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DYNAMIC GENERATION OF TEXTURE
ATLASES

CROSS-REFERENCE TO RELATED
APPLICATION

This disclosure 1s related to the co-pending, commonly-
assigned patent application filed Oct. 25, 2013, entitled,
“Sprite Graphics Rendering System,” and having U.S. patent
application Ser. No. 14/063,970 (*“the 970 application™). The
970 application 1s hereby incorporated by reference 1n its
entirety.

BACKGROUND

This disclosure relates generally to the field of computer
graphics. More particularly, but not by way of limitation, 1t
relates to technique for manipulating textures 1n a rendering,
system for use with a graphics processing unit (GPU).

A texture 1s a two-dimensional (2D) image that may be
mapped onto a 2D or 3D surface and integrated 1nto a larger
scene. Textures may be created from any source, including
pre-rendered imagery, dynamic 3D graphics, vector art, and
even text. As GPUs have become more prevalent, libraries of
textures and graphic processing routines have been developed
to provide a rendering system that allows for the use of the
power of GPUs for faster rendering of graphics—rather than
depending entirely on the processing power of common cen-
tral processing units (CPUs). Generally, both CPUs and
GPUs are involved 1n graphics processing operations involv-
ing mapped textures, with much of the graphics processing
being handled by the GPUs.

Groups of textures to be used 1n a particular application
may also be stored 1n what 1s known as a “texture atlas,” in
order to increase memory eificiency and performance of the
application. A texture atlas 1s simply a large image containing
a collection of smaller sub-images, e.g., textures, which may
be “trimmed” (e.g., trimmed of superfluous transparent pad-
ding pixels) and then placed closely together with adjacent
textures. The resulting texture atlas may contain many
smaller sub-images, each of which may be used as a texture
for some part of a 2D or 3D object to be rendered 1n the
particular application. The individual textures may then be
rendered by speciiying the texture coordinates of the indi-
vidual texture 1n the atlas to point to the particular part of the
large 1mage where the individual texture that the application
1s attempting to render 1s located. In an application where
many small textures are used frequently, 1t 1s often more
elficient to store the textures 1n a single texture atlas, which
may be treated as a single unit by the graphics hardware,
resulting in fewer texture bindings.

One texel (1.e., texture element) of a texture may cover
more or less than one pixel 1n the ultimate display space, so
the texel values 1n the texture may be averaged to produce the
final output pixel values for the display space. For example, 1f
the GPU 1s attempting to draw a texture smaller or larger than
its “actual” size 1n texture atlas (and it’s not being drawn
larger or smaller by a factor of 2), or 1f the texture has been
rotated, or 1f the texture 1s moving across a screen and falls
halfway across a pixel, it may result in undesirable visible
“seams” between the textures in the display space.

When a GPU 1s being used to draw a single texture, the
developer may also specity a “wrap mode” for the edges of a
texture. For example, one option for wrapping 1s referred to
herein as “clamp” mode. Clamp mode simply repeats the
value of the edge pixel of the texture for one additional pixel
out from the existing edge of the texture. Another option for
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wrapping 1s referred to herein as “wrap” mode, which would
instead average the edge pixel with the value of the pixel on
the opposite side of the texture. This way, when the texture 1s
filtered for tiled display in the ultimate display space, there
are no transparent or semi-transparent seams between the
tiled textures. Other times, when a developer desires to have
smooth, 1.e., anti-aliased edges, he or she may specity to draw
the texture with a “linear” interpolation mode, which can
smoothly mterpolate between the pixels abutting the would-
be seam region for the pixels located 1n the would-be seam.

Unfortunately, when generating a texture atlas (i.e., the
single large 1tmage comprised of many smaller 1individual
sub-textures), the hardware may not be able to determine
where the edges of each individual sub-texture are. Further, 1t
1s not possible to specily multiple interpolation modes for the
various sub-textures that will be stored inside the texture
atlas, so these approaches can no longer be used. What 1s
needed are techmiques to intelligently analyze and modify
incoming textures as they are placed into the texture atlas by
a developer so that the textures will be perceptually equiva-
lent when they’re drawn 1n the ultimate display space, even in
tiled fashion.

SUMMARY

Techniques are disclosed herein for analyzing input images
to a texture atlas and determiming how each texture should be
modified before being stored 1n the texture atlas to prevent
undesirable drawing artifacts, while still maintaining the
memory efficiencies gained by using a texture atlas. For
example, “tileable” 1mages may be 1dentified on a per-edge
basis (e.g., by determining whether each edge pixel i1s above
a certain opacity threshold). The tileable images may then be
modified, e.g., by extruding a 1-pixel border 1dentical to the
outer row of pixels, before being stored in the texture atlas.
“Character”-type sprites may also be 1identified on a per-edge
basis (e.g., by determining whether each edge pixel 1s below
the opacity threshold). The character-type sprites may then by
modified by adding a single pixel transparent border around
the outer rows of pixels before being stored in the texture
atlas. When each sub-texture 1s then rendered, e.g., as sprites
in a graphical application, these pixel extrusions produce the
approprate filtering effects when drawn 1n the ultimate dis-
play space. Further refinements and/or heuristics may also be
employed to the texture and sprite characterization rules

described above. For example, the concavity of the edge may
be examined to attempt to confirm or deny the identifications
made based on the opacity of the edge pixels.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1llustrating one embodiment of a
graphics rendering system.

