United States Patent

US009361129B2

(12) (10) Patent No.: US 9,361,129 B2
Le Roy 45) Date of Patent: Jun. 7, 2016
(54) INSTANCE INTERFACES AND MIX-INS FOR 6,405,360 B1* 6/2002 Bohrer GO?E?{ g’-‘gl
DYNAMIC LANGUAGLES 6704743 Bl 3/2004 Martin
6.748.570 B1* 6/2004 Bahrsetal. ...ooooovvo... 715/210
(75) Inventor: Bertrand Le Roy, Bellevue, WA (US) 6.944.845 B2* 9/2005 GIaser ..oooviin., GOG6F 8/24
707/E17.005
(73) Assignee: Microsoft Technology Licensing, LLC, 7,080,383 B1* 7/2000 Fernando GO?E?{%
Redmond, WA (US) 7.143.416 Bl 11/2006 Nachefet al.
7.281.242 B2* 10/2007 Inamdaroooovvovvin. 717/158
(*) Notice: Subject to any disclaimer, the term of this 2002/0156758 ALl* 10/2002 Cote et al. oo, 707/1
patent 1s extended or adjusted under 35 2003/0120824 Al* 6/2003 Shattucketal. 709/313
USC. 154(]:)) by 1658 days. 2003/0149960 Al1* 82003 Inamdaroovivvvvvinninn, 717/118
2004/0006765 Al 1/2004 Goldman
2004/0243977 AL* 12/2004 Shou et al. .ooevvvvivi., 717/112
(21) Appl. No.: 11/888,577 2005/0229186 Al 10/2005 Mitchell et al.
2006/0101032 Al 5/2006 Sutter et al.
(22) Filed: Aug. 1, 2007 2006/0130038 Al 6/2006 Claussen et al.
2006/0206905 Al 9/2006 Werner
(65) Prior Publication Data 2007/0168949 Al* 7/2007 Shattuck etal. 717/115
OTHER PUBLICATIONS

(1)

(52)

(58)

(56)

US 2009/0037895 Al Feb. 5, 2009

Int. Cl.

GOoF 9/44 (2006.01)

GoOol" 11/07 (2006.01)

U.S. CL

CPC GO6F 9/4433 (2013.01); GO6F 11/0718
(2013.01); GO6F 8/24 (2013.01); GO6F 8/315

(2013.01)
Field of Classification Search

None
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

5,515,536 A * 5/1996 Corbettetal. 719/315

5,560,014 A 9/1996 Imamura

5,778,227 A * 7/1998 Jordan GO6F 9/4428

5,872,973 A 2/1999 Mitchell et al.

6,044,216 A * 3/2000 Bhargavaetal. 717/114

6,088,739 A * 7/2000 Pughetal. 719/315

6,212,436 B1* 4/2001 Marple GO6F 9/443
345/440

6,212,578 B1* 4/2001 Racicotetal. 719/330

6,397,384 B1* 5/2002 Briggsc......... GO6F 9/44526
717/107

Bettini, L., et al., Coordinating Mobile Object-Oriented Code, Lec-
ture Notes 1n Computer Science [online], 2002 [retrieved Apr. 21,

2011], Retrieved from Internet: <http://www.springerlink.com/con-
tent/dxtgj4r 1n908myqy/fulltext.pdf>, pp. 1-16.*

(Continued)

Primary Examiner — Todd Aguilera

(74) Attorney, Agent, or Firm — Kevin Sullivan; Kate
Drakos; Micky Minhas

(57) ABSTRACT

Various technologies and techniques are disclosed for using
contracts in dynamic languages. For example, a contract can
be directly associated with an object. The contract can then be
used to provide type safety for the object. As another
example, contracts can be used with mix-ins. A declaration
for a contract 1s provided with a mix-in. The contract 1s
associated with a target object at runtime when applying the
mix-in. Conditions can be assigned to mix-ins that must be
met before the mix-1n can be applied to the target object. At
runtime, 11 the target object meets the one or more conditions,
then the mix-1n can be applied to the target object.

12 Claims, 10 Drawing Sheets

()

ASSIGN A CONSTRAINT CONTRACT AND/OR OTHER CONDITON(S)
TO A MIX-IN THAT MUST BE MET BY A TARGET OBJECT

312

Y

AT RUNTIME, VERIFY THE CONTRACT AND/OR CONDITION(S)
AGAINST THE TARGET CBJECT WHEN ATTEMPTING TC APPLY
THE MIX-IN

314

i

N DOES TARGET OBJECT SATISFY THE CONTRACT
AND/OR OTHER CONDITION(S}?
316

l YES

PROCEED WITH APPLYING THE MIX-IN

318

THROW AN EXCEPTION

320

'
€

US 9,361,129 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Kamina, T., et al., McJava—A Design and Implementation of Java
with Mixin-Types, Lecture Notes 1n Computer Science [online],
2004 [retrieved Apr. 21, 2011], Retrieved from Internet: <http://
www.springerlink.com/content/39gm3r4hp03479;a/fulltext.pdf>,
pp. 1-17.%

Bak, L., et al., Mixins in Strongtalk, ECOOP Workshop on Inherit-
ance [online], 2002 [retrieved Apr. 21, 2011], Retrieved from
Internet: <http://www.cs.ucsb.edu/projects/strongtalk/big/mixins-
paper.ps>, pp. 1-20.*

Dvoinikov, D., “Method Signature Checking Decorators”,
ActiveState Programmer Network [online], 2006 [retrieved Jun. 14,
2013], Retrieved from Internet: <http://web.archive.org/web/
20060622203617/http://aspn.activestate.com/ ASPN/Cookbook/Py-
thon/Recipe/426123>, pp. 1-5.*

