
ing a sequence ol machine language instructions may be
stored 1n the input butfer 235. The disassembler 251 recetves
a machine language instruction from the input butler 235 (see
arrow 261) and disassembles the machine language instruc-
tion 1nto an assembly language instruction (see arrow 262).
The normalizer 252 recerves the assembly language mstruc-
tion, normalizes the opcode of the assembly language mnstruc-
tion, and stores the normalized opcode in the temporary
builer 236 (see arrow 263). In one embodiment, the normal-
1zed opcodes are stored in the temporary buffer 236 1n the
same order that they appear 1n the sequence of machine lan-
guage instructions.

FIG. 5 shows an example sequence of machine language
instructions stored 1n consecutive memory locations
004010AC to 00401124 of the input butler 235. Also shown
in FIG. 5 are the machine language instructions (e.g., “B8
FDO00000” 1n memory location 004010AC) and equivalent
assembly language instructions (e.g., “MOV EAX, OFD”).
The sequence of machine language instructions shown 1n
FIG. 5 1s for the Inte]™ x86 processor. As can be appreciated,
embodiments of the present invention may also be employed
to detect malicious codes that run on other processors.

In the example of FIG. 5, the sequence of machine lan-
guage structions 1s divided into three subsequences. The
first subsequence comprises consecutive machine language
istructions stored in memory locations 004010AC to
004010CF, the second subsequence comprises consecutive
machine language instructions stored 1n memory locations

US 9,361,458 Bl

S

004010D0 to 004010F2, and the third subsequence com-
prises consecutive machine language instructions stored in
memory locations 004010F3 to 00401124. Each of the sub-

sequences 1s delimited by a return instruction, which has the
opcode “C3” 1n machine language or “RETN” 1n assembly
language. Generally speaking, a delimiter marks the end of a
subsequence of machine language instructions. There may be
more than one delimiter and a delimiter may be any predeter-
mined machine language instruction other than a return
instruction.

FIG. 6 shows the first subsequence of the machine lan-
guage instructions shown in FIG. 5. In the example of FIG. 6,
the subsequence includes push instructions with the opcodes
“50” and “FF35” 1n machine language and “PUSH EAX” and
“PUSH DWORD PTR,” respectively, 1n assembly language.
It 1s to be noted that the opcodes “PUSH EAX™ and “PUSH
DWORD PTR” have different binary representations (i.e.,
different representations in machine language) but are the
same type of instruction, which 1s a push mstruction. In one
embodiment, the normalizer 252 normalizes these two differ-
ent, but functionally similar push instructions by assigning
the same normalized opcode, which 1s sitmply “PUSH” 1n the
example of FIG. 6, to both “PUSH EAX” and “PUSH
DWORD PTR”. That 1s, the normalizer 252 normalizes the
opcodes of different variants of a type of instruction into a
common normalized opcode 1n assembly language. Advan-
tageously, this allows the malicious code detector 230 to
detect slightly different versions of malicious codes, such as
when the cybercriminal modifies a malicious code by replac-
ing a machine language nstruction with a different but func-
tionally similar machine language instruction.

In one embodiment, the normalizer 252 normalizes an

opcode of an assembly language 1nstruction by only taking
the first word of the opcode (e.g., “PUSH”) and not using the
rest of the opcode 1n the normalized opcode. This results in

the opcodes “PUSH EAX” and “PUSH DWORD PTR” being
both normalized into “PUSH”. In this embodiment,
“PUSHAD” and “PUSH EDI” will be different opcodes (i.e.,
one 1s “PUSHAD” and the other 1s “PUSH”) even after nor-
malization because they have different first words.

Referring back to FIG. 4, the process of disassembling a
machine language instruction into an assembly language
instruction, normalizing the opcode of the assembly language
instruction, and storing the normalized opcode 1n the tempo-
rary buller 236 are repeated until the end of the subsequence
(see arrow 265). In other words, the hash generator 250 con-
tinues with receiving the next machine language instruction
of the subsequence, disassembling the machine language
instruction, normalizing the machine language instruction,
etc. for the rest of the subsequence. As explained, the end of
a subsequence may be marked by a predetermined delimaiter,
such as the machine language instruction with the opcode
“C3” in the example of FIG. 5. More specifically, normalized
opcodes are generated and stored in the temporary butler 236
for all machine language 1nstructions of a subsequence.

