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(57) ABSTRACT

A method authenticates users. During user enrollment, a
computing device records 3D gesture samples captured by a
depth sensor as performed by a first user. Each recorded
gesture sample includes a temporal sequence of locations for
multiple specified body parts. The device computes an aver-
age gesture, and selects an error tolerance. These are stored as
a gesture template for the first user. A second user performs a
gesture for authentication. The depth sensor captures a 3D
gesture from the second user, where the captured 3D gesture
includes a temporal sequence of locations for the multiple
body parts. The device computes the distance between the
captured 3D gesture and the average gesture. When the dis-
tance 1s less than the error tolerance, the second user 1s
authenticated as the first user, and the device grants access to
some secured features. Otherwise, the second user 1s not
authenticated.
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500 N

502 -
. The method authenticates uses using three dimensional gestures.
504 . The method is performed by a computing device with a depth sensor, one or
|1 more processors, and memory storing one or more programs for execution by
the onc or more processors.
o06 - Record a plurality of 31) gesture samples from a tirst user.
008 |
010 —| |  Each respective recorded gesture sample includes a respective temporal
sequence of locations for a plurality of spectfied body parts.
T 1
512 — & y  For each respective gesture sample and for cach respective body part !
1 . .
' whose location 1s recorded: |
: i
| P TEL dmh e mh s deh e e sl Sk dme e s smh S e A e deh e e sl sme S e s e S e A A deh e e sl e S we sl oseb e e e s sl
514 ~3 . . . . N :
- Compute a mean location for the respective temporal sequence of o
i ‘
! locations. -
!
_____________________________________________ - !
: t
B e R ;
| . : ‘ :
516 — | [ Modity the respective temporal sequence of locations by .
: | subtracting the mean location from each location in the respective 1}
!
1! temporal sequence. o
{
_____________________________________________ ) {
' :
e o e o e e e e i
P : | . v
918 — |-} | | Use the moditied temporal sequence for the respective gesture ! |
: ! sample. o
: ————————————————————————————————————————————— wl |
| }
_________________________________________________ d
T T
220 —- | 1 Foreach respective gesture sample and for each respective body part
T . .
: whosc location is recorded: !
e e e e e :
| . | , |
590 ' Standardize the temporal sequence of locations to have a
_ - ' '

{ \
i {
1 1—5 predefined number N of locations, using the first and last ;
| locations in the temporal sequence and interpolating to compute
! N-2 mtermediate locations. !

Figure SA
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506 -

Record a plurality of 3D gesture samples from a first user (continued).
910 —.| | FEachrespective recorded gesture sample includes a respective temporal
sequence of locations for a plurality of specified body parts (continued).
e |
524 |, For each respective gesture sample and for each respective body part |
| whose location is recorded: :
|
526 .| | + Identify a minimal bounding box that contains all of the locations ! :
L in the respective temporal sequence. L
o L
| T T T T T T T e T e m e o
Ve |
Ly . . . 1
528 1._ | : Modify the respective temporal sequence of locations by scaling 1|
T the locations in the respective temporal sequence so thata 1|
| . . |
: ; bounding box for the scaled temporal sequence of locations hasa 1
L predefined size. o
R - - - b
| I
| o o o o v o o v e = . . = T v v e . T M m W v e e mm e - |
S - . , I
330 | ! + Use the modified temporal sequence for the respective gesture 1|
| R,
! sample. o
T T g -
| |
l e o ww o o v o T o oE T T R s T WS T W T IR T W BT TR P TER AU T R D MW M T DY U G T W IR T R WE BW Sw S e e W Jd
032 . Compute an average gesture T {rom the gesture samples.
534 | N S et e o ol i <mrrilac :
- The average gesture T 1s computed as a mean average of the gesture samples. |}
b o o o o o o o o . o n e e T S S o T R M W W G G S e e W W e e e 4
v S
536 —-. ¢ The average gesture T is computed as a weighted average of the gesture !
: samples. :
L o wmr e e e e w mEm wEe e EE M T My GEe ER RN M MW TEr MR TER YEE NN MG M By G TEE SN MG MM TEr ME TR MmN EE M Ser My SEe TER R M e W e WEm v e e o
o e e e I
538 ~.| + Theaverage gesture T 1s computed based on a proper subset of the gesture !
: samples. !

Figure 5B
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D e e e e o o e e e e o e e e e e e e e e e o |
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S Set the error tolerance to be the computed dispersion value. )
|} e e e e m e m e mmm—m e m e —————————————— - )
i I i |
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i RO . . . ' . . .
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| e e o e e e et 7 o 7~ 7~ - o > “ t
| -
| | e — - - o
| I : : : . . L i 1
554 .1 | ! Computing the dispersion value comprises calculating a . :
- e . '
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556 4 1+ |,  When the spread is less than a predefined minimum spread value: | |
T““’l ¢
{ ceEsEEEEEEEEEESEEEEEEESEEEEES/ESEEEESESEEEEEEEEEEEEEm—m—m t |
558 .t 4 f .. ' .
B R Record additional gesture samples. to
R & by
I I S T T T T T T eemm—- = i '
: b e e e e e e e e e e e et e e e e et e e e e e e e e e e e ¢
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o Figure 5D
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* Select an error tolerance € corresponding 1o T (continued).
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Store the average gesture T and the error tolerance ¢ as a gesture template for the

first user.

Capturc a 3D gesture from a uscr for authentication.

The captured 3D gesture includes a temporal sequence of locations for the
plurality of body parts.

. When the distance d is less than or equal to g, authenticate the user as the first user,
thereby granting the user access to a sccured teature on the computing device.

Update the gesture template with a new average T' computed based on the
captured 3D gesture and at least a subset of the gesture samples.
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SYSTEM AND METHOD FOR BIOMETRIC
USER AUTHENTICATION USING 3D IN-AIR
HAND GESTURES

TECHNICAL FIELD

The disclosed implementations relate generally to user
authentication, and more specifically to authentication using
movement of a user’s body.

BACKGROUND

A password or a personal 1dentification number (PIN) are
the most widely used methods for gaining access to personal
computers, mobile computing devices, and online accounts.
Because of the widespread usage, they are well understood by
users. However, knowledge-based systems have disadvan-
tages. For example, some systems require a user to learn
complex passwords 1n order to provide adequate security. In
addition, as the number of password-protected devices or
accounts grows, a user needs to remember multiple pass-
words or password variants, which increases the mental bur-
den of the logon process. In some instances, users write down
all of their passwords, negating the security.

Traditional password entry 1s also prone to attack by
“shoulder surfing.” This problem 1s exacerbated by the
increasing use of mobile devices and public surveillance sys-
tems. Furthermore, traditional touch-based PIN entry
schemes are prone to “smudge attacks,” where attackers can
guess a PIN or other access code by smudges on a touch
screen (11 the attacker gains access to another person’s mobile
device).

Some biometric authentication systems do not work at
short range, and thus do not work well on mobile devices or
while a person 1s seated. In addition, biometric authentication
that uses a single point of reference cannot provide sufficient
uniqueness to be secure. Some biometric authentication sys-
tems use touch-screen gestures. Such systems are limited to
gestures 1n 2 dimensions, and limited to movement within the
screen. This 1s particularly limiting on a small mobile device.
In addition, such systems are susceptible to smudge attacks.

SUMMARY

The present application describes a novel authentication
system that uses 1n-air body gestures (e.g., a hand gesture)
made 1n the vicinity of a computing device, tracked by a
short-range depth camera. By tracking specific points (e.g.,
finger tips and hand center) on the user’s hand, a user can
generate a personal authentication gesture and use 1t as a
biometric security layer. Disclosed systems combine biomet-
rics describing a user (e.g., how does the user appear?), the
user’s movement style (e.g., how does the user behave?), and
a gesture-based authentication secret (e.g., what does the user
know?) to provide a high degree of accuracy for authentica-
tion. The gesture-based authentication can be used instead of
or 1n addition to standard knowledge-based authentication.
Although many implementations utilize a gesture from a
single hand, other implementations utilize other body parts 1n
addition to or instead of a hand (e.g., two hands, hand and
arm, face, etc.).