Flatt, M., et al., “Scheme with Classes, Mixin, and Traits,” Proceed-
ings of the 4” Asian Conference on Programming Languages and
Systems [online], 2006 [retrieved Jun. 15, 2015], Retrieved from
Internet: <http://users.eecs.northwestern.edu/~robby/publications/
papers/aplas2006-fif.pdt>, pp. 1-20.*

Martin, P., A Reflective Approach to Building Extensible Distributed
Actor-based Languages, Vrije Universiteit Brussel [online], 2006
[retrieved Jul. 10, 2014], Retrieved from Internet: <URL: ftp://soft.
vub.ac.be/tech_ report/2006/vub-prog-lic-06-01.pdf>, pp. 1-113.*
Anonymous, GC: AspectsContainer—org.nanocontainer.aop.
AspectsContainer. GrepCode [online], No Date [retrieved Aug. 26,

2015], Retrieved from Internet: <URL: http://grepcode.com/file/
repol.maven.org/maven2/org.nanocontainer/nanocontainer-aop/1.
1-RC-1/org/nanocontainer/aop/AspectsContainer.java/>, p. 1.*
Anonymous, “GC:nanocontainer-aop”’, GrepCode [online], No Date
[retrieved Aug. 26, 2015], Retrieved from Internet: <URL: http://
grepcode.com/project/repol . maven.org/maven2/org. nanocontainer/

nanocontainer-aop/>, p. 1.*
Zdun, U., et al. “Object-Based and Class-Based Composition of

Transitive Mixins”, ScienceDirect [online], 2006 [retrieved Mar. 1,
2016], Retrieved from Internet: <URL: http://www.sciencedirect.
com/science/article/p11/S0950584906001339>, pp. 871-890.*
Ancona, D., etal., “Jam—A Smooth Extension of Java with Mixins”,
Springer [online], 2000 [retrieved Mar. 1, 2016], Retrieved from
Internet: <URL: http://link.springer.com/chapter/10.1007/3-540-
45102-1_ 8#page-1>, pp. 154-178.*

Breuel, Thomas M., “Implementing Dynamic Language Features in
Java using Dynamic Code Generation”, Palo Alto, CA, http://
ieeexplore.ieee.org/1el5/7492/20381/0094166 8. pdi?1sNumber=.
Ernst, Erik, “Safe Dynamic Multiple Inheritance”, Arhus, Denmark,
pp. 1-19.

Strembeck, et al., “Definition of an Aspect-Orniented DSL using a
Dynamic Language”, Vienna University of Economics, Austria, pp.
1-4.

Le Roy, Bertrand, “Mixins for Atlas”, Bertrand L.e Roy’s blog posted
Aug. 4, 2006, last viewed on Jul. 22, 2011, 4 pages.

Wikipedia.org, “Mixin”, retrieved by web.archive.org Mar. 23, 2006,
2 pages.

* cited by examiner

US 9,361,129 B2

Sheet 1 of 10

Jun. 7, 2016

U.S. Patent

| "Old
_. IIIIIIIIIIIIIIIIIIII —
8l al
9}
zo:,q_oo%q JOV44dLNI
1040 193dId [LOVHINQOD

JOVNONVYT OINVNAC

¢ Ola

0cc
NOILVYOI'lddV ONILdIHOS FOVNONYT JINYNAQ JHL ONILVH3dO J04 J1907T H3HLO0

US 9,361,129 B2

AX
A311ddY SI NIFXIWN 3HL NIHM (S)1394VL JHL
01 (S)LOVHLINOD IHL ANV ‘INIWITdWI ATFHL (S)LOVHINOD THL HLIM SNIFXIN ONILYIOOSSY 304 21907

=

S 0z

» SNOILIANOD ¥3H.L0 133 LVHL ¥O/ANY (S)LOVHINOD A3INDISSY HLIM Q3LVID0SSY

m ALITYNOILONNS INFWITdWI 1VYHL SLO3r90 HLIM 3SN 38 O1 SNI-XIN ONIMOT1TV AINO ¥04 2190
80¢

- (S)103r80 IHL HO4 AL34VS IdAL FAINOH OL FWILNNY LV (S)LOVHLINOD FHL ONISN HO4 190

=

o~ 90¢

m ($)L03rg0

HLIM (S)LOVHLINOD SILVIOOSSY A1LD3HIA LYHL LdI¥OS IOVNONYT JIAVYNAQ ¥V ONISSTIOV HO4 1907

¥0¢C
21901 WVdO0dd

00¢
NOILVOIddV ONILdIdOS FOVNONYT JINWVNAQ

U.S. Patent

U.S. Patent Jun. 7, 2016 Sheet 3 of 10 US 9,361,129 B2

START
240

RECEIVE INPUT FROM A USER TO DIRECTLY ASSOCIATE A CONTRACT WITH
AN OBJECT
242

USE THE CONTRACT AT RUNTIME TO PROVIDE TYPE SAFETY FOR THE
OBJECT
244

REPEAT STAGES AS DESIRED FOR OTHER OBJECTS
246

END
248

FIG. 3

U.S. Patent Jun. 7, 2016 Sheet 4 of 10 US 9,361,129 B2

26(

Object API

GetType 262
AddIntertace 264
Removelnterface 266

Getlnterfaces 208
Other(s) 270

272

Type AP

IsimplementedBy 274
IsInstanceOfType 276
Other(s) 278

FIG. 4

U.S. Patent Jun. 7, 2016 Sheet 5 of 10 US 9,361,129 B2

START
290

RECEIVE INPUT FROM A USER TO ADD A CONTRACT DECLARATION FOR AN
IMPLEMENTED CONTRACT TO A MIX-IN AT DESIGN TIME
292

OPTIONALLY ASSOCIATE A CONSTRAINT CONTRACT WITH MIX-IN
IMPLEMENTATION ITSELF FOR VERIFICATION OF TARGET OBJECT BEFORE
MIX-IN IS APPLIED
294

