12 United States Patent

US009349015B1

(10) Patent No.: US 9.349,015 B1

Archer et al. 45) Date of Patent: May 24, 2016
(54) PROGRAMMATICALLY DETECTING (56) References Cited
COLLUSION-BASED SECURITY POLICY
VIOLATIONS U.S. PATENT DOCUMENTS
: _ : 7,937,755 B1* 5/2011 Guruswamy 726/22
(71) Applicant: Galois, Inc., Portland, OR (US) 8.265.595 B1* 9/2012 Reevesetal. ..., 455/410
_ 2002/0183056 Al* 12/2002 Lundblade etal. 455/425
(72) Inventors: David W. Archer, Sherwood, OR (US); 2012/0158949 AL* 6/2012 Lee .cooovrvviorrirrirrinn 709/224
Jonathan T. Daugherty, Portland, OR 2013/0081138 Al* 3/2013 Radosetal. 726/23
(US); Joseph Hurd, Portland, OR (US); 2013/0097652 Al* 4/2013 Bhattacharjee etal. 726/1
" ’ ’ 7 2013/0111593 Al* 5/2013 Shankaretal. 726/25
M. Isaac Jones, Portland, OR (US): 2013/0232573 Al* 9/2013 Saidietal. ...ccoooovvvreree.. 726/22
Aaron Tomb, Portland, OR (US) 2013/0268667 Al* 10/2013 Abuelsaad etal. 709/225
2013/0290709 Al1* 10/2013 Muppidietal. 713/168
(73) Assignee: Galois, Inc., Portland, OR (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this | | o S
patent is extended or adjusted under 35 Chin et al., “Analyzing Inter-Application Communication In
U.S.C. 154(b) by 37 days Android”, 2011, MobiSys’11, entire article.*
(Continued)
(21) Appl. No.: 13/916,486
(22) Tiled: Tan. 12. 2013 Primary Examiner — Shin-Hon Chen
| T (74) Attorney, Agent, or Firm — Klarquist Sparkman, LLP
Related U.S. Application Data
57 ABSTRACT
(60) Provisional application No. 61/658,763, filed on Jun. 57)
12, 2012. Sets of multiple software programs selected from a set of
candidate software programs are evaluated to determine 1f the
(51) Int. CL. applications can collude to violate a security policy and
GO6F 12/16 (2006.01) exhibit other undesirable properties. Intra- and inter-applica-
GO6F 21/60 (2013.01) tion data and control flows can be stored and newly 1intro-
GO6L 12/14 (2006.01) duced applications assessed based on stored data and control
(52) U.S. CL flows. An application provider can certily sets ol applications
CPC oo GOG6F 21/60 (2013.01) assatisfying a security policy based on consideration of inter-
(58) Field of Classification Search application flows.
None

See application file for complete search history.

CANDIDATE
//»- APPLICATION

502 Y

PROGRAM

18 Claims, 13 Drawing Sheets

ANALYSIS
a ¢

S04

ESTABLISH
CANDIDATE
INTRA-APP DATA
FLOWS

506
—bﬁgB_SiE- TABLISH

//" INTER-APP DATA

STORED
INTER-APP DATA
FLOWS

FLOWS WITH
508 CANDIDATE APP

POLICY NO e
VIOLATION ol ACCEPT
510 R
516
RECONFIGURE
APPHICATION
512
514
YES _ADD’L POLICY NO

VIOLATION

US 9,349,015 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Burke et al., “Automatic Detection of Inter-application Permission
Leaks in Android Applications™, Jan. 2013, Technical Report TR13-
02, Department of Computer Science, Rice University, entire

article.™

Cozzette et al., “Improving the Security of Android Inter-Component
Communication”, 2013, 2013 IFIP/IEEE International Symposium
on Integrated Network Management, pp. 808-811.*

SBIR Phase 1 Final Report “FUSE: Inter-Application Security for
Android,” 20 pages (Dec. 2011).

Livshits, “Improving Software Security with Precise Static and
Runtime Analysis,” Dissertation, 250 pages (Dec. 2006).

J. Burns, “Developing Secure Mobile Applications for Android,”
ISEC Partners, 28 pages (Oct. 2008).

J. Burns, “Exploratory Android Surgery”, ISEC Partners, 47 pages
(2009).

A. Chaudhuri, “Language-Based Security on Android,” in Proceed-

ings of the 2009 Workshop on Programming [.anguage and Analysis
for Security, 2 pages (Jun. 2009).

A.P. Fuchs et al., “SCanDroid: Automated Security Certification of
Android Applications”, 15 pages (2010).

* cited by examiner

US 9,349,015 B1

011
L1

cll TANLVNDIS
WVINO¥d
e,
y—
= 811 \\
y—
,_w JOLVIVIVAA
m\nu NOILLVOI'IddV
HTONIS
o O11
&
S S LNdNI
AW.J INVHDO U]
o~
= 11—

U.S. Patent

0

0

|

SHOVSSHIN
AII'1IOd

9¢Cl

AHAIHHO

ADI'TOd

144

dVIN MO'14
NOLLVOI'lddV
~dALNI

ccl

dOLVIVIVAH

NOILVOI'lIddV
~dHd LN

0Cl

NOILLVOIHIDAS
AJI'10d

901 ~/ a

HANOISIAO™d
7101

rOl

SAIOFTOd
ALFA(IOHS

cOl1

[DId

U.S. Patent May 24, 2016

FIG. 2

209A

SINGLE
APPLICATION

POLICIES

MULTI-
APPLICATION

POLICIES

2098

SELECT
APPLICATION

Sheet 2 of 13 US 9,349,015 B1

202
/—

l :/-204

PROGRAM
ANALYSIS

I ;—-—206

SINGLE
APPLICATION
DATA FL
o 200C
f/— 208 /
MULTI-
fﬁiﬂ@ APPLICATION
DATA MAPS

REPORTING

212

PASSED

NO

YES
vy

ADD TO

TRUST)

214

NOTIFY APPLICATION
DEVELOPER RE

RECOMMENDED
MODIFICATIONS

216

MARKETPLACE [~

U.S. Patent May 24, 2016 Sheet 3 of 13 US 9,349,015 B1

310

312

SECURITY
OBJECTIVES

: 308

APPLICATION
SECURITY _ _
POLICY MARKETPLACE
DATABASE
A
306
FIG. 3 APPLICATION

ANALYZER

APPLICATION

APPLICATION APPLICATION DATA FLOW MAP
CODE STORAGE DEVELOPER DATABASE
304 302 303
400
CERTIFICATION MESSAGE

. APPLICATION IDENTIFIERS
FIG. 4 DATE, REVISION, HASH [VALUE

402

SECURITY POLICY IDENTIFIERS
POLICY SET ID, APPLICATION TEST SET
404

SECURITY ANALYST IDENTIFIERS
PROVIDER ID, INTERCOMPARISON TOOL ID,
HASHES
406

U.S. Patent May 24, 2016 Sheet 4 of 13 US 9,349,015 B1

CANDIDATE
APPLICATION

502

FIG. S

PROGRAM
ANALYSIS

504
ESTABLISH

CANDIDATE
INTRA-APP DATA
FLOWS

STORED
INTER-APP DATA
FLOWS

506

ESTABLISH
INTER-APP DATA
FLOWS WITH
CANDIDATE APP

508

NO

POLICY

VIOLATION ACCEPT

510

YES

>16

RECONFIGURE
APPLICATION

S14

ADD’L POLIC NO

VIOLATION

600

US 9,349,015 B1

10AM

o
.

