12 United States Patent

Booman et al.

US009361154B2

US 9,361,154 B2
*Jun. 7, 2016

(10) Patent No.:
45) Date of Patent:

(54) TUNABLE COMPUTERIZED JOB
SCHEDULING
(71)

Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Gordon Booman, Berlin, MA (US);
David Kalmuk, Toronto (CA); Torsten
Steinbach, Holzgerlingen (DE)

Inventors:

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Notice:

(%)

This patent 1s subject to a terminal dis-
claimer.

(21) 14/501,171

(22)

Appl. No.:
Filed: Sep. 30, 2014

Prior Publication Data

US 2016/0092269 Al Mar. 31, 2016

(65)

Int. CI.
GO6F 9/455
GO6F 9/46
GO6F 9/48
GO6F 9754
GO6EF 9/50

U.S. CL
CPC

(51)
(2006.01
(2006.01
(2006.01
(2006.01

(2006.01

L L

(52)
.............. GO6F 9/4887 (2013.01); GOGF 9/542
(2013.01); GOSF 9/4881 (2013.01); GO6F

9/505 (2013.01)

(38) Field of Classification Search
CPC GO6F 9/48-9/4893
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,714,960 Bl 3/2004 Bitar et al.
7,360,216 B2 4/2008 Spoltore et al.
(Continued)
OTHER PUBLICATIONS

Jacek Kobus, Completely Fair Scheduler and its tunning, 2009, pp.
1-8.%
(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Mongbao Nguyen

(74) Attorney, Agent, or Firm — Robert C. Bunker; Steven
C. Kurlowecz

(57) ABSTRACT

A computer-implemented method for scheduling a set of jobs
executed 1 a computer system can include determining a
workload-time parameter for a set of at least one job. The
workload-time parameter can relate to execution-time param-
cters for the set of at least one job. The method can 1include
determining a schedule tuning parameter for the set of at least
one job, the schedule tuning parameter based on the work-
load-time parameter. The method can include generating a
scheduling factor for each job 1n the set, the scheduling factor
generated based on the schedule tuning parameter. The
method can include scheduling the set of at least one job

based on the scheduling factor.

10 Claims, 6 Drawing Sheets

)‘— 600
(Start)

Y < 602
Receive a set of jobs

Y < 604

Determine workioad-
time parameter for the
set of jobs

YES

Y 5 808

Workload-time
parameter outside of
pper thresholg

Workload-time
parameter outside of
ower thresholg

NO

606

610

YES

g 612

Set schedule tuning
parameter to a first
value

614 Y
Set schedule tuning Set schedule tuning
parameter to third
value

parameter to a sacond
value

'

5 616

Generate scheduling
factor based on the
schedule tuning
paramter

-l

Y

5618

Schedule the set of
jobs based on the
schedule tuning
parameter

End

US 9,361,154 B2
Page 2

(56)

8,037,475
8,176,490

8,180,943
8,214,836
8,245,234
8,490,108
8,555,281

2002/0078121

2007/0136729

2008/0022284

2008/0066070

2008/0178180

2008/0271030

2009/0222831

2011/0225591

2012/0066683
2012/0144394

2013/0104140

2013/0139170

2013/0312006

2014/0026144

2014/0130056

2014/0259018

2014/0344814

References Cited

U.S. PATENT DOCUMENTS

Bl *
Bl *
Bl
Bl
B2
B2
Bl
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*

Al
Al*

Al*
Al*
Al*
Al*
Al*
Al*

Al*

10/20]
6/200

10/2011

5/2012

5/20]
7/20°
8/20]
7/20

b
b
b
b
b

2
2
2
3
3
2

6/2007

1/2008

3/2008

7/2008

10/2008

9/2009

9/2011

3/2012
6/2012

4/2013

5/2013

11/2013

1/2014

5/2014

9/2014

11/2014

Jackson GO6F 9/5027
709/224
Jacksoncooiin. GO6F 9/468
718/100
Priem
Markov
Krishnakumar et al.
Kikuchi
Van Dijk et al.
Ballantyne GO6F 9/4887
718/102
Neuman GO6F 9/4887
718/102
Cherkasova GO6F 9/4881
718/104
Markovcevnne.n. GO6F 9/4818
718/103
SPOINY ..ooovvvvvvnnnen. GO6F 9/4887
718/102
Herington GOO6F 9/4881
718/104
Schneider GO6F 9/4881
718/103
Wada GO6F 9/45533
718/103
Srinath
Prabhakar GO6F 9/4893
718/102
Mengooe. GO6F 9/5066
718/104
Prabhakar GO6F 9/4893
718/104
Hardman HO41. 67/1008
718/105
Pack ..oooovviviiinininnn, GO6F 9/505
718/105
Goodman GO6F 9/5044
718/104
Jam ..ooovvvveveeinnnnn, GO6F 9/4881
718/102
Jamjoom GOO6F 9/4881
718/101

GOO6F 11/3676
717/124

ttttttttttttttt

2014/0380279 Al* 12/2014 Bartley

OTHER PUBLICATIONS

Pinky Rosemarry, Grouping based job scheduling algorithm using
priority queue and hybrid algorithm 1n grid computing, 2012, pp.
1-11.%

Mario Pastorelli, Practical Size-based Scheduling for MapReduce
Workloads, 2013, pp. 1-12.*

Y1 Yao, Using a Tunable Knob for Reducing Makespan of
MapReduce Jobs in a Hadoop Cluster, 2013, pp. 1-8.*

Zhi-Feng Yu, Queue Waiting Time Aware Dynamic Workflow Sched-
uling in Multicluster Environments, 2010, pp. 1-10.*

Barman et al., “Dynamic Time Quantum in Shortest Job First Sched-
uling Algorithm (DTQSJF) for Unpredictable Burst Time of Pro-
cesses”, International Journal of Computer Science & Engineering
Technology (IJCSET), Mar. 2013, pp. 208-212, vol. 4, Issue 03,
ISSN: 2229-3345 hittp://www.1ycset.com/docs/IJCSET13-04-03 -
031 .pdf.