AT RUNTIME, ASSOCIATE THE IMPLEMENTED CONTRACT WITH THE TARGET
OBJECT WHEN APPLYING THE MIX-IN
296

TARGET OBJECT GETS USED IN CONTEXT THAT REQUIRES IMPLEMENTED
CONTRACT
297

CODE IN THAT CONTEXT IS ABLE TO VERIFY |[F TARGET OBJECT SATISFIES
IMPLEMENTED CONTRACT BEFORE APPLYING MIX-IN TO TARGET OBJECT
298

300
FIG. 5

U.S. Patent Jun. 7, 2016 Sheet 6 of 10 US 9,361,129 B2

START
310

ASSIGN A CONSTRAINT CONTRACT AND/OR OTHER CONDITION(S)
TO A MIX-IN THAT MUST BE MET BY A TARGET OBJECT

312

AT RUNTIME, VERIFY THE CONTRACT AND/OR CONDITION(S)
AGAINST THE TARGET OBJECT WHEN ATTEMPTING TO APPLY
THE MIX-IN

314

DOES TARGET OBJECT SATISFY THE CONTRACT
AND/OR OTHER CONDITION(S)?
316

YES

PROCEED WITH APPLYING THE MIX-IN
318

THROW AN EXCEPTION
320

END
322

FIG. 6

U.S. Patent Jun. 7, 2016 Sheet 7 of 10 US 9,361,129 B2

340

Object API

VIIXIN 342

Other(s) 344

350

Type API

RegisterMixin oY
[SMIxXin 394

MIIXIN

‘OO
O
S| | &
Od

RemoveMixIn 353

FIG. 7

U.S. Patent Jun. 7, 2016 Sheet 8 of 10 US 9,361,129 B2

START
370

CHECK FOR EXISTENCE OF A METHOD BEFORE IT IS BEING ADDED

372

YES DOES METHQOD EXIST?

374

NO

THROW AN EXCEPTION SO BUG CAN BE CAUGHT EARLIER

376

END
378

FIG. 8

U.S. Patent Jun. 7, 2016 Sheet 9 of 10 US 9,361,129 B2

START
400

ALLOW A MIX-IN TO BE EXTENDED BY OTHER MIX-INS
402

A MIX-IN INRERITS INTERFACES AND/OR CONDITIONS PACKAGED WITH
ANY MIX-IN THAT IT IS BEING EXTENDED WITH
404

END
406

FIG. 9

0} Ol

US 9,361,129 B2

SNOILY)NddY (SINOILDO3NNOD

\wm_m_._.:n_s_oo l ZO_._.,qo_z:s_s_oo
gdH.10 , d4H10

JOVH0LS
3 18VAON IS

|
Y
= _ 3711V IOA-NON
- e zic—* (S)30IA3A LNdN
—
= |
B | LINN ONISSIO0¥ 371LV10A
|
” | L1G
| (S)321A30 LNd1NO AHOWIIN WILSAS
e |
3 018
3 _ JOVHOLS
E | 318VAQNIH-NON
, 805
|
|
|

U.S. Patent

US 9,361,129 B2

1

INSTANCE INTERFACES AND MIX-INS FOR
DYNAMIC LANGUAGES

BACKGROUND

Soltware developers create soltware using one or more
programming languages. Programming languages are usu-
ally either statically typed languages, or they are dynamic
languages. Statically typed languages are generally lan-
guages that provide a fixed code structure and/or static typing.
With a fixed code structure, classes and other structures are
immutable at runtime, meaning that their structure cannot be
modified after the class or structure 1s created. With static
typing, variables and parameters must be assigned at design
time so that they can be known at compile time. Statically
typed languages can include some or all of these characteris-
tics. Some examples of statically typed languages include C#,
Java, C, and C++.

Dynamic languages are generally languages that provide
dynamic variable typing and/or runtime code modification.
With dynamic variable typing, variables do not have to be
declared before use, and their type (integer, string, etc.) 1s thus
not determined until runtime. Languages that implement
dynamic typing are often referred to as dynamically typed
languages (in addition to the term dynamic languages). With
runtime code modification, classes and other details about the
structure of the source code can be modified dynamically. For
example, methods may be added to classes or structures at
runtime. Some examples of dynamic languages include Java-
Script, Ruby, Python, and PHP. These languages are often
referred to as “scripting” languages because of the fact that
their source code 1s contained 1n one or more textual script
files. The term “dynamic language script” as used herein 1s
meant to include one or more {files that contain source code
written 1n a dynamic language.

These features typically provided by dynamic languages
offer software developers with a lot of flexibility. As an
example, dynamic languages can be used to build objects
from scratch or extend existing objects at runtime. The term
“object” as used herein 1s referring to objects 1n the object
oriented world of programming, and 1s meant to include an
individual unit of runtime data storage that 1s used as the basic
building block of a program. Objects can optionally have
methods (functions, procedures, etc.) associated with them
that can be run within the context of the unit of runtime data
storage. While dynamic languages offer flexibility, with this
flexibility comes some problems. For example, a well defined
type 1s a lot more difficult to determine since the specific type
that a variable will be used for does not have to be declared in
advance. Thus, the program does not know whether a variable
called counter 1s an 1nteger, a string, a double, or something
clse. This can make parameter validation and other valida-
tions problematic, because any verification has to make
assumptions about what a parameter object can or cannot do.