FIG. 2 1s a flowchart 1llustrating a technique for automati-
cally generating a texture atlas, according to one embodi-
ment.

FIG. 3 1s a diagram 1llustrating an exemplary texture atlas
comprised of a plurality of individual textures.

FIG. 4 illustrates various texture edges and intelligent
modification techniques, according to several embodiments.

FIG. 5 1s an exemplary graph 1llustrating the relationship
between display gamma and opacity threshold.

FIG. 6 illustrates various texture edges of different con-
cavities and intelligent modification techniques, according to
several embodiments.



US 9,355,464 B2

3

FIG. 7 1s a flowchart illustrating a technique for automati-
cally and intelligently modifying images within a texture

atlas, according to one embodiment.
FI1G. 8 1s ablock diagram of a computer system for use with
a rendering system according to one embodiment.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous specific details are set forth 1n order to provide a
thorough understanding of the invention. It will be apparent,
however, to one skilled 1n the art that the invention may be
practiced without these specific details. In other instances,
structure and devices are shown 1n block diagram form 1n
order to avoid obscuring the invention. References to num-
bers without subscripts or suilixes are understood to reference
all instance of subscripts and suilixes corresponding to the
referenced number. Moreover, the language used 1n this dis-
closure has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter, resort
to the claims being necessary to determine such nventive
subject matter. Reference in the specification to “one embodi-
ment” or to “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiments 1s included 1n at least one embodiment of the
invention, and multiple references to “one embodiment™ or
“an embodiment” should not be understood as necessarily all
referring to the same embodiment.

The processes depicted in the figures that follow are per-
formed by processing logic that comprises hardware (e.g.,
circuitry, dedicated logic, etc.), software (such as 1s run on a
general purpose computer or a dedicated machine), or a com-
bination of both. Although the processes are described below
in terms ol some sequential operations, some of the opera-
tions described may be performed in different order, and
some operations may be performed in parallel rather than
sequentially.

A Graphics Processing Unit (GPU) may be a dedicated
graphics processor implementing highly efficient graphics
operations, such as 2D graphics operations, 3D graphics
operations and/or digital video related functions. A GPU may
include special (programmable) hardware to perform graph-
1ICs operations, €.g., blitter operations, texture mapping, poly-
gon rendering, pixel shading, and vertex shading. GPUs are
known to fetch data from a frame builer and blend pixels
together to render an 1mage back into the frame builer for
display. GPUs may also control the frame builer and allow the
frame butler to be used to refresh a display, such as a CRT or
LCD display. Conventionally, GPUs may take graphics pro-
cessing tasks from one or more central processing units
(CPUs) coupled with the GPUs to output raster graphics
images to display devices through display controllers.

A typical GPU 1s a Single Instruction Multiple Data
(SIMD) device, 1n which each istruction may operate on
multiple pieces of data in parallel. Just as CPUs have devel-
oped from single processing units to multiple core processors
that can execute instructions separately 1n each core, more
recent GPUs provide “lanes” of vector computation, each of
which can be interpreted as a separate thread. A single hard-
ware sequencer typically operates on a group of such threads
in parallel. IT all execute the same 1nstruction, they are said to
be coherent. A single instruction fetch 1s broadcast to all of the
individual processing elements. If the threads branch 1n dii-
ferent directions, they are said to be diverged. The single
istruction sequencer keeps track of which threads have
diverged.
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FIG. 1 1s a block diagram 1llustrating one embodiment of a
graphics rendering system 100 that uses computing devices
including CPUs and/or GPUs to perform parallel computing
for applications. System 100 may implement a parallel com-
puting architecture. In one embodiment, system 100 may be a
graphics system 1including one or more host processors
coupled with one or more CPUs 170 and one or more GPUs
180 through a data bus 190. The plurality of host processors
may be networked together in a host system 110. The plurality
of CPUs 170 may include multi-core CPUs from different
vendors. A computer processing unit or compute unit, such as
CPU or GPU, may be associated by a group of capabilities.
For example, a GPU may have dedicated texture rendering
hardware. Another media processor may be a GPU support-
ing both dedicated texture rendering hardware and double
precision floating point arithmetic. Multiple GPUs may be
connected together.

In one embodiment, the host systems 110 may support a
software stack. The software stack can include software stack
components such as applications 120, compute application
libraries 130, a compute platiorm layer 140, e.g., an OpenCL
platform, a compute runtime layer 150, and a compute com-
piler 160. An application 120 may interface with other stack
components through API calls. One or more processing ele-
ments or threads may be running concurrently for the appli-
cation 120 in the host systems 110. The compute platiorm
layer 140 may maintain a data structure, or a computing
device data structure, storing processing capabilities for each
attached physical computing device. In one embodiment, an
application may retrieve information about available process-
ing resources of the host systems 110 through the compute
platform layer 140. An application may select and specily
capability requirements for performing a processing task
through the compute platform layer 140. Accordingly, the
compute platform layer 140 may determine a configuration
for physical computing devices to allocate and 1nitialize pro-
cessing resources from the attached CPUs 170 and/or GPUs
180 for the processing task.