Kobus et al., “Completely Fair Scheduler and its tuningl™, 1-This
draft article 1s based on R.Szklarski’s M.S. thesis, Torun, 2009, 8
pages http://www.fizyka.umk.pl/~jkob/prace-mag/cts.pdf.
Tanenbaum, A., “Modern Operating Systems, Third Edition”,
Prentice Hall, Upper Saddle River, NJ, 2007. ISBN 0-13-600663-9,
© 2009 Pearson Education, Inc.

Unknown, “Chapter 14. Tuning the Task Scheduler”, SUSE Linux
Enterprise Server System Analysis and Tuning Guide, Jun. 25, 2012,
Copyright © 2006-2012 Novell, Inc. and contributors http://doc.
opensuse.org/products/draft/SLES/SLES-tuning sd__ draft/cha.
tuning.taskscheduler. html#sec.tuning.taskscheduler.cts.

Wang et al., “Preemptive ReduceTask Scheduling for Fair and Fast
Job Completion”, 10th International Conference on Autonomic
Computing (ICAC ’13), 2013, pp. 279-289, USENIX Association
http://0b4at6¢cdc210c5998459-
c0245¢5¢937cS5dedccaldf1764eccOb2f.r43.ci2.rackcdn.com/11771-
icacl3__wang O.pdf.

Booman et al., “Tunable Computerized Job Scheduling”, U.S. Appl.
No. 14/707,078, filed May 8, 2015.

List of IBM Patents or Patent Applications Treated as Related.

* cited by examiner

US 9,361,154 B2

Sheet 1 of 6

Jun. 7, 2016

U.S. Patent

Ol

1 Ol

(S)3DIA3A

1IVNA3LX4

14

(S)3DV4H3LNI
O/l

d41dvVAVv XdOMLAN

__.H1 1INN

ONISSI00dd

WJ1SAS
4OVd0O1S

9l

\

Ve AHOWaN 0€

/

AV 1dSIA

ve

8¢ H3AAYIAS/NILSAS ¥IALNAWOD |l

US 9,361,154 B2

Sheet 2 of 6

Jun. 7, 2016

U.S. Patent

US 9,361,154 B2

Sheet 3 of 6

Jun. 7, 2016

U.S. Patent

¢ Old

09
8/eM}JOS pue siempJeH
2JEM]OS
IONBG SWAISAS g5 s1eAIeg
alem)og uoneolddy Ecmomvm_m @SeUesSX ainpslyoly
osegele] yompeN PubpiomisN mmEEw @Em_ @S_m_ IS sswelulgn

U @ e mes] 1l 2

uonezijenuiA

Sjual|D suonedi|ddy sSYJOMm]aN abelolq STV E=Ta
[ENUIA |[BNUIA |[BNUIA [BNUIA [ENUIA
N O === o
—— 79

Jusawabeuep

Juswing pue
buluveld v1s

Buidld pue
SIN[TEENEETI

Juswisbeueln)
|DAST] 821G

BuluoIsSInold
92JN0S8Y

|E1NOH 195()

99

SPEOIHIOAA

Jusiabeuey

IWENNIE]G P
dopise(Buisssnoi- Buissao0ld uolesnp SPAISH] uonebIAeN
3lIqoN uonoesuel | . LUOOISSE|D) pue pue Buidde
renpin JuswidoeasQ
81EM]JOS

US 9,361,154 B2

\&

I~

&

-

E

e

P,

m Cl¥

< S3T1NATHDS FT19YNNL
I~

X 125%

= WILSAS ONILYHIdO

457
AJOWdN

U.S. Patent

¥ Ol

Olv

44z

(S)321A3A O/

a7

80t
JHOVO
90Y
dd1S10dd

v0P
3400 NdO
407
H0SS3I00dd
00t
NILSAS §3LNdNOD

U.S. Patent Jun. 7, 2016 Sheet 5 of 6 US 9,361,154 B2

LL
O —
-
O
LL]
=S 3
— O
N
-
L0
S < m
10 TS
S S
LL LL
ﬂ-
-
O
*:I'| N
- -
LO O

U.S. Patent Jun. 7, 2016 Sheet 6 of 6 US 9.361,154 B2

000
/)

602
Recelve a set of jobs
604

Determine workload-
time parameter for the
set of jobs

606

orkload-time
parameter outside of

YES pper thresholg

NO

610

orkload-time
parameter outside of
ower thresholc

603 612
Set schedule tuning Set schedule tuning Set schedule tuning
parameter to a first parameter to third parameter to a second
value value value

Generate scheduling

factor based on the
schedule tuning
paramter

018
Schedule the set of
jobs based on the
schedule tuning

parameter

FIG. 6

US 9,361,154 B2

1

TUNABLE COMPUTERIZED JOB
SCHEDULING

BACKGROUND

Aspects of the present disclosure relate to computerized
10b scheduling, and more specifically, to a tunable computer-
1zed job scheduling system.

Jobs are mstructions to a computer system which require a
response from the computer system. For example, a job could
include accessing information stored in a database to update
customer bank accounts to reflect debits and credits that
occurred during the day. The computer system could perform
the updating process 1n response to receiving the job. To
execute the instructions associated with jobs, the computer
system requires computing resources such as memory, pro-
cessing power, and other computer resources. Additionally,
time 1s required for those computing resources to execute the
10bs. The computer system can organize execution of the jobs
according to a scheduling protocol to manage various job
instructions.