The feature known as “type safety”, usually associated
with statically typed languages, seems to conflict with the
spirit of dynamic languages. The term type safety generally
refers to determining what type an object or variable repre-
sents, and ensuring that the object or variable 1s only used 1n
a manner consistent with the type expected. For example, 1f a
line of code attempts to assign a variable that stores an integer
value to a variable that stores a string value, the compiler
could raise a compiler error based upon a type mismatch. That
1s because the integer variable 1s not capable of storing the
value represented 1n the string variable.

As noted earlier, in dynamically typed languages, such
type safety 1s not present. This problem 1s usually solved

10

15

20

25

30

35

40

45

50

55

60

65

2

using a technique known as “duck-typing”, which uses the
reflection capabilities that dynamic languages typically pos-
sess to mspect the object and check for a particular member’s
existence before using it. This 1s often called “duck-typing”
based on the saying “1f 1t quacks like a duck, you can consider
it to be a duck”. While the duck-typing technique can work
well in common scenarios, 1t presents a number of challenges.

One problem with duck typing i1s that there 1s not a one to
one mapping between a member (variable, object, etc.) name
and the semantics of that member. The context 1s usually
necessary to get this one to one mapping. This context, in
statically typed languages, i1s the type. For example, 1 an
object has a start method, 1t could have been written to start an
amimation, which would be clear 11 1t 1s known that the object
1s an animation. Alternatively, the object could have been
written to start a timer, which 1s clear 1t 1t 1s known that the
object 1s a timer. This works well 11 the context can be easily
inferred, such as 11 the code that creates the object 1s the same
code that uses it. But this scenario fails when the context 1s not
available. For example, suppose the program 1s inspecting an
unknown object graph and wants to start all animations 1n 1t.
By relying on the presence of a start method only, then all
timers would be started, which 1s not the intent. Using the
hypothetical example with statically typed languages, you
can just check for the type of an object, and if 1t derives from
Animation, you can call the start method on the Animation
object with reasonable confidence that what you intend 1s
what will happen.

Another problem with duck-typing 1s that 1t hides 1impor-
tant details within the code. For example, 1n dynamic lan-
guages, you typically have to look at the implementation (the
underlying source code of the particular object or method) to
figure out what constraints are going to be imposed on param-
eters. This problem 1s usually solved by putting the burden on
documentation. However, this part of documentation 1s usu-
ally automatically generated from method signatures 1n stati-
cally typed languages. This 1s because in statically typed
languages, the signature of a method generally identifies
everything needed 1n order to call 1t. Thus, dynamic lan-
guages are losing at least part of the boost of productivity
provided by dynamic typing by requiring manual authoring
of documentation that could be generated.

In statically typed languages, these problems do not typi-
cally exist because objects are instances of one or several
types and implement one or more contracts, usually 1n the
way ol interfaces. The term “contract” means a specified
agreement that any object or other programming structure
that 1s providing an implementation for a given functionality
agrees to implement. Interfaces are the most common way for
providing a definition for a contract. Interfaces require that
any object (or other member) that wishes to implement the
interface provide a specific implementation for all of the
members that are defined in the interface. Some non-limiting,
examples of members include properties, methods, events,
and/or fields. The interface itself does not contain any imple-
mentation of the functionality, but rather just the definition of
what the implementation should contain. There are also other
ways to specily a contract, such as by specilying an abstract
base class that other classes can inherit from, or by using other
techniques for specilying what features certain objects or
other members must implement.

Contracts and interfaces are very useful, but as a practical
matter, they usually do not exist at all in dynamic languages.
Interfaces (or other contracts) make a lot less sense when
objects can be built from scratch, such as with dynamic lan-
guages. The root of that problem 1s that interfaces are 1imple-
mented by types. As previously discussed, statically typed

US 9,361,129 B2

3

languages typically provide type sate members with types
that are known at compile time, whereas dynamic languages
do not. Thus, with statically typed languages, the interface 1s
associated with a type, and the type 1s then associated with the
underlying object. Thus, the relationship between the inter-
face and the object 1t 1s associated with 1s an 1ndirect relation-
ship that 1s established through the type itself. The lack of type
safety 1s one reason why 1interfaces are not typically used 1n
dynamic languages as they are in statically typed languages.

On a separate but related note, some dynamic languages
use a generic way ol adding a specific set of features to an
object dynamically, but under the form of a module or mix-1n.
More specifically, a mix-in 1s one or more member 1mple-
mentations that can be added dynamically to an object (the
target). The term “target object” will be used herein to refer to
an object to which a mix-in 1s to be applied. Mix-ins are a
concept similar to multiple inheritance, but for dynamic lan-
guages. A mix-in can contain methods that can be added 1n
one operation to an object, such as with an equivalent to an
include statement that refers to the mix-in group of code.
From the user code’s perspective, it 1s still necessary 1n prin-
ciple to test for the existence of each method before using it.
There 1s also a small possibility that an object may appear to
provide certain functionality but be something entirely dif-
terent. Furthermore, members defined in the mix-1n may con-
flict with and overwrite existing members of the object.

SUMMARY

Various technologies and techniques are disclosed for
using contracts in dynamic languages. In one implementa-
tion, a contract or interface can be directly associated with an
object. The contract or interface can then be used to provide
type safety for the object. As a non-limiting example, the
contract can be used to ensure that one or more parameters
passed to a particular method 1n the object are of the data
types expected by the method.

In another implementation, contracts can be used with
mix-ins. A declaration for an implemented contract 1s pro-
vided with a mix-in. The implemented contract 1s associated
with a target object at runtime when applying the mix-in to the
target object. The target object may be used 1n a later context
that requires the contract. The code 1n the later context 1s able
to verily the implemented contract on the target object using
reflection.