The compute runtime layer 109 may manage the execution
ol a processing task according to the configured processing
resources for an application 103, for example, based on one or
more logical computing devices. In one embodiment, execut-
ing a processing task may include creating a compute pro-
gram object representing the processing task and allocating
memory resources, €.g. for holding executables, input/output
data etc. An executable loaded for a compute program object
may be a compute program executable. A compute program
executable may be included 1n a compute program object to
be executed 1n a compute processor or a compute unit, such as
a CPU or a GPU. The compute runtime layer 109 may interact
with the allocated physical devices to carry out the actual
execution of the processing task. In one embodiment, the
compute runtime layer 109 may coordinate executing mul-
tiple processing tasks from different applications according,
to run time states of each processor, such as CPU or GPU
configured for the processing tasks. The compute runtime
layer 109 may select, based on the run time states, one or more
processors from the physical computing devices configured
to perform the processing tasks. Performing a processing task
may include executing multiple threads of one or more
executables 1n a plurality of physical computing devices con-
currently. In one embodiment, the compute runtime layer 109
may track the status of each executed processing task by
monitoring the run time execution status of each processor.

The runtime layer may load one or more executables as
compute program executables corresponding to a processing
task from the application 120. In one embodiment, the com-
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pute runtime layer 1350 automatically loads additional
executables required to perform a processing task from the
compute application library 130. The compute runtime layer
150 may load both an executable and its corresponding source
program for a compute program object from the application
120 or the compute application library 130. A source program
for a compute program object may be a compute program
source. A plurality of executables based on a single compute
program source may be loaded according to a logical com-
puting device configured to include multiple types and/or
different versions of physical computing devices. In one
embodiment, the compute runtime layer 150 may activate the
compute compiler 160 to online compile a loaded source
program 1nto an executable optimized for a target processor,
e.g., a CPU or a GPU, configured to execute the executable.

An online compiled executable may be stored for future
ivocation in addition to existing executables according to a
corresponding source program. In addition, the executables
may be compiled oftline and loaded to the compute runtime
150 using API calls. The compute application library 130
and/or application 120 may load an associated executable 1n
response to library API requests from an application. Newly
compiled executables may be dynamically updated for the
compute application library 130 or for the application 120. In
one embodiment, the compute runtime 150 may replace an
ex1isting compute program executable 1n an application by a
new executable online compiled through the compute com-
piler 160 for a newly upgraded version of computing device.
The compute runtime 150 may 1nsert a new executable online
compiled to update the compute application library 130. In
one embodiment, the compute runtime 150 may invoke the
compute compiler 160 when loading an executable for a
processing task. In another embodiment, the compute com-
piler 160 may be imvoked offline to build executables for the
compute application library 130. The compute compiler 160
may compile and link a compute kernel program to generate
a computer program executable. In one embodiment, the
compute application library 130 may include a plurality of
functions to support, for example, development toolkits and/
or image processing. Each library function may correspond to
a computer program source and one or more compute pro-
gram executables stored in the compute application library
130 for a plurality of physical computing devices.

Texture Atlases

As explained above, texture atlases are simply large images
containing a collection of smaller sub-images that are placed
closely together, with 1individual sub-images stored at par-
ticular locations within the texture atlas, as represented by a
relative coordinate system.

Developers can run a single automation tool as illustrated
in FIG. 2 by flowchart 200 that takes a directory of texture
files (PNG, JPG, TIFF etc.) in block 210, parses each indi-
vidual texture 1n block 220, and generates a texture atlas in
block 230 (typically as a single JPG or PNG, but 1n any
desired format), along with a manifest file in XML format that
records the texture coordinates and dimensions in the texture
atlas. Later, when the rendering system receives the name of
the texture as specified by the developer in block 240, in block
250 a lookup occurs to find the desired texture, and finally 1n
block 260 to provide the sub-rectangle of the atlas with the
desired texture.

The developer may then request the image by name, which
1s recerved 1 block 240. The graphics system locates the atlas
file, loads 1t into the GPU, looks up the texture 1n the atlas 1n
block 250, then provides an object representing the sub-rect-
angle of the atlas which contains the original image data 1n

block 260.
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Turning now to FIG. 3, a diagram 1s shown, illustrating an
exemplary texture atlas 300 comprised of a plurality of 1indi-
vidual textures. Each “sub-image”™ or texture may be stored
within the texture atlas inside an individual sub-rectangle,
having its own set of relative texture coordinates and dimen-
s1ons with respect to the texture atlas 300. As shown in FIG.
3, a single texture atlas may combine “character’-type
sprites, such as the sprites 302 showing the various stages of
a “running’ character in the top row. Such sprites may be
shown 1n sequence at a determined rate to animate a version
ol the character appearing to “run’ across the screen. Anima-
tions for individual textures include actions like scaling,
movement, fading, timed wait, rotation, etc. In addition, each
of these building blocks can be placed into either a “Group”
amimation (parallel) or a “Sequence” amimation (sequential).
The groups and sequences themselves can also be placed
within other groups/sequence to create complex animations.

The texture atlas may also be used to store simple static
graphics to be used 1n an application, such as the stars 304 1n
the second row of the texture atlas 300. The texture atlas may
also include textures that may be tiled over a 2D or 3D surface
to create the appearance of an object that 1s made of a par-
ticular material, such as the brick-like textures 306 in the third
row of texture atlas 300. Finally, the small pot-like elements
312 1n texture atlas 300 retlect the fact that all images stored
in the texture atlas need not have the same size bounding
sub-rectangle.