SUMMARY

According to embodiments of the present disclosure, a
computer-implemented method for scheduling a set of jobs
executed 1n a computer system 1s disclosed. The method can
include providing a schedule tuning parameter for a set of at
least one job, the schedule tuning parameter relating to a
workload-time parameter for the set of at least one job. The
method can include generating a scheduling factor for each
10b 1n the set, the scheduling factor generated based on the
schedule tuning parameter. The method can include schedul-
ing the set of at least one job based on the scheduling factor.

In embodiments, the providing of the schedule tuming
parameter can include determining a workload-time param-
cter for a set of at least one job, the workload-time parameter
relating to execution-time parameters for the set of at least
one job. The method can include determining a schedule
tuning parameter for the set of at least one job, the schedule
tuning parameter based on the workload-time parameter.

Embodiments of the present disclosure are directed toward
a system for scheduling a set of jobs 1n a computerized job
scheduling system. The system can 1nclude a logic device
configured to receive a set of at least one job. The system can
include a tunable scheduler module configured to determine a
workload-time parameter for the set of at least one job. The
tunable scheduler module can be configured to determine a
schedule tuning parameter based on the workload-time
parameter and generate a scheduling factor based on the
schedule tuning parameter. The tunable scheduler module can
be configured to schedule each job in the set of atleast one job
based on the scheduling factor.

Embodiments of the present disclosure are directed toward
a computer program product for scheduling a set of jobs
executed 1n a computer system. The computer program prod-
uct can include a computer readable storage medium having
program 1nstructions embodied therewith. The program
istructions can be executable by a computer, to cause the
computer to determine a workload-time parameter for a set of
at least one job. The computer can be caused to determine a
schedule tuning parameter for the set of at least one job, the
schedule tuning parameter based on the workload-time
parameter. The computer can be caused to generate a sched-
uling factor for each job in the set, the scheduling factor
generated based on the schedule tuning parameter. The com-

10

15

20

25

30

35

40

45

50

55

60

65

2

puter can be caused to schedule the set of at least one job
based on the scheduling factor.

The above summary 1s not mntended to describe each 1llus-
trated embodiment or every implementation of the present
disclosure.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The drawings included 1n the present application are incor-
porated into, and form part of, the specification. They illus-
trate embodiments of the present disclosure and, along with
the description, serve to explain the principles of the disclo-
sure. The drawings are only illustrative of certain embodi-
ments and do not limit the disclosure.

FIG. 1 depicts a cloud computing node according to an
embodiment of the present disclosure.

FIG. 2 depicts a cloud computing environment according,
to an embodiment of the present disclosure.

FIG. 3 depicts abstraction model layers according to an
embodiment of the present disclosure.

FIG. 4 depicts a computer system for tunable scheduling of
a set of jobs according to embodiments of the present disclo-
sure.

FIG. 5A depicts a timeline for a set of jobs 1n a computer
system according to embodiments of the present disclosure.

FIG. 5B depicts a timeline for a set of jobs 1n a computer
system scheduled according to a relative latency protocol,
according to embodiments of the present disclosure.

FIG. 6 depicts a flowchart diagram of a computer-imple-
mented method for tunable scheduling of a set of jobs accord-
ing to embodiments of the present disclosure.

While the invention 1s amenable to various modifications
and alternative forms, specifics thereof have been shown by
way ol example 1n the drawings and will be described in
detail. It should be understood, however, that the intention 1s
not to limit the invention to the particular embodiments
described. On the contrary, the intention 1s to cover all modi-
fications, equivalents, and alternatives falling within the spirit
and scope of the invention.

DETAILED DESCRIPTION

Aspects of the present disclosure relate to computerized
10b scheduling, more particular aspects relate to a tunable
computerized job scheduling system. While the present dis-
closure 1s not necessarily limited to such applications, various
aspects of the disclosure may be appreciated through a dis-
cussion of various examples using this context.

While various numbers may be used to i1dentily same
named elements within disclosure, this practice 1s not
intended to limit the scope of the disclosure. Identified ele-
ments 1n one figure may be the same or substantially similar
to other same named elements 1n other figures.

Embodiments of the present disclosure are directed to a
computer system for tunable scheduling of a set of jobs.
Reterred to herein, jobs are instructions to a computer system,
such as a database management system, or other suitable
computer system which require a response from the computer
system. For example, a job could be a request to update a
database of customer account information with data from
various transactions which occurred that day. The computer
system could perform the update request response to recerv-
ing the job. In embodiments, the jobs can be batch jobs,
submitted to a system in batch/non-interactively. In certain
embodiments, the jobs can be submitted to the system 1nter-

US 9,361,154 B2

3

actively. In certain embodiments, the system can receive both
interactive and non-interactive jobs at the same time.

To execute the instructions associated with jobs, the com-
puter system requires computing resources including, but not
limited to, memory, processing power, and storage. Addition-
ally, time can be required for those computing resources to
execute the jobs. In some instances, the time 1t takes to
execute a particular job 1s dependent on the complexity of the
job and the volume of data mvolved. For example, a job
involving updating ten million bank accounts with transac-
tions for a day canrequire more time to execute in comparison
to a job 1nvolving updating a few thousand accounts. The total
time 1t takes a computer system to execute a particular job 1s
referred to herein as an execution-time parameter.

In embodiments, the computer system can allocate com-
puting resources among a set of jobs which are executed
concurrently. For example, the system could receive afirst job
requiring the computer system to execute a first application.
While the system 1s executing the application, the system
could receive a second job instruction to execute a second
application. In response to receiving the second job, the sys-
tem could allocate resources to execute the second job while
maintaining some resources to continue execution of the first
10b.