The hash calculator 253 recerves the normalized opcodes
for the subsequence stored in the temporary butier 236 (see
arrow 266) and calculates a hash of the normalized opcodes to
generate a locality-sensitive hash for the normalized opcodes
(see arrow 267). The hash calculator 253 may generate a
locality-sensitive hash using any suitable hashing algorithm,
such as cyclic redundancy check (CRC). The generated hash
1s locality-sensitive because of the normalization performed
on the opcodes. More particularly, the generated hash 1s local-
ity-sensitive because the same hash can be used to detect

10

15

20

25

30

35

40

45

50

55

60

65

6

several, different subsequences of malicious machine lan-
guage instructions that vary slightly (e.g., by code shifting or
simple code substitution).

After generating the locality-sensitive hash for the normal-
1zed opcodes 1n the temporary butter 236, the hash generator
250 clears the temporary buller 236 and starts on processing
the next subsequence of machine language instructions to
generate their corresponding locality-sensitive hash (see

arrow 268).

FIG. 7 graphically illustrates an example of generating a
locality-sensitive hash for a subsequence of machine lan-
guage instructions 1n accordance with an embodiment of the
present invention. In the example of FIG. 7, the subsequence
of machine language instructions 1s 1n consecutive memory

locations 00453820 to 00453830 of the input butler 235. The

subsequence of machine language instructions 1s delimited
by a machine language instruction having the opcode “EB”,

which 1s a jump instruction. The opcodes of the assembly
language 1nstructions, which are “PUSHAD”, “MOV”,
“LEA”, “PUSH”, “OR”, and “JMP” are normalized and

stored 1n the same sequential order in the temporary buffer
236 (see arrow 301). A locality-sensitive hash 1s then calcu-
lated for the normalized opcodes, which in this example 1s
0x4777BE27 using the CRC hash algorithm (see arrow 302).

FIG. 8 graphically illustrates another example of generat-
ing a locality-sensitive hash for another subsequence of
machine language instructions in accordance with an
embodiment of the present invention. In the example of FIG.
8, the subsequence of machine language instructions 1s 1n
consecutive memory locations 004A5C20 to 004A3C30 of
the mput butfer 235. The subsequence of machine language
instructions 1s delimited by the same predetermined machine
language instruction having the opcode “EB”. The opcodes of
the assembly language istructions of FIG. 8, which are
“PUSHAD”, “MOV”, “LEA”, “PUSH”, “OR”, and “JMP”
are normalized and stored 1n the same sequential order 1n the
temporary buffer 236 (see arrow 303). A locality-sensitive
hash 1s then calculated for the normalized opcodes, which in
the example of FIG. 8 1s 0x4777BE27 using the CRC algo-
rithm (see arrow 304). Note that this 1s the same as the local-
ity-sensitive hash of the subsequence of FIG. 7. Further note
that 1n the example of FIGS. 7 and 8, a locality-sensitive hash
1s calculated only from the first word of the opcodes of the
assembly language instructions; parameters and other parts of
the assembly language instructions are not included 1n the
calculation of the locality-sensitive hash.

Comparison of the subsequences of machine language
instructions of FIGS. 7 and 8 reveals that the two subse-
quences are different. For example, the opcode “LEA” 1n the
subsequence of FIG. 7 has an operand (see FIG. 7, see 305)
that 1s different from that of the opcode “LEA” in the subse-
quence of FIG. 8 (see FIG. 8, see 306). However, despite these
differences, embodiments of the present invention allow for
generation of the same locality-sensitive hash for both sub-
sequences. More particularly, the subsequences of FIGS. 7
and 8 have different binary representations in the input butfer
but have 1dentical assembly language opcode representation
in the temporary buifer. This means that, in embodiments of
the present invention, a single locality-sensitive hash may be
generated to cover slightly different versions of malicious
codes.

FIG. 9 shows a detection pattern 232-1 1n accordance with
an embodiment of the present invention. The detection pat-
tern 232-1 1s a particular embodiment of the detection pat-
terns 232. In the example of FIG. 9, the detection pattern
232-1 includes 3 locality-sensitive hashes, which are labeled

US 9,361,458 Bl

7
as HASH 1, HASH 2, and HASH 5. As can be appreciated, a
detection pattern 232 may

have more or fewer locality-sensi-
tive hashes.

The locality-sensitive hashes of the detection pattern 232-1
are reference locality-sensitive hashes 1n that they are gener-
ated from known malicious code. Generally speaking, a
detection pattern 232 includes one or more hashes that when
found in the same sequence of machine language instructions,
in any order, indicate presence ol malicious code. For
example, when binary data comprising a sequence of
machine language instructions has locality-sensitive hashes
that match HASH 1, HASH 2, and HASH 3 of the detection
pattern 232-1, the sequence of machine language instructions
may be deemed to be malicious code.