As described above 1n reference to FIG. 2, tools exist to
allow developers to refer to textures by name, creating a
texture atlas that maps names to textures. However, those
tools do not intelligently modify the incoming textures to the
atlas as they are added so that the textures will be displayed
without undesirable visual artifacts, e.g., when tiled or used as
character sprites 1n the application. One potential approach to
avoiding undesirable visual artifacts when tiling sub-textures
pulled from a texture atlas would be to simply extrude a
single-pixel transparent border around each sub-texture in the
texture atlas so that the hardware does not “bleed into™ pixel
values from the neighboring sub-texture(s) when sampling
sub-textures out of the texture atlas. However, 1n the case of
textures that are used as repeated, 1.e., tiled, backgrounds, the
extruded single-pixel transparent border may result 1n unde-
sirable “seams” appearing between the individual tiles
mapped onto the surface(s) in the application as rendered in
the ultimate display space. Other undesirable visual artifacts
may include “sparkle,” 1.¢., the appearance that a pixel(s) 1s
flickering on and oif 1n what 1s intended to be a static surface
in the application. Thus, 1n one embodiment as described
herein, an automatic texture atlas capability intelligently
modifies a texture atlas 1n a process that 1s done automatically
tor the developer.

According to some embodiments, an intelligent texture
atlas modification process analyzes each input sub-texture to
the atlas on a per-edge basis. For example, if the particular
sub-texture 1s sufliciently opaque on all edges, then 1t may be
determined to be a tiling 1mage. In such a case, one embodi-
ment may extrude, 1.e., push, out an additional single-pixel
border around the 1mage, wherein the additional single-pixel
1s a duplicate of the pixel along the edge of the sub-texture.
The graphics hardware may then be instructed to only draw
the “inside” part of the sub-texture (1.e., excluding the addi-
tional single-pixel border) when the developer seeks to use
the particular sub-texture. If the graphics hardware faces a
situation where 1t needs to sample beyond the “inside™ party
of the sub-texture, e.g., 1f the sub-texture has been rotated or
1s moving across the screen, etc., the sample will only “bleed”
into the sub-texture’s own pixels, 1.¢., the single-pixel extru-
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s10n, rather than a neighboring sub-texture in the texture atlas
or a transparent padding pixel, either of which could case
undesirable visual artifacts in the ultimate display space.

If, instead, the particular sub-texture 1s not suificiently
opaque on a particular edge, then 1t may be determined that at
least that edge of the sub-texture 1s intended to be non-tiling.
In such a case, one embodiment may extrude, 1.e., push, outan
additional single-pixel border around the edge, wherein the
additional single-pixel 1s a transparent pixel along the edge of
the sub-texture. Thus, 1f the graphics hardware faces a situa-
tion where 1t needs to sample beyond the “inside” party of the
sub-texture, the sample will only “bleed” 1nto a transparent
padding pixel, which could avoid undesirable visual artifacts
in the ultimate display space, such as sampling a pixel from an
adjacent sub-texture or “wrapping” around to sample a pixel
from the opposite edge of the sub-texture.

According to some embodiments, 1t 1s determined whether
the alpha value, 1.e., opacity, of the edge pixels are above a
certain threshold of opacity. As will be discussed in reference
to FIG. 5, according to some embodiments, the value of the
opacity threshold may be determined, at least in part, based
upon the gamma value of the display where the textures will
ultimately be display.

According to some embodiments, the sub-texture modifi-
cation process may require three or more suificiently opaque
pixels 1n a row along a given edge belfore extruding out the
additional single-pixel border around the edge. This may help
to reduce the number of “false positives” i1dentified by the
process as potentially tileable edges. The precise number of
consecutive sulliciently opaque pixels required before the
process deems the edge tileable may be based, at least 1n part,
on the resolution of the display where the sub-texture images
1s displayed. As may be understood, the relevant consider-
ation when determining the required number of consecutive
suificiently opaque pixels found along an edge 1s actually the
number of “projected” pixels that the sub-texture will be
mapped to 1n the ultimate display space, rather than the actual
raw number of pixels 1n the source sub-texture as stored 1n the
texture atlas. For example, 1 a character sprite was going to be
very tiny when mapped to the ultimate display space, a lower
threshold for consecutive sufficiently opaque pixels may be
more appropriate. However, if the character sprite was going
to be very large when mapped to the ultimate display space,
then even a single sufliciently opaque pixel in the source
sub-texture could make a big difference in the way the ulti-
mate projection of the sub-texture looks, assuming a one-to-
one texel to pixel expansion.

Referring now to FIG. 4, various texture edges and intelli-
gent modification techniques are illustrated, according to sev-
cral embodiments. First, an edge 402 of character sprite sub-
texture 302 from texture atlas 200 will be examined in
magnified form so that the exemplary pixel values may be
seen more clearly. In particular, the magnified edge 402 com-
prises the back of one of the pant legs of the character sprite
sub-texture 302. This edge occurs on the rnight-hand side of
the bounding sub-rectangle represented by the dashed line
drawn around character sprite sub-texture 302.