Some 1implementations have a higher accuracy than related
knowledge-based or gesture-based authentication schemes.
In addition, disclosed implementations are more resilient to
shoulder surfing attacks. Finally, because the disclosed
authentication techniques are touchless, they are inherently
resilient to smudge attacks.
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This disclosure includes techniques for: (1) segmentation
of gesture mput data using a depth sensor; (2) preprocessing
and feature vector generation from gesture data; (3) construc-
tion of gesture templates from enrollment data; and (4 ) updat-
ing gesture templates to account for temporal variations 1n
gesture entry.

In some implementations, a depth sensor 1s mounted on a
computing device. In some implementations, a depth sensor
1s an 1ntegrated part of a computing device. As used herein, a
depth sensor may be any device that creates data used to
determine the 3-D location of objects using associated driver
software. For example, a video camera, video sensor, or
image sensor may be depth sensor when used with appropri-
ate driver software. Computing devices include desktop com-
puters, laptop computers, smart phones, and so on. The depth
sensor can observe the user making hand gestures in the
vicinity of the device. A user creates a “gesture password,”
typically using multiple samples that are averaged, and the
gesture password 1s used later for authenticating the user.

In some implementations, a user chooses to create a gesture
password and performs a specific action to begin the gesture
recording. In some implementations, the recording starts
when the center of the user’s hand passes a predefined thresh-
old distance D from the device. In some implementations, the
recording starts when the number of points 1n a point cloud
representing the user’s hand that have crossed the threshold D
surpasses a predefined count g. In some implementations, the
gesture recording starts based on a specific hand configura-
tion, such as opening a fist. Depending on the implementa-
tion, the gesture recording typically stops 1n an analogous
way. For example, gesture recording stops when the previ-
ously mentioned conditions cease to be maintained by the
user. Implementations typically impose a time limit for the
gesture. The recording stores a temporal sequence of the 3D
positions of specific hand points (e.g., finger tips, hand center,
knuckles).

To allow gesture-based authentication, users need to enroll
in the system first. During enrollment, a user 1s prompted to
enter multiple gesture samples of a self-chosen authentication
gesture. Some implementations require 3 samples, but other
implementations require more. In some implementations, the
number of samples depends on the variation 1n the samples
provides (the more consistent the samples, the fewer the
number of samples that are required). Each enrollment ges-
ture 1s conformed to a standard format as described below 1n
FIG. 4. The enrollment process uses the sample gestures to
build a gesture template that will be used later for comparison
during authentication. Some implementations use a distance
function to compare a gesture performed during authentica-
tion with a stored template. Some 1mplementations use a
Dynamic Time Warping (DTW) distance function. Some
implementations use the gesture samples as mput to a
machine learning classifier, such as logistic regression, a Sup-
port Vector Machine (SVM), a Hidden Markov Model
(HMM), or a neural network. In these cases, a “distance”
function can be defined as a model cost function, which
cifectively estimates the probability that a performed gesture
matches the model constructed from the sample gestures.

A stored template includes both a target gesture T (e.g., the
average ol the gestures performed during enrollment), and a
maximuim tolerance e that specifies how close to the target a
performed gesture must be 1n order to count as a match. Some
implementations compute the tolerance € based on the spread
or dispersion of the samples. That 1s, when the samples are
very consistent, the tolerance 1s set to a small value, but 11 the
variation in the samples 1s large, the tolerance during authen-
tication must be large as well.
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In some 1implementations, the tolerance 1s set equal to the
maximum distance between any two of the gesture samples.
In some implementations, the tolerance 1s the maximum dis-
tance between the average T and any of the samples. In some
instances, the provided samples are too close to each other,
which could lead to a tolerance € that 1s too small. A tolerance
that 1s too small would lead to too many false rejections
during authentication, so implementations typically prompt
the user to re-perform the gesture (or choose a difierent ges-
ture). In other instances, the samples are too dispersed, result-
ing 1n a very large tolerance value €. A tolerance value that 1s
too large, however, would make 1t too easy for another person
to “forge” the gesture to get an improper authentication.
Therefore, implementations typically require re-performing
the gesture 1n these instances as well.

In some implementations that use a machine learning clas-
sifier, the stored template comprises a model, which may not
include a specific gesture target T or tolerance value €. The
model depends on the specific machine learning classifier,
and may include several parameters (e.g., 5 or 10). In some
implementations, a machine learming model 1s constructed
from standardized gesture samples, which use the techniques
described below with respect to FIG. 4. In some implemen-
tations, building a machine learning model does not use all of
the conforming operations illustrated in FI1G. 4. Once a model
1s constructed, each performed gesture 1s compared against
the model to estimate the probability that 1t matches. If the
probability exceeds a threshold value, the performed gesture
1s designated as a match. In some implementations, the
machine learning model 1s updated periodically based on new
gesture samples performed for authentication.

To cope with temporal variations 1n gesture entry, some
implementations periodically update a user’s gesture tem-
plate using additional samples. For example, the target T and
tolerance € can be updated using gestures entered during
authentication (e.g., using well-matching gesture entries). In
some 1implementations, a new gesture sample 1s added to the
set of gesture samples saved during enrollment, making the
sample set larger and larger over time. In some implementa-
tions, the oldest gesture sample 1s removed when a new
sample 1s added.

In some implementations, to authenticate a user, the user
performs a gesture, which 1s compared to the template (T, €)
by calculating the distance d between the gesture and T. If d<e
then the gesture 1s accepted for authentication, and otherwise
the gesture 1s rejected. In some 1mplementations, the per-
formed gesture 1s compared to a machine leaming model
constructed from the sample gestures to estimate the likeli-
hood that the performed gesture 1s a match. If the likelithood
exceeds a predefined certainty threshold, the gesture is
accepted for authentication.

To prevent compromise of the authentication system due to
repeated gesture entry attempts, some implementations limit
the number of consecutive gesture attempt failures. For
example, if the there are 3 consecutive failures for gesture
authentication, some implementations fall back to a more
traditional authentication mechanism such as a password or
PIN entry.

In accordance with some implementations, a method
authenticates users. The method 1s performed at a computing
device having a depth sensor, one or more processors and
memory. During user enrollment, the device records a plural-
ity of 3D gesture samples captured by the depth sensor as
performed by a first user. The gesture samples correspond to
an 1n-air gesture selected by the first user. Each recorded
gesture sample includes a temporal sequence of locations for
a plurality of specified body parts (e.g., finger tips and center
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of hand). The device computes an average gesture T from the
gesture samples, and selects an error tolerance € correspond-
ing to 'T. The device stores the average gesture T and the error
tolerance € as a gesture template for the first user.

Subsequently a second user performs a gesture for authen-
tication and access to secured features or data on the comput-
ing device. The second user may or may not be the first user.
The depth sensor captures a 3D gesture from the second user,
where the captured 3D gesture includes a temporal sequence
of locations for the plurality of body parts. The device com-
putes a distance d between the captured 3D gesture and the
average gesture T. When the distance d 1s less than or equal to
e, the second user 1s authenticated as the first user, and the
computing device grants the second user access to one or
more secured features or data on the computing device. On
the other hand, when the distance d 1s greater than e, the
second user 1s not authenticated, and 1s thus denied access to
the secured features/data on the computing device.

In some implementations, the error tolerance 1s selected by
computing a dispersion value that represents the spread of the
gesture samples, and setting the error tolerance to be the
computed dispersion value. In some 1implementations, mea-
suring the spread of the gesture samples uses a distance met-
ric. In some implementations, the distance metric uses
dynamic time warping. In some implementations, the dis-
tance metric uses a model cost function based on a machine
learning model. In some implementations, the dispersion
value 1s the maximum distance between pairs of gesture
samples. In some 1implementations, the dispersion value 1s the
maximum distance between a gesture sample and the average
gesture 1.

In some 1implementations, setting the error tolerance to be
the computed dispersion value further comprises determining
that the dispersion value 1s greater than a predefined mini-
mum dispersion and the dispersion value 1s less than a pre-
defined maximum dispersion.