In some 1nstances, the greater the number of jobs executed
concurrently, the greater the computing resources required by
the computer system to execute those jobs. However, when
the system only has access to finite computing resources, too
many jobs can strain access to computing resources. This can
result 1n delayed job execution and can cause errors 1n the
computer system. For example, if the computer system 1s
executing a large number of jobs requiring total memory
resources to execute which exceed memory available to the
system, the system could experience slowdowns, crashes, or
other errors.

The computer system can use a scheduling protocol to
organize execution of a set of jobs 1n order to reduce slow-
downs, crashes, or other errors 1n the system due to reaching
resource limaits.

In embodiments, the system could utilize a first-in-first-out
(FIFO) protocol where the system executes jobs in order
based on a queue-time parameter, which represents how long
cach job has been waiting to be executed. For example, the
system operating under FIFO protocol can recetve a set of
j0bs and begin executing those jobs in descending order of the
queue-time parameter.

In embodiments, the system could utilize a shortest job first
(SJF) protocol where the system executes jobs based on the
execution-time parameter for each job. For example, the sys-
tem operating under the SJF protocol can receive a set of jobs
and begin executing those jobs in order of ascending of the
execution-time parameter for those jobs. In embodiments, 1f
additional jobs are recerved, the system can preempt and
re-queue a currently executing job 1f an additional job with a
smaller execution-time parameter than the estimated remain-
ing execution for the currently executing job.

In certain embodiments, the system could utilize a relative
latency (RL) protocol where the system executes jobs based
on a ratio of the queue-time parameter to the execution-time
parameter for each job. For example, the system operating
under the RL protocol can receive a set of jobs and begin
executing those jobs in order of descending of the ratio of
queue-time parameter to execution-time parameter.

The system can be configured to operate between the vari-
ous scheduling protocols based on preferences of a user. For
example, preferences could include providing “fairness™ 1n
executing jobs scheduled 1n the system, reducing system

10

15

20

25

30

35

40

45

50

55

60

65

4

complexity, reducing total computing resource use, and other
various preferences. Thus, the system could be configured to
operate according a particular scheduling protocol based on
how each scheduling protocol satisfied the user preferences.

For example, some users could adopt an opinion that user
preferences are accomplished in the system by executing jobs
in the sequence of arrival, 1.e. using the FIFO protocol as
described herein. For example, a user could determine that
FIFO protocol reduces system complexity and results 1n a
relatively fair ordering of jobs. However, some users could
consider the FIFO protocol to be unfair in some instances. For
example, a set of jobs with a large execution-time parameter
(“large jobs™) could consume a large amount of the available
resources in the system. Subsequently arriving jobs with a
small execution-time parameter (“small j0bs™) could have to
wait for a relatively long time before they are executed. The
small jobs have a higher relative latency impact (wait time
compared to execution-time) than large jobs. Some users
could consider this as failing to provide fairness between
different types of jobs 1n the system.

Some users could adopt an opimion that preferences are
satisfied by a system that executes jobs based on the execu-
tion-time parameter, 1.e. using the SJF protocol as described
herein. For example, when many of the jobs are small jobs,
executing jobs according to the execution-time parameter
could quickly finish execution those small jobs so that they do
not need to wait for longer jobs to be finished.

However, the SJF protocol can impose additional require-
ments on system capabilities to be able to hibernate the inter-
nal execution state of the job (e.g. allocated memory content)
so that the system becomes free for the other jobs. This can
increase complexity of the system. It can also require addi-
tional resources (typically storage on disks) to be consumed
for the duration of hibernated state of a job. Additionally, 1n
some 1nstances the SJF protocol could reduce fairness 1f a
steady 1ntlow of small jobs starves out the large jobs for a
significant period of time.

Some users could adopt an opimion that preferences are
satisfied by a system that executes jobs based on the RL
protocol as described herein. For example, jobs 1n the system
have a number of large jobs and small jobs, the RL protocol
can strike a balance between the FIFO protocol and SJF
protocol by accounting for both queue-time and execution-
time 1n the scheduling of jobs.

To satisty the various preferences of users 1n various cir-
cumstances the system could be configured for tunable sched-
uling of jobs. As described herein, because certain scheduling
protocols can be preferred based on user preferences, the
characteristics of the jobs being scheduled, and other factors,
and because those factors can change inreal time, a system for
tunable scheduling can allow for the scheduling protocol to be
adapted based on those characteristics.

A system for tunable scheduling can be configured to
schedule a set of at least one job based on a scheduling factor.
For example, the system can be configured to generate a
scheduling factor for each job in the set and schedule the jobs
based on the scheduling factor. The scheduling factor 1s a
value assigned to each job for use 1n scheduling and can be
based upon factors such as a queue-time parameter, the
execution-time parameter and a schedule tuning parameter. In
embodiments, the queue-time parameter 1s the length of time
ajob has been waiting 1n a system prior to being executed. The
execution-time parameter 1s the total time it takes a computer
system to execute a particular job. The schedule tuning
parameter represents a selection by the system or by a user for
how the system will generate the scheduling factor. In
embodiments, the system could order the jobs 1n ascending

US 9,361,154 B2

S

order according to the scheduling factor. In certain embodi-
ments, the system could schedule the jobs descending order
according to the scheduling factor.

In embodiments, the scheduling factor 1s generated for
cach job according to an equation. For example, 1n embodi-
ments, the scheduling factor 1s generated for each job 1n the
set of at least one job according to the following equation:

ot T
SF =

Where QT 1s the queue-time parameter for each job, TP 1s
the schedule tuning parameter for the set of at least one job,
and ET 1s the execution-time parameter for each job. In cer-
tain embodiments, the scheduling factor can be generated
based on other suitable equations depending upon the prefer-
ences of the user.

