12 United States Patent

Hwang

US009348726B2

US 9.348.726 B2
*May 24, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)
(52)

(58)

DETECTING POTENTIAL CLASS LOADER
PROBLEMS USING THE CLASS SEARCH

PATH SEQUENCE FOR EACH CLASS
LOADER

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventor: Jinwoo Hwang, Cary, NC (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 14/608,632

Filed: Jan. 29, 2015
Prior Publication Data
US 2015/0355994 Al Dec. 10, 2015

Related U.S. Application Data

Continuation of application No. 14/300,010, filed on
Jun. 9, 2014.

Int. CI.

GO6F 11/36 (2006.01)

U.S. CL

CPC e GO6F 11/3608 (2013.01)

Field of Classification Search
CpPC ... GO6F 9/445; GO6F 9/44521; GO6F 9/466;

GO6F 11/3466
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,530,080 B2 3/2003 Fresko et al.
2003/0177484 Al* 9/2003 Bosschaertetal. 717/166
2004/0168162 Al* 8/2004 Parketal. 717/166
2005/0235010 Al1* 10/2005 Batesetal. 707/203
2007/0169072 Al* 7/2007 Corrieooovvvvviiinnnnnn, 717/166
2008/0127155 Al1* 5/2008 Abdelhadi etal. 717/166
2010/0070960 Al 3/2010 Atsatt
2012/0174084 Al1* 7/2012 Chapmanetal. 717/166
OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated as Related, 2015,

pp. 1-2.
(Continued)

Primary Examiner — Jigar Patel

(74) Attorney, Agent, or Firm — Robert A. Voight, Ir.;
Winstead, P.C.

(57) ABSTRACT

A method, system and computer program product for identi-
tying potential class loader problems prior to or during the
deployment of the classes to the production environment. A
set of class loaders 1s loaded into memory. The set of class
loaders 1s arranged hierarchically into parent-child relation-
ships. The class search path sequence for each class loader 1n
the hierarchy 1s generated to detect and identily potential
class loader problems. Those class loaders with a duplicate
class 1n 1ts class search path sequence are 1dentified as those
class loaders that may pose a potential problem. A message
may then be displayed to the user i1dentifying these class
loaders as posing a potential problem. By identifying these
class loaders prior to or during the deployment of the classes
to the production environment, class loader problems may be
prevented from occurring.

6 Claims, S Drawing Sheets

200

J

LOAD INTO MEMORY A SET OF CLASS
LOADERS

|f201

|

RELAT

ARRANGE SET OF CLASS LOADERS
HIERARCHICALLY INTO PARENT-CHLD |~ 202

ONSHIPS

GENERATE THE CLASS SFARCH PATH
SEQUENCE FOR EACH CLASS LOADER TO | ~ 203
DETEGT AND IDENTIFY POTENTIAL CLASS
(OADER PROBLEMS

¥

IDENTIFY CLASS LOADERS WITH A 504
DUPLICATE CLASS IN ITS CLASS SEARCH
PATH SEQUENCE

|

DISPLAY A MESSAGE IDENTIFYING THE
DENTIFIED CLASS LOADERS AS BEING 205
POTENTIALLY PROBLEMATIC

US 9,348,726 B2

Page 2
(56) References Cited eisele.net/2011/01/using-new-weblogic-classloader-analysis.html,
Jan. 17, 2011, pp. 1-8.
OTHER PUBLICATIONS Office Action for U.S. Appl. No. 14/300,010 dated Dec. 3, 2015, pp.
1-14.

Markus Eisele, “Enterprise Software Development with Java: Using
the New WebLogic Classloader Analysis Tool (CAT),” http://blog. * cited by examiner

US 9,348,726 B2

Sheet 1 of S

May 24, 2016

U.S. Patent

d441dvQY
AV 1d5I0

d1avdy

SNOILYIINNININOI

MdOMLAN

Q0|

=

o0l

LO|

d1Lavdy
1ol

<>
K0|

AV d

2l
A, -‘
¥31dvay Q4Y0gAIM
30VAFINI 435N
Al
oll
20\
40553004
B
20| GO
NALSAS
ONI Y430
B
NOILYOI ddY

L0

20|

140)!

U.S. Patent May 24, 2016 Sheet 2 of 5 US 9,348,726 B2

200

LOAD INTO MEMORY A SET OF CLASS 201
LOADERS

ARRANGE SET OF CLASS LOADERS
HIERARCHICALLY INTO PARENT-CHILD 20z
RELATIONSHIPS

GENERATE THE CLASS SEARCH PATH
SEQUENCE FOR EACH CLASS LOADER TO 205

DETECT AND IDENTIFY POTENTIAL CLASS
LOADER PROBLEMS

IDENTIFY CLASS LOADERS WITH A 504
DUPLICATE CLASS IN ITS CLASS SEARCH
PATH SEQUENCE

DISPLAY A MESSAGE IDENTIFYING THE
DENTIFIED CLASS LOADERS AS BEING 205
POTENTIALLY PROBLEMATIC

FlG. 2

U.S. Patent

PARENT-FIRS

PARENT-FIRST

S01D

PARENT LAST

May 24, 2016

Sheet 3 of 5 US 9,348,726 B2

B01A 200

7 PARENT-FIRST

S016

f’f’/ S
7 mGH\K,f;E?”