4

1

609C
609F
6

vy

.

Al

P

-

TN
"
wqud’

Sheet So0f 13

.

6098
609 E

1

IMPLE

C

SCREENING LEVEL

k:

SINGLE
ALL INSTALLED (detault)
SELECTED APPS . ..

C

INSTALLING NEW APPLICATION

" M _ A LA L A A A U AR R A
9 9 R LVEL DR Do BN DO DO LU Lot o e e e e e e e e e et e .r-u.-.rlr-u.-.ru..r.u.-.rJ..u.-.rJ..u.-.ru..r.l.ru..r.l.ru..r.u.w m.
H M u.
; : LD o
G u“n...‘..l..r..‘...‘...‘.....‘.....‘..h.. s W w..n.rﬁrr..dlnuﬁ-un.rﬁrnu-nxu.....- m wxu.nxvr...tu?:?-..-??..l..r...‘...b? W w. H
H a
O ® w.. H H m Y u. w.__
N Lt » SR : P ;
i] H &
- SR : R :
]] i m » = H
¥ H [H b4 Iy
i H i £ i Y
H H) : H H m ELRETDE, . SN TNT S
w -H" W e e T e e e e e e e e D e D T
B T S o o et et e S e

May 24, 2016

... ..__
-..:.-.-.r.-...-.
AaEE e

U.S. Patent
FIG. 6

606

608

6

1

6

U.S. Patent

May 24, 2016

SELECT
SECURITY

POLICY

Sheet 6 0of 13

US 9,349,015 B1

SECURITY
POLICY

DATABASE

702 703
SELECT
APPLICATIONS 704
707
SAME VES
SECURITY END
POLICY?
NO 708
RETRIEVE TNTER-APP DATA
INTER- s
APPLICATION
DATABASE
DATA PATHS
710 709
IDENTIFY
VIOLATIONS ’l END |
SELECT —~
APPLICATION Q0D
OBTAIN FIG. &
APPLICATION
SIGNATURE [~ 804
UPDATE
APPLICATION |—806
SIGNATURE
DATABASE 210
80K
T DDITIONAT IDENTIF&;& VIOLA;IONS
APPLICATIONS OF NEW APPLICATION
YES NO SETS

U.S. Patent May 24, 2016 Sheet 7 of 13 US 9,349,015 B1

U.S. Patent May 24, 2016 Sheet 8 of 13 US 9,349,015 B1

OPERATING SYSTEM
930

924
F1G. 9B BROADCAST RECEIVER
APPLICATION 1 APPLICATION 2
e BYTECODE M
SY1ECODEN BYTECODE M+1
BYTECODE N+1 INTENT o
S BYTECODE M+K
BYTECODE N+K
o 914
912 922
P ICATION | - APPLICATION 2

920 SOURCE CODE

SOURCE CODE

" - : BYTECODE
PPLI(IZA PE?N ET I TBRARY
APP 2 2
EXTRACT PATHS
95() 056
SECURITY POLICY EVALUATE PATHS FI(G. 9C
060 058
COMPLIANCE
REPORTING

962

US 9,349,015 B1

Sheet 9 0of 13

May 24, 2016

U.S. Patent

ZUOWISURA UL
TUoIS U U
GOHISURI JURI
S Ve)

P

page] seise

ST
er“ﬁ.m. “-...:.... e

U.S. Patent May 24, 2016 Sheet 10 of 13 US 9,349,015 B1

. - - . . M ¥
s " e s 4 AR ey i .-:::'-::';E: 5
S g prony _"f{'%ﬁ*’fwvﬁﬁ:wmwg Y.

A S I

FIG. 11

e
Mo,

W
A T T e T R v 2 e AR R

R, .. FETERER +}:;;:;:.::E;_{_,. A

...lvy..?.__no}:vkv"

A.WH PRVt @wﬂw%@wmﬁﬁﬁ %ﬁ}fﬁ

e, VA

US 9,349,015 B1

Sheet 11 of 13

May 24, 2016

U.S. Patent

- %%_% ﬁ@mﬁﬁ% DI _mwﬁ_g

-) . oo ol et

BEEER Bt
.no.....v.n..Eu,.

j.ﬁmqf.f

r?aynp.n.w.d??_o..o&k..?::ﬁ..

h o AR e o S 8 et ma e e e

/,f

wa%:xa

R LT . .
g&i\&ﬁ{? N

L ﬁ%ﬁ%ﬁﬁwﬁﬁw%ﬁ? it ﬁ@ﬁﬁ%%@m

s

a ot %ﬁ%ﬁﬁ@

¢l DId

.....
R =

@%ﬁmﬁﬁ ﬁm&aﬁ%@ T

.._H_E,rn_....i.. .
e u..p.u-rre.?se.sf?l?i..,.....,"..{«.. L e R

N

...,.r.......v.&.—_o..u..-.-_.v

.,.n.....o_...u.n...x._.uu.,.iu

U.S. Patent May 24, 2016 Sheet 12 of 13 US 9,349,015 B1

INTER-APP _ Communication _
SECURITY connection(s)1350
EVAL

1365 Input device(s) 1340

Processing
unit(s) 1302

1306
Monitor
1346
1300
Remote Computer
FIG. 13 1360
APPLICATION
SIGNATURES
1364
Memory/Storage
1362
APPLé%?TION SECURITY
CERTIFICATIONS POLICIES

1366

1368

U.S. Patent May 24, 2016 Sheet 13 of 13 US 9,349,015 B1

FIG. 14 1402

420

, NON-
MOBILE DEVICE REMOVABLE
MEMORY
1422

REMOVABLE
MEMORY
1424

INPUT/OUTPUT PROCESSOR PHYSICAL
PORTS 1480 1410 CONNECTOR 1490
INPUT DEVICE(S) OUTPUT DEVICE(S) WIRELESS MODEM
1404 1430 1450 | 1460

TOUCHSCREEN ! -
SPEAKER Wi-Fi
1432
1452 1462
MICROPHONE
1434 DISPLAY BLUETOOTH
1454 1464

CAMERA
1436

1400

ACCELEROMETER
1486

(() GPS Eﬁi(éfl\/ER

OPERATING

S>YSTEM 1412

KEYBOARD 1414
143%

TRACKBALL
144()

APPLICATIONS
1415

| APP INSTALLER WITH INTER-
APPLICATION SECURITY VERIFICATION

US 9,349,015 Bl

1

PROGRAMMAITICALLY DETECTING
COLLUSION-BASED SECURITY POLICY
VIOLATIONS

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application 61/638,763, filed Jun. 12, 2012, which 1s 1ncor-
porated herein by reference.

ACKNOWLEDGMENT OF GOVERNMEN'T
SUPPORT

This invention was made with government support under
contract W31P4Q-12-C-0024 awarded by the Detfense
Advanced Research Projects Agency. The government has
certain rights 1n the ivention.

FIELD

The disclosure pertains to detecting security policy viola-
tions 1n software applications.