As described above, according to some embodiments, the
intelligent sub-texture modification techniques described
herein may examine the opacity values of the edge pixels of
the sub-texture, which are represented here by the nine exem-
plary pixels shown in column 404, 1n order to determine 1f a
suificient number of edge pixels are sulliciently opaque so as
to deem the edge tileable. In this case, the fourth, fifth, and
sixth pixels 1 column 404 are deemed to be sufficiently
opaque, and the threshold for consecutive sutficiently opaque
edge pixels has been set at three, thus, this edge of sub-texture
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302 has been deemed tileable. The results of the single-du-
plicate pixel extrusion process that 1s employed for tileable
textures are shown i1n column 406. In particular, transparent
pixels are added at positions 408,-408, and 408-,-408, (1.c.,
directly across the sub-rectangle border from the pixels that
are not deemed to be sulficiently opaque), and duplicate pix-
cls are extruded out at positions 408,-408, (1.¢., directly
across the sub-rectangle border from the pixels that are
deemed to be suificiently opaque).

FIG. 4 also shows an edge 410 of the star-shaped sub-
texture 304 from texture atlas 200 in magmfied form so that
the exemplary pixel values may be seen more clearly. In
particular, the magnified edge 410 comprises the tip of one of
the points of star-shaped sub-texture 304. This edge occurs on
the nght-hand side of the bounding sub-rectangle represented
by the dashed line drawn around star-shaped sub-texture 304.
As described above, according to some embodiments, the
intelligent sub-texture modification techniques described
herein may examine the opacity values of the edge pixels of
the sub-texture, which are represented here by the nine exem-
plary pixels shown in column 412, 1n order to determine 11 a
suificient number of edge pixels are sufliciently opaque so as
to deem the edge tileable. In this case, only the fifth pixel in
column 412 1s deemed to be suificiently opaque, and the
threshold for consecutive suiliciently opaque edge pixels has
been set at three, thus, this edge of sub-texture 304 has been
deemed non-tileable. The results of the single-transparent
pixel extrusion process that 1s employed for non-tileable tex-
tures are shown in column 414. In particular, transparent
pixels are added at positions 416,-416, (1.e., directly across
the sub-rectangle border from each of the plxels comprising
the edge of the sub-texture). Hence, even though there was a
single opaque pixel along this edge, the process deemed that
sub-texture 304 was not meant to “fit together” with adjacent
sub-textures 1n the application, and thus extruded a single-
pixel transparent border.

Turming now to FI1G. 5, an exemplary graph 505 illustrating
the relationship between display gamma and opacity thresh-
old 1s shown. “Gamma,” 1s the name given to the nonlinear
operation commonly used to encode luma values and decode
luminance values 1n video or still image systems. Gamma, v,

may be defined by the following simple power-law expres-
sion: L.__=L.. 7, where the mput and output values, L, and

OUL irz °
L . respectively, are non-negative real values, typically 1n a
predetermined range, €.g., zero to one. A gamma value greater
than one 1s sometimes called an encoding gamma, and the
process of encoding with this compressive power-law non-
linearity 1s called gamma compression; conversely, a gamma
value less than one 1s sometimes called a decoding gamma,
and the application of the expansive power-law nonlinearity
1s called gamma expansion. Gamma encoding helps to map
data mto a more perceptually uniform domain.

Referring to FIG. 5, a Frame buifer Gamma Function 500
and an exemplary Native Display Response 505 are shown.
The horizontal, 1.e., x-axis, of Frame bufler Gamma Function
500 represents input 1mage values spanning a particular
range, €.g., from zero to one. The vertical, 1.e., y-axis, of
Frame bufler Gamma Function 500 represents output image
values spanning a particular range, ¢.g., ifrom zero to one. In
some embodiments, image values may enter the frame buffer
already having been processed and have a specific implicit
gamma. As shown in graph 300 in FIG. 5, the encoding
gamma 1s roughly 1/2.2, or 0.45. That is, the line in graph 500
roughly looks like the function, L, =L, . Gamma val-

ues around 1/2.2, or 0.45, are typically used as encoding
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gammas because the native display response of many display
devices have a gamma of roughly 2.2, that1s, the inverse of an
encoding gamma of 1/2.2.

The x-axis of Native Display Response Function 505 rep-
resents mput image values spanning a particular range, e.g.,
from zero to one. The y-axis of Native Display Response
Function 505 represents output image values spanning a par-
ticular range, ¢.g., from zero to one. In theory, systems in
which the decoding gamma 1s the inverse of the encoding
gamma should produce a desired overall 1.0 gamma boost.

As mentioned above, according to some embodiments, the
value of the opacity threshold may be determined, at least in
part, based upon the gamma value of the display where the
textures will ultimately be display. For example, equation 510
shown 1n FIG. 5 may be used to determine the threshold value
for opacity.

Threshold=(1/255)" (Eqn. 510)

The value (1/235) i Eqn. 510 reflects the fact that the
threshold represents the value at which the input will be
encoded as a ‘1’ in output 8-bit space (i.e., encoded values
ranging {from 0 to 2355). The value of this fraction could
change for a given implementation, for example, if 1t 1s
desired to disregard larger encoded output values, or 1t the
values are being encoded mnto an output space with a bit-depth
larger or smaller than 8-bits. Thus, for a display with a gamma
value of 2.2, an mput value of 0.73 (on a normalized O to 1
scale) corresponds to 50% luminance output (1.e., a value of
128 when quantized to 8-bit) 1n terms of the display’s
response, whereas input values below about 0.08 (on a nor-
malized O to 1 scale) correspond to a luminance value o1 O or
1 when quantized to 8-bit. Thus, for opacity values falling
below about 0.08, the intensity of the pixel in the ultimate
display space will be imperceptible to the viewer based on the
display gamma, so the pixel may be treated as a transparent
pixel. In some embodiments, the opacity threshold may be
selected to be a value between 0.05 and 0.10 (on a scale of 0
to 1), with lower threshold values being selected for more
conservative approaches and higher threshold values being
selected for approaches that are more aggressive with respect
to deeming pixels imperceptible to the end viewer of the
sub-texture.

