12 United States Patent

Guo et al.

US009361028B2

(10) Patent No.: US 9.361.028 B2

(54)

(71)

(72)

(73)

(%)

(21)
(22)
(65)

(51)

(52)

(58)

(56)

SYSTEMS AND METHODS FOR
INCREASING RESTORE SPEEDS OF
BACKUPS STORED IN DEDUPLICATED
STORAGE SYSTEMS

Applicant: Symantec Corporation, Mountain View,
CA (US)

Inventors: Fanglu Guo, Los Angeles, CA (US);
Weibao Wu, Vadnais Heights, MN (US);
Satyajit Gorhe Parlikar, Shoreview,
MN (US); Yun Yang, Beijing (CN)

Assignee: Veritas Technologies, LL.C, Mountain
View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 231 days.
Appl. No.: 13/889,191
Filed: May 7, 2013
Prior Publication Data

US 2014/0337591 Al Nov. 13, 2014

Int. CI.

GO6F 12/00 (2006.01)

GO6F 3/06 (2006.01)

GO6F 11/14 (2006.01)

U.S. CL

CPC GO6F 3/0613 (2013.01); GO6F 11/1453

(2013.01); GO6F 11/1469 (2013.01); GOOF
1171456 (2013.01); GO6F 2201/81 (2013.01)

Field of Classification Search
CPC e GO6F 3/0613; GO6F 11/1456
U S P i e et e e re e e aann, 711/162

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,567,188 Bl 7/2009 Anglin et al.
7,594,085 Bl 9/2009 Rao
8,041,907 B1* 10/2011 Wuetal. 711/161

45) Date of Patent: Jun. 7, 2016
8,108,446 Bl 1/2012 Christiaens
8,108,447 B2 1/2012 Guo
8,224,874 B2 7/2012 QGuo et al.
8,224,875 Bl 7/2012 Christiaens et al.
8,307,176 B1 11/2012 Wu et al.
(Continued)
OTHER PUBLICATIONS

Deepak Patil, et al.; Systems and Methods for Preserving Deduplica-
tion Efforts After Backup-Job Failures; U.S. Appl. No. 13/917,761,
filed Jun. 14, 2013.

(Continued)

Primary Examiner — Adam M Queler
Assistant fbxaminer — lrang la

(74) Attorney, Agent, or Firm — ALG Intellectual Property,
LLC

(57) ABSTRACT

A computer-implemented method for increasing restore
speeds of backups stored in deduplicated storage systems
may include (1) identifying a backup that includes data stored
in at least one data container within a deduplicated storage
system, (2) detecting a subsequent backup that includes addi-
tional data, (3) calculating an amount of duplication between
the additional data included 1n the subsequent backup and the
data stored in the data container, (4) determining that the
amount of duplication between the additional data and the
data stored in the data container is below a predetermined
threshold, (35) identifying at least one additional data con-
tainer to store the additional data instead of deduplicating the
additional data with respect to the data container, and then (6)
storing the additional data 1n the additional data container to
facilitate increasing a restore speed of the subsequent backup.
Various other methods, systems, and computer-readable
media are also disclosed.

19 Claims, 7 Drawing Sheets

Modules

|[dentification Module

Detection Module

Calculation Moduls

Detarmination Moduls

Storage Module

Prefetching Module

JTE

System

100
Backup
120
Backup
122

Deduplicated Storage System
124

Cata Container
126

Cata Container
128

US 9,361,028 B2
Page 2

(56)

8,392,376
8,504,529
8,712,976
8,732,403

2007/0043734

201
201
201
201
201
201
201
201
201

0/0250549
1/0167096
2/0036113
2/0233417
3/0036298
3/0080403
3/0110784
3/0254402
4/0025917

References Cited

U.S. PATENT DOCUMENTS

PEEEEEE2 2 2ERRE

=

3/201
8/201
4/201
5/201
2/200

9/201
7/201
2/201
9/201
2/201
3/201
5/201
9/201
1/201

bW Lo N = O R R W

Guo

Zheng et al.

Chen et al.

N&y&k

Cannon et al.
Muller et al.

Guo et al.
Lillibridge et al.

Kalachetal.
De Atley et al. ...
Yamakawa

Guo et al.
Vibhor et al.

Kaczmarczyk

......... 707/679

......... 711/135

......... 711/162
............. 713/1
......... 707/690

GOO6F 11/1448
711/173

OTHER PUBLICATIONS

Neel Bhatt, et al.; Systems and Methods for Managing References in
Deduplicating Data Systems; U.S. Appl. No. 13/915,072, filed Jun.

11, 2013.

Xianbo Zhang, et al.; U.S. Appl. No. 13/646,852, filed Oct. 8, 2012.
Xianbo Zhang; U.S. Appl. No. 13/250,156, filed Sep. 30, 2011.
“Data Domain Deduplication Storage Systems”, http://www.emc.
com/data-protection/data-domain/data-domain-deduplication-stor-
age-systems.htm, as accessed Mar. 20, 2013, EMC Corporation, (On
or before Mar. 20, 2013).

“Data Domain Protection Storage for Backup and Archive Data”,
http://www.emc.com/domains/datadomain/index.htm, as accessed
Mar. 20, 2013, EMC Corporation, (Jul. 20, 2012).

“CommVault”, http://www.commvault.com/, as accessed Mar. 20,
2013, (Dec. 2, 1998).

* cited by examiner

U.S. Patent

Jun. 7, 2016

Modules
102

|dentification Module
104

Detection Module
106

Calculation Module
108

Determination Module
110

Storage Module
112

Prefetching Module
114

Sheet 1 of 7 US 9,361,028 B2
System
100
Backup
120

FIG. 1

Deduplicated Storage System
124

Data Container
126

Data Container
128

U.S. Patent Jun. 7, 2016 Sheet 2 of 7 US 9,361,028 B2

200

™\

Deduplicated Storage System
124

Modules
102

Data Container
126(1)

Backup 120(1)-(N)
Backup 122

Data Container
126(N)

Data Container '

128(1)

o Backup 122
@

Data Container

128(N)

Network
204

Client Device
202

Modules
102

Restore Application
208
Cache
210

Request
212

FIG. 2

U.S. Patent Jun. 7, 2016 Sheet 3 of 7 US 9,361,028 B2

300

ldentify a backup that includes data stored In at least one data container within a
deduplicated storage system

302

Detect a subsequent backup that includes additional data is identical to at least a

portion of the data stored in the data container
304

Calculate an amount of duplication between the additional data included in the
subsequent backup and the data stored in the data container
306

Determine that the amount of duplication between the additional data included In
the subsequent backup and the data stored in the data stored in the data container
'S below a predetermined threshold

308

|dentify at least one data container within the deduplicated storage system to store
the additional data included in the subsequent backup instead of deduplicating the

additional data with respect to the data stored in the data container
310

Store the additional data in the additional data container within the deduplicated

storage system to tacilitate increasing a restore speed of the subsequent backup
312

End

FIG. 3

U.S. Patent Jun. 7, 2016 Sheet 4 of 7 US 9,361,028 B2

Data Container

126(1)

FIG. 4

& OI4

US 9,361,028 B2

-
2 % £ % < XL 2
Tl 5 T T TI o Tl Tl
~4 > D g = > S S
o (O JLLEEN M o) U o -
- N 0~ - T Q0 -
oo O 0 - 1N () @ -
\r o o O - - O O -
~
W
L
e
99
909 48], ¢0G 00¢%
U)Xy Ejedd JUSIXd Ele(d JUS)X3 EjE(JUsiXg Ele(d
G
v
—
e
r~ sa)Aqelsiy 0| sojAqebay 01 salAqebsiy 001 s2)Aqebsy 0| solAqebsy 0|
=
= sa)iqebay 7 9)Agebspy |

.

(1)8Z1
Jauieluod) eleq

U.S. Patent

9 9Id

£€9 AN

US 9,361,028 B2

a0IAa(] obrI0]1Q a21na8(] abeloig
dnyoeg Alewd
8¢9
92IAS(]
INndu|
™~
Coje
-
\&
@ €9 09
= goBLI9)U]| 90BLIo)u]
72 abeI0)g Jnduj
\&
v—
—
3
~
=
—
o

229
aoeLia)u|

UOIIED I UNWWON)

0¢9 819
18||043U0D /) 18]|0JJU0D) AJIOWSIA]

U.S. Patent

20l
Sa|NPOA

919
Alowa|y Wa)sAg

¥<9
901A3(]

Ael|dsiq

9¢9

ley1depy
Aeldsiq

ZL9
8INJoNJISEJJU|
UO(JEDIUNLILLION

719
10SS900.d

X
0L9

walsAg bunndwon

L Old

(NJOZZ
82IA9(]

US 9,361,028 B2

(1)07/
(NJO6Z 80IA8(]

901A8(]

— SF7
- 18AI8Sg
™~

~

P

P

=

72

08/
Jlge4 NVS

\&

y—

—

g

r~

m L vz
— G6/ lsAlag

Aelly abelolg

Jusbieiul

(NJO9Z
80IAS(]

(1)094

82IA8(]

U.S. Patent

0¢/
Jusijo

00l
We)sAg

017
Jusiio

0cZ

US|

AN

00L.
91N)981YDIY MIOMISN

US 9,361,028 B2

1

SYSTEMS AND METHODS FOR
INCREASING RESTORE SPEEDS OF

BACKUPS STORED IN DEDUPLICATED
STORAGE SYSTEMS

BACKGROUND

Deduplicated storage systems are often used to reduce the
amount of storage space needed to store backup 1mages by
identifyving redundant data patterns included in the backup
images. For example, a backup and restore technology may
capture a backup 1mage of a client device and identily various
data patterns included 1n both the backup image and one or
more data containers within a deduplicated storage system. In
this example, rather than storing multiple instances of the data
patterns to the deduplicated storage system, the backup and
restore technology may configure the backup image to simply
reference the data patterns already included the data contain-
ers within the deduplicated storage system. By configuring
the backup image to reference the data patterns already
included in the data containers, the backup and restore tech-
nology may reduce the amount of storage space needed to
store the backup 1mage 1n the deduplicated storage system.