In yet another implementation, conditions can be assigned
to mix-1ns that must be met before the mix-1n can be applied
to the target object. The condition can be a constraint contract
that was assigned to the mix-in, and/or can be other condi-
tions. At runtime, 1 the target object meets the one or more
conditions, then the mix-1n can be applied to the target object.
Otherwise, an exception or other suitable action can be taken.

This Summary was provided to introduce a selection of
concepts 1 a simplified form that are further described below
in the Detailed Description. This Summary 1s not mntended to
identify key features or essential features of the claimed sub-
ject matter, nor 1s 1t intended to be used as an aid 1n determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagrammatic view of a system of one imple-
mentation for directly associating contracts with objects.

FIG. 2 1s a diagrammatic view of a dynamic language
scripting application of one implementation.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 1s a process flow diagram for one implementation
illustrating the stages involved 1n allowing a user to directly

associate contract(s) with object(s) 1n a dynamic language.

FIG. 4 1s a diagrammatic view for one implementation
illustrating in exemplary API’s for declaring and/or using
contracts directly with an object.

FIG. § 1s a process flow diagram for one implementation
illustrating the stages involved 1n associating mix-ins with
contracts.

FIG. 6 1s a process flow diagram for one implementation
illustrating the stages mvolved 1n restricting use of mix-ins
based on contracts or other conditions.

FIG. 7 1s a diagrammatic view for one implementation
illustrating exemplary API’s for registering and/or using mix-
ins with an object.

FIG. 8 1s a process flow diagram for one implementation
that illustrates the stages involved 1n handling implementa-
tion collisions.

FIG. 9 1s a process flow diagram for one implementation
that illustrates the stages mnvolved in supporting mix-in imher-
itance.

FIG. 10 1s a diagrammatic view of a computer system of
one implementation.

DETAILED DESCRIPTION

The technologies and techniques herein may be described
in the general context as an application that allows creation
and/or execution of dynamic language script applications, but
the technologies and techniques also serve other purposes in
addition to these. In one implementation, one or more of the
techniques described herein can be implemented as features
within a dynamic programming language or framework such
as MICROSOFT® ASP.NET Ajax, JavaScript, or from any
other type of program or service that allows for creation
and/or execution of applications created 1n a dynamic lan-
guage.

As shown 1n the diagram 10 of FIG. 1, 1n one implemen-
tation, a contract or interface 14 can be directly associated 16
with an object 18 or an instance of an object using a dynamic
language 12. The term “directly associated” and “direct asso-
ciation” as used herein means a direct relationship between
the first and second entity without achieving the relationship
indirectly through some other entity. In one implementation,
by associating contracts directly with objects, type safety can
be mtroduced to dynamic languages. As noted 1n the back-
ground section, the term “type safety” means determining
whether the calling party meets the contract that 1s expected
by the recerving party (the method or other member being
called/accessed). One example of such a contract that the
receiving party can verily 1s whether or not the calling party
1s passing parameters ol the correct data type or not. In
instances where type safety 1s violated, an exception can be
thrown, or another suitable action can be taken, such as fol-
lowing another path 1n the program. In one implementation, a
runtime environment that executes or otherwise analyzes the
dynamic language script containing the direct association 1s
typically the one that makes the type safety determination, but
it could also be done separately from the runtime environ-
ment, such as during development of the script(s). As
described 1n further detail in FIGS. 5-7, contracts can also be
associated with mix-ins 1n a similar fashion to imtroduce type
safety to mix-ins 1n dynamic language environments.

Turming now to FI1G. 2 with continued reference to FI1G. 1,
a dynamic language scripting application 200 operating on
computing device 500 1s illustrated. Dynamic language
scripting application 200 1s one of the application programs

US 9,361,129 B2

S

that reside on computing device 500 (o1 FIG. 10). However, 1t
will be understood that dynamic language scripting applica-
tion 200 can alternatively or additionally be embodied as
computer-executable 1structions on one or more computers
and/or in different vanations than shown on FIG. 1. For
example, some portions of dynamic language scripting appli-
cation 200 may be embodied in a software development envi-
ronment on a developer machine, while other portions of
dynamic language scripting application 200 may be embod-
ied 1 a runtime environment (such as one or more web
servers) that execute the software previously created on the
developer machine. As another non-limiting example of how
dynamic language scripting application 200 could operate
differently than shown in FIG. 2, multiple development com-
puters could be used and/or multiple runtime computers
could be used. Numerous other variations are also possible.

Alternatively or additionally, one or more parts of dynamic
language scripting application 200 can be part of system
memory 104, on other computers and/or applications 1135, or
other such vanations as would occur to one 1n the computer
soltware art.

Dynamic language scripting application 200 includes pro-
gram logic 204, which is responsible for carrying out some or
all of the techniques described herein. Program logic 204
includes logic for accessing a dynamic language script that
directly associates contract(s) with object(s) 1 a dynamic
language 206 (as described below with respect to FIG. 3);
logic for using the contract(s) at runtime to provide type
satety for the object(s) 208 (as described below with respect
to FI1G. 3); logic for allowing mix-1ns to be used with objects
that implement functionality associated with assigned con-
tract(s) and/or that meet other conditions 210 (as described
below with respect to FIG. 6); logic for associating mix-1ins
with the contract(s) they implement, and the contract(s) to the
target(s) when the mix-1n 1s applied 212 (as described below
with respect to FIG. 5); and other logic for operating the
dynamic language scripting application 220.