In some mmplementations, a set of gesture samples 1s
rejected when the dispersion falls outside a specified range.
Some 1implementations specily a minimum dispersion value,
and the set of samples 1s rejected when the dispersion value
falls below that minimum value. Some 1mplementations
specily a maximum dispersion value and reject the set of
samples when the dispersion value 1s greater than the speci-
fled maximum value. When the set of samples 1s rejected,
some 1mplementations discard all of the samples and prompt
the user to reenter gesture samples (which may be for a new
gesture). In other implementations, the user 1s prompted to
enter additional gesture samples for the same gesture. Insome
of these implementations, one or more of the original gesture
samples may be discarded. After the additional gesture
samples are captured, the average gesture 1s recomputed.

In some 1implementations, the stored gesture template 1s
updated periodically based on the gestures performed by the
user during authentication.

Disclosed implementations have many advantages over
other authentication systems. The advantages include track-
ing multiple distinct body parts simultaneously (with a single
sensor), which 1s much more secure than tracking a single
body part. In addition, the movements are in three dimen-
sions, which provide greater variation for selected gestures,
and 1s thus more secure. Also, because of the movement i1n
gesture authentication, the process 1s more dynamic than
simple body recognition (e.g., a person has only one face,
whereas a person can choose to perform many alternative
gestures ). As noted above, because the gestures are performed
in the air, they are not subject to smudge attacks. Nottouching
a device has other advantages as well, such as a clean room
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environment for high-tech development, a medical facility
where sanitation 1s a critical concern, or a kitchen or work-
shop where a person’s hands may be too messy to touch a
computing device.

Using in-air 3D gestures for authentication has other
advantages as well, including the fact that 1t 1s non-invasive
(e.g., as compared to a retinal scan). Some users also find
performing a gesture to be more fun than other authentication
techniques. Some users also find a gesture more natural than
entering a password or PIN. Some users also find that a
gesture 1s easier to remember. This 1s particularly true 1n
environments that require secure passwords. Typically, the
requirements for a secure password make it difficult to
remember (e.g., not using simple words, must include letters,
special characters, and numbers). Unlike passwords, in-air
gestures are also biometric. For example, the relative loca-
tions of a person’s body parts are based on the person’s
unique body. Using a gesture essentially combines the imnher-
ent biometric properties of the person’s body, and the per-
son’s creativity to construct a unique movement.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 i1llustrates a context in which some implementations
ol the present 1nvention operate.

FI1G. 2 15 a block diagram 1llustrating a computing device in
accordance with some implementations.

FIG. 3 1s a flow chart illustrating the overall process of
using body gestures for authentication in accordance with
some 1mplementations.

FIG. 4 1s a flow chart illustrating how raw gestures are
conformed to a standard format in accordance with some
implementations.

FIGS. 5A-5D illustrate a process for authenticating users
by means of in-air gestures 1n accordance with some 1mple-
mentations.

Like reference numerals refer to corresponding parts
throughout the drawings.

DESCRIPTION OF IMPLEMENTATTIONS

FIG. 1 i1llustrates a context in which some implementations
ol the present invention operate. In FIG. 1, a user 1s interacting
with a computing device 100, which includes a depth sensor
102. In some implementations, the depth sensor 102 1s
mounted to the computing device 100 as illustrated, but in
other implementations the depth sensor 102 1s an 1ntegrated
component of the computing device. In some 1mplementa-
tions, a single 1mage sensor 1 a device functions both for
taking photos and videos and as a depth sensor. Some 1mple-
mentations use hand gestures for authentication, so the depth
sensor 102 tracks 1n air movement of a user’s hand 106. In
particular, some implementations track the movement of the
finger tip locations 104 and the center 108 of the user’s hand.
Some 1implementations track one or more knuckle locations
110 as well. Of course this 1s not limited to knuckles or joints
on the thumb and index finger as shown 1n FIG. 1; any 1den-
tifiable knuckles or joints can be used for an authentication
gesture. Some 1mplementations enable tracking of unique
body features as well, such as a mole or tattoo.

In some implementations, a gesture begins and ends when
the hand 106 crosses a predefined threshold distance D 112
from the computing device 100 (or from the sensor 102). In
some 1mplementations, crossing the threshold D 1s based on
the center 108 of the user’s hand. In some 1implementations,
crossing the threshold 1s based on the number of tracked body
locations that cross the threshold distance D. For example, for
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an authentication system that tracks a hand center 108 and
five finger tips 104, the gesture may begin and end when four
of the six tracked points cross the threshold. In other 1imple-
mentations, a gesture begins and ends based on specific body
configurations, such as making and/or releasing a fist. Typi-
cally the same begin/end triggers are used during enrollment
and authentication. However, some implementations track
longer gesture patterns during authentication, and perform
subset matching against stored templates.

FIG. 2 15 a block diagram illustrating a computing device
100, according to some implementations. The computing
device 100 can be a desktop computer, a laptop computer, a
mobile device that has a depth sensor 102, or any other com-
puting device with an attached or integrated depth sensor 102.
The computing device 100 typically includes one or more
processing units (CPU’s) 202, one or more network or other
communications interfaces 204, memory 214, and one or
more communication buses 212 for interconnecting these
components. The communication buses 212 may include cir-
cuitry (sometimes called a chipset) that interconnects and
controls communications between system components. The
computing device 100 includes a user interface 206 compris-
ing a display device 208 and mput devices/mechanisms 210
(e.g., a keyboard, a mouse, a touch screen, physical buttons,
etc.). The computing device also includes a depth sensor 102,
which 1s used to capture and track body movement.

Memory 214 includes high-speed random access memory,
such as DRAM, SRAM, DDR RAM or other random access
solid state memory devices; and may include non-volatile
memory, such as one or more magnetic disk storage devices,
optical disk storage devices, tlash memory devices, or other
non-volatile solid state storage devices. Memory 214 may
optionally include one or more storage devices remotely
located from the CPU(s) 202. Memory 214, or alternately the
non-volatile memory device(s) within memory 214, com-
prises a computer readable storage medium. In some 1mple-
mentations, memory 214 stores the following programs,
modules and data structures, or a subset thereof:

an operating system 216, which includes procedures for
handling various basic system services and for performs-
ing hardware dependent tasks;

a communication module 218, which 1s used for connect-
ing the computing device 100 to other computer systems
via the one or more commumnication interfaces 204
(wired or wireless) and one or more communication
networks, such as the Internet, other wide area networks,
local area networks, metropolitan area networks, and so
on;

a user interface module 220, which receives commands
from the user via the mput devices 210 and generates
user interface objects 1n the display device 208;

a web browser 222, which enables a user to access
resources, web pages, and web applications over a com-
munication network;

a depth sensor driver 224, which includes various hardware
specific procedures to collect raw data from the depth
sensor 102 and provide that data to other procedures or
programs 1n a meaningiul format;

a distance calculation module 226, which calculates the
“distance” (1.e., difference) between two recorded ges-
tures (1.€., temporal sequences of body part locations). In
some 1mplementations, the distance calculation module
226 uses a distance metric that implements a dynamic
time warping (DTW) algorithm. In some implementa-
tions, the distance metric compares temporal sequences
of locations for a single body part, and the distances for
the various tracked body parts are combined (e.g.,
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added) later. In other implementations, the distance met-
ric calculates the distance between multiple temporal
sequences as part of a single conglomerate calculation;

a gesture capture module 228, which receives data from the
depth sensor 102 (or the depth sensor driver 224) and
stores the data, such as 1n database 238. In some 1mple-
mentations, the gesture capture module 228 calls one or
more procedures 1n the conformation module 230 prior
to storage. In some implementations, the gesture capture
module 228 stores the raw captured data 240, and stores
conformed gesture data 242 after calling the conforma-
tion module 230;

a conformation module 230, which conforms raw gesture
data to a standardized format, as described 1n more detail
below with respect to FIG. 4;

an enrollment module 232, which enables a userto setup a
gesture that will be used for authentication. The enroll-
ment module 1s described in more detail below with
respect to FI1G. 3;