Generally speaking, the locality-sensitive hashes of a
detection pattern 232 may be generated from known mali-
cious codes in the same manner explained above. For
example, a hash generator 250 running on the backend com-
puter system 210 may generate locality-sensitive hashes for a

sequence of known malicious machine language 1instructions.
The locality-sensitive hashes may be employed as references
and used 1n detection patterns 232 for detecting the malicious
machine language instructions. The reference locality-sensi-
tive hashes for all detection patterns 232 may be stored as a
hash list 233. The backend computer system 210 may pack-
age the hash generator 250, detection patterns 232, hash list
233, and hash comparator 234 as part of a malicious code
detector 230 that 1s distributed to subscribing endpoint com-
puter systems 213.

FI1G. 10 graphically 1llustrates detection of malicious codes
in binary data in accordance with an embodiment of the
present invention. In the example of FIG. 10, the samples
labeled as SAMPLE A, SAMPLE B, SAMPLE C, and
SAMPLE D each comprises binary data, which may be
obtained from files, memory, buffers, and other computer-
readable medium. The binary data may comprise a sequence
of machine language instructions. The operation of the
example of FIG. 10 may be performed by the endpoint com-
puter system 215 by running the malicious code detector 230.

In the example of FIG. 10, locality-sensitive hashes are
generated for each of the samples SAMPLE A, SAMPLE B,
SAMPLE C, and SAMPLE D. In the example of FIG. 10, the
locality-sensitive hashes 351 consisting of locality-sensitive
hashes HASH 1, HASH 2, HASH 3, HASH 4, and HASH 5
are calculated from SAMPLE A; the locality-sensitive hashes
352 consisting of locality-sensitive hashes HASH 2, HASH 5,
HASH 4, HASH 1, and HASH 3 are calculated from
SAMPLE B; the locahty sensitive hashes 353 consisting of
locality-sensitive hashes HASH 1, HASH 2, HASH 4, and
HASH 5 are calculated from SAMPLE C; and the locality-
sensitive hashes 354 consisting of locality-sensitive hashes
HASH 6, HASH 1, HASH 2, HASH 7, HASH 5, and HASH
8 are calculated from SAMPLE D. As before, each locality-
sensitive hash 1s for a subsequence of the samples.

The hash list 360 shows the reference locality-sensitive
hashes of the detection pattern 232-1 and other detection
patterns employed by the malicious code detector. The hash
list 360 includes the reference locality-sensitive hashes
HASH 1, HASH 2, and HASH 5 of the detection pattern
232-1 and other reference locality-sensitive hashes of other
detection patterns.

In the example of FIG. 10, the matching hashes 361-364
show the locality-sensitive hashes of SAMPLE A, SAMPLE
B, SAMPLE C, and SAMPLE D, respectively, that match the
reference locality-sensitive hashes of the detection pattern
232-1. As shown 1n FIG. 10, the matching hashes 361 show
that the SAMPLE A has locality-sensitive hashes that match

10

15

20

25

30

35

40

45

50

55

60

65

8

all of the reference locality-sensitive hashes of the detection
pattern 232-1. It 1s to be noted that the matching locality-
sensitive hashes do not have to be 1n any particular order.
Similarly, the matching hashes 362-364 also show that
SAMPLE B, SAMPLE C, and SAMPLE D have locality-

sensitive hashes that match the reference locality-sensitive

hashes of the detection pattern 232-1. Accordingly, the mali-
cious code detector 230 deems the SAMPLE A, SAMPLE B,

SAMPLE C, and SAMPLE D to be malicious code, which in

this example 1s a sequence of malicious machine language
instructions.