Referring now to FIG. 6, various texture edges of different
concavities and intelligent modification techniques are 1llus-
trated, according to several embodiments. First, an edge 602
of circular sub-texture 306 from texture atlas 200 will be
examined 1n magnified form so that the exemplary pixel val-
ues may be seen more clearly. In particular, the magnified
edge 602 comprises the edge of one of the sides of circular
sub-texture 306. This edge occurs on the right-hand side of
the bounding sub-rectangle represented by the dashed line
drawn around character sprite sub-texture 306.

As described above, according to some embodiments, the
intelligent sub-texture modification techniques described
herein may examine the opacity values of the edge pixels of
the sub-texture, which are represented here by the nine exem-
plary pixels shown in column 604, 1n order to determine 1t a
suificient number of edge pixels are sulliciently opaque so as
to deem the edge tileable. In this case, the third, fourth, fifth,
sixth, and seventh pixels 1n column 604 are deemed to be
suificiently opaque, and using the threshold for consecutive
suificiently opaque edge pixels discussed above of three, this
edge of sub-texture 306 would normally be deemed tileable.

However, according to some embodiments, an additional
heuristic may be applied to the edge of the sub-texture being,
examined. In particular, the concavity of the edge may be
determined. For example, the concavity may be measured by
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evaluating the second derivative of a line approximating the
edge being evaluated. 11 the edge 1s deemed to be suilficiently
conveXx, then the normal decision to deem the edge tileable
may be overridden, 1n effect deeming the edge to be non-
tileable—despite the fact that i1t possessed a greater than
required number of consecutive pixels that met the opacity
threshold. The reason for the application of this additional
concavity heuristic 1s that the inventors have realized a poten-
tial risk of deeming all convex shapes, such as circular sub-
texture 306, to be tileable. In particular, for edges that actually
reflect an outward “bump,” rather than a “flat” surface, it may
be more desirable to extrude a one-pixel transparent border
than a one-pixel duplicated border, since it 1s less likely that
the convex texture 1s meant to fit closely together with other
convex textures, e.g., 1n a tiled background fashion.

The results of the single-pixel extrusion process that 1s
employed for convex textures (that would otherwise be
deemed tileable) are shown in column 606. In particular,
transparent pixels are added at positions 608,-608, (i.c.,
directly across the sub-rectangle border from each of the
pixels comprising the edge of the sub-texture). Hence, even
though there were greater than three sufliciently opaque pix-
cls along this edge, the process deemed that sub-texture 306
was not meant to “fit together” with adjacent sub-textures in
the application, and thus extruded a single-pixel transparent
border.

FIG. 6 also shows an edge 608 of square-shaped sub-
texture 308 from texture atlas 200 1in magnified form so that
the exemplary pixel values may be seen more clearly. This
edge occurs on the right-hand side of the bounding sub-
rectangle represented by the dashed line drawn around
square-shaped sub-texture 308. As described above, accord-
ing to some embodiments, the intelligent sub-texture modi-
fication techniques described herein may examine the opacity
values of the edge pixels of the sub-texture, which are repre-
sented here by the mine exemplary pixels shown in column
610, 1n order to determine 11 a suificient number of edge pixels
are suificiently opaque so as to deem the edge tileable. In this
case, each pixel in column 610 1s deemed to be sufliciently
opaque, and the threshold for consecutive suificiently opaque
edge pixels has been set at three, thus, this edge of sub-texture
308 would be deemed tileable. Application of the optional
concavity heuristic to edge 608 would confirm the edge was
not convex (1.e., more “tlat” than “outward bump™), and thus
the normal decision to deem the edge tileable would not be
overridden. The results of the single-duplicate pixel extrusion
process that 1s employed for tileable textures are shown in
column 612. In particular, duplicate pixels are added at each
of positions 614, -614, (1.e., directly across the sub-rectangle
border from each of the pixels comprising the edge of the
sub-texture). Hence, sub-texture 308 as modified could sately
be sampled and projected into the ultimate display without
the risk of bleeding 1into an adjacent sub-texture’s pixels.

Retferring now to FIG. 7, a flowchart 700 illustrating a
technique for automatically and intelligently modifying
images within a texture atlas 1s shown, according to one
embodiment. First, at block 710, the process begins by iter-
ating over each texture in the texture atlas. Next, at block 720,
the process iterates over each edge of each texture in the
texture atlas. The first mnquiry for a respective edge 1s the
opacity threshold test at block 730. As described above, the
opacity threshold test may involve comparing the opacity of
cach pixel along the edge to a predetermined opacity thresh-
old, as well as optionally requiring a consecutive number of
suificiently opaque pixels along the edge before determining
that the opacity threshold 1s met. If the opacity threshold 1s not
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met, the process may proceed to block 760 to extrude out an
additional one-pixel transparent border around the edge.