In embodiments, the value of the schedule tuning param-
cter configures the equation used to generate the scheduling
factor. For example, 1n the equation, the value of the schedule
tuning parameter TP determines how the scheduling factor SF
1s calculated. If the schedule tuning TP value 1s equal to -1,
then the equation becomes:

I/ET

With the scheduling factor calculated in this manner, the
system will schedule jobs based on the execution-time param-
cter. In embodiments where the system schedules the jobs 1n
descending order of the scheduling factor value, the system
will operate according to the SIJF protocol.

If the schedule tuning value TP 1s equal to O then the
equation becomes:

QT

With the scheduling factor calculated 1n this manner, the
system will schedule jobs based on the queue-time parameter.
In embodiments where the system schedules the jobs 1n
descending order of the scheduling factor value, the system
will operate according to the FIFO protocol.

If the schedule tuning value TP i1s equal to 1 then the
equation becomes:

QT/ET

With the scheduling factor calculated in this manner, the
system will schedule jobs based on the ratio of the queue-time
parameter to the execution-time parameter. In embodiments
where the system schedules the jobs 1n descending order of
the scheduling factor value, the system will operate according,
to the RL protocol. In embodiments, the scheduling factor can
be calculated by various different equations depending upon
the preferences of the user.

In embodiments, the system can be configured to deter-
mine the value of the schedule tuning parameter TP based on
a workload-time parameter. The workload-time parameter 1s
a parameter describing the set of jobs based on the execution-
time parameters for the individual jobs in the set. For
example, 1n embodiments, the workload-time parameter 1s
the average of each of the execution-time parameters in the set
ol jobs. In certain embodiments the workload-time parameter
could be the median execution-time parameter or the mode of
the execution-time parameters.

As described, the workload-time parameter can describe
the set of jobs based on the execution-time parameters for that
set of jobs. For example, a set of jobs for an analytics type
workload could have a large number of jobs 1n the set with a

10

15

20

25

30

35

40

45

50

55

60

65

6

large execution-time parameter. In embodiments, this set of
jobs would have a large workload-time parameter. As
described herein, a FIFO protocol could be preferred 1n this
instance. A set of jobs for short term queries could have a large
number of jobs 1n the set with a small execution-time param-
cters. In embodiments, this set of jobs would have a small
workload-time parameter. As described herein, a SJF proto-
col could be preferred in that instance. A workload-time
parameter which 1s neither large nor small could describe a
mixed workload of jobs which contains a number of large
execution-time jobs and small execution-time jobs. As
described herein, the RL protocol could be preferred 1n that
instance.

In embodiments, to determine the schedule tuning param-
cter, an upper threshold could be associated with a large
workload-time parameter and a lower threshold could be
associated with small workload-time parameter. In embodi-
ments, 11 the workload-time parameter 1s outside of the upper
threshold, the schedule tuning parameter 1s set to a first value
which configures the system to operate according to a FIFO
protocol. For example, in a system using the equation
described herein to determine the scheduling factor, the
schedule tuning parameter could be set to O 1n response to
determining that the workload-time parameter i1s outside of
the upper threshold. In embodiments, 11 the workload-time
parameter 1s outside of the lower threshold, the schedule
tuning parameter 1s set to a second value that configures the
system to operate according to the SJF protocol. For example,
in a system using the equation, the schedule tuning parameter
TP could be set to —1 1n response to determining that the
workload-time parameter 1s outside of the lower threshold. In
certain embodiments, if the workload-time parameter 1is
between the upper and lower threshold, the schedule tuming
parameter 1s set to a third value that configures the system to
operate according to the RL protocol. For example, 1n a
system using the equation, the schedule tuning parameter TP
could be set to 1 inresponse to determining that the workload-
time parameter 1s within the upper and lower threshold.

It 1s understood 1n advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
elfort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand seli-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s

US 9,361,154 B2

7

a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specily location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, 1n some cases automatically, to quickly scale out
and rapidly released to quickly scale 1n. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(c.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Soltware as a Service (SaaS): the capability provided to the
consumer 1s to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited user-specific application configuration set-
tings.

Platform as a Service (PaaS): the capabaility provided to the
consumer 1s to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer 1s able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or ofl-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or off-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprictary technology that enables data and application
portability (e.g., cloud bursting for load balancing between

clouds).
A cloud computing environment 1s service oriented with a
focus on statelessness, low coupling, modularity, and seman-

10

15

20

25

30

35

40

45

50

55

60

65

8

tic interoperability. At the heart of cloud computing 1s an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node 1s shown. Cloud computing node 10 1s
only one example of a suitable cloud computing node and 1s
not intended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 1s capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 10 there 1s a computer system/
server 12, which 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system executable instructions, such
as program modules, being executed by a computer system.
Generally, program modules may include routines, programes,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer system/server 12 may be practiced in dis-
tributed cloud computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed cloud computing
environment, program modules may be located 1n both local
and remote computer system storage media including
memory storage devices.

As shown 1 FIG. 1, computer system/server 12 in cloud
computing node 10 1s shown 1n the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures. By way

of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel

Architecture (IMCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
12, and 1t includes both volatile and non-volatile medaia,
removable and non-removable media.