Unfortunately, while conventional backup and restore
technologies may reduce the amount of storage space needed
to store backup 1mages 1n deduplicated storage systems, such
backup and restore technologies may also have certain short-
comings and/or inetliciencies. In one example, as the number
of backup 1mages stored to a deduplicated storage system
increases, the speed at which a conventional backup and
restore technology 1s able to restore the later backups may
decrease in dramatic fashion. For example, the conventional
backup and restore technology may achieve a restore speed of
up to 1 gigabyte per second while restoring the first backup
stored to the deduplication storage system. However, the con-
ventional backup and restore technology may reach a restore
speed of only 33 megabytes per second while restoring the
25" backup stored to the deduplication storage system.

What 1s needed, therefore, are systems and methods for
increasing the restore speeds of backups stored to dedupli-
cated storage systems.

SUMMARY

As will be described 1n greater detail below, the instant
disclosure generally relates to systems and methods for
increasing restore speeds of backups stored 1 deduplicated
storage systems by storing duplicate instances of certain data
during backup operations and/or prefetching certain data dur-
ing restore operations.

In one example, a computer-implemented method for
increasing restore speeds of backups stored 1n deduplicated
storage systems may include (1) identitying a backup that
includes data stored 1n at least one data container within a
deduplicated storage system, (2) detecting a subsequent
backup that includes additional data that 1s identical to at least
a portion of the data stored in the data container, (3) calculat-
ing an amount of duplication between the additional data
included 1n the subsequent backup and the data stored 1n the
data container, (4) determining that the amount of duplication
between the additional data included in the subsequent
backup and the data stored in the data container i1s below a
predetermined threshold, (35) 1dentifying at least one addi-
tional data container within the deduplicated storage system
to store the additional data included 1n the subsequent backup
instead of deduplicating the additional data with respect to the
data stored in the data container, and then (6) storing the

10

15

20

25

30

35

40

45

50

55

60

65

2

additional data 1n the additional data container within the
deduplicated storage system to facilitate increasing a restore
speed of the subsequent backup.

In some examples, the method may also include detecting,
a request to restore the subsequent backup to a client device.
In such examples, the method may further include prefetch-
ing at least a portion of the subsequent backup from the
deduplicated storage system in response to detecting the
request to restore the subsequent backup to the client device.

In some examples, the method may also include 1dentify-
ing a data container that includes a plurality of data extents
included in the subsequent backup. In such examples, the
method may further include determining that a subset of the
data extents are adjacent to one another within the data con-
tainer. Additionally or alternatively, the method may include
caching the subset of adjacent data extents upon determining
that the subset of data extents are adjacent to one another.

In some examples, the method may also include determin-
ing that another subset of the data extents are adjacent to one
another within the data container. In such examples, the
method may further include caching the other subset of adja-
cent data extents upon determining that the other subset of
data extents are adjacent to one another.

In some examples, the method may also include 1dentify-
ing a starting point of at least one data extent and an ending
point of at least one other data extent included in the subse-
quent backup within the data container. In such examples, the
method may further include calculating a differential
between the starting point of the data extent and the ending
point of the other data extent within the data container. Addi-
tionally or alternatively, the method may include determining
that the differential between the starting point of the data
extent and the ending point of the other data extent 1s below a
predetermined threshold.

In some examples, the method may also include reading
the subset of adjacent data extents from the data container
with a single read operation. In such examples, the method
may further include storing the subset of adjacent data extents
in a cache accessible to the client device.

In some examples, the method may also iclude reading a
portion of data that 1s not needed to restore the subsequent
backup from the data container with the single read operation.
In such examples, the method may further include discarding
the unneeded portion of data instead of storing the unneeded
portion of data in the cache.

In some examples, the method may also include detecting
a restore operation performed by a restore application 1n
response to the request to restore the subsequent backup to the
client device. In such examples, the method may further
include directing the restore application to search the cache
for the subset of data extents included in the subsequent
backup instead of reading the subset of data extents from the
data container within the deduplicated storage system.

In some examples, the method may also mclude detecting
a need of the restore application to read the subset of data
extents while the restore application 1s performing the restore
operation. In such examples, the method may further include
directing the restore application to search the cache for the
subset of data extents included i1n the subsequent backup
instead of reading the subset of data extents from the data
container within the deduplicated storage system.

In some examples, the method may also include determin-
ing that the restore application has read the subset of data
extents from the cache while performing the restore opera-
tion. In such examples, the method may further include
removing the subset of data extents from the cache in

US 9,361,028 B2

3

response to determiming that the restore application has read
the subset of data extents from the cache.

In some examples, the method may also include comparing
the additional data included 1n the subsequent backup with
the data stored 1n the data container. In such examples, the
method may further include determining that the portion of
data stored 1n the data container 1s 1dentical to the additional
data included 1n the subsequent backup.

In some examples, the method may also include determin-
ing that the portion of data stored 1n the data container that 1s
identical to the additional data included in the backup is
below the predetermined threshold. In such examples, the
method may further include maintaining duplicate instances
ol data across the data container and the additional data con-
tainer within the deduplicated storage system to facilitate
increasing the restore speed of the subsequent backup. Addi-
tionally or alternatively, the method may include reducing an
amount of data containers needed to restore the subsequent
backup by storing all of the additional data 1n the additional
data container since the amount of duplication 1s below the
predetermined threshold.

In one embodiment, a system for implementing the above-
described method may include (1) an 1dentification module
programmed to 1dentily a backup that includes data stored in
at least one data container within a deduplicated storage sys-
tem, (2) a detection module programmed to detect a subse-
quent backup that includes additional data that 1s 1dentical to
at least a portion of the data stored 1n the data container, (3) a
calculation module programmed to calculate an amount of
duplication between the additional data included 1n the sub-
sequent backup and the data stored 1n the data container, (4) a
determination module programmed to determine that the
amount of duplication between the additional data included 1n
the subsequent backup and the data stored 1n the data con-
tainer 1s below a predetermined threshold, (5) wherein the
identification module 1s further programmed to 1dentily an
additional data container within the deduplicated storage sys-
tem to store the additional data included in the subsequent
backup 1n response to the determination that the amount of
duplication 1s below the predetermined threshold, and (6) a
storage module programmed to store the additional data in the
additional data container within the deduplicated storage sys-
tem to facilitate increasing a restore speed of the subsequent
backup. The system may also include at least one processor
configured to execute the identification module, the detection
module, the calculation module, the determination module,
the creation module, and the storage module.

In some examples, the above-described method may be
encoded as computer-readable 1nstructions on a computer-
readable-storage medium. For example, a computer-read-
able-storage medium may include one or more computer-
executable instructions that, when executed by at least one
processor of a computing device, may cause the computing,
device to (1) 1dentity a backup that includes data stored 1n at
least one data container within a deduplicated storage system.,
(2) detect a subsequent backup that includes additional data
that 1s 1dentical to at least a portion of the data stored in the
data container, (3) calculate an amount of duplication
between the additional data included in the subsequent
backup and the data stored 1n the data container, (4) determine
that the amount of duplication between the additional data
included in the subsequent backup and the data stored 1n the
data container 1s below a predetermined threshold, (5) 1den-
tify an additional data container within the deduplicated stor-
age system to store the additional data included in the subse-
quent backup instead of deduplicating the additional data
with respect to the data stored 1n the data container, and then

5

10

15

20

25

30

35

40

45

50

55

60

65

4

(6) store the additional data 1n the additional data container
within the deduplicated storage system to facilitate increasing,
a restore speed of the subsequent backup.

Features from any of the above-mentioned embodiments
may be used in combination with one another 1n accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the tollowing detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings 1llustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 1s a block diagram of an exemplary system for
increasing restore speeds of backups stored 1n deduplicated
storage systems.

FIG. 2 1s a block diagram of an exemplary system for
increasing restore speeds of backups stored 1n deduplicated
storage systems.

FIG. 3 1s a flow diagram of an exemplary method for
increasing restore speeds of backups stored 1n deduplicated
storage systems.

FIG. 4 15 an illustration of an exemplary data container and
an exemplary backup.

FIG. 5 1s an illustration of a plurality of exemplary data
extents included 1n a data container within a deduplicated
storage system.

FIG. 6 1s a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 7 1s a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, i1dentical reference characters
and descriptions indicate similar, but not necessarily 1denti-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example 1 the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure 1s generally directed to systems and
methods for increasing restore speeds of backups stored in
deduplicated storage systems. As will be explained 1n greater
detail below, by calculating the amount of duplication (some-
times referred to as container utilization) between a backup
and a previously used data container within a deduplicated
storage system, the various systems and methods described
herein may selectively store at least a portion of the backup as
duplicate data 1n a new data container 1n the event that the
amount of duplication between the backup and the previously
used data container 1s below a predetermined threshold. By
selectively storing the portion of the backup as duplicate data
in the new data container in the event that the amount of
duplication between the backup and the previously used data
container 1s below the predetermined threshold, the various

US 9,361,028 B2

S

systems and methods described herein may increase the stor-
age elliciency of the data containers storing the data included
in the backup within the deduplicated storage system.

In addition, by increasing the storage etficiency of the data
containers storing the data included 1n the backup within the
deduplicated storage system, the various systems and meth-
ods described herein may reduce the number of data contain-
ers needed to restore the backup from the deduplicated stor-
age system. By reducing the number of data containers
needed to restore the backup from the deduplicated storage
system, the various systems and methods described herein
may increase the restore speed of the backup.

Moreover, by prefetching adjacent portions of the backup
from a data container within the deduplicated storage system
during a restore operation, the various systems and methods
described herein may reduce the number of read operations
needed to restore the backup from the deduplicated storage
system. By reducing the number of read operations needed to
restore the backup from the deduplicated storage system, the
various systems and methods described herein may increase
the restore speed of the backup.

As will be explained 1n greater detail below, by combining
these techniques upon backing up and restoring the backup,
the various systems and methods described herein may
achieve unexpected and/or unpredictable increases 1n the
restore speed of the backup. For example, by implementing,
only the technique of selectively storing duplicate data in the
event that the amount of duplication between the backup and
the previously used data container 1s below a predetermined
threshold, the various systems and methods described herein
may increase the restore speed of the backup from 33 mega-
bytes per second (MB/sec) to 77 MB/sec.