If 1stead, the opacity threshold 1s met at block 730, the
process may optionally employ a concavity threshold test at
block 740. As described above, the concavity threshold test
may involve determining whether the edge 1s suiliciently
convex and, 1f so, overriding the determination that the edge
1s otherwise deemed tileable. Thus, if the concavity threshold
1s not met, the process may proceed to block 760 to extrude
out an additional one-pixel transparent border around the
edge. If instead the concavity threshold 1s met (or 1f one 1s not
employed at all), the process may then proceed to block 750,
to extrude out an additional one-pixel duplicate border around
the edge.

Next, the process will continue until there are no additional
edges to evaluate for the respective sub-texture at block 770.
The process will then move on to the next texture in the atlas
at block 780 until there are no further textures to evaluate 1n
the atlas. At that point, the process may terminate.

In addition to determining how to treat the edges of every
texture put into the texture atlas, some embodiments
described herein may also begin the process detailed 1n FIG.
7 by trimming any additional blank space, e.g., transparent
padding pixels, around each incoming sub-texture, but still
record the original dimensions of the sub-texture prior to the
trimming operation. In such embodiments, additional
memory elliciencies may be gained by not storing the addi-
tional transparent pixels for each sub-texture in the texture
atlas. In such embodiments, the shader program would also
need to be written to account for any additional transforma-
tions done during the “atlasing” stage, ¢.g., the blank space
trimming operations described above. The shader program
may also be written to recalculate the new rendering area with
the “resized,” e.g., trimmed, texture, such that 1t will match
with the texture drawn at the original texture size and will be
placed at the user-specified location within the rendered
scene.

Implementation in an Flectronic Device

FIG. 8 shows one example of a computer system 800 that
can be used with one embodiment. For example, the system
800 may be implemented as a part of the systems shown 1n
FIG. 1. While FIG. 8 illustrates various components of a
computer system, it 1s not intended to represent any particular
architecture or manner of interconnecting the components as
such details are not germane to the present disclosure. Net-
work computers and other data processing systems (for
example, handheld computers, personal digital assistants
(PDAs), cellular telephones, entertainment systems, con-
sumer electronic devices, etc.), which have fewer compo-
nents or perhaps more components may also be used to imple-
ment one or more embodiments.

As shown 1n FIG. 8, the computer system 800, which is a
form of a data processing system, includes a bus 822 which 1s
coupled to a microprocessor(s) 816, which may be CPUs
and/or GPUs, a memory 812, which may include one or both
ol a volatile read/write random access memory (RAM) and a
read-only memory (ROM), and a non-volatile storage device
814. The microprocessor(s) 816 may retrieve instructions
from the memory 812 and the storage device 814 and execute
the 1nstructions using cache 818 to perform operations
described above. The bus 822 interconnects these various
components together and also interconnects these compo-
nents 816, 818, 812, and 814 to a display controller 806 and
display device 820 and to peripheral devices such as mput/
output (I/0O) devices 804 which may be mice, keyboards,
modems, network interfaces, printers and other devices
which are well known 1n the art. Typically, the input/output
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devices 804 are coupled to the system through input/output
controllers 802. Where volatile RAM 1s included in memory
812, the RAM 1s typically implemented as dynamic RAM
(DRAM), which requires power continually in order to
refresh or maintain the data in the memory. The display con-
troller 806 and display device 820 may optionally include one
or more GPUs to process display data. Optionally, a GPU
memory 808 may be provided to support GPUs included in
the display controller 806 or display device 820.

The storage device 814 1s typically a magnetic hard drive,
an optical drive, a non-volatile solid-state memory device, or
other types of memory systems that maintain data (e.g., large
amounts of data) even after power 1s removed from the sys-
tem. While FIG. 8 shows that the storage device 814 1s alocal
device coupled directly to the rest of the components 1n the
data processing system, embodiments may utilize a non-
volatile memory which 1s remote from the system, such as a
network storage device which 1s coupled to the data process-
ing system through a network interface 810, which may be a
wired or wireless networking interface. The bus 822 may
include one or more buses connected to each other through
various bridges, controllers and/or adapters as 1s well known
in the art. Although only a single element of each type 1s
illustrated in FIG. 8 for clarity, multiple elements of any or all
of the various element types may be used as desired.

It 1s to be understood that the above description 1s intended
to be 1llustrative, and not restrictive. For example, the above-
described embodiments may be used 1n combination with
cach other. Many other embodiments will be apparent to
those of skill 1n the art upon reviewing the above description.
The scope of the invention therefore should be determined
with reference to the appended claims, along with the full
scope of equivalents to which such claims are entitled.

What 1s claimed 1s:

1. A non-transitory program storage device, readable by a
programmable control device and comprising instructions
stored thereon to cause one or more processing units to:

obtain a first plurality of input images;

generate a texture atlas comprising the first plurality of

input 1mages;

determine a type of interpolation mode for each edge of

cach image in the first plurality of input images, wherein

the mstructions to determine the type of interpolation

mode for each edge of an 1mage further comprise

instructions to:

identify tileable edges based, at least 1n part, on deter-
mimng that greater than or equal to a first number of

edge pixels 1n the edge have opacity values above a

first threshold and the edge 1s not convex; and

identily non-tileable edges based, at least 1n part, on:
determining that less than the first number of edge
pixels 1 the edge have opacity values above the
first threshold; or

determining that greater than or equal to the first num-
ber of edge pixels 1n the edge have opacity values
above the first threshold and the edge 1s convex; and

for each edge of each image in the first plurality of
1mages:

11 the edge has been 1dentified as tileable, extrude a
one or more pixel border identical to the edge pixels
around the edge; and

11 the edge has been 1dentified as non-tileable, extrude
a one or more pixel transparent border around the
edge.