an authentication module 234, which receives a user ges-
ture and determines whether the performed gesture
matches a saved template 244. When the user 1s authen-
ticated, the authentication module 234 grants the user
access to one or more secured features or data 236 on the
computing device 100 (e.g., access to the computing
device 1n general or access to specific secured docu-
ments). The authentication module 234 1s described 1n
more detail below with respect to FIG. 3;

one or more databases 238, which store data used by the
software modules 226, 228, 230, 232, and 234;

the database 238 stores raw gesture data 240 from enroll-
ment, which has not been conformed to a standardized
format;

the database 238 stores conformed gesture data 242 from
enrollment, which 1s 1n a standardized format, as
described with respect to FI1G. 4 below;

the database 238 stores a computed dispersion value 243
based on the conformed gesture data 242, which repre-
sents the spread or variation of the gesture samples;

the database 238 stores one or more gesture templates 244,
which are constructed during enrollment and compared
against performed gestures during authentication. A
gesture template may include a user ID 246, which can
be used when two or more distinct users have access to
the same computing device 100. Each template 244
includes a gesture target 248, which 1s compared to
performed gestures during authentication. Unlike pass-
words, a gesture has some 1nherent variation, and thus
cach template 244 also includes an error tolerance 250,
which specifies how far from the target a performed
gesture can be and still quality as a match. The error
tolerance 250 1s typically based on the computed disper-
sion value 243 (e.g., error tolerance 250=dispersion
243). The distance from the target 1s measured by the
distance calculation module 226; and

the database 238 includes an authentication log 252, which
tracks each authentication attempt. For each authentica-
tion attempt, the log 2352 stores the gesture performed
254, which may be stored in raw format, standardized
format, or both. Some implementations store the date/
time 256 that the user performed the gesture for authen-
tication. The log also includes an “authenticated” flag
258, which indicates whether the user was authenti-
cated. The log also stores the user ID 260 for the authen-
tication attempt. In some implementations, the user 1D
appears 1n the log only when the authentication attempt
1s successiul, 1n which case the user ID 260 1n the log 1s
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the user 1D 246 of the matching template. In other imple-
mentations, a target user 1s specified betore the authen-
tication gesture 1s performed, and the user ID 260 of the
target user 1s stored 1n the log regardless of whether the
authentication attempt 1s successtul.

Each of the above 1dentified elements may be stored in one
or more of the previously mentioned memory devices, and
corresponds to a set of istructions for performing a function
described above. The set of instructions can be executed by
one or more processors (e.g., the CPU’s 202). The above
identified modules or programs (1.€., sets ol instructions) need
not be implemented as separate software programs, proce-
dures or modules, and thus various subsets of these modules
may be combined or otherwise re-arranged in various imple-
mentations. In some implementations, memory 214 may
store a subset of the modules and data structures 1dentified
above. Furthermore, memory 214 may store additional mod-
ules and data structures not described above.

Although FIG. 2 shows a computing device 100, FIG. 2 1s
intended more as a functional description of the various fea-
tures that may be present in one or more computing devices
than as a structural schematic of the implementations
described herein. In practice, and as recognized by those of
ordinary skill 1n the art, items shown separately could be
combined and some 1tems could be separated. For example,
all of the data and processing may occur on a single device
100 (e.g., a user’s own computer), or the processing may be
split between two or more computing devices 100 (e.g., a user
device that operates primarily to collect raw data and a back-
end server that stores the data, calculates distances, and so
on).

FIG. 3 1llustrates both an enrollment process (on the left)
and an authentication process (on the right). In some 1mple-
mentations, there 1s feedback from the authentication process
to the enrollment process, as 1llustrated by dotted line 340.

A user mitiates (302) an enrollment process to establish a
body gesture for future use during authentication. In some
implementations, the user may select what body parts to track
as a gesture. In some implementations, the set of tracked body
parts defaults to finger tips 104 and center 108 of the user’s
hand. Some 1mplementations enable tracking of body parts
from both hands simultaneously.

Implementations use various ways to identily the begin-
ning and ending of a gesture. In some implementations, the
beginning and ending are based on the distance from the
depth sensor 102 or computing device 100. For example, 1n
some 1mplementations a person begins with a hand 106 close
to the depth sensor 102, and the gesture recording starts when
the center 108 of the person’s hand reaches a predefined
distance 112 from the sensor 102 or device 100. The record-
ing stops when the center 108 of the hand crosses the thresh-
old distance 112 again. Other implementations use the dis-
tance threshold 112, but start and stop based on more of the
tracked body parts (e.g., when three body parts cross the
threshold 112). Other implementations use a specific bod
configuration to identily the beginning and ending, such as
making a fist. Some implementations 1dentify the beginning
and ending based on a predefined period of time with lack of
significant movement. Some 1mplementations utilize 1nput
devices 210 (such as a keyboard or mouse) to start and stop
the recording (e.g., pressing the ENTER key or clicking the
mouse button). Other implementations (on devices with a
microphone) use voice commands, such as commands to
“start” and “‘stop.”

The user selects a gesture and performs (304) that gesture,
and the raw data from the gesture 1s captured (306) as a
gesture sample. The captured raw data for each tracked body
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part includes a temporal sequence ot 3-dimensional locations
for those body parts. For example, 1I six body parts are
tracked, the tracked data would include six (X,y,z) coordinates
for each point in time 1n the temporal sequence. This can be
viewed as a temporal sequence of eighteen dimensional vec-
tors (see FIG. 4). In some implementations, location measure-
ments are saved every 10 milliseconds, so a gesture that lasts
for one second results 1n a temporal sequence with 100 stored
points, with each point having 18 coordinates. Other 1imple-
mentations store data more or less frequently (e.g., every 3
milliseconds or every 20 milliseconds). Implementations
typically store the gesture points at a fixed time interval, but
other implementations store data based on other factors. For
example, rapid motion may require greater sampling to accu-
rately 1dentily the performed gesture. In some 1implementa-
tions, the raw data 1s “smoothed” to reduce measurement
error and account for the fact that the motion of a body part 1s
smooth (e.g., has a continuous derivative).

There 1s inherently some variation in a performed gesture,
so most implementations require multiple samples. The dif-
ferent samples may occur at different spatial locations (e.g.,
one sample 1s two 1nches to the right of the previous sample),
may be different sizes (e.g., two circle gestures with the same
basic shape but different diameters), or may be performed at
a different speed (e.g., performed slowly the first time, but
getting faster as the user gets used to the gesture). Therelore,
implementations conform (308) the samples 1n various ways,
as explained 1n more detail 1n FIG. 4.

In some implementations, each gesture sample after the
first 1s validated against the previous samples to determine 1f
it 1s sulliciently close to the previous samples (e.g., identily
samples where the user accidentally performed something
different). The comparison uses the distance calculation mod-
ule 226. When the distance exceeds a predefined maximum,
the gesture sample 1s rejected and the user 1s prompted to
reenter the sample (and 1n some implementations giving the
user the option to restart the enrollment process from scratch).
The validation step may apply to either the raw captured data
240 or the conformed data 242.

After each gesture sample 1s recorded, the enrollment mod-
ule 232 determines 1f there are enough samples (310). When
there are not enough samples yet, the enrollment module 232
prompts the user to perform (304) another sample.

When enough samples are collected, the enrollment mod-
ule 232 proceeds to build a gesture template 244 that includes
a gesture target 248 and an error tolerance 250. The gesture
target 248 1s an average (312) of the samples. In some 1mple-
mentations, the average 1s a simple mathematical mean of all
the samples. In some implementations, the average 1s com-
puted based on a subset of the samples (e.g., excluding one or
more outliers and/or excluding some older samples). In some
implementations, the average 1s a weighted average. For
example, the most recent samples may be weighted more
heavily than older samples. This may be particularly usetul as
new samples are added during authentication, creating a set of
gesture samples that spans weeks or months. Mathematically,
exclusion of certain samples may be considered a special case
of weighting, where certain samples get a weight of 0.