In another example, by implementing only the technique of
prefetching adjacent portions of the backup from the data
container within the deduplicated storage system during the
restore operation, the various systems and methods described
herein may increase the restore speed of the backup from 33
MB/sec to 140 MB/sec. However, by combining the tech-
niques of selectively storing duplicate data during the backup
operation and prefetching adjacent portions of the backup
during the restore operation, the various systems and methods
described herein may increase the restore speed of the backup
from 33 MB/sec to 600 MB/sec (an increase of approximately
18-fold).

The following will provide, with reference to FIGS. 1-2,
detailed descriptions of exemplary systems for increasing
restore speeds of backups stored 1n deduplicated storage sys-
tems. Detailed descriptions of corresponding computer-
implemented methods will be provided 1n connection with
FIG. 3. Detailed descriptions of an exemplary data container
and an exemplary backup will be provided 1n connection with
FIG. 4. Detailed descriptions of a plurality of exemplary data
extents included 1n a data container will be provided 1n con-
nection with FIG. 5. In addition, detailed descriptions of an
exemplary computing system and network architecture
capable of implementing one or more of the embodiments
described herein will be provided 1n connection with FIGS. 6
and 7, respectively.

FIG. 1 15 a block diagram of an exemplary system 100 for
increasing restore speeds of backups stored 1n deduplicated
storage systems. As illustrated in this figure, exemplary sys-
tem 100 may include one or more modules 102 for perform-
ing one or more tasks. For example, and as will be explained
in greater detail below, exemplary system 100 may include an
identification module 104 programmed to 1dentily a backup
that includes data stored 1n at least one data container within
a deduplicated storage system. Exemplary system 100 may

10

15

20

25

30

35

40

45

50

55

60

65

6

also include a detection module 106 programmed to detect a
subsequent backup that includes additional data that 1s 1den-
tical to at least a portion of the data stored in the data con-
tainer.

In addition, and as will be described 1n greater detail below,
exemplary system 100 may include a calculation module 108
programmed to calculate an amount of duplication between
the additional data included 1n the subsequent backup and the
data stored 1n the data container. Exemplary system 100 may
turther include a determination module 110 programmed to
determine that the amount of duplication between the addi-
tional data included 1n the subsequent backup and the data
stored 1n the data container 1s below a predetermined thresh-
old.

Moreover, exemplary system 100 may include a storage
module 112 programmed to store the additional data 1n an
additional data container within the deduplicated storage sys-
tem to facilitate increasing a restore speed of the subsequent
backup. Exemplary system 100 may also include a prefetch-
ing module 114 programmed to prefetch at least a portion of
the subsequent backup from the deduplicated storage system
in response to a request to restore the subsequent backup to
the client device. Although illustrated as separate elements,
one or more ol modules 102 in FIG. 1 may represent portions
of a single module or application (such as SYMANTEC
BACKUP EXEC or SYMANTEC NETBACKUP).

In certain embodiments, one or more of modules 102 1n
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, and as will be described in greater detail below, one
or more of modules 102 may represent software modules
stored and configured to run on one or more computing
devices, such as the devices 1llustrated 1n FIG. 2 (e.g., client
device 202 and/or deduplicated storage system 124), comput-
ing system 610 1n FIG. 6, and/or portions of exemplary net-
work architecture 700 1n FIG. 7. One or more of modules 102
in FIG. 1 may also represent all or portions of one or more
special-purpose computers configured to perform one or
more tasks.

As 1illustrated m FIG. 1, exemplary system 100 may also
include one or more backups, such as backups 120 and 122.
The term “backup,” as used herein, generally refers to any
type or form of physical or virtual disk image that includes all
or a portion of the data located on a computing device and/or
a storage device at a specific point 1n time. In one example,
backup 120 may represent at least a portion of the data located
on a computing device at a specific point 1n time. In this
example, backup 122 may represent at least a portion of the
data located on the computing device at a subsequent point 1n
time.

As 1llustrated 1n FIG. 1, exemplary system 100 may also
include a deduplicated storage system, such as deduplicated
storage system 124. The phrase “deduplicated storage sys-
tem,” as used herein, generally refers to any type or form of
storage device and/or mechanism capable of deduplicating
data included 1n backups and/or storing such deduplicated
data 1n data containers. In one example, deduplicated storage
system 124 may include data containers 126 and 128. In this
example, data containers 126 may include at least a portion of
backup 120. Additionally or alternatively, data container 128
may include at least a portion of backup 122.

Exemplary system 100 may also include one or more data-
bases (not illustrated 1n FI1G. 1). In one example, a database
may be configured to store any data, metadata, and/or infor-
mation used to facilitate increasing restore speeds of backups
stored 1n deduplicated storage system 124. For example, a

US 9,361,028 B2

7

database included in deduplicated storage system 124 may
store data containers 126 and 128. In this example, the data-
base mncluded in deduplicated storage system 124 may also
store metadata that identifies each data container that includes
data corresponding to backups 120 and 122.

Such databases may represent portions of a single database
or computing device or a plurality of databases or computing
devices. For example, as indicated above, a database may
represent a portion of deduplicated storage system 124 in
FIGS. 1 and 2, client device 202 1n FIG. 2, computing system
610 in FIG. 6, and/or portions of exemplary network archi-
tecture 700 1n FIG. 7. Alternatively, the database may repre-
sent one or more physically separate devices capable of being
accessed by a computing device, such as deduplicated storage
system 124 i FIGS. 1 and 2, client device 202 in FIG. 2,
computing system 610 1n FIG. 6, and/or portions of exem-
plary network architecture 700 1n FIG. 7.

Exemplary system 100 1n FIG. 1 may be implemented 1n a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FI1G. 2. As shown in FI1G. 2, system 200 may include a client
device 202 1n commumnication with a deduplicated storage
system 124 via a network 204. Client device 202 may be
programmed with one or more of modules 102. Client device
202 may also include a restore application 208 capable of
performing a restore operation on client device 202.

Examples of restore application 208 include, without limita-
tion, SYMANTEC BACKUP EXEC, SYMANTEC NFET-

BACKUP, SYMANTEC NORTON GHOST, ACRONIS
TRUE IMAGE, ACRONIS BACKUP & RECOVERY,
GENIE BACKUP HOME, COMMVAULT SIMPANA, and/
or any other suitable restore application.

Additionally or alternatively, deduplicated storage system
124 may be programmed with one or more of modules 102
and include a cache 210 capable of storing one or more data
extents (e.g., one or more of data extents 400-406 in FI1G. 4)
and/or facilitating access by restore application 208 to such
data extents during the restore operation. Deduplicated stor-
age system 124 may also include data containers 126(1)-(IN)
capable of storing data that correspond to one or more of
backups 120(1)-(N) and 122. Deduplicated storage system
124 may further include additional data containers 128(1)-
(N) capable of storing additional data included 1n subsequent
backup 122. As will be described 1n greater detail below,
Deduplicated storage system 124 may include duplicate data
stored across one or more of data containers 126(1)-(N) and
one or more ol data containers 128(1)-(N).

In some embodiments, deduplicated storage system 124
may include one or more other data containers (not illustrated
in FIG. 2) capable of storing data that correspond to one or
more other backups (not illustrated in FIG. 1 or 2). For
example, backup 120 may represent a backup of client device
202 stored to deduplicated storage system 124 after one or
more other backups of client device 202 had already been
stored to deduplicated storage system 124. In this example,
backup 122 may represent the very next backup of client
device 202 that followed backup 120 1n being stored to dedu-
plicated storage system 124.

In one embodiment, one or more of modules 102 from FIG.
1 may, when executed by at least one processor of client
device 202 and/or deduplicated storage system 124, facilitate
client device 202 and/or deduplicated storage system 124 1n
increasing restore speeds of backups stored 1 deduplicated
storage systems. For example, and as will be described 1n
greater detail below, one or more of modules 102 may cause
client device 202 and/or deduplicated storage system 124 to
(1) 1dentity backup 120 that includes data stored in data

10

15

20

25

30

35

40

45

50

55

60

65

8

container 126 within deduplicated storage system 124, (2)
detect subsequent backup 122 that includes additional data
that 1s 1dentical to at least a portion of the data stored 1n data
container 126, (3) calculate an amount of duplication between
the additional data included in subsequent backup 122 and the
data stored in one or more of data containers 126(1)-(N), (4)
determine that the amount of duplication between the addi-
tional data included 1n subsequent backup 122 and the data
stored 1n the one or more of data containers 126(1)-(N) 1s
below a predetermined threshold, (5) identiy one or more of
additional data containers 128(1)-(N) within deduplicated
storage system 124 to store the additional data included 1n
subsequent backup 122 instead of deduplicating the addi-
tional data with respect to the data stored 1n the one or more of
data containers 126(1)-(N), and then (6) store the additional
data 1n the one or more of additional data containers 128(1)-
(N) within deduplicated storage system 124 to facilitate
increasing a restore speed of subsequent backup 122.

Client device 202 generally represents any type or form of
computing device capable of reading computer-executable
instructions. Examples of client device 202 include, without
limitation, laptops, tablets, desktops, servers, cellular phones,
Personal Digital Assistants (PDAs), multimedia players,
embedded systems, combinations of one or more of the same,
exemplary computing system 610 in FIG. 6, or any other
suitable computing device.

Network 204 generally represents any medium or architec-
ture capable of facilitating communication or data transfer.

Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Network

(LAN), a Personal Area Network (PAN), the Internet, Power
Line Communications (PLC), a cellular network (e.g., a Glo-
bal System for Mobile Communications (GSM) network),
exemplary network architecture 700 i FIG. 7, or the like.
Network 204 may facilitate communication or data transier
using wireless or wired connections. In one embodiment,
network 204 may facilitate communication between client
device 202 and deduplicated storage system 124.