BACKGROUND

Evaluation of computer software to identily the presence of
computer viruses has become widespread. In some cases,
network operators provide virus screening tools as part of
their basic offerings, and implement these tools 1n a way that
users may be barely aware of their presence. Typical virus
screeners examine software to determine if previously 1den-
tified malware signatures are present. Thus, conventional
malware detection requires a prior identification of a malware
signature, and such malware detection 1s necessarily reactive.
In other conventional approaches, individual software pro-
grams are evaluated to determine possible violations of
desired behavioral properties.

The widespread use of software programs (“applications™)
on mobile computing devices presents additional challenges.
First, many such mobile device users store, enter, or receive
personal or financial data with these devices, and security of
this data 1s a prime concern. Second, these mobile devices
typically include cameras and microphones that can be con-
nected to wide area networks such as the Internet, so that
unauthorized acquisition of images and sound with these
devices, and transmission of the acquired data can be signifi-
cant privacy violations. In addition, mobile devices are typi-
cally configured to report device location, and unauthorized
reporting of this location can also represent a significant
violation of personal privacy. Third, 1n many cases, users
depend on the proper functioning of mobile devices for daily
activities including workplace and personal communications
(email, text, telephone), work and personal calendaring, and
access to address books, financial information, news, and
entertainment. The presence of malware or misbehaving
applications on a personal mobile device can thus result 1n
significant inconvenience. While conventional approaches
can recognize malware after the fact based on malware sig-
natures associated with individual applications, additional
approaches are needed.

SUMMARY

Disclosed herein are methods and apparatus for evaluating,
whether sets of multiple software programs selected from a

10

15

20

25

30

35

40

45

50

55

60

65

2

set of candidate soitware programs have the capability to
collude to behave 1n ways that may violate security policies.

According to some disclosed methods, inter-application
data flows associated with at least two applications are evalu-
ated based on a predetermined security policy. An indication
of whether or not the set of at least two applications satisfies
the predetermined security policy can be provided based on
the evaluation. In some examples, a security policy violation
1s associated with a particular application of the at least two
applications or an indication 1s provided that at least one of
the applications satisiies the predetermined security policy. In
some alternatives, a certification message 1s prepared based
on the evaluation associated with compliance with the prede-
termined security policy. In typical examples, the data flows
are associated with data flows from application inputs to
application outputs and to and from memory accessed by the
applications. In some embodiments, inter-application data
flows associated with the at least two applications are evalu-
ated based on stored data tlows associated with the at least two
applications. According to some examples, application sig-
natures are established and stored for the at least two appli-
cations, and the evaluation of inter-application data tlows 1s
based on the stored application signatures. In some alterna-
tives, the security policy 1s selected from a set of security
policies.

Application marketplaces comprise one or more servers
configured to provide a listing of a plurality of available
applications, and to provide an indication that the applica-
tions satisly a security policy based on inter-application data
flows. In typical examples, the indication of satisfaction of a
security policy 1s based on application certifications associ-
ated with at least one application 1n the set of available appli-
cations.

Methods comprise communicating a list of available appli-
cations, and indicating whether or not each of the applications
satisfies a security policy based on inter-application data
flows. In some embodiments, the security policy corresponds
to a recerved security policy preference. In further examples,
the list of available applications 1s based on a received user
security policy preference. In some examples, at least one
computer readable medium 1s configured to store computer-
executable instructions for such methods.

Mobile devices comprise a display configured to present to
a user indications of detected inter-application security policy
violations based on an application selected for installation on
the mobile device. According to representative embodiments,
a user interface 1s configured for user selection of a security
policy associated with the detection of the security policy
violations. In other examples, the mobile device 1s configured
to communicate at least one of a security policy preference or
an application set preference to an application provider.

In some examples, methods include selecting a set of appli-
cations and a security policy, and evaluating the set of appli-
cations for inter-application security policy violations based
on the selected security policy. A security certification 1s
transmitted indicating that the set of applications satisfies the
selected security policy it the evaluation fails to detect a
security policy violation. In representative examples, at least
one of an indication of a security policy or an identification of
at least one application of the set of applications 1s included 1n
the security certification. According to some examples, the
set of applications 1s evaluated based on application signa-
tures associated with application control and information
flows.

The foregoing and other features, and advantages of the
disclosed technology will become more apparent from the

US 9,349,015 Bl

3

tollowing detailed description, which proceeds with refer-
ence to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1llustrates a representative method and apparatus for
evaluating applications for inter-application compliance with
security policies.

FI1G. 2 1llustrates a representative method for determining,
whether an application 1s to be approved for addition to an
application marketplace.

FI1G. 3 illustrates a representative system for use by appli-
cation developers 1n establishing conformance to application
marketplace policies.

FI1G. 4 1llustrates a representative certification message.

FI1G. 5 illustrates a representative method of modifying an
application to satisiy a security policy.

FI1G. 6 1llustrates a mobile device configured to permit user
selection of inter-application security assessment parameters.

FIG. 7 illustrates a method of updating a security policy
analysis of an application based on anewly selected or revised
security policy.

FIG. 8 illustrates addition of a new application to a set of
previously evaluated applications.

FIG. 9A 1llustrates a portion of a representative extended
package manifest.

FIGS. 9B-9C 1llustrate collusion detection based on appli-
cation bytecodes.

FIG. 10 1s a listing of inter-application component calls.

FIG. 11 1s a representation of inter-application control-
flow data.

FI1G. 12 illustrates possible paths associated with a note-
book application that include voice to notes services, text
messaging (SMS) services, an encryption application, and a
password saie application.

FIG. 13 illustrates a representative computing environ-
ment.

FIG. 14 illustrates a representative mobile device.

DETAILED DESCRIPTION

As used 1n this application and 1n the claims, the singular
forms “a,” “an,” and “the” include the plural forms unless the
context clearly dictates otherwise. Additionally, the term
“includes” means “comprises.” Further, the term “coupled”
does not exclude the presence of intermediate elements
between the coupled items.

The systems, apparatus, and methods described herein
should not be construed as limiting in any way. Instead, the
present disclosure 1s directed toward all novel and non-obvi-
ous features and aspects of the various disclosed embodi-
ments, alone and 1n various combinations and sub-combina-
tions with one another. The disclosed systems, methods, and
apparatus are not limited to any specific aspect or feature or
combinations thereof, nor do the disclosed systems, methods,
and apparatus require that any one or more specific advan-
tages be present or problems be solved. Any theories of opera-
tion are to facilitate explanation, but the disclosed systems,
methods, and apparatus are not limited to such theories of
operation.

Although the operations of some of the disclosed methods
are described 1n a particular, sequential order for convement
presentation, it should be understood that this manner of
description encompasses rearrangement, unless a particular
ordering 1s required by specific language set forth below. For
example, operations described sequentially may in some

cases be rearranged or performed concurrently. Moreover, for

10

15

20

25

30

35

40

45

50

55

60

65

4

the sake of simplicity, the attached figures may not show the
various ways in which the disclosed systems, methods, and
apparatus can be used in conjunction with other systems,
methods, and apparatus. Additionally, the description some-
times uses terms like “produce” and “provide’ to describe the
disclosed methods. These terms are high-level abstractions of
the actual operations that are performed. The actual opera-
tions that correspond to these terms will vary depending on
the particular implementation and are readily discernible by
one of ordinary skill 1n the art.