In addition, the enrollment module computes (314) a dis-
persion value 243 for the samples, which measures the varia-
tion or spread of the samples. In some implementations, the
dispersion value 243 1s the maximum distance between ges-
ture samples as computed by the distance calculation module
226. Note that some implementations removed outliers 1n a
validation step described above. In some 1mplementations,
the dispersion value 243 1s the maximum distance between a
gesture sample and the computed average of the gesture
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samples. Although FIG. 3 illustrates computing (312) the
average ol the samples before computing (314) the dispersion
value 243, some implementations compute these in the oppo-
site order or simultaneously.

In some implementations, the enrollment module 232
checks (316) the dispersion value 243 to make sure 1t 1s not
too large or too small. In some 1implementations, 1f the dis-
persion value 243 1s greater than the upper limit or less than
the lower limait, the enrollment module prompts (304 ) the user
to enter additional gesture samples. In some 1implementa-
tions, all of the previous samples are discarded, and the user
reenters new gesture samples from scratch. In other imple-
mentations, the previous samples are kept and new samples
are requested (e.g., prompt the user to perform two more
samples). In some implementations, one or more of the origi-
nal samples are 1dentified as outliers (e.g., by distance from
the other samples) and discarded. In some 1implementations,
when the enrollment module 232 prompts (304) the user for
more gesture samples, the user has the option of starting from
scratch.

In some implementations, when the dispersion value 243 1s
below the lower limit, the enrollment module just substitutes
the lower limit as the dispersion value.

Once there 15 a set of gesture samples with an acceptable
dispersion value 243 (or substituted by the lower limait), an
error tolerance 250 1s selected (318) based on the dispersion
value 243. In some implementations, the error tolerance 250
equals the dispersion value 243. In some 1mplementations,
the error tolerance 250 1s set as a multiple of the dispersion
value 243 (e.g., multiplied by 0.9 or 1.1). The average of the
gesture samples and dispersion value are stored (318) as a
gesture template 244. In some 1mplementations, there 1s a
final testing phase, which performs one or more mock authen-
tications to confirm that the saved template 244 works prop-
erly. In some implementations the user 1s asked to perform the
gesture correctly one time and asked to perform the gesture
incorrectly (but close) a second time. ITthe testing phase 1s not
successiul, the enrollment process returns to entering sample
gestures, either from scratch, adding new gesture samples
alter one or more previous samples are discarded, or just
adding new samples.

After saving the template 244 (and testing in some 1mple-
mentations), the enrollment process 1s complete (320).

After enrollment, a user can perform the identified gesture
for authentication. Various actions can initiate (322) the
authentication process. In some implementations, the authen-
tication process 1s 1mitiated (322) when a computing device
100 boots up. In some implementations, pressing a button on
an mput device mitiates (322) authentication. In some 1mple-
mentations, the display device 208 prompts the user to per-
form the authentication gesture as appropriate (e.g., when the
screen 208 1s locked). The user then performs (324) the ges-
ture. The depth sensor 102 captures (326) the performed
gesture, which 1s similar to the process used during enroll-
ment. In particular, implementations typically use the same
methodology that was used during enrollment to i1dentify
when a gesture starts and ends. After the performed gesture 1s
captured (326), the authentication module 234 calls the con-
formation module 230 to conform (328) the raw recorded
gesture to a standardized format. The raw gesture and/or the
conformed gesture are typically saved in the authentication
log 252 as the gesture performed 254.

The authentication module 234 then calls the distance cal-
culation module 226 to compute (330) the distance between
the performed gesture 254 and the saved gesture target 248. In
some 1mplementations, the performed gesture 254 1s com-
pared to a single gesture target 248 (e.g., if the device 100 has
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only one authorized user or the target user was specified
before the gesture was performed (324)). In some implemen-
tations, a single device may have multiple authorized users,
cach with a distinct stored gesture template 244. In some
implementations, the gesture performed 254 1s compared
against the gesture targets 248 1n each of the stored templates
244,

When the gesture performed 254 1s compared against a
single gesture target 248, the distance between the gesture
performed 254 and the target 248 1s compared (332) to the
error tolerance 250. When the distance 1s less than or equal to
the error tolerance 250, the user 1s authenticated (338), and 1s
granted (338) access to the device 100 or specific secured
features or data 236. On the other hand, if the distance 1s
greater than the error tolerance 250, the authentication fails.
Some i1mplementations track the number of consecutive
falled attempts, and allow the user a certain number of
attempts (e.g., 3). In these implementations, after a failed
attempt, the authentication module 234 increments the failure
count and determines (334) if another attempt 1s allowed. If
s0, the user 1s prompted to perform (324) the gesture again. It
the number of attempts has reached the limait, the authentica-
tion module rejects (336) the user and denies (336) the user
access to the device 110 or the secured features 236. In some
implementations, after the user 1s denied access based on
performing the gesture, the user 1s given an opportunity to
authenticate 1n another way, such as entering a password from
a keyboard 210.

In some 1implementations, a user may set up distinct ges-
tures for different access levels or to access different features.
In some implementations, a user sets up a “general-access”
gesture for access to a device, and can set up additional
gestures for access to specific features. For example, a user
may set up one gesture for access to a home computer, but
may set up an additional gesture to gain access to some highly
secured data (e.g., medical or tax records).

When the performed gesture 1s compared against multiple
gesture targets 248, there are more possible outcomes, at least
theoretically. For each gesture target 248, the distance 1s
compared to the error threshold 250 for that target 248. If the
distance to each gesture target 248 1s greater than its corre-
sponding error tolerance 250, then the performed gesture
fails, and the subsequent process 1s the same as failing to
match a single gesture template 244. If there 1s exactly one
gesture template 244 for which the distance between the
gesture performed 254 and the gesture target 248 1s less than
or equal to its corresponding error tolerance 250, then the user
1s authenticated to that template (e.g., as the user ID 246
associated with that template). The access privileges granted
(338) are based on the user ID 236 of that matching template
244,

In some 1implementations, 1t 1s possible to have a performed
gesture 254 match two or more templates 244. Some 1mple-
mentations address this 1ssue by selecting the closest gesture
target 248 from among the targets that are within their respec-
tive error tolerances 2350 of the performed gesture 254. Some
implementations measure “closeness” of each target relative
to the respective error tolerances 2350 (e.g., compute the dis-
tance to each respective target 248 and divide by the respec-
tive error tolerance). Some implementations avoid this prob-
lem by preventing gesture templates for distinct users from
being too close. For example, suppose template (1, €, ) has
already been saved and a second user activates (302) the
enrollment process. Suppose the second user performs a
selected gesture and the enrollment process 1s about to save
(T,, €,) as a template for the second user. Suppose the dis-
tance between T, and T, 1s d. Some implementations deter-
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mine that the two templates are too close when d=e, +€,. In
other words, the template for the second user 1s okay when
d>e, +€,. As long as the distance metric satisfies the triangle
inequality, having d>e€, +€, guarantees that there are no points
that are simultancously within €, of T, and within €, of T,

After the user’s access attempt(s) are either accepted (338)
or rejected (336), the authentication process 1s done (342).

As shown 1n FIG. 3, some implementations include a feed-
back loop 340 from authentication to enrollment. The feed-
back 340 updates the enrollment data periodically (and thus
updates the user’s template 244 ) based on performed gestures
254 during authentication. In some implementations, the
periodic updates occur every time the user i1s successiully
authenticated. In some implementations, the periodic updates
occur every time the user 1s successiully authenticated and the
performed gesture 254 1s sulficiently close to the gesture
target 248 (to avoid updating the template 244 based on a
performed gesture 254 that barely qualifies as a match). In
some 1mplementations, the periodic updates occur on the first
successiul authentication after a specific period of time has
passed (e.g., a week or amonth). Some implementations track
the accuracy of authentication attempts 1n an authentication
log 252, either 1n absolute terms or relative to the error toler-
ance. In some of these implementations, a periodic update 1s
triggered when the accuracy drops below a predefined level
(e.g., accuracy below a threshold level over a predefined
period of time or a trend showing lower accuracy over a
predefined period of time). Typically, updates based on low
accuracy occur only when there 1s a consistent pattern of
inaccuracy, and not just a single low accuracy authentication
gesture.