/,f“'f

S0

f”f”/ f”'f"/

J

KL

| PARENT-LAST

PARENT LAST PARENT-FIRST

e f”f”’f’

r——
il
p——

PARENT-LAST

S
IR S S
v R
S

S0O1H

;--.___ f}___.-"f.-/.

P K i . P - N :
f’f;f,//_/;fffff;f;;ﬁ,f_/

FlG. 5

U.S. Patent May 24, 2016 Sheet 4 of 5 US 9,348,726 B2
400
§ 401~ PUSH THE CURRENT CLASS LOADER TO A STACK 40%
A0 PROCESS COMPLETED
o | FOR GENERATING
CLASS SEARCH
PATH SEQUENCE FOR
NO 4_;)4 EACH CLASS LOADER
POP A CLASS LOADER FROM STACK
A 400
’
A5 405 COMPOSE CLASS
DELEGATION . SEARCH PATH
PUSH CHILDREN MODE OF CLASS LOADER SEQUENCE BY PREFIXING
10 STACK DARENT-FIRST? PARENT NODE'S CLASS
SEARCH PATH
407 NO
\
COMPOSE CLASS SEARCH PATH
SEQUENCE BY POSTFIXING PARENT
1 NODE'S CLASS SEARCH PATH
414 YES 408
" CLASS " DUPLICATE
[OADER HAVE CHILDREN CLASS IN THE CLASS SEARCH "
? PATH SEQUENCE? y
: DISPLAY MESSAGE
It IDENTIFYING CLASS
DISPLAY MESSAGE IDENTIFYING| _ 414 LOADER AS BEING
CLASS LOADER AS BEING 400 MARKED WITH
MARKED AS "SUSPECT" A "WARNING!
S FIRST CLASS
VARK CLASS LOADER VES RECW% SESEJFC’LL%;ES%S& - VARK CLASS LOADER
AS "SUSPECT WITH A "WARNING'
SEQUENCE ONE OF THE
CLASS LOADER'S

412

FlG. 4

CLASSES?

U.S. Patent

May 24, 2016

PARENT-FIRST

HOZA

Sheet 5 of 5

PARENT-FIRST

PARENT-LAST

2O 1aRNNG. |PARENT-FIRST SUSPECT! | PARENT-LAST D ARENT-FIRST
200~ g 5 0
(L DEF AT GHIK KL DFF N0 L PQ
2925\ igupecr | PARENT-LAST 202~ qUspECT! | PARENT-LAST
m
L OEF AR “RLNO KL PO

FlG. 5

US 9,348,726 B2

US 9,348,726 B2

1

DETECTING POTENTIAL CLASS LOADER
PROBLEMS USING THE CLASS SEARCH
PATH SEQUENCE FOR EACH CLASS
LOADER

TECHNICAL FIELD

The present invention relates generally to class loaders, and
more particularly to detecting potential class loader problems
using the class search path sequence for each class loader in a
set of class loaders arranged hierarchically into parent-child
relationships.

BACKGROUND

A class loader, such as a Java® class loader, dynamically
loads classes 1nto a virtual machine. Usually, these classes are
only loaded on demand as discussed below.

A software library 1s a collection of related object code. In
the Java® language, libraries are typically packaged in JAR
(Java® ARchive) files. Libraries can contain objects of dif-
terent types. The most important type of object contained 1n a
JAR file 1s a Java® class. A class can be thought of as a named
unit of code. The class loader 1s responsible for locating
libraries, reading their contents, and loading the classes con-
tained within the libraries. This loading 1s typically done “on
demand,” 1n that 1t does not occur until the class 1s actually
used by the program. A class with a given name can only be
loaded once by a given class loader.

Unfortunately, problems may occur when the class loader
loads the classes, such as class cast exceptions (indicates that
the code has attempted to cast an object to a subclass of which
it 1s not an 1stance), class not found exceptions (e.g., class 1s
not visible on the logical classpath of the context class loader,
the application incorrectly uses a class loader API, a depen-
dent class 1s not visible), no class definition found exceptions
(e.g., class 1s not 1n the logical class path, class cannot load),
etc.

Currently, when a class loader problem occurs, traces, logs
or memory dumps are analyzed to determine the causes of the
class loader errors. However, such analysis occurs after the
classes have been deployed to the production environment
involving time consuming analysis to debug these problems,
especially 1n large and complex product enterprise environ-
ments. If, however, potential class loader problems could be
identified or detected prior to or during the deployment of the
classes to the production environment, then class loader
errors could be eliminated (e.g., eliminate a class cast excep-
tion error) thereby saving programmers time from no longer
having to debug class loader problems.

Unfortunately, there 1s not currently a means for 1dentify-
ing or detecting potential class loader problems prior to or
during the deployment of the classes to the production envi-
ronment.