Turning now to FIGS. 3-9 with continued reference to
FIGS. 1-2, the stages for implementing one or more imple-
mentations of dynamic language scripting application 200 are
described 1n further detail. In some 1mplementations, the
processes of FIGS. 3-9 are at least partially implemented in
the operating logic of computing device 500 (of FIG. 10).
FIG. 3 illustrates one implementation of the stages involved
in allowing a user to directly associate contract(s) with
object(s) in a dynamic language. The process begins at start
point 240 with receiving mput from a user to directly associ-
ate a contract with an object (stage 242). At design time, the
user (such as a software developer), can perform this direct
association between the contract and the object by 1nserting
source code mto a dynamic language script to define the
contract, and by mnserting source code to map the contract to
a particular object. The contract 1s used at runtime to provide
type safety for the object (stage 244). In other words, the
dynamic language script 1s accessed (read or otherwise
accessed), and the contract 1s used to determine whether or
not the calling method or member meets the requirements that
are expected by the called method or member. When type
safety violations are discovered, exceptions can be raised or
other steps can be taken to handle the situation appropnately.
The stages can be repeated as desired for other objects (stage
246). The process ends at end point 248. In the discussion of
FIG. 4, some code examples and further discussion of how
contracts can be associated directly with objects will be 1llus-
trated.

Turning now to FIG. 4, exemplary API’s are shown for
declaring and/or using a contract with an object. An Object

10

15

20

25

30

35

40

45

50

55

60

65

6

API 260 1s shown along with a Type API 272. The object API
260 contains various methods, such as GetType 262, Add-
Interface 264, Removelnterface 266, Getlnterfaces 268, and/
or other methods 270 which are not described for the sake of
simplicity. Let’s look at each of these methods in further
detail, along with some code examples to 1llustrate the con-
cepts.

As described previously, contracts or interfaces can be
directly associated with objects. To allow for that scenario, 1t
1s necessary to have some API method or other way of adding
a contract or interface declaration to any object. In one 1imple-
mentation (and using the APl illustrated in F1G. 4), this can be
accomplished using the AddInterface method 264. Here 1s an
example of what source code might look like using this
method:

Object. AddInterface(instance, interfaceType);

After executing the line of code above, the object will
contain a direct association with the interface contained as a
parameter above. Similarly, in one implementation (and the
example shown 1n FI1G. 4), a Removelnterface 266 method 1s
provided to disassociate the contract from the object. How-
ever, this method 1s not strictly necessary 1n other implemen-
tations.

The Getlnterfaces method 268 1s used 1n the exemplary
API to allow for reflection. Retlection allows a program to
ispect 1its own structure and functionality, which can be
usetul for various purposes. One common use for reflection 1s
for programmatically generating documentation of a pro-
gram. Another common use of reflection 1s to perform duck-
typing as described in the background, such as to help ensure
that a particular method uses the parameters in the way
expected.

A code example of how the Getlnterfaces method 268
could be used 1s shown below:

Object.Getlnterfaces(instance)

In one implementation, use of the Getlnterfaces method
268 such as illustrated above will get the interfaces that have
been directly associated with the particular object. Alterna-
tively or additionally, the Getlnterfaces method 268 may
return other associations that are indirect through the object’s

type.
Let’s now turn to the Type API 272 shown in FIG. 4. Three

methods are shown 1n the example, namely the IsImplement-
edBy method 274, IsInstanceOf Type method 276, and other
methods 278. In one implementation, existing reflection APIs
that may already exist for a given dynamic language frame-
work can be modified to enable some of the techniques
described herein, such as to take into account not only class-
based interfaces but also the new instance-based ones. In such
an 1mplementation, the methods shown in the Type API 272
can be modified to account for this new functionality. In
another implementation, new methods can be added that
separately query for reflection information that 1s now avail-
able given the ability to directly associate between contracts
and objects.

FIG. 5 illustrates one implementation of the stages
involved 1n associating mix-ins with contracts. As described
in the background section, a mix-in 1s one or more member
implementations that can be added dynamically to a target
object. A mix-1n can contain methods that can be added 1n one
operation to an object, such as with an equivalent to an
include statement that refers to the mix-1n a group of code.
The process begins at start point 290 with receiving nput
from a user to add a contract declaration for an implemented
contract to a mix-in at design time 1nto the dynamic language
script(s) (stage 292). An implemented contract 1s a contract
that the mix-in 1mplements and that will be dynamically

US 9,361,129 B2

7

added to the target. A constraint contract 1s optionally asso-
ciated with the mix-in implementation itself for verification
ol the target object before the mix-in 1s applied (stage 294). A
constraint contract i1s a contract that constrains what objects
the mix-in can be applied to. At runtime, the dynamic lan-
guage script 1s accessed (read or otherwise accessed) 1n order
to run the program. The implemented contract 1s associated
with the target object when applying the mix-in to the target
object (stage 296). The target object gets later used 1n a
context that requires the implemented contract (stage 297).
The code 1n that context 1s distinct from the target object and
the mix-in. Because the implemented contract was added
when the mix-in was applied, the code 1n that context 1s able
to verily that the target object satisfies the implemented con-
tract, typically using reflection (stage 298), which 1s
described 1n further detail 1n FIG. 6. The process ends at end
point 300.