During a periodic update to the stored gesture template 244
for a user, some 1mplementations keep all previously used
samples, and include the performed gesture 254 as an addi-
tional sample. In some implementations, the gesture samples
are stored 1n order (e.g., using a timestamp or other mono-
tonically increasing function), and when a new sample (1., a
gesture performed 254 during authentication) 1s included, the
oldest sample 1s deleted or otherwise marked for non-inclu-
s1on 1n the template update. Some implementations use other
criteria to determine which old samples to discard (e.g.,
samples that deviate the most from the average gesture).

When a template 1s updated using a performed gesture 254
from authentication, the same steps from enrollment gener-
ally apply: anew average 1s computed (312), anew dispersion
value 1s computed (314), the new dispersion value 1s com-
pared (316) to the upper and lower limits, and the new average
and new dispersion value are stored (318) as the revised
template. One difference 1s the handling of the comparison
(316). In general, only “good” samples are selected for inclu-
s1on, so the comparison (316) should not find a dispersion
value that exceeds the upper limit. On the other hand, 11 the
performed gesture 254 1s really close to the previous target
248, and an older poor sample 1s removed from the calcula-
tion, the newly computed dispersion value could be below the
lower limit. When this occurs, some implementations just use
the lower limit as the new error tolerance 250 (but using the
updated average as the new target 248). Other implementa-
tion just keep the old template 244 as 1s (no update at all) when
the dispersion value falls below the lower limit.

FIG. 4 1llustrates how some implementations conform ges-
tures to a standard format. The process begins (402) with raw
gesture data. As illustrated in equation 420, a captured gesture
(G consists of a sequence of “locations.” The number of loca-
tions varies depending on the time 1t takes to perform the
gesture. In some implementations, location data 1s captured at
consistent time intervals (e.g., every S milliseconds, every 10
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milliseconds, or every 25 milliseconds), but other implemen-
tations vary the capture rate based on other factors, such as the
speed of the motion. Depending on the gesture and the fre-
quency with which location data 1s captured, the number of
locations typically ranges from 50 to 500.

As 1llustrated 1n equation 422, each “location” 1s a matrix
or vector with 3m elements, where m 1s the number of distinct
body parts that are tracked. For each body part, the x, vy, and z
coordinates are tracked. In some implementations, the
tracked body parts are the five finger tips 104 of one hand 106
plus the center 108 of the same hand. With six body parts and
3 coordinates for each body part, each location 1s a matrix or
vector with 18 entries.

In some 1implementations, the first step 1n conforming the
data 1s to shift (404) the location data so that the coordinate
system 1s at the center of the overall captured gesture. For
example, 1 the gesture 1s a simple circle, the coordinate
system 1s moved to the center of that circle. This 1s referred to
as a “mean-shift” because each coordinate value 1s shifted by
the mean value for that coordinate. The mean shift 1s typically
applied to each coordinate separately (e.g., for location matri-
ces with 18 entries, the mean-shift for each of the 18 entries 1s
applied independently of the other entries. Equations 424 and
426 1llustrate performing a mean-shitt on the x coordinate of
the jth body part.

As equation 424 shows, the mean 1s computed 1n the usual
way, by summing up all of the corresponding entries and
diving by the total number of locations that are included in the
sum. Once the mean 1s computed as shown 1n equation 424,
the mean 1s subtracted from each of the corresponding entries
X,; to get mean-shifted entries X',,. The same methodology is
applied to each of the other location components.

Because each of the captured gestures 1s mean shifted, the

exact position of where a gesture 1s performed does not mat-
ter. For example, 1t does not matter whether a user performs a
gesture directly 1n front of the sensor, or two inches to the
right or leit.
In some 1implementations, a second step 1n conforming a
captured gesture 1s to normalize (406) the si1ze of the captured
gesture. Conceptually, users recognize the overall shape of a
gesture, but may perform 1t with varying sizes, sonormalizing
the size enables matching a shape without regard to size. In
some 1implementations, all of the location elements are scaled
so that the maximum absolute value 1s a fixed constant (e.g.,
1). In some implementations, all of the dimensions for all of
the body parts are scaled together based on the single largest
overall value. For example, 1s M 1s the largest absolute value
for all of the entries for all locations within the captured
gesture, the entries can be normalized by dividing every entry
by M.

Equations 428 and 430 illustrate an alternative normalizing
process 1 which each location component 1s normalized
(406) separately from the other components. Equations 428
and 430 illustrate normalizing the x coordinate for the jth
body part, using the data that was previously mean-shifted.
Equation 428 computes the maximum absolute value for the
specified component across all of the locations 1n the captured
gesture. As shown 1n equation 430, each of the values (for this
component) 1s then scaled by the maximum value. The value
C 1n this equation 1s commonly set to 1, and 1s the scaled
maximum value for the entries.

In some implementations, the final step 1n the conforma-
tion process 1s to standardize (408) the number of location
points 1n a captured gesture. For example, some implemen-
tations standardize to 200 location points. Assuming the mea-
surements are recorded at regular time 1ntervals, the standard-
1zation can be performed by taking the first and last captured
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measurements and using interpolation to compute estimates
for the mtermediate points. Because the original data 1s cap-
tured frequently (e.g., every 5 or 10 milliseconds), the inter-
polation does not introduce much error. Note that in some
instances the number of standardized points 1s greater than
the number of data points originally captured, and 1n other
instances, the number of standardized points 1s less than the
number of data points originally captured.

Location sequence 432 1s the sequence of X coordinates for
the first body part. In the example 1n FIG. 4 there are n
location samples captured. The standardized location
sequence 434 has S elements, where S 1s the specified stan-
dard number of elements. In this case, X, ,=x",,, X_=x" ..
and each of the intermediate elements 1s computed by inter-
polation. For example, suppose S=201 and n=301. Then X,
1s haltway between x",, and x",,, so X,,=(0.5)x",,+(0.5)
x",,. In the same scenario with S=201 and n=301, the next
standardized point 1s X;,=x",,. The same standardization
process applied here to the x coordinate of the first body part
applies 1n the same way to each coordinate of each body part.

The conformation process 1s useful so that multiple
samples of the same gesture can be averaged. The mean-shift
404 accounts for gestures being performed in different loca-
tions. The normalization 406 accounts for gestures performed
at different sizes. And the standardization 408 of the number
ol points accounts for gestures performed at different speeds.
Having conformed the gesture samples, each sample has the
same number of location points, so the values for each (loca-
tion sequence number, coordinate, body part) can be aver-
aged. For example, suppose there are four gesture samples,
cach standardized to 100 location sequence positions, and
assume that seven body parts are tracked. There are 100x7x3
pieces ol data for each sample because of the 3D tracking, and
cach of the four samples will have the same 2100 data ele-
ments. For each of these 2100 data elements, the values for the
four samples are averaged, which builds the average gesture.

FIGS. 5A-5D illustrate a process 500 for authenticating,
(502) users using three-dimensional gestures, such as hand
gestures, 1n some implementations. The process 1s performed
(504) by a computing device 100 with a depth sensor 102, one
Or more processors, and memory storing one or more pro-
grams for execution by the one or more processors. During an
enrollment process, the user selects (508) a gesture, and the
user performs (508) the corresponding gesture multiple
times. The gesture capture module captures (228) captures
(506) and records (506) the gesture samples performed by the
user. Each respective recorded gesture sample includes (510)
a respective temporal sequence of locations for a plurality of
specified body parts. For example, the body parts may be
finger tips 104, knuckles 110, the center of the user’s hand
108, or other distinguishable body parts or features. In some
implementations, the temporal sequence of locations are
taken at fixed time intervals (e.g., every 5 milliseconds, every
10 milliseconds, or every 25 milliseconds).