Disclosed herein are representative methods and apparatus
that permit detection of malware or flaws 1n software pro-
grams. In some examples, the methods and apparatus can be
used to evaluate a set of software programs to determine 1f the
soltware programs violate or are likely to violate predeter-
mined acceptable program behaviors 11 operated together on
a single computing device or multiple computing devices. In
one or more examples, collections of inter-operating software
programs are evaluated to estimate whether these programs
might operate together in some fashion (1.e., collude) to vio-
late one or more policies from a set of security policies. Such
policies may often concern, but are not limited to preservation
of computer system data privacy or computer system integ-
rity.

In some disclosed embodiments, security policy violations
are detected among colluding sets of software programs, and
not merely policy violations within individual programs.
Applications for some operating systems can be provided
with a declaration of permissions required by the application
to access hardware devices such as cameras and micro-
phones, special or reserved data storage areas, and to com-
municate with other applications. Such permissions may be
granted to a single application without any awareness of
possible security violations for combinations of applications.

As disclosed herein security policies to be used 1n multi-
application evaluation can be varied as desired for a particular
security situation, and the effects of new or diflerent security
policies can be determined based on previously determined
data path and control flows and application signatures, with-
out requiring re-compilation of evaluator tools. Individual
applications can be evaluated, and their signatures stored for
later consideration 1n inter-application evaluations. In addi-
tion, security evaluation of a new software program added to
a set of programs can be accomplished based on new sets of
potentially colluding applications, and previous evaluations
of other software program sets need not be redone. Typical
security policies can be defined by limiting combined appli-
cation access to specific system capabilities unless such
access 1s explicitly granted.

In some examples, application signatures can be evaluated
for some or all available applications at an application mar-
ketplace or elsewhere to discover colluding applications.
Such colluding applications can then be noted as violating a
security policy, and/or removed from availability. In other
examples, inter-application security analysis on a set of appli-
cations 1s performed at installation. Security policy violations
can be discovered, and a user advised so that installation can
be halted, or an 1nstalled application removed.

In some application environments, applications can
include components associated with activities that provide
user access to the application, services that perform in the
background, broadcast recetvers that can receive communi-
cations from other applications, and content providers that
permit shared data access. Components can call on other
applications by requesting services from other applications.
An application from which a service 1s requested can respond
to the request (or not) based on predetermined criteria. Appli-

US 9,349,015 Bl

S

cation components, permissions, and service criteria can be
provided in an application manifest that can be presented to a

user for approval at installation. Inter-application security
violations can be assessed based in part on such manifests.

While software programs of all kinds can be evaluated, the
disclosed examples are described with reference to so-called
“applications.” As used herein, an application 1s a software
program that 1s configured for installation on a user device so
as to be mitiated by a user based on selection of a suitable icon
or otherwise individually mitiated. Applications are typically
available for download from so-called application market-
places, and as downloaded, may be part of an application
package that includes installation information as well as
application code 1n source, object, or executable format, or 1n
a compressed format. Control and data flow analysis can be
based on information available from application packages.

One example of the kinds of inter-application insecurity
addressed by the disclosed method can be described as fol-
lows with reference to a security policy that prohibits com-
munication of contact mformation to the Internet. A first
application 1s installed and 1s granted (and requires) permis-
s10n to access contact information. In addition, the first appli-
cation 1s configured to require an additional permission 1n
order to be accessible to a second application. This first appli-
cation can be secure individually as 1t lacks any access to the
Internet. A second application that provides access to the
Internet 1s mstalled, and 1s granted permission to access the
first application. The combination of the first and second
applications thus presents a possible security policy violation
in that contact information accessed by the first application 1s
now accessible to the Internet through the second application,
although both the first and second applications are individu-
ally secure.

Example 1
Multi-Application Evaluation

With reference to FIG. 1, a representative method 100 of
evaluating applications includes preparing or assigning a set
ol security policies that can be stored in a security policy
summary 102. Based on the security policy summary 102, a
rules provisioner 104 1s configured to establish security rules
based on the policy summary 102, and produce a policy
specification 106. In some examples, a policy specification 1s
supplied by a user, one or more application developers, or an
application marketplace, and evaluation of security policies
and transformation into rules 1s not needed.

Typically, the rule provisioner 104 recerves as input a set of
rules, expressed in a suitable syntax. Some or all of the
received rules are checked by the rule provisioner 104 for
syntactic correctness. Some or all rules determined to be
syntactically correct are then translated by the rule provi-
sioner 104 1nto a computer-readable representation that may
be directly used by a policy checker 124. The rule provisioner
104 generally outputs the computer-readable representation
ol the rules associated with the security policies for storage in
one or more computer-readable media as the policy specifi-
cation 106. The policy specification 106 and the security
policies 102 can be stored at a common location that can be
local or remote, or they can be stored partially or completely
at different local or remote locations.

Security policies can be developed based on intended
application behaviors. For example, a typical input rule,
expressed 1n a typical suitable syntax, might be expressed as
“No information shall tlow from a contacts database to the
Internet connection.” Other rules could prohibit data flow

10

15

20

25

30

35

40

45

50

55

60

65

6

from a password vault to the Internet connection, or prohibit
data tlows from personal financial application to a social
networking application. Rules can also be tailored to intended
users. For example, some data flows may be acceptable or
approprate for adult users, but mnappropnate for non-adults.
The security policy specification 106 can include such rules,
and provide multiple rule sets that can be selected by a user.
Alternatively, rule set compliance can be assessed as strict,
intermediate, low, or non-compliant based on preferences
associated with some or all security policies.

Individual application evaluations 110, 111, 112 can be
provided to an inter-application evaluator 120. For example,
the individual application evaluation 110 1s based on deter-
mination of program inputs and outputs 114 for the selected
application. Typically, the selected application 1s evaluated at
116 based on data flows between the inputs, outputs, and
internal storage in conjunction with target operating system
requirements and capabilities. Based on these data flows, a
program signature 118 1s established for use by an inter-
application evaluator 120. The program signature 118 can
provide a representation ol some or all information flows
associated with the selected application. In some cases, pro-
gram signatures can be based in part on permission declara-
tions as well as actual application code. Typically, all infor-
mation tlows are provided in the program signature 118.
Similar program signatures can provide for additional appli-
cations based on the individual application evaluations 111,
112 as well. Applications can thus be evaluated one at a time
in a compositional evaluation that 1s generally scalable to
large numbers of applications. In addition to application data
flow analysis, single applications can be evaluated by con-
ventional virus scanners as well, and applications that fail to
pass such evaluations can be flagged 1n subsequent evalua-
tion, or removed from availability.

The single-application evaluator 116 generally recerves
interpretable or executable program code for selected appli-
cations. Based on a static program analysis, the evaluator 116
obtains a representation of information tlows within the appli-
cation under evaluation. Such an information tlow represen-
tation can be based on some or all inputs to and outputs from
the application under evaluation, along with internal storage
locations accessed by the application. In addition, the repre-
sentation can include all communication paths in the program
that connect these 1nputs, outputs, and internal storage loca-
tions. As used herein, such a representation of inputs, outputs,
storage locations, and communication paths between inputs,
outputs, and storage locations 1s referred to as an information
flow map and 1s typically stored in a computer-readable
memory or other storage device. Such a flow map can be
represented visually for user inspection, but such a visual
display 1s only one possible format. The information flow
map represents some, most, selected, or all information tlow
paths that may occur under any applied set of 1inputs or pro-
gram controls. The resulting information flow map produced
by the single application evaluator 116 1s typically output as
a representation corresponding to nodes and edges of an
information flow graph. Typically, each node of such a graph
represents an input, output, or internal storage location 1n the
application under evaluation, and each edge 1n such a graph
indicates the presence of soitware 1nstructions 1n the applica-
tion that may enable the tlow of information from the storage
location represented by one node to the storage location rep-
resented by another node. Such a representation can be
referred to herein as a signature, or node-based signature of
the evaluated software program. However, information flows
can be stored 1n other ways, and a node-based signature 1s a
convenient example.