Before jumping to FIG. 6, however, let’s look at an
example of how contracts can be used with mix-ins. Suppose
you apply an Enumerable ArrayEx mix-in like this:

var a = [“Zero”, “One”, “Two”, “Three”, “Four”, “Five”, “Six”’];
Object.mixin(a, Mixin.Collections. Enumerable ArrayEx);
if (Mixin.Collections.IEnumerable.isImplementedBy(a)) {
var enumerator = a.getEnumerator();
while (enumerator.moveNext()) {
write(enumerator.get _current(), “Item”);

h

In the example above, Enumerable ArrayEX 1s a mixin that
provides an implementation of IEnumerable. The Enumer-
ableArrayEX 1s being added to an array. As soon as this 1s

ey °

done, “a” implements the interface, even though 1ts type
(Array) doesn’t. The interface can then be used with the
certainty that checking for the contract provides. In other
words, by associating the interface with the mix-in, type
safety can be provided. The mix-1n packages more informa-
tion here than just implementation: it also packages the set of
interface types that 1t implements.

In the previous code example, the EnumerableArrayEx
mix-in 1s assuming that its target 1s an array. Other mix-ins
may use one or several interfaces that they expect on their
target. In one implementation, the Object.mixin method 1s
responsible for checking that those types are present on the
target at runtime. This 1s described in further detail in FI1G. 7.
Let’s turn now to FIG. 6 belfore getting back to that concept.

FIG. 6 1illustrates one implementation of the stages
involved in restricting the use of mix-1ns based on contracts or
other conditions. The process begins at start point 310 with
assigning a constraint contract and/or other condition(s) to a
mix-in that must be met by a target object (stage 312). At
runtime, the constraint contract and/or condition(s) are veri-
fied against the target object when attempting to apply the
mix-in (stage 314). An example of another condition that
could be used includes a condition evaluated based on the data
contained 1n the object. If the target object satisfies the con-
straint contract and/or other condition(s) (decision point
316), then the mix-in 1s applied (stage 318). I the target
object does not satisly the constraint contract and/or other
conditions (decision point 316), then an exception i1s thrown
(stage 320), or another suitable action taken. While this pro-
cess may seem short and simple, it 1s 1important to take a
moment to emphasize exactly what just happened. By assign-
ing a constraint contract and/or other condition(s) to a par-
ticular mix-1n, the system was able to enforce type safety for
that mix-in. In other words, the mi1x-1n was not allowed to be

10

15

20

25

30

35

40

45

50

55

60

65

8

used unless the object meets the requirements required by the
constraint contract or other conditions. The process ends at
end point 322.

FIG. 7 illustrates one implementation of exemplary API’s
for registering and/or using mix-ins with an object. In the
examples shown, there 1s an Object API 340 and a Type API
350. The Object API 340 includes a Mixin method 342 and
other methods 344. The Mixin method 342 was described
briefly in the discussion of FIG. 5. The Mixin method 342 1s
responsible for checking that the specified types are present
on the target object at runtime.

While not strictly necessary, in one implementation, a
helper method 1s provided to declare mixins (RegisterMixin
method 352), as well as additional reflection methods that
apply to mix-ins (IsMixin 354 and Mixin 356). The Register-
Mixin method 352 registers a mix-in, declares which inter-
faces 1t provides an implementation for, what types of
istances 1t can extend, and a set of base mix-ins that 1t will
inherit 1implementations from. In one implementation, all
parameters but the type name are optional. A code example 1s
shown below:

Type.RegisterMixin(typeName, implementedinterfaces,

extendedTypes, mixins)

Let’s now look at an example of a mix-in declaration (note
that the actual implementation 1s not included):

Mixin.Collections.Collection ArrayEx.registerMixin(
“Miximn.Collections.Collection ArrayEX™,
'Mixin.Collections.ICollection],

Array],
Mixin.Collections.Enumerable ArrayEx]);

In the example shown, the CollectionArrayEx mix-in
implements ICollection (and any interface that the mix-ins 1t
inherits from implement, 1n this case IEnumerable). The mix-
in 1n this example applies only to Array instances and inherits
from Enumerable ArrayEXx.

The IsMixin method 354 1s used to determine 1f a type 1s a
mix-1n. The method returns a true or a false value to indicate

whether or not the specified type 1s a mix-in. Here 1s an
example line of code for how that method could be used:

Type.isMixin(type)

To extend an object or all instances of a type with a mix-1n,
the Mixin method 342 (for the Object API 340) or the Mixin
method 356 (for the Type API 350) can be used. Here 1s some
example code for extending an object using the Mixin method
342.

Object.mixin(target, mixin)

Similarly, here 1s some example code for extending a type
(or all instances of a type) using the Mixin method 356:

Type.mixin(target, mixin)

In one implementation, a RemoveMixin method 358 can
also be provided in the Type API 350 to remove a mix-in from
an object.

FIG. 8 illustrates one implementation of the stages
involved 1n handling implementation collisions. The process
begins at start point 370 with checking for the existence of a
method before 1t 1s being added to the mix-1n (stage 372). 1T a
method does not exist (decision point 374), then an exception
1s thrown so a bug can be caught earlier (stage 376), such as
betore attempting to make a method call to a method that does
not exist. It 1s better to catch this type of problem before trying,
to actually call the method. Some or all of the technologies
and techniques discussed herein now make such checks pos-

sible. The process ends at end point 378.

US 9,361,129 B2

9

FIG. 9 illustrates one implementation of the stages
involved 1n supporting mix-in inheritance. The process
begins at start point 400 with allowing a mix-in to be extended
by other mix-ins (stage 402). A mix-in inherits interfaces
and/or conditions packaged with any mix-in that 1t 1s being
extended with (stage 404). Let’s look at these two stages 1n
turther detail to help make them clearer. As described previ-
ously 1n the background section, one of the points of mix-ins
1s to enable developers to add functionality to objects as
needed. There are cases where a library may want to give
several different levels of granularity to the features and leave
the choice to the developer on what to add. Suppose, for
example, that CollectionArrayEx implements both ICollec-
tion and IEnumerable, but there 1s already an implementation
of IEnumerable: EnumerableArrayEx. To avoid code dupli-
cation, 1t 1s possible for a mix-in to be extended by other
mix-ins. Essentially, this amounts to mixing EnumerableAr-

rayEx into CollectionArrayEx. The process ends at end point
406.