FIG. 3 1s a flow diagram of an exemplary computer-imple-
mented method 300 for increasing restore speeds of backups
stored 1n deduplicated storage systems. The steps shown 1n
FIG. 3 may be performed by any suitable computer-execut-
able code and/or computing system. In some embodiments,
the steps shown 1n FIG. 3 may be performed by one or more
of the components of system 100 i FIG. 1, system 200 1n
FIG. 2, computing system 610 1n FIG. 6, and/or portions of
exemplary network architecture 700 in FIG. 7.

As 1llustrated in FIG. 3, at step 302 one or more of the
systems described herein may identify a backup that includes
data stored 1n at least one data container within a deduplicated
storage system. For example, at step 302 identification mod-
ule 104 may, as part of client device 202 and/or deduplicated
storage system 124 1 FIG. 2, identily backup 120 that
includes data stored in data contaimners 126(1)-(N) within
deduplicated storage system 124. In this example, backup
120 may represent a backup of the data located on client
device 202 at a specific point in time.

The various systems described herein may perform step
302 1n a variety of ways. In one example, 1dentification mod-
ule 104 may identify backup 120 as at least a portion of the
data included 1n backup 120 1s deduplicated with respect to at
least one existing data container within deduplicated storage
system 124. For example, a backup application (such as
SYMANTEC BACKUP EXEC or SYMANTEC NET-
BACKUP) may capture backup 120 during a backup opera-
tion performed on client device 202. In this example, upon
performing the backup operation on client device 202, the

US 9,361,028 B2

9

backup application may deduplicate at least a portion of
backup 120 with respect to data container 126(1) within
deduplicated storage system 124. Identification module 104
may 1dentily backup 120 while the backup application 1s
deduplicating the portion of backup 120 with respect to data
container 126(1).

In one example, 1dentification module 104 may identify
backup 120 as at least a portion of the data included 1 backup
120 1s stored 1n a newly created data container within dedu-
plicated storage system 124. For example, upon performing,
the backup operation on client device 202, the backup appli-
cation may create data container 126(IN) within deduplicated
storage system 124 and then store at least a portion of backup
120 1n data contaimner 126(N). In this example, identification
module 104 may identity backup 120 while the backup appli-
cation 1s storing the portion of backup 120 in data container
126(IN).

In one example, 1dentification module 104 may identify
backup 120 after all of the data included in backup 120 has
been stored 1n deduplicated storage system 124. For example,
upon performing the backup operation on client device 202,
the backup application may deduplicate at least a portion of
backup 120 with respect to data container 126(1) and/or store
at least a portion of backup 120 1n data container 126(N). In
this example, 1dentification module 104 may 1dentily backup
120 after the backup application has deduplicated and/or
stored the portion(s) of backup 120.

As 1llustrated i FIG. 4, data container 126(1) may store
various pieces of data (in this example, “data 400,” “data
402,” “data 404,” “data 406,” “data 408,” and “data 410”)
within deduplicated storage system 124. In one example, data
400, 402, 404, and 408 stored 1n data container 126(1) may
correspond to backup 120. In this example, data 406 and 410
stored 1n data container 126(1) may correspond not to backup
120 but, rather, to one or more previous backups (not 1llus-
trated in FI1G. 1 or 2). In other words, backup 120 may include
data 400, 402, 404, and 408 and exclude data 406 and 410
stored 1n data container 126(1) within deduplicated storage
system 124.

As 1llustrated 1n FIG. 3, at step 304 one or more of the
systems described herein may detect a subsequent backup
that includes additional data that 1s identical to at least a
portion of the data stored 1n the data container. For example,
at step 304 detection module 106 may, as part of client device
202 and/or deduplicated storage system 124 1n FI1G. 2, detect
subsequent backup 122 that includes additional data that 1s
identical to at least a portion of the data stored 1n data con-
tainers 126(1)-(N). In this example, subsequent backup 122
may represent a backup of the data located on client device
202 at a subsequent point 1n time (1.€., after the specific point
in time represented by backup 120).

The various systems described herein may perform step
304 1n a variety of ways. In one example, detection module
106 may detect subsequent backup 122 as at least a portion of
subsequent backup 122 1s captured on client device 202. For
example, the backup application may capture subsequent
backup 122 during a subsequent backup operation performed
on client device 202. In this example, detection module 106
may detect subsequent backup 122 while the backup appli-
cation 1s performing the subsequent backup operation on
client device 202.

In one example, detection module 106 may detect subse-
quent backup 122 after subsequent backup 122 1s captured on
client device 202. For example, detection module 106 may
detect subsequent backup 122 aiter the backup application
has performed the subsequent backup operation on client

device 202.

10

15

20

25

30

35

40

45

50

55

60

65

10

In one example, detection module 106 may detect subse-
quent backup 122 before at least a portion of subsequent
backup 122 1s deduplicated with respect to 1n data containers
126(1)-(N) and/or stored to deduplicated storage system 124.
For example, upon performing the subsequent backup opera-
tion on client device 202, the backup application may prepare
to deduplicate at least a portion of subsequent backup 122
with respect to data containers 126(1)-(IN). In this example,
detection module 106 may detect subsequent backup 122 as
the backup application 1s preparing to deduplicate the portion
of subsequent backup 122 with respect to data containers
126(1)-(N).

In some examples, detection module 106 may detect sub-
sequent backup 122 based at least in part on evidence 1ndi-
cating that subsequent backup 122 has been or will soon be
captured on client device 202. In one example, detection
module 106 may detect a request from the backup application
to deduplicate at least a portion of subsequent backup 122
with respect to data containers 126(1)-(IN) and/or store at least
a portion of subsequent backup 122 to deduplicated storage
system 124. In another example, detection module 106 may
detect a request from an application (such as an operating
system) running on client device 202 or deduplicated storage
system 124 to imitiate the subsequent backup operation per-
formed by the backup application.

As 1llustrated i FIG. 4, subsequent backup 122 may
include various pieces of data (1n this example, “data 400,”
“data 402,” “data 408,” “data 412, “data 414,” and “data
416”). In one example, subsequent backup 122 may include
one or more pieces of data that are i1dentical to at least a

portion of the data stored 1n data containers 126(1)-(N) within
deduplicated storage system 124. For example, subsequent
backup 122 in FI1G. 4 may include the same data 400, 402, and
408 stored 1n data container 126(1) 1n F1G. 4. In this example,
subsequent backup 122 1n FIG. 4 may also include data 412,
data 414, and data 416, which are not stored 1n data container
126(1) 1n FI1G. 4 (but may be stored in one or more other data
containers not illustrated 1n FIG. 4).

As 1llustrated 1n FIG. 3, at step 306 one or more of the
systems described herein may calculate an amount of dupli-
cation between the additional data included 1n the subsequent
backup and the data stored 1n the data container. For example,
at step 306 calculation module 108 may, as part of client
device 202 and/or deduplicated storage system 124 1n F1G. 2,
calculate an amount of duplication (sometimes referred to as
container utilization) between the additional data included 1n
subsequent backup 122 and the data stored 1n at least one of
data containers 126(1)-(N). In this example, the amount of
duplication may represent the percentage or ratio of data
stored 1n at least one of data containers 126(1)-(N) that 1s
identical to the additional data included in subsequent backup
122.

As will be described in greater detail below 1n connection
with FIG. 4, the phrases “amount of duplication™ and “con-
tainer utilization,” as used herein, generally refer to the
amount of data stored in a data container that 1s 1dentical to
data included 1n a backup relative to the total amount of data
stored 1n the data container. In some examples, the phrases
“amount of duplication” and “container utilization,” as used
herein, may refer to the amount of data stored 1n a data
container that would be referenced or otherwise used by a
backup i1 the backup were deduplicated with respect to the
data container. As such, the phrases “amount of duplication”
and “container utilization” may be used interchangeably
herein to describe the systems and methods of the instant
disclosure.

US 9,361,028 B2

11

The various systems described herein may perform step
306 1n a variety of ways. In one example, calculation module
108 may compare the additional data included 1n subsequent
backup 122 with the data stored in data container 126(1). For
example, calculation module 108 may compare data 400,
402, and/or 408 1included 1n backup 122 1n FIG. 4 with data
400, 402, 404, 406, 408, and/or 410 stored 1n data container
126(1) 1n FIG. 4. In this example, upon performing this com-
parison, calculation module 108 may determine data 400,

402, and 408 are included 1n subsequent backup 122 1n FIG.
4 and stored in data container 126(1) 1n FIG. 4.

In one example, calculation module 108 may determine the
portion of the data stored in data container 126(1) that 1s
included backup 122. For example, calculation module 108

may determine that data 400, 402, and 408 represent 2 or
50% of all of the data (e.g., data 400, 402, 404, 406, 408,

and/or 410) stored 1n data container 126(1) 1n F1G. 4. In other
words, calculation module 108 may determine that the
amount of duplication between the additional data included 1n

subsequent backup 122 and the data stored in data container
126(1) 1s 12 or 50% of all of the data stored in data container

126(1).

In some examples, the backup application (and/or one or
more of modules 102) may search deduplicated storage sys-
tem 124 for one or more data containers storing at least a
portion of data that 1s identical to the additional data included
in subsequent backup 122. For example, the backup applica-
tion may generate a hash of each of data 400, 402, and/or 408.
In this example, the backup application may compare the
hashes of data 400, 402, and/or 408 with a database or hash
table that includes a hash of each data pattern stored in data
containers 126(1)-(N) within deduplicated storage system
124. The backup application may then determine that each of
data 400, 402, and 408 are stored 1n data container 126(1)
based at least in part on this comparison.

In one example, calculation module 108 may calculate
another amount of duplication between other data included 1n
subsequent backup 122 and another data container in data
containers 126(1)-(N) within deduplicated storage system.
For example, calculation module 108 may compare the other
data included 1n subsequent backup 122 with the other data
container 1n data containers 126(1)-(N). In this example, cal-
culation module 108 may determine that the other amount of
duplication between the other data included in subsequent
backup 122 and the other data container 1n data containers
126(1)-(N) 1s 59% of all of the data stored in other data
container.