US 9,349,015 Bl

7

An 1nter-application evaluator 120 receives program sig-
natures corresponding to a set or sets of applications to be
evaluated, and constructs an information tlow representation
that includes some, most, or all information flow paths
between applications in the evaluation set. Such a represen-
tation can be referred to as an 1nter-application tflow map, 1s
output by the inter-application evaluator 116 and stored at
122.

A policy checker 124 1s coupled to receive the policy
specification 106 produced by the rule provisioner 104 and
search the inter-application tlow map 122 for possible infor-
mation flows within and between the applications 1n the pro-
gram set under evaluation that may result in program behavior
prohibited by the policy specification 106. For some or all
information flow paths that violate the policy specification
106, the policy checker 124 1s configured to output one or
more messages 126 indicating which portion of the policy
specification 1s violated, along with an identifier that specifies
the path associated with the violation.

Example 2
Application Marketplace Administration

With reference to FIG. 2, arepresentative method for use in
marketplace administration comprises selecting a particular
application for addition to a set of available, approved appli-
cations at 202. At 204, the selected application 1s analyzed to
determine, for example, data inputs, data outputs, and
accesses to data storage, and data flows are recorded as a
single application map at 206. At 208, the single application
data flows can be evaluated to identily violation of single
application security policies 209A that can be stored 1n a
database. In some cases, marketplace administrators can
require application providers to submit a certification that an
application being submitted satisfies single application secu-
rity policies, and testing for single application policy viola-
tions 1s unnecessary. Alternatively a multi-application data
path evaluation can be configured so that paths between appli-
cations and within one or more applications such as within a
submitted application are considered. Typically, single appli-
cation policies are established at least in part based on a
selected operating system and associated policies.

The selected application can also be evaluated based on
multi-application data maps 209C that are associated with at
least a subset of the approved applications. Flow violations
between or among applications and the submitted application
can be established based on a multi-application security
policy 209B using the data maps 209C. Based on the violation
analysis at 208, a trust report can be generated at 210. A trust
report can indicate whether or not violations were found,
provide details concerning any violations such as an associ-
ated location 1n application code, indicate the relevant unap-
proved data tflow path, or provide other information concern-
ing violations. At 212, the trust report can be evaluated to
determine if the selected application 1s to be added to the set
of available applications in the application marketplace. If the
selected application’s trust report 1s acceptable, the applica-
tion 1s added to the marketplace at 216. If not, at 214 a
recommendation can be forwarded to an application devel-
oper or provider concerning potential corrective modifica-
tions.

Example 3

Distributed Application Evaluation

With reference to FIG. 3, an application developer 302
communicates via a wide area network 300 such as the Inter-

10

15

20

25

30

35

40

45

50

55

60

65

8

net to an application storage system 304 that application code
for a selected application be forwarded to an application
analyzer 306. In some cases, then application analyzer 306 1s
under the control of the developer 302, but typically the
application analyzer 306 1s provided by an unaffiliated third
party. The application analyzer 306 1s coupled to receive one
or more security policies from a security policy database 308
via the wide area network 308. The security policies can be
established based on stored security objectives 310. The data-
base 308 can include security policies associated with one or
more application marketplaces, operating systems to which
an application 1s adapted, selected security levels, and/or sets
or other indications of applications against which the for-
warded application 1s to be tested. Security policies are gen-
erally established based on security objectives 310 provided
by the application market place or a third party.

The application analyzer 306 1s configured to perform
inter-application data flow analysis based on the forwarded
application, and one or more applications already accepted
for availability at an application marketplace 312. The appli-
cation analyzer 306 can notify the application developer 302
whether or not the application satisfies any selected security
policies based on the inter-application evaluation. If the appli-
cation meets security policies, the application analyzer 306
can send a certification message with an application identifier
to the application marketplace 312 or the application devel-
oper 302, or other destination. Single application data flow
maps 303 can be provided by application developers, appli-
cation security analyzers, or otherwise stored in a database for
use by the application analyzer.

As shown 1n FIG. 3, various functions and services used 1n
inter-application security analysis are distributed via a net-
work. These functions and services can be provided by a
single service provider or distributed among fewer providers
than shown i1n FIG. 3. In some examples, an application
marketplace may communicate with an application analyzer
to provide security policies, objectives, application set for
inter-application security analysis, and may control archival
storage of application flow maps for some or all application
offered by the application marketplace.

Example 4
Certification Messages

FIG. 4 1s a schematic diagram of a representative certifica-
tion message 400. As shown i FIG. 4, the message 400
includes application 1dentifiers 402 that are associated with
the application as tested. An application revision number, a
hash value dertved from the application as tested, and an
application date can be included. Security policy identifiers
404 such as an 1dentifier of a security policy and an applica-
tion test set can be included. Security analyst identifiers 406
can 1nclude analyst 1dentifiers, one or more 1dentifiers of an
analysis tool used to evaluate the data flow paths such as tool
name, revision number, or the like. Any of these fields of a
certification message can be used to produce a hash value to
assure that the certification message 1s uncorrupted, or the
certification message can be hashed as whole.

Example 5
Application Developer Security Analysis
Application security analysis can also be implemented by

and at an application developer. Referring to FIG. 5, a candi-
date application 502 1s selected and subjected to program

US 9,349,015 Bl

9

analysis 504. Intra-application data flows are established at
506 for the candidate application based on the program analy-

s1s, and inter-application data flows associated with the can-
didate application and a set of other applications are estab-
lished at 3508. Inter-application and intra-application data
flows for the set of applications can be retrieved from a
database, and re-computation of these values 1s not generally
necessary. At 510, the tflows are tested for security policy
violations, and 11 none, the candidate application 1s noted as
acceptable at 516. I violations are detected, the candidate
application can be reconfigured at 512 to cure the violation(s),
and tested for additional violations at 514. Once no policy
violations are noted, the application can be noted as accepted
as 516. In some cases, after correction of policy errors, the
candidate application 1s re-evaluated to confirm that the vio-
lations have been corrected. Although not shown 1n FIG. 5,
analysis of the candidate application can be used to add data

flows for the candidate application to a pre-existing database
of data tlows.

Example 6
Mobile Device

FI1G. 6 illustrates a representative mobile device 600 con-
figured to communicate with wireless networks such as so-
called Wi-F1 networks, cellular networks, or via a wired con-
nection. In FIG. 6, the availability of Wi-F1 and cellular
networks 1s indicated with signal strength indicators 602,
604, respectively. Availability of a wired (Universal Sernal
Bus) connection 1s indicated by a connectivity 1con 606.

The mobile device 600 includes a touch screen display 608
that 1s configured to display i1cons 609A-609F that can be
selected by a user to mitiate or activate the selected applica-
tion. In some mobile devices, a portion of the touch screen
display 608 1s dedicated to particular applications, but gen-
erally applications can be selected and installed based on user
preferences. One or more switches such as touch switches or
push buttons 611-613 are also provided for mobile device
control.