As shown 1n FIG. 10, an exemplary computer system to use
for implementing one or more parts of the system includes a
computing device, such as computing device 500. In 1ts most
basic configuration, computing device 500 typically includes
at least one processing unit 502 and memory 504. Depending
on the exact configuration and type of computing device,
memory 504 may be volatile (such as RAM), non-volatile
(such as ROM, flash memory, etc.) or some combination of
the two. This most basic configuration 1s 1llustrated in F1G. 10
by dashed line 506.

Additionally, device 500 may also have additional features/
functionality. For example, device 500 may also include addi-
tional storage (removable and/or non-removable) including,
but not limited to, magnetic or optical disks or tape. Such
additional storage 1s 1llustrated in FIG. 10 by removable stor-
age 508 and non-removable storage 510. Computer storage
media includes volatile and nonvolatile, removable and non-
removable media implemented 1n any method or technology
for storage of information such as computer readable mstruc-
tions, data structures, program modules or other data.
Memory 504, removable storage 508 and non-removable
storage 510 are all examples of computer storage media.
Computer storage media includes, but 1s not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store the desired information and which
can accessed by device 500. Any such computer storage
media may be part of device 500.

Computing device 300 includes one or more communica-
tion connections 514 that allow computing device 500 to
communicate with other computers/applications 515. Device
500 may also have mput device(s) 512 such as keyboard,
mouse, pen, voice input device, touch input device, etc. Out-
put device(s) 311 such as a display, speakers, printer, etc. may
also be included. These devices are well known 1n the art and
need not be discussed at length here. In one implementation,
computing device 500 includes dynamic language scripting
application 200 (described in FIG. 2 and other figures herein).

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims. All equivalents, changes, and modi-

10

15

20

25

30

35

40

45

50

55

60

65

10

fications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to
be protected.

For example, a person of ordinary skill in the computer
soltware art will recognize that the examples discussed herein
could be organized differently on one or more computers to
include fewer or additional options or features than as por-
trayed 1n the examples.

What 1s claimed 1s:

1. A method comprising the steps of:

recerving a method call to register a mix-in, the method call
including as parameters: an interface implementation
provided by the mix-1n, a set of types the mix-in 1s able
to extend, and a set of base mix-ins from which the
mix-1n inherits implementations;

associating with the mix-in at least one constraint contract
that constrains objects to which the mix-in can be
applied and that must be met by a target object before the
mix-1n can use the target object:

at runtime of the target object, before applying the mix-in
to the target object, determining whether the target
object meets the at least one constraint contract that
constrains objects to which the mix-1n can be applied;

1f the target object meets the at least one constraint contract,
at runtime, applying the mix-in to the target object; and

11 the target object does not meet the at least one constraint
contract, at runtime, throwing an exception.

2. The method of claim 1, wherein the target object 1s an

instance of a class.

3. The method of claim 1, wherein determiming whether the
target object meets the at least one constraint contract 1s
performed using retlection.

4. The method of claim 1, wherein the at least one con-
straint contract defines a condition.

5. A computer storage memory having computer-execut-
able 1nstructions for causing a computer to perform steps
comprising;

recerving a method call to register a mix-in, the method call
including as parameters: an interface implementation
provided by the mix-1n, a set of types the mix-in 1s able
to extend, and a set of base mix-ins from which the
mix-1n inherits implementations;

associating with the mix-in at least one constraint contract
that constrains objects to which the mix-in can be
applied and that must be met by a target object before the
mix-1n can use the target object;

at runtime of the target object, before applying the mix-in
to the target object, determining whether the target
object meets the at least one constraint contract that
constrains objects to which the mix-1n can be applied;

11 the target object meets the at least one constraint contract,
at runtime, applying the mix-in to the target object; and

11 the target object does not meet the at least one constraint
contract, at runtime, throwing an exception.

6. The computer storage memory of claim 5, wherein the

target object 1s an 1stance of a class.

7. The computer storage memory of claim 3, wherein deter-
mining whether target object meets the at least one constraint
contract 1s performed using reflection.

8. The computer storage memory of claim 5, wherein the at
least one constraint contract defines a condition.

9. A system for restricting the use of mix-ins based on
meeting of conditions comprising;:

a computer comprising a processing unit coupled to a
memory, the memory storing computer-executable
istructions which, when executed, cause the processing
unit to perform the steps of:

US 9,361,129 B2
11

receiving a method call to register a mix-in, the method call
including as parameters: an interface implementation
provided by the mix-1n, a set of types the mix-in 1s able
to extend, and a set of base mix-ins from which the
mix-in inherits implementations; 5

associating with the mix-in at least one constraint contract
that constrains objects to which the mix-in can be
applied and that must be met by a target object before the
mix-in can use the target object;

at runtime of the target object, before applying the mix-in 10

to the target object, determining whether the target
object meets the at least one constraint contract that
constrains objects to which the mix-in can be applied;

if the target object meets the at least one constraint contract,

at runtime, applying the mix-in to the target object; and 15
if the target object does not meet the at least one constraint
contract, at runtime, throwing an exception.

10. The system of claim 9, wherein determining whether
the target object meets the at least one constraint contract 1s
performed using retlection. 20

11. The system of claim 9, wherein the at least one con-
straint contract defines a condition.

12. The system of claim 9, wherein the target object 1s an
instance of a class.

25

	Front Page
	Drawings
	Specification
	Claims