System memory 28 can include computer system readable
media 1 the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
tem/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a “hard drive’). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-

US 9,361,154 B2

9

netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media

can be provided. In such nstances, each can be connected to
bus 18 by one or more data media interfaces. As will be
turther depicted and described below, memory 28 may
include at least one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the mnvention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the mvention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as a keyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 12 to communicate with one or more
other computing devices. Such communication can occur via
Input/Output (I/O) interfaces 22. Still yet, computer system/
server 12 can communicate with one or more networks such
as a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components ol computer system/server
12 via bus 18. It should be understood that although not
shown, other hardware and/or software components could be
used 1 conjunction with computer system/server 12.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing umts, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 1s depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54 A, desktop computer 534B, laptop com-
puter 534C, and/or automobile computer system 34N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, 1n
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination
thereot. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It 1s understood that the types of
computing devices 54 A-N shown 1n FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 30 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FI1G. 2)
1s shown. It should be understood in advance that the compo-
nents, layers, and functions shown 1n FIG. 3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

10

15

20

25

30

35

40

45

50

55

60

65

10

Hardware and software layer 60 includes hardware and
soltware components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, 1n one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
solftware components include network application server
software, 1n one example IBM WebSphere® application
server software; and database soitware, 1n one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or mvoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. In embodiments, service
level management can include the computer-implemented
method of scheduling jobs, described further herein. Service
Level Agreement (SLA) planning and fulfillment provide
pre-arrangement for, and procurement of, cloud computing
resources for which a future requirement 1s anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and mobile desktop.

Referring now to FIG. 4, a computer system 400 for tun-
able scheduling of a set of jobs can be seen according to
embodiments of the present disclosure. The system 400 can
include a processor 402, amemory 412 and I/O (input/output)
devices 422. In embodiments, the system 400 can a cloud
computing node 1n a cloud computing environment 50 (FIG.
2), as described herein.

The processor 402 can execute instructions stored in
memory 412 and perform various functions in the computer
system 400. The processor 402 can include, but 1s not limited
to, a CPU core 404, registers 406, and a cache 408. The CPU
core 404 can provide logic for the processor 402. In some
embodiments, the processor 402 can contain multiple CPU
cores. The cache 408 and registers 406 can provide storage for
data that 1s frequently accessed by the processor 402. In some
embodiments, the computer processing system 400 can con-
tain multiple processors 402 typical of a relatively large sys-
tem. In some embodiments, the computer system 400 can be
a single processor system. The processor 402 can include
various types of processors such as, digital signal processor

US 9,361,154 B2

11

(DSP) hardware, network processor, application specific inte-
grated circuit (ASIC), field programmable gate array

(FPGA), or other types of processors. The memory 412 can be
coupled to the processor 402 via a memory bus 410.

The memory 412 can include a random-access semicon-
ductor memory, storage device, or storage medium (either
volatile or non-volatile) for storing or encoding data and
programs. The memory 412 can be conceptually a single
monolithic entity, but 1n some embodiments the memory 412
can be a more complex arrangement, such as a hierarchy of
caches and other memory devices. The memory 412 can store
data, 1nstructions, modules, and other types of information,
hereafter collectively referred to as “memory elements.”
Although the memory elements are illustrated as being con-
tained within the memory 412, 1n some embodiments some or
all of them can be on different devices and can be accessed
remotely, e.g., via a network.

The computer system 400 can use virtual addressing
mechanisms that allow the programs of the computer system
400 to behave as 11 they only have access to a large, single
storage entity instead of access to multiple, smaller storage
entities. Thus, while the memory elements are illustrated as
being contained within the memory 412, these elements are
not necessarily completely contained in the same storage
device at the same time. Further, although the memory ele-
ments are illustrated as being separate entities, 1n some
embodiments some of them, portions of some of them, or all
of them can be packaged together.

In embodiments, the memory elements can include an

operating system 414 including a tunable scheduler module
4185.

The tunable scheduler module 413 can be used to schedule
j0bs according to embodiments of the present disclosure. For
example, the tunable scheduler module 415 can be configured
to generate a scheduling factor for a set of jobs being executed
in the computer system 400. In embodiments, the scheduling
factor 1s a value generated for each job. The value of the
scheduling factor can be used to arrange the jobs 1n a queue
for execution by the computer system 400.

The scheduling factor can be generated by multiple pro-
cesses. Depending upon the process used, different arrange-
ments of jobs can be obtained. For example, the scheduling
factor could be generated such that the set of jobs are sched-
uled based on a FIFO protocol. In examples, the scheduling
factor can be generated such that the set of jobs are scheduled
based on a SJF protocol. In certain examples, the scheduling,
factor can be generated such that the set of jobs are scheduled
based on a RL protocol.

In embodiments, the scheduling factor can be generated
based on a schedule tuning parameter to determine the pro-
cess used to generate the scheduling factor. For example, as
described herein, the scheduling factor can be generated
according to the following equation:

|_|TP-TP
Qr

SF = TP

Where QT 1s a queue-time parameter for each job, TP 1s the
schedule tuning parameter for the set of at least one job and
ET 1s an execution-time parameter for each job. In the equa-
tion, the schedule tuning parameter TP can be a value within
arange of —1 to 1. Ifthe tunable scheduler 415 determines that
the schedule tuning parameter TP 1s equal to -1, then the
scheduling factor i1s generated based on the execution-time
parameter 1.€. to create a SJF protocol based schedule. It the

10

15

20

25

30

35

40

45

50

55

60

65

12

system 400 determines that the schedule tuning parameter TP
1s equal to 0, then the scheduling factor 1s generated based on
the queue-time parameter 1.€. to create a FIFO protocol based
schedule. If the system 400 determines that the schedule
tuning parameter 1s equal to 1, then the scheduling factor 1s
generated based on a ratio of the queue-time parameter to the
execution-time parameter, 1.€. to create a RL protocol based
schedule. In certain embodiments, various types of equations
can be used to generate the scheduling factor and the schedule
tuning parameter can be various values to tune the scheduling
factor.