As 1llustrated 1n FIG. 3, at step 308 one or more of the
systems described herein may determine that the amount of
duplication between the additional data included 1n the sub-
sequent backup and the data stored 1n the data container 1s
below a predetermined threshold. For example, at step 308
determination module 110 may, as part of client device 202
and/or deduplicated storage system 124 1n FIG. 2, determine
that the amount of duplication between the additional data
included 1n subsequent backup 122 and the data stored 1n at
least one of data containers 126(1)-(IN) 1s below a predeter-
mined threshold. In this example, the predetermined thresh-
old may include any type or form of amount (e.g., a percent-
age or ratio) used as a comparative measurement for
determining whether to deduplicate the additional data
included 1n subsequent backup 122 with respect to data con-
tainers 126(1)-(N) or store the additional data as duplicate
data in one or more new data containers.

The various systems described herein may perform step
308 1n a variety of ways. In one example, determination
module 110 may 1dentily the predetermined threshold. For

10

15

20

25

30

35

40

45

50

55

60

65

12

example, determination module 110 may locate the predeter-
mined threshold 1n a database within deduplicated storage
system 124. In this example, upon locating the predetermined
threshold, determination module 110 may determine that the
predetermined threshold 1s 60%.

In one example, determination module 110 may compare
the amount of duplication between the additional data
included in subsequent backup 122 and the data stored 1n data
container 126(1) with the predetermined threshold. For
example, determination module 110 may compare the
amount of duplication calculated at 50% with the predeter-
mined threshold of 60%. In this example, determination mod-
ule 110 may then determine that the amount of duplication
calculated at 50% 1s below the predetermined threshold of
60%.

In one example, determination module 110 may also com-
pare the other amount of duplication between the other data
included 1n subsequent backup 122 and the other data con-
tainer 1n data containers 126(1)-(IN) with the predetermined
threshold. For example, determination module 110 may com-
pare the other amount of duplication calculated at 59% with
the predetermined threshold of 60%. In this example, deter-
mination module 110 may then determine that the other
amount of duplication calculated at 539% 1s below the prede-
termined threshold of 60%.

As 1llustrated 1n FIG. 3, at step 310 one or more of the
systems described herein may identify at least one additional
data container within the deduplicated storage system to store
the additional data included 1n the subsequent backup instead
of deduplicating the additional data with respect to the data
stored 1n the data container. For example, at step 310 1denti-
fication module 104 may, as part of client device 202 and/or
deduplicated storage system 124 1n FI1G. 2, 1dentify additional
data containers 128(1)-(N) within deduplicated storage sys-
tem 124 to store the additional data included 1n subsequent
backup 122 instead of deduplicating the additional data with
respect to the data stored in data containers 126(1)-(N). Iden-
tification module 104 may 1nitiate this process of identifying
additional data containers 128(1)-(IN) in response to the deter-
mination that the amount of duplication between the addi-
tional data included 1n subsequent backup 122 and the data
stored 1n data container 126(1)-(N) 1s below the predeter-
mined threshold.

The various systems described herein may perform step
310 1n a variety of ways. In one example, 1dentification mod-
ule 104 may 1dentity additional data container 128(1) having
been preallocated to store duplicate data within deduplicated
storage system 124. For example, the backup application may
preallocate additional data container 128(1) and leave addi-
tional data container 128(1) empty within deduplicated stor-
age system 124. In this example, the backup application may
configure additional data container 128(1) to store data dupli-
cated 1n an existing data container whose container utilization
would have been below the predetermined threshold of 60%.
Identification module 104 may then identity additional con-
tamner 128(1) within deduplicated storage system 124 in
response to the determination that the amount of duplication
between subsequent backup 122 and data container 126(1) 1s
below the predetermined threshold of 60%.

In one example, identification module 104 may create
additional data container 128(N) to store the other data
included 1n subsequent backup 122 as duplicate data within
deduplicated storage system 124. For example, identification
module 104 may allocate additional data container 128(N)
within deduplicated storage system 124. In this example,
identification module 104 may configure additional data con-
taimner 128(N) to store the other data included in subsequent

US 9,361,028 B2

13

backup 122 as duplicate data since the container utilization of
the other data container in data containers 126(1)-(IN) would
have been below the predetermined threshold of 60%.

As 1llustrated 1n FIG. 3, at step 312 one or more of the
systems described herein may store the additional data 1n the
additional data container within the deduplicated storage sys-
tem to facilitate increasing a restore speed of the subsequent
backup. For example, at step 312 storage module 112 may, as
part of client device 202 and/or deduplicated storage system
124 1in FIG. 2, store the additional data in at least one of
additional data containers 128(1)-(N) instead of deduplicat-
ing the additional data with respect to the data stored 1n data
containers 126(1)-(N).

The systems described herein may perform step 312 1n a
variety ol ways. In one example, storage module 112 may
store the additional data 1n data container 128(1) as duplicate
data since the container utilization of data container 126(1)
would have been below the predetermined threshold of 60%.
For example, storage module 112 may store data 400, 402,
408,412, 414, 416 1in additional data container 128(1) instead
of deduplicating data 400, 402, and 408 with respect to the
data stored in data container 126(1). In this example, by
storing data 400, 402, and 408 1n data container 128(1) as
duplicate data, storage module 112 may increase the storage
elficiency of the data containers storing the additional data
included 1n subsequent backup 122 within deduplicated stor-
age system 124.

Moreover, by increasing the storage efficiency of the data
containers storing the additional data included 1n subsequent
backup 122 within deduplicated storage system 124, storage
module 112 may reduce the number of data containers needed
to restore subsequent backup 122 from deduplicated storage
system 124. By reducing the number of data containers
needed to restore subsequent backup 122 from deduplicated
storage system 124, storage module 112 may facilitate
increasing the restore speed of subsequent backup 122.

In one example, storage module 112 may store the other
data 1n data container 128(1) as duplicate data since the con-
tainer utilization of the other data container 1n data containers
126(1)-(N) would have been below the predetermined thresh-
old of 60%. For example, storage module 112 may store the
other data in data container 128(N) as duplicate data instead
of deduplicating the other data included 1n subsequent backup
122 with respect to the other data container in data containers
126(1)-(N). In this example, by storing the other data 1n data
container 128(N) as duplicate data, storage module 112 may
increase the storage efficiency of the data containers storing
the other data included 1n subsequent backup 122 within
deduplicated storage system 124.

In some examples, the systems and methods described
herein may facilitate increasing the restore speed of backups
in a variety of other ways. In one example, detection module
106 may detect a request to restore subsequent backup 122 to
client device 202. For example, restore application 208 may
1ssue request 212 to restore subsequent backup 122 to client
device 202 1n response to user mput. In this example, detec-
tion module 106 may detect request 212 as restore application
208 1ssues request 212.

In one example, perfecting module 114 may prefetch at
least a portion of subsequent backup 122 from deduplicated
storage system 124 1n response to the detection of request
212. For example, perfecting module 114 may 1dentily data
container 128(1) in FIG. 5 that 1s storing a plurality of data
extents 500, 502, 504, and 506. In this example, prefetching
module 114 may then determine that data extents 500, 502,
504, and 506 1n FIG. 3§ are included 1n and/or referenced by

subsequent backup 122. Upon determining that data extents

10

15

20

25

30

35

40

45

50

55

60

65

14

500, 502, 504, and 506 in FIG. 5 are included 1n and/or
referenced by subsequent backup 122, prefetching module
114 may determine that at least one subset of data extents 500,
502,504, and 506 1n FIG. § are adjacent to one another within
data container 128(1).

In some examples, prefetching module 114 may identify a
starting point and an ending point of each of data extents 300,
502, 504, and 506 within data container 128(1) 1n FIG. 5. In
one example, prefetching module 114 may identify an
address at which each of data extents 500, 502, 504, and 506
starts within data container 128(1) 1n FIG. 5. For example,
prefetching module 114 may determine that data extent 500
starts at address “OxFO000000” and data extent 502 starts at
address “OxFOA7D8CO0” within data container 128(1) in FIG.
5. In this example, prefetching module 114 may also deter-
mine that data extent 504 starts at address “OxFS5F5E100” and
data extent 506 starts at address “OxF6 ACFC00” within data
container 128(1) in FIG. 5.

In one example, prefetching module 114 may also 1dentily
an address at which each of data extents 500, 502, 504, and
506 ends within data container 128(1) 1n FIG. 5. For example,
prefetching module 114 may determine that data extent 500
ends at address “OxF0989680” and data extent 502 ends at
address “OxF1406F40” within data container 128(1) in FIG.
5. In this example, prefetching module 114 may also deter-
mine that data extent 504 ends at address “OxF68E7780” and
data extent 506 ends at address “OxF7459280” within data
container 128(1) 1n FIG. 5.

In one example, prefetching module 114 may identify
these ending points based at least in part on the starting points
of data extents 500, 502, 504, and 506 and the number of bytes
in data extents 500, 502, 504, and 506. For example, prefetch-
ing module 114 may i1dentity “OxF0989680” and
“OxF1406F40” as the respective addresses at which data
extents 500 and 502 end within data container 128(1) in FIG.
5 by adding the 10 megabytes to the respective addresses at
which data extents 500 and 502 start within data container
128(1) in FIG. 3. In this example, prefetching module 114
may also 1dentily “OxF68E7780” and “OxF7459280 as the
respective addresses at which data extents 504 and 506 end
within data container 128(1) in FIG. 5 by adding the 10
megabytes to the respective addresses at which data extents
504 and 506 start within data container 128(1) 1n FIG. S.

In some examples, prefetching module 114 may determine
that data extents 500 and 502 are adjacent to one another
within data container 128(1) in FIG. 5. In one example,
prefetching module 114 may calculate a differential between
the starting point of data extent 502 and the ending point of
data extent 500. For example, prefetching module 114 may
calculate a differential between data extents 500 and 502
within data container 128(1) 1n FIG. 5 by subtracting address
“OxF0989680” from address “OxFOA7DS8CO0.” In this
example, prefetching module 114 may determine that the
differential between data extents 500 and 502 1s 1 megabyte
based on the subtraction.