In FIG. 6, the mobile device 600 1s shown during installa-
tion of a newly selected application from an application mar-
ketplace. A portion 614 of the touchscreen display indicates
that application installation 1s 1n progress. Identifiers of cus-
tom security options are displayed in display portion 616. The
security options are noted as “Screening Levels,” and permait
user selection of 1ntra-application data flow evaluation only
(“Single™), inter-application evaluation with all applications
installed on the mobile device 600, or inter-application based
on a subset of installed applications. A preferred optioncan be
selected by touching the touch screen 608 at checkbox user
input areas, and an arrow 1s then displayed in the selected
checkbox. FIG. 6 also shows a security option “Complete
Library,” in which an application to be installed 1s to be
checked with respect to all currently available apps. This
option 1s shown 1n gray, indicating that i1t 1s currently unavail-
able. Based on user selection of such security options, the
selected application 1s evaluated, typically at one or more
remote servers, and a message associated with the evaluation
1s returned to the mobile device 600.

In other examples, the mobile device 600 can be configured
to display menu selections associated with applications that
are to be made available to the mobile device 600. For
example, a user interface can be arranged so that applications
associated with intra-application data tlow analysis, inter-
application analysis with selected or installed applications, or
applications for which a complete inter-application analysis

10

15

20

25

30

35

40

45

50

55

60

65

10

has been performed are indicated as being available to the
mobile device. The mobile device 600 then generally trans-
mits a request to the application market place or other appli-
cation provider that only corresponding applications are of
interest. In return, the application marketplace provides cor-
responding application inventories to the mobile device.

Example 7
Security Policy Selection

As disclosed above, mter-application security policy vio-
lations can be detected based on data flows between applica-
tions. Determining which flows to designate as violations can
depend on security requirements that vary over time, appli-
cations, and users. However, such variations in security poli-
cies can be readily accommodated as follows. Referring to
FIG. 7, at 702 a security policy 1s selected from set of security
policies that can be stored 1n a database 703, or a new security
policy can be defined. One or more or a set of applications 1s
selected at 704 to be evaluated with respect to the selected
security policy. If the selected applications have been previ-
ously evaluated for inter-application based security policy
violations as determined at 707, the security policy used for
this evaluation can be compared with the selected security
policy. If the security policy 1s substantially the same, addi-
tional evaluation may be unnecessary. For a new or different
security policy, at 708 previously determined inter-applica-
tion data paths can be retrieved from a database 709. Security
policy violations can be determined at 710, but redetermina-
tion of data paths 1s unnecessary absent changes such as
changes 1n one or more applications, addition of new appli-
cations for consideration, or operating system changes. An
inter-application path database such as the database 709 can
be made available for application developers to simplify new
application evaluations.

Example 8
Addition of New Applications

Referring to FIG. 8, new or revised applications can be
evaluated by selecting a new application at 802, and obtaining
an application signature at 804. The application signature can
be evaluated by extracting information from an application
package manifest that describes potential application control
and information flows. Static analysis of the application code
can be automated to derive possible information flows from
the application source. At 806, an application signature data-
base 1s updated by adding the newly obtained application
signature. At 808, 11 additional applications are to be consid-
ered, another application 1s selected at 802. If no additional
applications are to be considered, at 810, violations in new
application sets are located, 1f present at 810. Previously
evaluated sets of applications do not require re-evaluation.

Example 9
Operating System Based Implementation

In one operating system environment, applications are
made of components that include “activities” that provide a
user interface to an application, “services” that perform
actions in the background, “broadcast recervers™ that recerve
messages from other applications, and “content providers”™
that store potentially-shared data. Application components
communicate using “intents” that are composed of an

US 9,349,015 Bl

11

optional action (e.g., EDIT), an optional target component
(e.g., a specific editor), and optional meta-data (e.g., a file
name).

Application components are annotated with “intent filters”
that describe what intents they can respond to. Applications
can protect critical components by specilying a permission
that calling applications must have. Application components,
permissions and intent filters can be specified 1n a “package
manifest” which a user may approve at application nstalla-
tion. Most of the relevant information for an inter-application
security analysis 1s readily available 1n package manifests as
components, permissions and intent filters are provided.
Security-relevant information can be automatically extracted
from application packages.

Inter-application communication occurs in three steps.
First, an 1intent object 1s created. Second, action, component
or meta-data fields of the intent are set. Third, one of a set of
application communication methods (startActivity, startSer-
vice, etc.) 1s called. These methods are generally provided by
the operating system in which the application 1s to be run.
Occurrences of these steps can be 1dentified by inspecting
bytecode 1 an application package. Source code 1s unneces-
sary.

In one implementation, bytecode 1n the application 1s con-
verted to equivalent Java bytecode so that readily available
Java-based utilities can be used for bytecode parsing. An open
source tool dex2jar can be used, and an open source apktool
can be used to extract manifests from application packages.

Static analysis of the converted Java bytecode 1s performed
to 1dentily mstructions that create new intent objects, that set
intent action or component fields, or that identity application
communication method calls (e.g., startService). For each
method of an application component containing one mnstruc-
tion to create an intent object and one application communi-
cation method, one intent call 1s generated for the component.
If an application component contains multiple 1intent object
create 1nstructions or communication calls, then intent calls
for some or all possible combinations can be generated. The
generated intent calls can be added to a package mamifest, and
the result output 1 an extended package manifest format.

Intent-filter tags already exist in package manifests to
describe the form of intents a component can receive. An
intent call tag can be added describing the form of intents a
component can 1ssue. An Extended Package Manifest excerpt
with a representative intent call 1s shown 1n FIG. 9A.

In a feasibility study, an inter-application control flow
analysis was provided based on a sequence of SQL state-
ments. In an 1mtialization step, for each application, informa-
tion from the extended package manifest was added. Inter-
application component calls were 1identified and a database
table relating application components with matching intent
calls and intent filters (respecting permissions) was gener-
ated. A database table projecting the inter-application com-
ponent calls to the owning application was creating so that
applications that may call each other were identified as shown
in FIG. 10.

A simple database engine SQLite (version 3.6.12) was
used to compute inter-app control flow on a benchmark set of
104 applications. The inter-application component call table
contained 3,290 possible itent calls between application
components, and an inter-application call table contained
1,152 possible intent calls between applications. Representa-
tive inter-application control-tlow data 1s shown 1 FIG. 11,
and a graph of representative calls between applications 1s
shown 1n FIG. 12. The graph of FIG. 12 shows possible paths
associated with a notebook application 1202 that include
voice to notes services 1203, text messaging (SMS) services

10

15

20

25

30

35

40

45

50

55

60

65

12

1204, an encryption application 1206, a password safe appli-
cation 1208. Such paths can be tlagged as violating a security
policy.