In embodiments, the schedule tuning parameter 1s a value
determined by the computer system 400 based on a workload-
time parameter for the set of jobs. As described herein, the
workload-time parameter can describe the general character-
1stic of the set of jobs. In embodiments, 1f the workload-time
parameter 1s outside of an upper threshold then the schedule
tuning parameter 1s set to a first value which configures the
system to schedule jobs according to the FIFO protocol. In
embodiments, 11 the workload-time parameter 1s outside of a
lower threshold then the schedule tuning parameter 1s set to a
second value which configures the system to schedule jobs
according to the SJF protocol. In embodiments, 1f the work-
load-time parameter 1s within the upper and lower thresholds
then the schedule tuning parameter 1s set to a third value
which configures the system to schedule jobs according to the
RL protocol. In certain embodiments, the schedule tuning
parameter can be selected manually by a user.

The processor 402 can also communicate with one or more
I/0O devices 422 via an I/0 bus 420. The I/0O devices 422 can
include, but are not limited to, devices such as a keyboard, a
pointing device, a display, one or more devices that enable a
user to interact with the computer processing system 400, and
various devices (e.g., network interface card, modem, etc.)
that enable the computer processing system 400 to commu-
nicate with one or more other computing devices. It should be
understood that other suitable hardware and software com-
ponents can be used 1n conjunction with the computer pro-
cessing system 400.

Referring now to FIG. 5A, a timeline 508 for can be seen
showing when a set ol jobs are received 1n a computer system,
according to embodiments of the present disclosure. The set
ol jobs 1ncludes a first job 501, a second job 502, a third job
504, and a fourth job 506. Each of the jobs are displayed as a
bar which shows the execution-time required for that particu-
lar job. For example, among the second, third, and fourth jobs,
the second job 502 has the largest execution-time parameter
because the bar representing the second job 502 1s longer than
the bar representing the third job 504 and the fourth job 506.

In FIG. SA the first job 501 1s actively being executed 1n a
computer system as described herein. Second, third and
tourth job 502, 504, 506 are recerved 1n the system after the
first job 1s being executed. Second job 502 and third job 504
are received at point 503. The fourth job 506 1s recetved at
point 505 on timeline 508. As described herein, the system
can use scheduling protocols to arrange the order of execution
of the second, third, and fourth jobs 502, 504, 506.

As described herein, in embodiments the system can
arrange the jobs according to a RL protocol where the jobs are
ordered based on a scheduling factor generated for each job
from a ratio:

QT/ET

Where QT 1s the queue-time parameter and ET i1s the
execution-time parameter.

As seen 1n FIG. 5A, the second job 502 has an execution-
time parameter which 1s approximately twice as large as the

US 9,361,154 B2

13

third job 504 and one third larger than the third job 506.
Additionally, the second job 502 has a queue-time parameter
twice as long as the fourth job 506 and equal to the third job
504. Using the relative sizes of the execution-time parameter
and the queue-time parameter for the second, third, and fourth
10bs 502, 504, 506, the scheduling factor can be expressed as

2/2 for the second job 502, 2/1 for the third job, and 1/1.5 for
the fourth job 506.

Referring now to FIG. 5B, a timeline 508 for a set of jobs
in a computer system can be seen according to embodiments
of the present disclosure. The timeline includes a first job 501,

a second job 502, and a third job 504, and a fourth j0b 506. As

described herein, the jobs can be ordered according to a
scheduling factor. F1G. 5B displays the ordering of the jobs 1n
descending order according to the scheduling factor gener-
ated above with reference to FIG. 5A. Thus, the system
arranges the jobs 1 order with the third job 504 executing
directly after the first job 501, the second job 502 executing
directly after the third job 504, and the fourth job 506 execut-
ing directly after the second job 502.

Referring now to FIG. 6, a flowchart diagram of a com-
puter-implemented method 600 for tunable scheduling of a
set of jobs can be seen according to embodiments of the
present disclosure. In operation 602, the computer system can
receive a set ol jobs. The jobs can be the same or substantially
similar as described herein. In embodiments, the set of jobs
can mclude one or more jobs. In operation 604, the computer
system can determine a workload-time parameter for the set
of jobs. The workload-time parameter can be the same or
substantially similar as described herein.

If the workload-time parameter 1s outside of an upper
threshold then, 1n decision block 606, the system can progress
to operation 608. In operation 608, a schedule tuning param-
eter can be set to a first value. The schedule tuning parameter
can configure how the system schedules the set of jobs as
described herein. In embodiments, the value of the schedule
tuning parameter can configure the system to schedule jobs in
according to one scheduling protocol such as a FIFO proto-
col, a SJF protocol, and a RL protocol.

If the workload-time parameter 1s not outside the upper
threshold then, in decision block 606, the method 600 can
progress top decision block 610. If the workload-time param-
eter 1s outside of a lower threshold then, 1n decision block
610, the method 600 can progress to operation 612. In opera-
tion 612 the schedule tuning parameter can be set to a second
value. In embodiments, the second value can configure the
system to schedule jobs according to the SJF protocol, as
described herein.

If the workload-time parameter 1s within the upper and
lower thresholds then, 1n operation 610, the method 600 can
progress to operation 614. In operation 614, the schedule
tuning parameter can be set to a thuird value. In embodiments,
the third value can configure the system to schedule jobs
according to the RL protocol, as described herein.

In operation 616, a scheduling factor can be generated for
cach of the jobs based on the set schedule tuning parameter.
The scheduling factor can be the same or substantially similar
as described herein. The scheduling factor can be a value
generated for each job which 1s used to order jobs for execu-
tion.

In operation 618, the system can schedule the set of jobs
based on the scheduling factor. The system can schedule the
jobs as described herein. In embodiments, the system can
order the jobs in descending order according to the schedul-
ing factor. In certain embodiments, the system can order the
j0bs 1n ascending order according to the scheduling factor.

10

15

20

25

30

35

40

45

50

55

60

65

14

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium 1ncludes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, 1s not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network 1nterface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler imstruc-
tions, 1nstruction-set-architecture (ISA) 1nstructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware 1nstructions, state-setting data, or either
source code or object code written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone sotftware package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)

US 9,361,154 B2
16

to enable others of ordinary skill in the art to understand the
embodiments disclosed herein.