In one example, prefetching module 114 may calculate a
differential between the starting point of data extent 506 and
the ending point of data extent 304. For example, prefetching
module 114 may calculate a differential between data extents
500 and 502 within data container 128(1) 1n FIG. 5 by sub-
tracting address “OxF68E7780” from address
“OxFO6ACFCO00.” In this example, prefetching module 114
may determine that the differential between data extents 504
and 506 1s 2 megabytes based on the subtraction.

In one example, prefetching module 114 may calculate a
differential between the starting point of data extent 504 and
the ending point of data extent 502. For example, prefetching

US 9,361,028 B2

15

module 114 may calculate a differential between data extents
502 and 504 within data container 128(1) 1n FIG. 5 by sub-

tracting address “OxF1406F40” from = address
“OxFS5F5E100.” In this example, prefetching module 114
may determine that the differential between data extents 502
and 504 1s 100 megabytes based on the subtraction.

Upon calculating these differentials, prefetching module
114 may determine that the differentials between data extents
500 and 502 and data extents 504 and 506 are below a prede-
termined threshold but the differential between data extents
502 and 504 are above the predetermined threshold. This
predetermined threshold may include any type or form of
amount (e.g., number of bytes) used as a comparative mea-
surement for determining whether data extents are adjacent to
one another within data container 128(1).

In one example, prefetching module 114 may locate the
predetermined threshold in a database. For example,
prefetching module 114 may locate the predetermined thresh-
old 1n a database within deduplicated storage system 124 or
client device 202. In this example, upon locating the prede-
termined threshold in the database, prefetching module 114
may determine that the predetermined threshold 1s 3 mega-
bytes.

In one example, prefetching module 114 may compare the
differentials between data extents 500 and 502 and data
extents 504 and 506 with the predetermined threshold. For
example, prefetching module 114 may compare the 1-mega-
byte differential between data extents 500 and 502 and the
2-megabyte differential between data extents 504 and 506
with the predetermined threshold of 3 megabytes. In this
example, prefetching module 114 may then determine that
the 1-megabyte and 2-megabyte differentials are below the
predetermined threshold of 3 megabytes based on the com-
parison.

Upon determining that the 1-megabyte and 2-megabyte
differentials are below the predetermined threshold of 3
megabytes, prefetching module 114 may cache data extents
500 and 502 and data extents 504 and 506 to facilitate increas-
ing the restore speed of subsequent backup 122. For example,
prefetching module 114 may read data extents 500 and 502
from data container 128(1) in FIG. 5 with a single read
instruction. In this example, prefetching module 114 may
read all of the data stored between addresses “0OxF0000000”
and “OxF1406F40” within data container 128(1) in FIG. 5
with a single read instruction. Prefetching module 114 may
then store all of this data (including data extents 500 and 502)
in cache 210 located on deduplicated storage system 124 1n
FIG. 2.

In another example, prefetching module 114 may read data
extents 304 and 506 from data container 128(1) in FI1G. 5 with
a single read instruction. For example, prefetching module
114 may read all of the data stored between addresses
“OxF5F5E100” and “0xF7459280” within data container 128
(1) 1n FIG. 5 with a single read instruction. In this example,
prefetching module 114 may determine that the 2-megabyte
differential between data extents 504 and 506 1s not needed to
restore subsequent backup 122. As a result, prefetching mod-
ule 114 may discard the 2-megabyte differential between data
extents 504 and 506 instead of storing this unneeded data 1n
cache 210.

In one example, prefetching module 114 may compare the
differential between data extents 502 and 504 with the pre-
determined threshold. For example, prefetching module 114
may compare the 100-megabyte differential between data
extents 302 and 504 with the predetermined threshold of 3
megabytes. In this example, prefetching module 114 may
then determine that the 100-megabyte differential 1s below

10

15

20

25

30

35

40

45

50

55

60

65

16

the predetermined threshold of 3 megabytes based on the
comparison. As a result, prefetching module 114 may forego
reading data extents 502 and 504 from data container 128(1)
in FIG. 5§ with a single read instruction.

In some examples, detection module 106 may detect a
restore operation performed by restore application 208 in
response to request 212 to restore subsequent backup 122 to
client device 202. In one example, detection module 106 may
detect a need of restore application 208 to read data extents
500, 502, 504, and 506. For example, detection module 106
may determine that restore application 208 currently needs or
will soon need data extents 500, 502, 504, and 506 to facilitate
restoring subsequent backup 122 to client device 202. In this
example, detection module 106 may then direct restore appli-
cation 208 to search cache 210 for data extents 500, 502, 504,
and 506 instead of reading these data extents from data con-
tainer 128(1) within deduplicated storage system 124.

In one example, determination module 110 may determine
that restore application 208 has read data extents 500, 502,
504, and 506 from cache 210 while performing the restore
operation. In this example, determination module 110 may
remove data extents 500, 502, 504, and 506 from cache 210 1n
response to determining that restore application 208 has read
these data extents from cache 210. By removing these data
extents from cache 210, determination module 110 may free
up at least a portion of cache 210 to store additional data
extents that have been or will soon be prefetched from one or
more data containers within deduplicated storage system 124.

As explained above 1n connection with system 200 1n FIG.
2 and method 300 in FIG. 3, the systems and methods
described herein may increase the restore speeds of backups
stored 1n deduplicated storage systems. For example, by cal-
culating the amount of duplication (or container utilization)
between a backup and a previously used data container within
a deduplicated storage system, SYMANTEC BACKUP
EXEC may selectively store atleast a portion of the backup as
duplicate data 1n a new data container 1n the event that the
amount of duplication between the backup and the previously
used data container 1s below a predetermined threshold. By
selectively storing the portion of the backup as duplicate data
in the new data container in the event that the amount of
duplication between the backup and the previously used data
container 1s below the predetermined threshold, SYMAN-
TEC BACKUP EXEC may increase the storage efficiency of
the data containers storing the data included 1n the backup
within the deduplicated storage system.

In addition, by increasing the storage etficiency of the data
containers storing the data included 1n the backup within the
deduplicated storage system, SYMANTEC BACKUP EXEC
may reduce the number of data containers needed to restore
the backup from the deduplicated storage system. By reduc-
ing the number of data containers needed to restore the
backup from the deduplicated storage system, SYMANTEC
BACKUP EXEC may increase the restore speed of the
backup.

Moreover, by prefetching adjacent portions of the backup
from a data container within the deduplicated storage system
during a restore operation, SYMANTEC BACKUP EXEC
may reduce the number of read operations needed to restore
the backup from the deduplicated storage system. By reduc-
ing the number of read operations needed to restore the
backup from the deduplicated storage system, SYMANTEC
BACKUP EXEC may increase the restore speed of the
backup.

In addition, by combining these techniques upon backing
up and restoring the backup, SYMANTEC BACKUP EXEC

may achieve unexpected and/or unpredictable increases in the

US 9,361,028 B2

17

restore speed of the backup. For example, by implementing,
only the technique of selectively storing duplicate data in the
event that the amount of duplication between the backup and
the previously used data container 1s below a predetermined
threshold, SYMANTEC BACKUP EXEC may increase the

restore speed of the backup from 33 megabytes per second

(MB/sec) to 77 MB/sec.

In another example, by implementing only the technique of
prefetching adjacent portions of the backup from the data
container within the deduplicated storage system during the
restore operation, SYMANTEC BACKUP EXEC may
increase the restore speed of the backup from 33 MB/sec to
140 MB/sec. However, by combining the techniques of selec-
tively storing duplicate data during the backup operation and

prefetching adjacent portions of the backup during the restore
operation, SYMANTEC BACKUP EXEC may increase the

restore speed of the backup from 33 MB/sec to 600 MB/sec
(an 1ncrease of approximately 18-fold).

FIG. 6 1s a block diagram of an exemplary computing
system 610 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 610 may per-
form and/or be a means for performing, either alone or 1n
combination with other elements, one or more of the identi-
tying, detecting, calculating, determining, storing, detecting,
prefetching, caching, reading, discarding, directing, remov-
ing, maintaining, and reducing steps described herein. All or
a portion of computing system 610 may also perform and/or
be a means for performing any other steps, methods, or pro-
cesses described and/or illustrated herein.

Computing system 610 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable mstructions. Examples of com-
puting system 610 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or
device. In 1ts most basic configuration, computing system 610
may include at least one processor 614 and a system memory
616.

Processor 614 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor
614 may receive mstructions from a software application or
module. These 1nstructions may cause processor 614 to per-
form the functions of one or more of the exemplary embodi-
ments described and/or illustrated herein.

System memory 616 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 616 include, without limitation,
Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, or any other suitable memory device.
Although not required, 1n certain embodiments computing,
system 610 may include both a volatile memory unit (such as,
for example, system memory 616) and a non-volatile storage
device (such as, for example, primary storage device 632, as
described in detail below). In one example, one or more of
modules 102 from FIG. 1 may be loaded into system memory
616.

In certain embodiments, exemplary computing system 610
may also include one or more components or elements in
addition to processor 614 and system memory 616. For
example, as 1llustrated 1n FIG. 6, computing system 610 may
include a memory controller 618, an Input/Output (I/0O) con-
troller 620, and a communication interface 622, each of which
may be interconnected via a communication infrastructure
612. Commumnication infrastructure 612 generally represents

10

15

20

25

30

35

40

45

50

55

60

65

18

any type or form of infrastructure capable of facilitating com-
munication between one or more components of a computing

device. Examples of communication inirastructure 612
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI Express (PCle), or similar bus) and a
network.

Memory controller 618 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 610. For example, in certain embodiments
memory controller 618 may control communication between
processor 614, system memory 616, and 1/0O controller 620
via communication inirastructure 612.

I/O controller 620 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, 1n
certain embodiments I/O controller 620 may control or facili-
tate transfer of data between one or more elements of com-
puting system 610, such as processor 614, system memory
616, communication interface 622, display adapter 626, input
interface 630, and storage 1interface 634.

Communication mterface 622 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
610 and one or more additional devices. For example, 1n
certain embodiments communication interface 622 may
facilitate communication between computing system 610 and
a private or public network including additional computing
systems. Examples of communication interface 622 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion 1interface 622 may provide a direct connection to a remote
server via a direct link to a network, such as the Internet.
Communication interface 622 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.