FIG. 9B illustrates identification of potential application
collusions between a first and a second application based on
associated bytecodes. A first application 1s shown as being
associated with first application source code 910 and first
application bytecode 912 that 1s obtained by compilation of
the first application source code 910. The first application
bytecode 912 can be executed on a user mobile device or other
computing system. Typically, bytecodes are executable on a
virtual machine so that application bytecode can be executed
on a variety of hardware systems without recompilation of
application source code. A second application 1s shown 1n
association with corresponding source code 920 and byte-
code 922. In the example of FIG. 9B, a selected bytecode
(N+1) of application 1 1s shown as being associated with
issuance ol an Intent 914 that 1s directed to an operating
system 930. Intents are generally asynchronous messages
that include request for services from the operating system
930. The operating system 930 1s configured to respond to the
Intent and 1ssue one or more messages 1n response. A selected
bytecode (M+K) of the second application can be associated
with a Broadcast Receiver 924 so as to receive the message
from the operating system 930. Thus, as shown 1n FIG. 9B,
the first application and the second application are intercon-
nected so that collusion 1s possible. The particular path (and
some or all other paths) associated with the Intent 914 and the
Broadcast Receiver 924 can be evaluated to determine if this
path 1s permitted under a given security policy.

Evaluation for possible collusion by applications based on
application bytecode 1s illustrated 1n FIG. 9C. Data paths
between applications 1n a set 950 of applications are 1denti-
fied at 956 based on application bytecodes and a bytecode
library 952 that 1s typically associated with executable
instructions and operations for a virtual machine. At 958, the
identified paths are evaluated 1n view of a security policy 960.
At 962, compliance or non-compliance with the security
policy 960 can be reported.

Example 10

Representative Computing Environment

FIG. 13 and the following discussion are intended to pro-
vide a brief, general description of an exemplary computing
environment in which the disclosed technology may be
implemented. Although not required, the disclosed technol-
ogy 1s described 1n the general context of computer-execut-
able structions, such as program modules, being executed
by a personal computer (PC). Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc., that perform particular tasks or implement particu-
lar abstract data types. Moreover, the disclosed technology
may be implemented with other computer system configura-
tions, including hand-held devices, multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, network PCs, minicomputers, mainirame computers, and
the like. The disclosed technology may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing envi-
ronment, program modules may be located 1n both local and
remote memory storage devices.

With reference to FIG. 13, an exemplary system for imple-
menting the disclosed technology includes a general purpose
computing device in the form of an exemplary conventional

US 9,349,015 Bl

13

PC 1300, including one or more processing units 1302, a
system memory 1304, and a system bus 1306 that couples
various system components including the system memory
1304 to the one or more processing units 1302. The system
bus 1306 may be any of several types of bus structures includ-
ing a memory bus or memory controller, a peripheral bus, and
a local bus using any of a variety of bus architectures. The
exemplary system memory 1304 includes read only memory
(ROM) 1308 and random access memory (RAM) 1310. A
basic input/output system (BIOS) 1312, containing the basic
routines that help with the transier of information between
elements within the PC 1300, 1s stored in ROM 1308.

The exemplary PC 1300 further includes one or more stor-
age devices 1330 such as a hard disk drive for reading from
and writing to a hard disk, a magnetic disk drive for reading
from or writing to a removable magnetic disk, and an optical
disk drive for reading from or writing to a removable optical
disk (such as a CD-ROM or other optical media). Such stor-
age devices can be connected to the system bus 1306 by a hard
disk drive interface, a magnetic disk drive interface, and an
optical drive interface, respectively. The drives and their asso-
ciated computer-readable media provide nonvolatile storage
of computer-readable 1nstructions, data structures, program
modules, and other data for the PC 1300. Other types of
computer-readable media which can store data that 1s acces-
sible by a PC, such as magnetic cassettes, flash memory cards,
digital video disks, CDs, DVDs, RAMs, ROMs, and the like,
may also be used 1n the exemplary operating environment.

A number of program modules may be stored 1n the storage
devices 1330 including an operating system, one or more
application programs, other program modules, and program
data. A user may enter commands and information into the PC
1300 through one or more input devices 1340 such as a
keyboard and a pointing device such as a mouse. Other input
devices may include a digital camera, microphone, joystick,
game pad, satellite dish, scanner, or the like. These and other
input devices are oiten connected to the one or more process-
ing units 1302 through a serial port interface that 1s coupled to
the system bus 1306, but may be connected by other inter-
faces such as a parallel port, game port, or universal serial bus
(USB). A monitor 1346 or other type of display device 1s also
connected to the system bus 1306 via an interface, such as a
video adapter. Other peripheral output devices, such as speak-
ers and printers (not shown), may be 1included.

The PC 1300 may operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 1360. In some examples, one or
more network or communication connections 1350 are
included. The remote computer 1360 may be another PC, a
server, a router, a network PC, or a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the PC 1300,
although only a memory storage device 1362 has been 1llus-
trated 1n FIG. 13. The personal computer 1300 and/or the
remote computer 1360 can be connected to a local area net-
work (LAN) and a wide area network (WAN). Such network-
ing environments are commonplace in offices, enterprise-
wide computer networks, intranets, and the Internet.

When used 1n a LAN networking environment, the PC
1300 15 connected to the LAN through a network interface.
When used 1n a WAN networking environment, the PC 1300
typically includes a modem or other means for establishing,
communications over the WAN, such as the Internet. In a
networked environment, program modules depicted relative
to the personal computer 1300, or portions thereof, may be
stored 1n the remote memory storage device or other locations
on the LAN or WAN. The network connections shown are

10

15

20

25

30

35

40

45

50

55

60

65

14

exemplary, and other means of establishing a communica-
tions link between the computers may be used. As shown 1n
FIG. 13, the remote computer 1360 1s configured to store
application signatures, security policies, and application set
certifications in data storage 1364, 1366, 1368, respectively.
The representative computer 1300 1s provided with an inter-
application security evaluation module that can be stored 1n a
memory 1363, and can provide instructions associated with
requests for inter-application security assessments ifrom a
remote server, or to perform such assessments and access any
necessary databases.

Example 11
Representative Mobile Device

FIG. 14 1s a system diagram depicting an exemplary
mobile device 1400 1including a varniety of optional hardware
and soltware components, shown generally at 1402. Any
components 1402 1n the mobile device can communicate with
any other component, although not all connections are shown,
for ease of illustration. The mobile device can be any of a
variety of computing devices (e.g., cell phone, smartphone,
handheld computer, Personal Digital Assistant (PDA), etc.)
and can allow wireless two-way communications with one or
more mobile communications networks 1404, such as a cel-
lular or satellite network.

The 1llustrated mobile device 1400 can include a controller
or processor 1410 (e.g., signal processor, miCroprocessor,
ASIC, or other control and processing logic circuitry) for
performing such tasks as signal coding, data processing,
input/output processing, power control, and/or other func-
tions. An operating system 1412 can control the allocation
and usage of the components 1402 and support for one or
more application programs 1414. The application programs
can include common mobile computing applications (e.g.,
email applications, calendars, contact managers, web brows-
ers, messaging applications), or any other computing appli-
cation.

The 1llustrated mobile device 1400 can include memory
1420. Memory 1420 can include non-removable memory
1422 and/or removable memory 1424. The non-removable
memory 1422 can include RAM, ROM, flash memory, a hard
disk, or other well-known memory storage technologies. The
removable memory 1424 can include flash memory or a Sub-
scriber Identity Module (SIM) card, which 1s well known 1n
GSM communication systems, or other well-known memory
storage technologies, such as smart cards. The memory 1420
can be used for storing data and/or code for running the
operating system 1412 and the applications 1414. Example
data can include web pages, text, images, sound files, video
data, or other data sets to be sent to and/or recerved from one
or more network servers or other devices via one or more
wired or wireless networks. The memory 1420 can be used to
store a subscriber identifier, such as an International Mobile
Subscriber Identity (IMSI), and an equipment identifier, such
as an International Mobile Equipment Identifier (IMEI). Such
identifiers can be transmitted to a network server to identily
users and equipment.