As described above with respect to FIG. 4, some 1mple-
mentations conform the temporal sequence of locations for
cach body part 1n certain ways. In some implementations, the
conformation module 230 applies a mean-shift so that the
specific location where the gesture 1s performed 1s eliminated.
This 1s applied (512) for each respective gesture sample and
for each respective body part whose location 1s tracked. In
some 1mplementations, this 1s accomplished by computing
(514) the mean location for the temporal sequence of loca-
tions and modilying (516) the respective temporal sequence
of locations by subtracting the mean location from each loca-
tion 1n the respective temporal sequence. This 1s essentially
equivalent to transtorming the center or centroid of the ges-
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ture to the origin (0,0,0) of a three-dimensional coordinate
system. The process 500 then uses (518) the modified tem-
poral sequence for the respective gesture sample.

In some implementations, the process 500 normalizes the
overall size of each gesture sample. The size normalization
may be applied as a whole to the entire gesture, or may be
applied on a dimension-by-dimension basis. In some 1mple-
mentations, the normalized size 1s 1.0, so i1if the maximum
dimension of a bounding box for the gesture sample 1s 3.75,
cach of the measurements is scaled by the factor (1/3.73). In
an 1implementation that scales on a dimension-by-dimension
basis, suppose the maximum dimensions of bounding box are
2.0 1n the x-dimension, 3.0 1n the y-dimension, and 4.0 1n the
z-dimension. Then for each location 1n the temporal
sequence, the x-coordinates are scaled by (1/2.0), the y-coor-
dinates are scaled by (1/3.0), and the z-coordinates are scaled
by (1/4.0). In some implementations or instances the sizes are
scaled up. For example, if the normalized size 1s selected as
3.0 1n the previous example, the x-dimensions are scaled up,
the y-coordinates are not scaled at all, and the z-coordinates
are scaled down.

In some 1implementations that normalize the size, the con-
formation module normalizes (524) each respective gesture
sample and each respective body part whose location 1s
tracked. Some 1mplementations identity (526) a minimal
bounding box that contains all of the locations 1n the respec-
tive temporal sequence. The conformation module then
modifies (528) the respective temporal sequence of locations
by scaling the locations 1n the respective temporal sequence
so that a minimal bounding box for the scaled temporal
sequence of locations has a predefined size. In some 1mple-
mentations, the minimal bounding box for the scaled tempo-
ral sequence of locations 1s a cube. The process 300 then uses
(530) the modified temporal sequence for the respective ges-
ture sample. In some implementations, mean-shift and nor-
malization are applied sequentially. In particular, the normal-
ization 1s applied to data that has already been mean shifted.

In some implementations, the conformation module 230
standardizes the data so that each temporal sequence has the
same number of locations. In these implementations, the stan-
dardization process 1s applied (520) to each respective gesture
sample and to each respective body part whose location 1s
tracked and recorded. In some implementations, the confor-
mation module 230 standardizes (522) each temporal
sequence ol locations to have a predefined number N of
locations, using the first and last locations in the temporal
sequence and interpolating to compute N-2 intermediate
locations. In this way, if a user performs the gestures at
different speeds, they are still treated as the same gesture.

Although this standardization process effectively elimi-
nates speed as a characteristic of the gesture, some implemen-
tations track and use speed 1n other ways. For example, some
implementations compute the average time taken to perform
the gesture samples, and store that average time for compari-
son 1n authentication attempts (e.g., stored as part of the
gesture template). Also note that some standardization tech-
niques only apply to the speed as a whole. Therelore, 1f a user
performs different portions of a gesture at different speeds,
those relative speeds are relevant 1n some implementations.

To create a gesture template, the process 500 computes
(532) an average gesture T from the gesture samples. In some
implementations, the average gesture T 1s computed (534) as
a mean average of the gesture samples. On the other hand,
some 1implementations compute (536) a weighted average of
the gesture samples. In some implementations, newer gesture
samples are weighted more heavily than older gesture
samples. The weight differences between the samples may be
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greater when additional samples are added from the authen-
tication process. For example, during original enrollment, the
multiple samples are performed within a very short time (e.g.,
2 minutes), but as samples are added from authentication, the
samples may have been performed over a period of weeks or
months. In some implementations, the average gesture T 1s
computed (538) based on a proper subset of the gesture
samples. In other words, some of the samples are not included
in the calculation at all. In some instances, gesture samples
are excluded because of age (e.g., gesture samples older than
a month are removed) or because they differ by too much
from the other gesture samples (e.g., most of gesture samples
are fairly close to each other, but in one case the user acci-
dentally performed 1t differently).

In addition to the average gesture T, the process selects
(540) an error tolerance € corresponding to the average ges-
ture T. In some implementations, selecting the error tolerance
e depends on (542) the calculation of a dispersion value that
measures the spread of the gesture samples. In other words, 1T
there 1s a lot of variation 1n the samples during enrollment,
then authentication will need to tolerate greater variation as
well. Conversely, 1f the user performs the selected gesture
with little variation, then the tolerance for authentication can
be set to a small value. In some 1mplementations, the error
tolerance 1s set (544) to be the computed dispersion value. In
some 1implementations, the enrollment module 232 sets the
dispersion value as the error tolerance after determining (546)
that the dispersion value 1s greater than a predefined mini-
mum dispersion and the dispersion value 1s less than a pre-
defined maximum dispersion. This was described above with
respect to test 316 i FIG. 3.

Implementations have various ways ol measuring the
spread of the gesture samples. Some implementations mea-
sure the spread of the gesture samples using (548) a distance
metric. In some 1mplementations, the distance metric uses
(552) dynamic time warping. In some implementations, the
distance metric 1s a model cost function, which estimates the
“cost” of matching a gesture sample to a model constructed
based on machine learning (e.g., logistic regression, a Sup-
port Vector Machine, a Hidden Markov Model, or a neural
network). In some 1mplementations, computing the disper-
sion value comprises (350) calculating a maximum distance
between pairs of gesture samples using the distance metric. In
some 1implementations, computing the dispersion value com-
prises (554) calculating a maximum distance between a ges-
ture sample and the average gesture T using the distance
metric.

In some 1nstances, the spread (variation) of the gesture
samples 1s too small or too large, as described above with
respect to test 316 1n FIG. 3. In some implementations, when
the spread of the gesture samples 1s (356) less than a pre-
defined minimum spread value, the authentication module
234 records (5358) additional gesture samples and recomputes
(560) the average gesture T using the additional gesture
samples. In some 1implementations, the recomputation uses
only the newly performed additional gesture samples. In
some i1mplementations, the recomputation uses (562) the
newly performed additional gesture samples as well as some
of the previously recorded gesture samples. In some 1mple-
mentations, when the spread 1s less than the predefined mini-
mum spread value, the enrollment module 232 substitutes a
default value (e.g., the predefined minimum spread value) for
the spread value.

Similarly, when the spread value 1s (564) greater than a
predefined maximum spread value, the enrollment module
232 records (566) additional gesture samples and recomputes
(568) the average gesture T using the additional gesture
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samples. The recomputation may include some or all of the
previously recorded gesture samples as well.

When the average gesture T 1s recomputed based on addi-
tional gesture samples, the dispersion value 1s recomputed as
well. The recomputed dispersion value may still fall below
the minimum or above the maximum, in which case further
gesture samples may be recorded. Some implementations
impose a limit on the number of recomputation iterations
betore prompting the user to start over with a new gesture.

The enrollment module 232 saves (570) the average ges-
ture T and error tolerance € as a gesture template for the user,
and the original enrollment process 1s complete.

Later, when the user wishes to access the device 100 (or
specific features on the device), the user 1s prompted to per-
form the same gesture for authentication. The device 100
captures (572) a 3D gesture performed by the user for authen-
tication. The captured 3D gesture includes (574) a temporal
sequence ol locations for the plurality of body parts. The
authentication module 234 computes (576) a distance d
between the captured 3D gesture and the average gesture T. In
some 1mplementations, the distance 1s computed by a dis-
tance metric, such as dynamic time warping. In some 1mple-
mentations, the distance 1s computed using a model cost
function.

When the distance d 1s less than or equal to €, the process
500 authenticates (578) the user, thereby granting the user
access to a secured feature on the computing device 100. In
some 1mplementations or mnstances, the process 300 updates
(580) the gesture template with a new average T' computed
based on the captured 3D gesture and at least a subset of the
gesture samples.