2. The non-transitory program storage device of claim 1,
turther comprising instructions to determine the first number
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ol edge pixels based, at least 1n part, on a resolution of a
display where at least one of the mput images 1s displayed.

3. The non-transitory program storage device of claim 2,
wherein the first number of edge pixels 1s three.

4. The non-transitory program storage device of claim 1,
turther comprising instructions to determine the first thresh-
old based, at least 1n part, on a gamma value of a display
where at least one of the input 1images 1s displayed.

5. The non-transitory program storage device of claim 4,
wherein the first threshold 1s between 0.05 and 0.10, on a
scale of O to 1.

6. The non-transitory program storage device of claim 1,
turther comprising instructions to store original dimensions
ol at least one of the plurality of input 1mages and trim blank
space around the at least one of the plurality of input 1mages
before executing the instructions to generate the texture atlas.

7. The non-transitory program storage device of claim 1,
wherein at least one of the first plurality of mput 1mages
comprises a character sprite.

8. The non-transitory program storage device of claim 1,
wherein all of the edges from a first image from the first
plurality of input 1mages are identified as tileable edges, and
wherein all of the edges from a second 1mage from the first
plurality of input images are identified as non-tileable edges.

9. A system, comprising:

a memory having, stored therein, computer program code;

and

one or more processing units operatively coupled to the

memory and display element and configured to execute

instructions in the computer program code that cause the

one or more processing units to:

obtain a first plurality of input images;

generate a texture atlas comprising the first plurality of
input 1mages;

determine a type of interpolation mode for each edge of
cach 1mage in the first plurality of input images,
wherein the instructions to determine the type of
interpolation mode for each edge of an 1image further
comprise istructions to:

identity tileable edges based, at least 1in part, on deter-
mining that greater than or equal to a first number of
edge pixels 1n the edge have opacity values above a
first threshold and the edge 1s not convex; and

identity non-tileable edges based, at least 1n part, on:
determining that less than the first number of edge

pixels in the edge have opacity values above the
first threshold; or
determining that greater than or equal to the first
number of edge pixels 1n the edge have opacity
values above the first threshold and the edge 1s
convex; and
for each edge of each image in the first plurality of
1mages:

11 the edge has been identified as tileable, extrude a
one or more pixel border identical to the edge pixels
around the edge; and

11 the edge has been 1dentified as non-tileable, extrude
a one or more pixel transparent border around the
edge.

10. The system of claim 9, wherein the instructions 1n the
computer program code further cause the one or more pro-
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cessing units to determine the first number of edge pixels
based, at least 1n part, on a resolution of the display element.
11. The system of claim 10, wherein the first number of

edge pixels 1s three.

12. The system of claim 9, wherein the instructions in the
computer program code further cause the one or more pro-
cessing units to determine the first threshold based, at least 1n
part, on a gamma value of a display where at least one of the
input 1mages 1s displayed.

13. The system of claim 12, wherein the first threshold 1s
between 0.05 and 0.10, on a scaleofOto 1.

14. The system of claim 9, wherein the instructions in the
computer program code further cause the one or more pro-
cessing units to store original dimensions of at least one of the
plurality of input images and trim blank space around the at
least one of the plurality of input images before executing the
instructions to generate the texture atlas.

15. The system of claim 9, wherein at least one of the first
plurality of input images comprises a character sprite.

16. The system of claim 9, wherein all of the edges from a
first image from the first plurality of input 1images are identi-
fied as tileable edges, and wherein all of the edges from a
second 1mage from the first plurality of mput images are
identified as non-tileable edges.

17. A method comprising:

obtaining a first plurality of input images;

generating a texture atlas comprising the first plurality of

input 1mages;

determiming a type of interpolation mode for each edge of

cach image in the first plurality of input images, wherein
the act of determiming further comprises:
identifying tileable edges based, at least in part, on deter-
mimng that greater than or equal to a first number of
edge pixels 1n the edge have opacity values above a
first threshold and the edge 1s not convex; and
identifying non-tileable edges based, at least 1n part, on:
determining that less than the first number of edge
pixels 1 the edge have opacity values above the
first threshold; or
determining that greater than or equal to the first num-
ber of edge pixels in the edge have opacity values
above the first threshold and the edge 1s convex; and
for each edge of each 1mage 1n the first plurality of images:
if the edge has been identified as tileable, extruding a one
or more pixel border identical to the edge pixels
around the edge; and
if the edge has been 1dentified as non-tileable, extruding
a one or more pixel transparent border around the
edge.

18. The method of claim 17, turther comprising the act of
determining the first number of edge pixels based, at least 1n
part, on aresolution of a display where at least one of the input
images 1s displayed.

19. The method of claim 17, turther comprising the act of
determining the first threshold based, at least 1n part, on a
gamma value of a display where at least one of the input
images 1s displayed.

20. The method of claim 17, wherein at least one of the first
plurality of input 1mages comprises a character sprite.
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