In certain embodiments, communication interface 622
may also represent a host adapter configured to facilitate
communication between computing system 610 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
tace (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Flectrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 622 may also allow computing system 610 to
engage 1n distributed or remote computing. For example,
communication interface 622 may receive instructions from a
remote device or send instructions to a remote device for
execution.

As 1llustrated 1n FIG. 6, computing system 610 may also
include at least one display device 624 coupled to communi-
cation infrastructure 612 via a display adapter 626. Display
device 624 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 626. Similarly, display adapter 626 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-

US 9,361,028 B2

19

ture 612 (or from a frame buffer, as known in the art) for
display on display device 624.

As 1llustrated 1n FIG. 6, exemplary computing system 610
may also include at least one mput device 628 coupled to
communication infrastructure 612 via an input interface 630.
Input device 628 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 610.
Examples of mput device 628 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other iput device.

As 1llustrated 1n FIG. 6, exemplary computing system 610
may also include a primary storage device 632 and a backup
storage device 633 coupled to communication infrastructure
612 via a storage interface 634. Storage devices 632 and 633
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 632 and 633
may be a magnetic disk drive (e.g., a so-called hard drive), a
solid state drive, a tfloppy disk drive, a magnetic tape drive, an
optical disk drive, a flash drive, or the like. Storage interface
634 generally represents any type or form of interface or
device for transierring data between storage devices 632 and
633 and other components of computing system 610.

In certain embodiments, storage devices 632 and 633 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer soitware, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 632 and 633 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 610. For example, storage devices 632
and 633 may be configured to read and write software, data, or
other computer-readable information. Storage devices 632
and 633 may also be a part of computing system 610 or may
be a separate device accessed through other interface sys-
tems.

Many other devices or subsystems may be connected to
computing system 610. Conversely, all of the components
and devices 1llustrated 1n FIG. 6 need not be present to prac-
tice the embodiments described and/or 1llustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown 1n FIG. 6. Com-
puting system 610 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read-
able-storage medium. The phrase “computer-readable-stor-
age medium” generally refers to any form of device, carrier,
or medium capable of storing or carrying computer-readable
instructions. Examples of computer-readable-storage media
include, without limitation, transmission-type media, such as
carrier waves, and non-transitory-type media, such as mag-
netic-storage media (e.g., hard disk drives and floppy disks),
optical-storage media (e.g., Compact Disks (CDs) or Digital
Video Disks (DVDs)), electronic-storage media (e.g., solid-
state drives and tlash media), and other distribution systems.

The computer-readable-storage medium containing the
computer program may be loaded into computing system
610. All or a portion of the computer program stored on the
computer-readable-storage medium may then be stored 1n
system memory 616 and/or various portions of storage
devices 632 and 633. When executed by processor 614, a

5

10

15

20

25

30

35

40

45

50

55

60

65

20

computer program loaded into computing system 610 may
cause processor 614 to perform and/or be a means for per-
forming the functions of one or more of the exemplary
embodiments described and/or illustrated herein. Addition-
ally or alternatively, one or more of the exemplary embodi-
ments described and/or illustrated herein may be i1mple-
mented 1 firmware and/or hardware. For example,
computing system 610 may be configured as an Application
Specific Integrated Circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 7 1s a block diagram of an exemplary network archi-
tecture 700 in which client systems 710, 720, and 730 and
servers 740 and 745 may be coupled to a network 750. As
detailed above, all or a portion of network architecture 700
may pertorm and/or be a means for performing, either alone
or 1n combination with other elements, one or more of the
identifying, detecting, calculating, determining, storing,
detecting, prefetching, caching, reading, discarding, direct-
ing, removing, maintaining, and reducing steps disclosed
herein. All or a portion of network architecture 700 may also
be used to perform and/or be a means for performing other
steps and features set forth 1n the instant disclosure.

Client systems 710, 720, and 730 generally represent any
type or form of computing device or system, such as exem-
plary computing system 610 1n FIG. 6. Similarly, servers 740
and 745 generally represent computing devices or systems,
such as application servers or database servers, configured to
provide various database services and/or run certain software
applications. Network 750 generally represents any telecom-
munication or computer network including, for example, an
intranet, a WAN, a LAN, a PAN, or the Internet. In one
example, client systems 710, 720, and/or 730 and/or servers
740 and/or 745 may include all or a portion of system 100
from FIG. 1.

As 1llustrated 1n FIG. 7, one or more storage devices 760
(1)-(N) may be directly attached to server 740. Sumilarly, one
or more storage devices 770(1)-(N) may be directly attached
to server 745. Storage devices 760(1)-(IN) and storage devices
770(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 760(1)-(IN) and storage devices 770(1)-(N) may rep-
resent Network-Attached Storage (NAS) devices configured
to communicate with servers 740 and 745 using various pro-
tocols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

Servers 740 and 745 may also be connected to a Storage
Area Network (SAN) fabric 780. SAN fabric 780 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 780 may facilitate commu-
nication between servers 740 and 745 and a plurality of
storage devices 790(1)-(N) and/or an intelligent storage array
795. SAN fabric 780 may also facilitate, via network 750 and
servers 740 and 745, communication between client systems
710, 720, and 730 and storage devices 790(1)-(N) and/or
intelligent storage array 795 1n such a manner that devices
790(1)-(N) and array 795 appear as locally attached devices
to client systems 710, 720, and 730. As with storage devices
760(1)-(N) and storage devices 770(1)-(N), storage devices
790(1)-(N) and intelligent storage array 7935 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable 1nstructions.

In certain embodiments, and with reference to exemplary
computing system 610 of FIG. 6, a communication interface,
such as communication interface 622 1in FIG. 6, may be used
to provide connectivity between each client system 710, 720,

US 9,361,028 B2

21

and 730 and network 750. Client systems 710, 720, and 730
may be able to access information on server 740 or 745 using,
for example, a web browser or other client software. Such
solftware may allow client systems 710, 720, and 730 to
access data hosted by server 740, server 745, storage devices
760(1)-(N), storage devices 770(1)-(N), storage devices 790
(1)-(N), or imtelligent storage array 795. Although FIG. 7
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or 1llus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 740, server 743, storage devices 760(1)-(IN), storage
devices 770(1)-(N), storage devices 790(1)-(N), intelligent
storage array 795, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 740, run by server 745, and distributed to client sys-
tems 710, 720, and 730 over network 750.

As detailed above, computing system 610 and/or one or
more components of network architecture 700 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for increasing restore speeds of backups stored in
deduplicated storage systems.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, soitware, or firmware (or any
combination thereol) configurations. In addition, any disclo-
sure¢ ol components contained within other components
should be considered exemplary 1n nature since many other
architectures can be implemented to achieve the same func-
tionality.

In some examples, all or aportion of exemplary system 100
in FIG. 1 may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a ser-
vice, platform as a service, infrastructure as a service, etc.)
may be accessible through a web browser or other remote
interface. Various functions described herein may be pro-
vided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a comput-
ing system (e.g., a server) to facilitate multi-tenancy for one
or more of the functions described herein. For example, one
or more of the software modules described herein may pro-
gram a server to enable two or more clients (e.g., customers)
to share an application that 1s running on the server. A server
programmed 1n this manner may share an application, oper-
ating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
customer such that one customer cannot access data and/or
configuration information of another customer.

According to various embodiments, all or a portion of
exemplary system 100 1n FIG. 1 may be implemented within
a virtual environment. For example, modules and/or data

10

15

20

25

30

35

40

45

50

55

60

65

22

described herein may reside and/or execute within a virtual
machine. As used herein, the phrase “virtual machine” gen-
crally refers to any operating system environment that i1s
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the
phrase “virtualization layer” generally refers to any data layer
and/or application layer that overlays and/or 1s abstracted
from an operating system environment. A virtualization layer
may be managed by a software virtualization solution (e.g., a
file system filter) that presents the virtualization layer as
though 1t were part of an underlying base operating system.
For example, a soitware virtualization solution may redirect
calls that are initially directed to locations within a base file
system and/or registry to locations within a virtualization
layer.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed 1n the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or 1illustrated
herein or include additional steps 1n addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein 1n the context of fully functional computing
systems, one or more of these exemplary embodiments may
be distributed as a program product 1n a variety of forms,
regardless of the particular type of computer-readable-stor-
age media used to actually carry out the distribution. The
embodiments disclosed herein may also be implemented
using soitware modules that perform certain tasks. These
soltware modules may include script, batch, or other execut-
able files that may be stored on a computer-readable storage
medium or 1 a computing system. In some embodiments,
these software modules may configure a computing system to
perform one or more of the exemplary embodiments dis-
closed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive a
backup to be transformed, transiform the backup, output a
result of the transformation to facilitate restoring the backup,
use the result of the transformation to facilitate increasing the
restore speed of the backup, and store the result of the trans-
formation to a cache accessible to the device being restored
from the backup. Additionally or alternatively, one or more of
the modules recited herein may transform a processor, vola-
tile memory, non-volatile memory, and/or any other portion
of a physical computing device from one form to another by
executing on the computing device, storing data on the com-
puting device, and/or otherwise interacting with the comput-
ing device.

The preceding description has been provided to enable
others skilled 1n the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description 1s not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not

US 9,361,028 B2

23

restrictive. Reference should be made to the appended claims
and their equivalents 1n determining the scope of the mstant
disclosure.

Unless otherwise noted, the terms ““a” or “an,” as used in
the specification and claims, are to be construed as meaning,
“at least one of.”” In addition, for ease of use, the words
“including” and “having,” as used in the specification and
claims, are interchangeable with and have the same meaning
as the word “comprising.”