When the distance d i1s greater than €, the process 500 does
not authenticate (582) the user. In some implementations, the
user 1s prompted to retry performing the gesture, which may
be repeated a limited number of times (e.g., three times). In
some 1mplementations, 1f the user 1s not able to be authenti-
cated by performing the gesture, the authentication module
234 provides (586) the user with an alternative authentication
option, such as entry of a password from the keyboard. In
some 1mplementations, when the user 1s not authenticated,
the user 1s denied (584) access to the secured feature. In some
implementations, the user 1s only denied access 11 the user
fails gesture-based authentication and fails the alternative
authentication option(s).

The foregoing description, for purpose of explanation, has
been described with reference to specific implementations.
However, the 1llustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible 1n
view of the above teachings. For example, some implemen-
tations combine the gesture based authentication with other
data to provide more accurate authentication. The other data
can 1nclude sounds (e.g., voice simultaneous with the ges-
ture), data entry before or after performing the gesture, or
other biometric data, such as fingerprints, facial analysis, etc.
Other implementations track additional gesture parameters,
such as rate of change, distance from the sensor, angle formed
with the sensor, etc. (e.g., not applying all of the conforming,
steps 1llustrated 1n F1G. 4). The implementations were chosen
and described 1n order to best explain the principles of the

invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari-
ous implementations with various modifications as are suited
to the particular use contemplated.

10

15

20

25

30

35

40

45

50

55

60

65

18

What 1s claimed 1s:

1. A method of authenticating users, comprising;:

at a computing device with a depth sensor, one or more

processors, and memory storing one or more programs

for execution by the one or more processors:

recording a plurality of 3D gesture samples from a first
user, wherein the gesture samples correspond to a
gesture selected by the first user and wherein each
respective recorded gesture sample includes a respec-
tive temporal sequence of locations for a plurality of
specified body parts;

computing an average gesture T from the gesture
samples;

selecting an error tolerance e corresponding to T, includ-
ing computing a spread of the gesture samples, and
when the spread 1s greater than a predefined maxi-
mum spread value, recording additional gesture
samples and recomputing the average gesture T using
the additional gesture samples;

storing the average gesture T and the error tolerance € as
a gesture template for the first user;

capturing a 3D gesture from a user for authentication,
wherein the captured 3D gesture includes a temporal
sequence of locations for the plurality of body parts;

computing a distance d between the captured 3D gesture
and the average gesture T;

when the distance d 1s less than or equal to €, authenti-
cating the user as the first user, thereby granting the
user access to a secured feature on the computing
device; and

when the distance d 1s greater than €, not authenticating
the user.

2. The method of claim 1, wherein the average gesture T 1s
computed as a mean average of the gesture samples.

3. The method of claim 1, wherein the average gesture T 1s
computed as a weighted average of the gesture samples.

4. The method of claim 1, wherein the average gesture T 1s
computed based on a proper subset of the gesture samples.

5. The method of claim 1, wherein selecting the error
tolerance comprises computing a dispersion value that mea-
sures spread of the gesture samples, the method further com-
prising setting the error tolerance to be the computed disper-
s10n value.

6. The method of claim S5, wherein measuring the spread of
the gesture samples uses a distance metric, and wherein com-
puting the dispersion value comprises calculating a maxi-
mum distance between pairs of gesture samples using the
distance metric.

7. The method of claim 6, wherein the distance metric uses
dynamic time warping.

8. The method of claim 5, wherein measuring the spread of
the gesture samples uses a distance metric, and wherein com-
puting the dispersion value comprises calculating a maxi-
mum distance between a gesture sample and the average
gesture T using the distance metric.

9. The method of claim 5, wherein setting the error toler-
ance to be the computed dispersion value further comprises
determining that the dispersion value 1s greater than a pre-
defined minimum dispersion and the dispersion value 1s less
than a predefined maximum dispersion.

10. The method of claim 1, wherein selecting the error
tolerance € comprises computing a spread of the gesture
samples, the method further comprising when the spread 1s
less than a predefined minimum spread value:

recording additional gesture samples; and

recomputing the average gesture T using the additional

gesture samples.
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11. The method of claim 10, wherein recomputing the
average gesture T uses at least a subset of the gesture samples
as well as the additional gesture samples.

12. The method of claim 1, further comprising when the
distance d 1s less than or equal to the error tolerance e:

updating the gesture template with a new average T' com-

puted based on the captured 3D gesture and at least a
subset of the gesture samples.

13. The method of claim 1, further comprising for each
respective gesture sample and for each respective body part
whose location 1s recorded:

computing a mean location for the respective temporal

sequence of locations;

modilying the respective temporal sequence of locations

by subtracting the mean location from each location 1n
the respective temporal sequence; and

using the modified temporal sequence for the respective

gesture sample.

14. The method of claim 1, further comprising for each
respective gesture sample and for each respective body part
whose location 1s recorded:

identifying a minimal bounding box that contains all of the

locations 1n the respective temporal sequence;
moditying the respective temporal sequence of locations
by scaling the locations in the respective temporal
sequence so that a bounding box for the scaled temporal
sequence of locations has a predefined size; and

using the modified temporal sequence for the respective

gesture sample.

15. The method of claim 1, further comprising for each
respective gesture sample and for each respective body part
whose location 1s recorded:

standardizing the temporal sequence of locations to have a

predefined number N of locations, using the first and last
locations 1n the temporal sequence and interpolating to
compute N-2 mtermediate locations.

16. The method of claim 1, further comprising when the
user 1s not authenticated by the captured 3D gesture:

denying the user access to the secured feature.

17. The method of claim 1, further comprising when the
user 1s not authenticated by the captured 3D gesture:

providing the user with an alternative authentication

option.

18. A computer system for authenticating users, compris-
ng:

a depth sensor;

ONe Or MOore Processors;

memory; and

one or more programs stored in the memory, the one or

more programs comprising instructions for:

recording a plurality of 3D gesture samples from a first

user, wherein the gesture samples correspond to a ges-
ture selected by the first user and wherein each respec-
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tive recorded gesture sample 1includes a respective tem-

poral sequence of locations for a plurality of specified

body parts;

computing an average gesture T from the gesture
samples;

selecting an error tolerance e corresponding to T, includ-
ing computing a spread of the gesture samples, and
when the spread 1s greater than a predefined maxi-
mum spread value, recording additional gesture
samples and recomputing the average gesture T using
the additional gesture samples;

storing the average gesture T and the error tolerance € as
a gesture template for the first user;

capturing a 3D gesture from a user for authentication,
wherein the captured 3D gesture includes a temporal
sequence of locations for the plurality of body parts;

computing a distance d between the captured 3D gesture
and the average gesture T;

when the distance d is less than or equal to €, authenti-
cating the user as the first user, thereby granting the
user access to a secured feature on the computing
device; and

when the distance d i1s greater than €, not authenticating
the user.

19. A non-transitory computer readable storage medium
storing one or more programs configured for execution by a
computer with a depth sensor, the one or more programs
comprising instructions for:

recording a plurality of 3D gesture samples from a first

user, wherein the gesture samples correspond to a ges-
ture selected by the first user and wherein each respec-
tive recorded gesture sample 1includes a respective tem-
poral sequence of locations for a plurality of specified
body parts;

computing an average gesture T from the gesture samples;

selecting an error tolerance e corresponding to T, including

computing a spread ol the gesture samples, and when the
spread 1s greater than a predefined maximum spread
value, recording additional gesture samples and recom-
puting the average gesture T using the additional gesture
samples;

storing the average gesture T and the error tolerance € as a

gesture template for the first user;
capturing a 3D gesture from a user for authentication,
wherein the captured 3D gesture includes a temporal
sequence of locations for the plurality of body parts;

computing a distance d between the captured 3D gesture
and the average gesture T;

when the distance d 1s less than or equal to €, authenticating
the user as the first user, thereby granting the user access
to a secured feature on the computing device; and

when the distance d i1s greater than e, not authenticating the
user.
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