FIG. 11 graphically illustrates detection of malicious codes
in binary data in accordance with an embodiment of the
present invention. The example of FIG. 11 1llustrates the same

operation as 1 FIG. 10, except that SAMPLE E and
SAMPLE F are different from SAMPLE A, SAMPLE B,
SAMPLE C, and SAMPLE D. In the example of FIG. 11, the

locality-sensitive hashes 371 are from SAMPLE E and the

locality-sensitive hashes 372 are from SAMPLE F. The hash
list 360 1s the same as 1n the example of FIG. 10, which

includes the reference locality-sensitive hashes of the detec-
tion pattern 232-1 and reference locality-sensitive hashes of

other detection patterns. As shown in FIG. 11, SAMPLE E
has HASH 2 and HASH 5, but otherwise cannot meet the
requirements of the detection pattern 232-1 because
SAMPLE E has no HASH 1 (see matching hashes 391). The
matching hashes 391 1s an example of a partial match.
SAMPLE F does not have any locality-sensitive hash that
matches any of the reference locality-sensitive hashes of the
detection pattern 232-1 (see matching hashes 392). The
matching hashes 392 1s an example of a no match. In both
partial and no match cases, the sample 1s not deemed to be

malicious. More specifically, the malicious code detector 230
does not deem SAMPLE E or SAMPLE F to be malicious

code.

FIG. 12 shows a flow diagram of a method of generating,
locality-sensitive hashes for detecting malicious code 1n
binary data in accordance with an embodiment of the present
invention. The method of FIG. 12 1s explained using previ-
ously-described components for ease of 1llustration. As can
be appreciated, other suitable components may also be
employed without detracting from the merits of the present
invention.

In the example of FIG. 12, the endpoint computer system
215 reads a machine language mstruction from a sequence of
machine language instructions stored in the mput builer 235
(step 401). The endpoint computer system 215 disassembles
the machine language 1nstruction into an assembly language
istruction (step 402). The endpoint computer system 215
normalizes the opcode of the assembly language 1nstruction
(step 403). The endpoint computer system 215 groups
together normalized opcodes of each subsequence of the
sequence of machine language instructions (step 404). Each
subsequence may be delimited by a predetermined delimiter,
such as a particular machine language instruction. The nor-
malized opcodes of a subsequence may be grouped together
in the temporary buffer 236, which can be cleared after the
locality-sensitive hash of the group of normalized opcodes
has been calculated for the subsequence (step 403). The end-
point computer system 215 may continue to read a machine
language nstruction from the sequence of machine language
instructions until a locality-sensitive hash has been generated
for each subsequence of the sequence of machine language
instructions. The method of FIG. 12 may be employed 1n the
backend computer system 210 to generate reference locality-
sensitive hashes of detection rules 232 and in the endpoint

T

US 9,361,458 Bl

9

computer system 2135 to generate target locality-sensitive
hashes of binary data being evaluated for malicious code.

FIG. 13 shows a flow diagram of a method of detecting
malicious codes 1n binary data in accordance with an embodi-
ment of the present mvention. The method of FIG. 13 1s
explained using previously disclosed components for ease of
illustration. Other suitable components may also be
employed without detracting from the merits of the present
ivention.

In the example of FIG. 13, the endpoint computer system
215 generates a locality-sensitive hash for each subsequence
ol a sequence of machine language instructions (step 411) 1n
accordance with the method of FIG. 12, for example. The
endpoint computer system 215 identifies a locality-sensitive
hash of the sequence of machine language instructions that 1s
present 1n the hash list 360 that includes the reference local-
ity-sensitive hashes of detection patterns 232 (step 412). The
endpoint computer system 2135 determines 11 1dentified local-
ity-sensitive hashes of the sequence of machine language
instructions match all reference locality-sensitive hashes of
one or more detection patterns 232 (step 413). The endpoint
computer system 215 deems the sequence of machine lan-
guage 1nstructions to be malicious code when its locality-
sensitive hashes match all reference locality hashes of one or
more detection patterns 232.

Methods and systems for detecting malicious codes in
binary data have been disclosed. While specific embodiments
of the present invention have been provided, it 1s to be under-
stood that these embodiments are for illustration purposes
and not limiting. Many additional embodiments will be
apparent to persons of ordinary skill in the art reading this
disclosure.

What is claimed 1s:

1. A computer-implemented method comprising:

reading a first machine language instruction from a
sequence ol machine language 1nstructions;

disassembling the first machine language instruction into a
first assembly language instruction;

reading a second machine language instruction from the
sequence of machine language 1nstructions;

disassembling the second machine language instruction
into a second assembly language instruction;

forming a first group of opcodes for a first subsequence of
the sequence of machine language instructions, the first
group of opcodes including at least a first opcode of the
first assembly language 1nstruction and a second opcode
of the second assembly language istruction;

generating a first locality-sensitive hash for the first group
of opcodes; and

determining whether the sequence of machine language
instructions comprises malicious code by comparing the
first locality-sensitive hash to a reference locality sensi-
tive hash of a known malicious sequence of machine
language 1nstructions,

wherein the first machine language instruction and the
second machine language 1nstruction are part of a sub-
sequence ol the sequence of machine language instruc-
tions,

wherein the subsequence 1s delimited by a third machine
language instruction that marks an end of the subse-
quence.