The mobile device 1400 can support one or more 1nput
devices 1430, such as a touch screen 1432, microphone 1434,
camera 1436, physical keyboard 1438 and/or trackball 1440
and one or more output devices 1450, such as a speaker 1452
and a display 1454. Other possible output devices (not shown)
can include piezoelectric or other haptic output devices.
Some devices can serve more than one input/output function.

US 9,349,015 Bl

15

For example, touchscreen 1432 and display 1454 can be
combined 1n a single input/output device.

A wireless modem 1460 can be coupled to an antenna (not
shown) and can support two-way communications between
the processor 1410 and external devices, as 1s well understood
in the art. The modem 1460 i1s shown generically and can
include a cellular modem for communicating with the mobile
communication network 1404 and/or other radio-based
modems (e.g., Bluetooth or Wi-Fi). The wireless modem
1460 1s typically configured for communication with one or
more cellular networks, such as a GSM network for data and
voice communications within a single cellular network,
between cellular networks, or between the mobile device and
a public switched telephone network (PSTN).

The mobile device can further include at least one mnput/
output port 1480, a power supply 1482, a satellite navigation
system receiver 1484, such as a Global Positioning System
(GPS) receiver, an accelerometer 1486, and/or a physical
connector 1490, which can be a USB port, IEEE 1394
(FireWire) port, and/or RS-232 port. The 1llustrated compo-
nents 1402 are not required or all-inclusive, as any compo-
nents can deleted and other components can be added. As
shown 1n FIG. 14, the mobile device 1400 1s provided with
computer-executable instructions for an application installer
1415 that provides inter-application security policy verifica-
tion.

Having described and illustrated the principles of our
invention with reference to the illustrated embodiments, 1t
will be recognized that the illustrated embodiments can be
modified 1n arrangement and detail without departing from
such principles. For instance, elements of the illustrated
embodiment shown in software may be implemented 1n hard-
ware and vice-versa. Also, the technologies from any
example can be combined with the technologies described 1n
any one or more of the other examples. In view of the many
possible embodiments to which the principles of the inven-
tion may be applied, it should be recognized that the illus-
trated embodiments are examples of the invention and should
not be taken as a limitation on the scope of the invention. For
instance, various components of systems and tools described
herein may be combined in function and use. Alternatives
specifically addressed above are merely exemplary and do not
constitute all possible alternatives to the embodiments
described herein.

We claim:

1. A method, comprising;:

with a processor, evaluating inter-application data tlows

associated with at least two applications based on a
predetermined security policy;

with the processor, indicating whether or not the at least

two applications satisty the predetermined security
policy based on the evaluation; and

establishing application signatures for the at least two

applications, and storing the application signatures,
wherein the evaluation of inter-application data flows 1s
based on the stored application signatures and one or
more mter-application flow maps associated with the at
least two applications;

wherein the one or more inter-application flow maps asso-

ciated with the at least two applications are based on
bytecodes associated with the at least two applications.

2. The method of claim 1, further comprising indicating
that a security policy violation 1s associated with a particular
application of the at least two applications.

3. The method of claim 1, further comprising indicating
that at least one of the applications satisfies the predetermined
security policy.

10

15

20

25

30

35

40

45

50

55

60

65

16

4. The method of claim 1, further comprising preparing a
certification message based on the evaluation associated with
compliance with the predetermined security policy.

5. The method of claim 1, wherein the data flows are
associated with data flows from application inputs to appli-
cation outputs and to and from memory accessed by the
applications.

6. The method of claim 1, wherein evaluating the inter-
application data tlows associated with the at least two appli-
cations 1s based on stored data tlows associated with the at
least two applications.

7. The method of claim 1, further comprising selecting the

security policy from a set of security policies.

8. The method of claim 1, wherein the inter-application
flow maps associated with the at least two applications
include nodes associated with application inputs, outputs and
storage locations, and edges associated with data tlows.

9. An application provisioning system, comprising one or
more servers configured to:

provide a listing of a plurality of available applications;

provide an indication that the applications satisty a security

policy based on inter-application data flows among the
available applications; and

establish application signatures for the plurality of avail-

able applications, and store the application signatures,
wherein evaluation of inter-application data flows 1is
based on the stored application signatures and inter-
application tlow maps associated with the plurality of
available applications;

wherein the inter-application flow maps associated with

the plurality of available applications are based on byte-
codes associated with the plurality of available applica-
tions.

10. The application provisioning system ol claim 9,
wherein the indication of satisiaction of a security policy 1s
based on application certifications associated with at least one
application 1n the plurality of available applications.

11. A method, comprising:

communicating a list of available applications from a

selected network node, each application of the list of
available applications associated with at least one inter-
application data flow;

for each of the applications, indicating whether or not the

application satisfies a security policy based on inter-
application data tlows; and

establishing application signatures for the list of available

applications, and storing the application signatures,
wherein evaluation of inter-application data flows 1s
based on the stored application signatures and inter-
application flow maps associated with the list of avail-
able applications;

wherein the inter-application flow maps associated with

the list of available applications are based on bytecodes
associated with the list of available applications.

12. The method of claim 11, wherein the security policy
corresponds to a recerved security policy preference.

13. The method of claim 11, wherein the list of available
applications 1s based on a received user security policy prei-
erence.

14. At least one non-transitory computer readable medium
storing computer-executable nstructions for performing a
method comprising:

communicating a list of available applications from a

selected network node, each application of the list of
available applications associated with at least one 1nter-
application data tlow;

US 9,349,015 Bl

17

for each of the applications, indicating whether or not the
application satisfies a security policy based on inter-
application data tlows; and

establishing application signatures for the list of available
applications, and storing the application signatures,
wherein evaluation of inter-application data flows 1s
based on the stored application signatures and inter-
application flow maps associated with the list of avail-
able applications;

wherein the inter-application flow maps associated with
the list of available applications are based on bytecodes
associated with the list of available applications.

15. A method, comprising:

with a processor, selecting a set of applications and a secu-
rity policy based on inter-application data flows among
the set of applications;

with the processor, evaluating the set of applications for
inter-application security policy violations based on the

selected security policy; and

with the processor, transmitting a security certification
indicating that the set of applications satisfies the
selected security policy i1 the evaluation fails to detect a
security policy violation;

5

10

15

20

18

wherein evaluating the set of applications 1s based on
evaluation of the inter-application data flows, stored
application signatures for the set of applications, and
inter-application flow maps associated with the set of
applications;

wherein the inter-application flow maps associated with

the set of applications are based on bytecodes associated
with the set of applications; and

wherein the set of applications 1s evaluated for inter-appli-

cation security policy violations based on the selected
security policy and package manifests associated with
the set of applications, the package manifests 1dentify-
ing components, permissions, and intent filters.

16. The method of claim 15, further comprising at least one
of an 1ndication of a security policy or an identification of at
least one application of the set of applications 1n the security
certification.

17. The method of claim 16, wherein the application sig-
natures are associated with application control and informa-
tion tlows.

18. The method of claim 15, wherein the set of applications
1s evaluated for inter-application security policy violations

based on bytecodes associated with the set of applications.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