What is claimed 1s:
1. A computer-implemented method for increasing restore
speeds of backups stored in deduplicated storage systems, at
least a portion of the method being performed by a computing
device comprising at least one processor, the method com-
prising;:
identifying a backup that comprises data stored 1n at least
one data container within a deduplicated storage system;

detecting a subsequent backup that comprises additional
data that s identical to atleast a portion of the data stored
in the data container;
calculating an amount of duplication between the addi-
tional data included 1n the subsequent backup and the
data stored 1n the data container, wherein the amount of
duplication represents the amount of data stored in the
data container that 1s identical to the additional data
included 1n the subsequent backup relative to the total
amount of data stored 1n the data container;

determining that the amount of duplication between the
additional data included in the subsequent backup and
the data stored in the data container 1s below a predeter-
mined threshold;

in response to determining that the amount of duplication 1s

below the predetermined threshold:

identifying at least one additional data container within
the deduplicated storage system to store the additional
data included in the subsequent backup instead of
deduplicating the additional data with respect to the
data stored 1in the data container;

storing the additional data in the additional data con-
tainer within the deduplicated storage system to
facilitate increasing a restore speed of the subsequent
backup;

detecting a request to restore the subsequent backup to a

client device;

in response to detecting the request to restore the subse-

quent backup to the client device, prefetching at least a
portion of the subsequent backup from the deduplicated
storage system to facilitate increasing the speed at which
the subsequent backup 1s restored to the client device,
wherein prefetching the portion of the subsequent
backup comprises caching a subset of adjacent data
extents from a data container that comprises a plurality
of data extents imncluded 1n the subsequent backup by:
reading the subset of adjacent data extents from the data
container with a single read operation;
upon reading the subset of adjacent data extents with the
single read operation, storing the subset of adjacent
data extents 1n a cache accessible to the client device
to facilitate increasing the speed at which the subse-
quent backup 1s restored to the client device.

2. The method of claim 1, wherein caching the subset of
adjacent data extents comprises:

identifying the data container that comprises the plurality

of data extents included 1n the subsequent backup;
determining that a subset of the data extents are adjacent to
one another within the data container.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

3. The method of claim 1, wherein prefetching the portion
of the subsequent backup from the deduplicated storage sys-
tem comprises:

determiming that another subset of the data extents are

adjacent to one another within the data container;

upon determining that the other subset of data extents are

adjacent to one another, caching the other subset of
adjacent data extents to facilitate increasing the speed at
which the subsequent backup 1s restored to the client
device.

4. The method of claim 2, wherein determining that the
subset of data extents are adjacent to one another within the
data container comprises:

identifying a starting point of at least one data extent

included 1n the subsequent backup within the data con-
tainer:;

1dentiiying an ending point of at least one other data extent

included 1n the subsequent backup within the data con-
tainer;

calculating a differential between the starting point of the

data extent and the ending point of the other data extent
within the data container;

determining that the differential between the starting point

of the data extent and the ending point of the other data
extent 1s below a predetermined threshold.

5. The method of claim 1, wherein caching the subset of
adjacent data extents comprises:

reading a portion of data that 1s not needed to restore the

subsequent backup from the data container with the
single read operation;

upon reading the unneeded portion of data with the single

read operation, discarding the unneeded portion of data
instead of storing the unneeded portion of data in the
cache.

6. The method of claim 1, further comprising;

detecting a restore operation performed by a restore appli-

cation 1n response to the request to restore the subse-
quent backup to the client device;

directing the restore application to search the cache for the

subset of data extents included 1n the subsequent backup
instead of reading the subset of data extents from the
data container within the deduplicated storage system.

7. The method of claim 6, wherein directing the restore
application to search the cache for the subset of data extents
included 1n the subsequent backup comprises:

while the restore application 1s performing the restore

operation, detecting a need of the restore application to
read the subset of data extents:

in response to detecting the need of the restore application

to read the subset of data extents, directing the restore
application to search the cache for the subset of data
extents included 1n the subsequent backup instead of
reading the subset of data extents from the data container
within the deduplicated storage system.

8. The method of claim 6, further comprising;

determiming that the restore application has read the subset

of data extents from the cache while performing the
restore operation;

in response to determining that the restore application has

read the subset of data extents from the cache, removing
the subset of data extents from the cache.

9. The method of claim 1, wherein calculating the amount
of duplication between the additional data included 1n the
subsequent backup and the data stored 1n the data container
COmprises:

comparing the additional data included 1n the subsequent

backup with the data stored 1n the data container;

US 9,361,028 B2

25

determining that the portion of data stored in the data
container 1s 1dentical to the additional data included 1n

the subsequent backup.
10. The method of claim 1, wherein determining that the
amount of duplication i1s below the predetermined threshold

comprises determining that the portion of data stored in the
data container that 1s 1dentical to the additional data included
in the backup 1s below the predetermined threshold.

11. The method of claim 1, wherein storing the additional
data in the additional data container within the deduplicated
storage system comprises maintaining duplicate instances of
data across the data container and the additional data con-
tainer within the deduplicated storage system to facilitate
increasing the restore speed of the subsequent backup.

12. The method of claim 11, wherein maintaining the
duplicate 1nstances of data across the data container and the
additional data container comprises reducing an amount of
data containers needed to restore the subsequent backup by
storing all of the additional data in the additional data con-
tainer since the amount of duplication 1s below the predeter-
mined threshold.

13. The method of claim 1, wherein calculating the amount
of duplication between the additional data included 1n the
subsequent backup and the data stored 1n the data container
comprises calculating a percentage or ratio that represents the
amount of duplication between the additional data included 1n
the subsequent backup and the data stored in the data con-
tainer.

14. A system for increasing restore speeds ol backups
stored 1n deduplicated storage systems, the system compris-
ng:

an 1dentification module, stored in memory, that identifies
a backup that comprises data stored 1n at least one data
container within a deduplicated storage system:;

a detection module, stored 1n memory, that detects a sub-
sequent backup that comprises additional data that 1s
identical to at least a portion of the data stored 1n the data
container:;

a calculation module, stored 1n memory, that calculates an
amount of duplication between the additional data
included 1n the subsequent backup and the data stored 1n
the data container, wherein the amount of duplication
represents the amount of data stored 1n the data container
that 1s 1dentical to the additional data included 1n the
subsequent backup relative to the total amount of data
stored 1n the data container;

a determination module, stored 1n memory, that determines
that the amount of duplication between the additional
data included 1n the subsequent backup and the data
stored 1n the data container 1s below a predetermined
threshold;

wherein the identification module further identifies an
additional data container within the deduplicated stor-
age system to store the additional data included in the
subsequent backup 1n response to the determination that
the amount of duplication 1s below the predetermined
threshold;

a storage module, stored 1n memory, that stores the addi-
tional data in the additional data container within the
deduplicated storage system to facilitate increasing a
restore speed of the subsequent backup;

a prefetching module, stored 1n memory, that prefetches at
least a portion of the subsequent backup from the dedu-
plicated storage system to facilitate increasing the speed
at which the subsequent backup 1s restored to a client
device, wherein prefetching the portion of the subse-
quent backup comprises caching a subset of adjacent

10

15

20

25

30

35

40

45

50

55

60

65

26

data extents from a data container that comprises a plu-

rality of data extents included in the subsequent backup

by:

reading the subset of adjacent data extents from the data
container with a single read operation;

upon reading the subset of adjacent data extents with the
single read operation, storing the subset of adjacent
data extents in a cache accessible to the client device
to facilitate increasing the speed at which the subse-
quent backup 1s restored to the client device;

at least one physical processor that executes the 1dentifica-

tion module, the detection module, the calculation mod-
ule, the determination module, the storage module, and
the prefetching module.

15. The system of claim 14, wherein the prefetching mod-
ule further:

identifies the data container that comprises the plurality of

data extents included in the subsequent backup:;
determines that a subset of the data extents are adjacent to
one another within the data container.

16. The system of claim 14, wherein the prefetching mod-
ule further:

determines that another subset of the data extents are adja-

cent to one another within the data container;
caches, upon determining that the other subset of data
extents are adjacent to one another, the other subset of
adjacent data extents to facilitate increasing the speed at
which the subsequent backup 1s restored to the client
device.
17. The system of claim 16, wherein the prefetching mod-
ule further:
identifies an address of at least one data extent included 1n
the subsequent backup within the data container;

identifies an address of at least one other data extent
included 1n the subsequent backup within the data con-
tainer:;

calculates a differential between the address of the data

extent and the address of the other data extent within the
data container;

determines that the differential between the address of the

data extent and the address of the other data extent 1s
below a predetermined threshold.
18. The system of claim 14, wherein the calculation mod-
ule calculates a percentage or ratio that represents the amount
of duplication between the additional data included 1n the
subsequent backup and the data stored in the data container.
19. A non-transitory computer-readable-storage medium
comprising one or more computer-executable instructions
that, when executed by at least one processor of a computing
device, cause the computing device to:
identity a backup that comprises data stored 1n at least one
data container within a deduplicated storage system:;

detect a subsequent backup that comprises additional data
that 1s 1dentical to at least a portion of the data stored 1n
the data container;

calculate an amount of duplication between the additional

data included in the subsequent backup and the data
stored 1n the data container, wherein the amount of
duplication represents the amount of data stored in the
data container that 1s identical to the additional data
included 1n the subsequent backup relative to the total
amount of data stored 1n the data container:

determine that the amount of duplication between the addi-

tional data included 1n the subsequent backup and the
data stored 1n the data container 1s below a predeter-

mined threshold;

US 9,361,028 B2
27

in response to determining that the amount of duplication 1s
below the predetermined threshold:
identify an additional data container within the dedupli-
cated storage system to store the additional data
included 1n the subsequent backup instead of dedupli- 5
cating the additional data with respect to the data
stored 1n the data container:
store the additional data i the additional data container
within the deduplicated storage system to facilitate
increasing a restore speed of the subsequent backup; 10
detect a request to restore the subsequent backup to a client
device;
prefetch, in response to detecting the request to restore the
subsequent backup to the client device, at least a portion
ol the subsequent backup from the deduplicated storage 15
system to facilitate increasing the speed at which the
subsequent backup 1s restored to the client device,
wherein prefetching the portion of the subsequent
backup comprises caching a subset of adjacent data
extents from a data container that comprises a plurality 20
of data extents included 1n the subsequent backup by:
reading the subset of adjacent data extents from the data
container with a single read operation;
upon reading the subset of adjacent data extents with the
single read operation, storing the subset of adjacent 25
data extents in a cache accessible to the client device
to facilitate increasing the speed at which the subse-
quent backup 1s restored to the client device.

¥ H H ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