2. The method of claim 1, further comprising;

consulting a listing of reference locality-sensitive hashes of
known malicious sequences ol machine language
instructions.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

3. The method of claim 1, wherein generating the first
locality-sensitive hash for the first group of opcodes com-
Prises:

normalizing the first opcode of the first assembly language
instruction and the second opcode of the second assem-
bly language instruction prior to including the first
opcode of the first assembly language instruction and the
second opcode of the second assembly language instruc-
tion 1nto the first group of opcodes; and

calculating a hash of the first group of opcodes.

4. The method of claim 3, wherein the first assembly lan-
guage instruction and the second assembly language instruc-
tion have different binary representations, and normalizing
the first opcode of the first assembly language instruction and
the second opcode of the second assembly language 1nstruc-
tion comprises assigning a same normalized opcode to both
the first opcode of the first assembly language instruction and
the second opcode of the second assembly language nstruc-
tion.

5. The method of claim 1, wherein the first machine lan-
guage instruction and the second machine language nstruc-
tion are read from an mput butler containing the sequence of
machine language 1nstructions.

6. The method of claim 1, further comprising:

generating a second locality a locality-sensitive hash for a
second group of opcodes of assembly language nstruc-
tions, wherein the first locality-sensitive hash and the
second locality-sensitive hash have matching reference
locality-sensitive hashes 1n a same detection pattern for
detecting malicious codes.

7. A system comprising:

an endpoint computer system that disassembles a first
machine language struction into a first assembly lan-
guage mstruction, disassembles a second machine lan-
guage 1nstruction into a second assembly language
istruction, forms a first group of opcodes for a first
subsequence of a sequence ol machine language instruc-
tions that includes at least a first opcode of the first
assembly language instruction and a second opcode of
the second assembly language instruction, generates a
first locality-sensitive hash for the first group of
opcodes, and determines whether the sequence of
machine language instructions comprises malicious
code by comparing the first locality-sensitive hash to a
first reference locality sensitive hash of a known mali-
cious sequence of machine language instructions,

wherein the endpoint computer system forms the first
group ol opcodes 1n a temporary buller and clears the
temporary buller after generating the first locality-sen-
sitive hash for the first group of opcodes in the temporary
butfer.

8. The system of claim 7, further comprising:

a backend computer system that provides the endpoint
computer system a malicious code detector for deter-
mining whether the sequence of machine language
instructions comprises malicious code.

9. The system of claim 7, wherein the endpoint computer
system reads the first machine language instruction and the
second machine language instruction from an mput buffer
containing the sequence of machine language instructions.

10. The system of claim 7, wherein the endpoint computer
system generates the first locality-sensitive hash for the first
group of opcodes by normalizing the first opcode of the first
assembly language instruction and the second opcode of the
second assembly language instruction prior to including the
first opcode of the first assembly language instruction and the

US 9,361,458 Bl

11

second opcode of the second assembly language 1nstruction
into the first group of opcodes and calculating a hash of the
first group of opcodes.

11. The system of claim 7, wherein the first assembly
language instruction and the second assembly language
instruction have difierent binary representations, and the end-
point computer system normalizes the first opcode of the first
assembly language 1nstruction and the second opcode of the
second assembly language instruction by using a same nor-
malized opcode for both the first opcode of the first assembly
language 1nstruction and the second opcode of the second
assembly language 1nstruction.

12. The system of claim 7, wherein the endpoint computer
system reads the first machine language instruction and the
second machine language instruction from an input buflfer
containing the sequence of machine language instructions.

13. A computer-implemented method comprising:

disassembling a plurality of machine language instructions

of binary data into a plurality of assembly language

instructions;

10

15

12

normalizing opcodes of the plurality of assembly language
instructions nto normalized opcodes, wherein at least
one of the normalized opcodes have at least two different
binary representations;

calculating a hash of the normalized opcodes to generate a
locality-sensitive hash; and

comparing the locality-sensitive hash to reference locality-
sensitive hashes of known malicious machine language
instructions to determine whether the binary data com-
prises malicious code,

wherein the plurality of machine language instructions 1is
from a subsequence of a sequence of machine language
instructions of the binary data,

wherein the subsequence 1s delimited from other subse-
quences ol the sequence of machine language nstruc-
tions of the binary data by a predetermined machine
language instruction.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