15

may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of

What 1s claimed 1s:
1. A system for scheduling a set of jobs 1n a computerized
j0b scheduling system, the system comprising:

methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the tlowchart 1llustrations and/

a logic device configured to:
receive a set of at least one job; and
a tunable scheduler module configured to:

or block diagrams, and combinations of blocks in the tlow- 10 determine aiworkload-tlme parameter for the set of a
chart 1illustrations and/or block diagrams, can be 1mple- leastﬁonejob; _
mented by computer readable program 1nstructions. determine a §chedule tunm‘g parameter based on the
These computer readable program instructions may be pro- Workload-En’clle %:farali}leter,b 4 on the schedul
vided to a processor of a general purpose computer, special | generate a sche u ing lactor based on the schedule tun-
ing parameter; and

purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function 1n a particular manner, such that the computer read-
able storage medium having istructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified 1n the tlow-
chart and/or block diagram block or blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The tflowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of istructions, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). In some alternative implementations, the functions
noted 1n the block may occur out of the order noted 1n the
figures. For example, two blocks shown 1n succession may, 1in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed 1n the reverse order, depending,
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or tlowchart illustration, and
combinations of blocks in the block diagrams and/or tlow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

The descriptions of the various embodiments of the present
disclosure have been presented for purposes of illustration,
but are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to explain the principles
of the embodiments, the practical application or technical
improvement over technologies found 1n the marketplace, or

20

25

30

35

40

45

50

55

60

65

schedule each job in the set of at least one job based on
the scheduling factor,
wherein the tunable scheduler module being configured to
generate the scheduling factor includes being configured
to:
generate a value for each job 1n the set of at least one job
according to the following equation:

L it Vi
Qr

FTTP

QT being a queue-time parameter for each job, TP being the
schedule tuning parameter for the set of at least one job, and
ET being an execution-time parameter for each job.
2. The system of claim 1, wherein:
the tunable scheduler module being configured to schedule
cach job 1n the set includes being further configured to:
schedule the set of at least one job according to at least one
scheduling order selected from a group consisting of, a
first-in-first-out order, a shortest job first order, and a
relative latency order.
3. The system of claim 1, wherein:
the tunable scheduler module being configured to generate
the schedule tuning parameter includes being config-
ured to:
determine that the workload-time parameter for the set
of at least one job 1s outside of a lower threshold; and
determine that the schedule tuning parameter 1s equal to
a value of negative one inresponse to determining that
the workload-time parameter for the set of at least one
10b 15 outside of the lower threshold.
4. The system of claim 1, wherein:
the tunable scheduler module being configured to generate
the schedule tuming parameter includes being config-
ured to:
determine that the workload-time parameter for the set
of at least one job 1s outside of an upper threshold; and
determine that the schedule tuning parameter 1s equal to
a value of zero 1n response to determining that the
workload-time parameter for the set of at least one job
1s outside of the upper threshold.
5. The system of claim 1, wherein:
the tunable scheduler module being configured to generate
the schedule tuming parameter includes being config-
ured to:
determine that the workload-time parameter for the set of at
least one job 1s mnside an upper threshold and a lower
threshold; and
determine that the schedule tuning parameter 1s equal to a
value of one 1n response to determining that the work-

US 9,361,154 B2

17

load-time parameter for the set of at least one job 1s
inside the upper threshold and the lower threshold.
6. The system of claim 1, wherein:
the set of at least one job 15 a set of at least one batch job.
7. A computer program product for scheduling a set of jobs
executed 1n a computer system, the computer program prod-
uct comprising a computer readable storage medium having,
program 1nstructions embodied therewith, the program
istructions executable by a computer, to cause the computer
to:
determine a workload-time parameter for a set of at least
one job, the workload-time parameter relating to execu-
tion-time parameters for the set of at least one job;
determine a schedule tuning parameter for the set of at least
one job, the schedule tuning parameter based on the
workload-time parameter; and
generate a scheduling factor for each job in the set, the
scheduling factor generated based on the schedule tun-
ing parameter; and
schedule the set of at least one job based on the scheduling
factor,
wherein the computer being caused to generate the
scheduling factor includes being caused to:
generate a value for each job 1n the set of at least one job

according to the following equation:

|_|TPI-TP
or 2

EFETTP

QT being a queue-time parameter for each job, TP being
the schedule tuning parameter for the set of at least one
job, and E'T being an execution-time parameter for each
10b.

10

15

20

25

30

18

8. The computer program product of claim 7, wherein:

the computer being caused to generate the schedule tuning
parameter mcludes being caused to:

determine that the workload-time parameter for the set
of at least one job 1s outside of a lower threshold; and

determine that the schedule tuning parameter 1s equal to
a value of negative one inresponse to determining that

the workload-time parameter for the set of at least one
10b 15 outside of the lower threshold.

9. The computer program product of claim 7, wherein:

the computer being caused to generate the schedule tuning
parameter includes being caused to:

determine that the workload-time parameter for the set
of at least one job 1s outside of an upper threshold; and

determine that the schedule tuning parameter 1s equal to
a value of zero 1n response to determining that the
workload-time parameter for the set of at least one job
1s outside of the upper threshold.

10. The computer program product of claim 7, wherein:

the computer being caused to generate the schedule tuning
parameter mncludes being caused to:

determine that the workload-time parameter for the set of at

least one job 1s mnside an upper threshold and a lower
threshold; and

determine that the schedule tuning parameter 1s equal to a
value of one 1n response to determining that the work-

load-time parameter for the set of at least one job 1s
inside the upper threshold and the lower threshold.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