BRIEF SUMMARY

In one embodiment of the present invention, a method for
identifying potential class loader problems comprises load-
ing a set of class loaders into memory. The method further
comprises arranging the set of class loaders hierarchically
into parent-child relationships. The method additionally
comprises generating, by a processor, a class search path
sequence for each class loader. Furthermore, the method
comprises 1dentifying one or more class loaders with a dupli-
cate class 1n 1ts class search path sequence. In addition, the

10

15

20

25

30

35

40

45

50

55

60

65

2

method comprises displaying a message identifying the 1den-
tified one or more class loaders as being potentially problem-
atic.

Other forms of the embodiment of the method described
above are 1n a system and 1n a computer program product.

The foregoing has outlined rather generally the features
and technical advantages of one or more embodiments of the
present invention in order that the detailed description of the
present mvention that follows may be better understood.
Additional features and advantages of the present invention

will be described hereinaiter which may form the subject of
the claims of the present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description 1s consid-
ered 1n conjunction with the following drawings, in which:

FIG. 1 1llustrates a hardware configuration of a computer
system configured 1n accordance with an embodiment of the
present invention;

FIG. 2 1s a flowchart of a method for identifying potential
class loader problems prior to or during the deployment of the
classes to the production environment 1n accordance with an
embodiment of the present invention;

FIG. 3 1illustrates a hierarchical arrangement of the class
loaders 1n parent-child relationships 1 accordance with an
embodiment of the present invention;

FIG. 4 1s a flowchart of an algorithm implementing the
sub-steps of steps 203-205 of the method of FIG. 2 1n accor-
dance with an embodiment of the present invention; and

FIG. 5 illustrates the class search path sequence for each
class loader in the hierarchical arrangement of FIG. 4 1n
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

The present mvention comprises a method, system and
computer program product for identifying potential class
loader problems prior to or during the deployment of the
classes to the production environment. In one embodiment of
the present 1nvention, a set of class loaders 1s loaded to
memory. The set of class loaders 1s arranged hierarchically
into parent-child relationships. The class search path
sequence for each class loader 1n the hierarchy 1s generated to
detect and 1dentily potential class loader problems. Those
class loaders with a duplicate class 1n 1ts class search path
sequence are 1dentified as those class loaders that may pose a
potential problem. Those class loaders having the first class in
the duplicate class recited 1n its class search path sequence
being one of the class loader’s classes may be 1dentified as
causing more of a potential problem than those class loaders
having the first class 1n the duplicate class recited 1n 1ts class
search path sequence not being one of the class loader’s
classes. A message may then be displayed to the user 1denti-
tying these class loaders as posing a potential problem. By
identifving these class loaders prior to or during the deploy-
ment of the classes to the production environment, class
loader problems may be prevented from occurring.

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, 1t will be apparent to those skilled 1n the
art that the present invention may be practiced without such
specific details. In other instances, well-known circuits have
been shown 1n block diagram form 1n order not to obscure the
present invention in unnecessary detail. For the most part,

US 9,348,726 B2

3

details considering timing considerations and the like have
been omitted inasmuch as such details are not necessary to
obtain a complete understanding of the present invention and
are within the skills of persons of ordinary skill in the relevant
art.

Referring now to the Figures in detail, FIG. 1 1llustrates a
hardware configuration of a computer system 100 which 1s
representative of a hardware environment for practicing the
present invention. Computer system 100 has a processor 101
coupled to various other components by system bus 102. An
operating system 103 runs on processor 101 and provides
control and coordinates the functions of the various compo-
nents of FIG. 1. An application 104 in accordance with the
principles of the present invention runs in conjunction with
operating system 103 and provides calls to operating system
103 where the calls implement the various functions or ser-
vices to be performed by application 104. Application 104
may include, for example, a program for identifying potential
class loader problems prior to or during the deployment of the
classes to the production environment as discussed further
below 1n association with FIGS. 2-5.

Referring again to FIG. 1, read-only memory (“ROM™)
105 15 coupled to system bus 102 and includes a basic mput/
output system (“BIOS”) that controls certain basic functions
of computer system 100. Random access memory (“RAM”)
106 and disk adapter 107 are also coupled to system bus 102.
It should be noted that software components including oper-
ating system 103 and application 104 may be loaded nto
RAM 106, which may be computer system’s 100 main
memory for execution. Disk adapter 107 may be an integrated
drive electronics (“IDE”) adapter that communicates with a
disk unit 108, e.g., disk drive. It 1s noted that the program for
identifying potential class loader problems prior to or during
the deployment of the classes to the production environment,
as discussed further below 1n association with FIGS. 2-5, may
reside 1 disk unit 108 or in application 104.

Computer system 100 may further include a communica-
tions adapter 109 coupled to bus 102. Communications
adapter 109 interconnects bus 102 with an outside network
thereby enabling computer system 100 to communicate with
other such systems.

I/O devices may also be connected to computer system 100
via a user interface adapter 110 and a display adapter 111.
Keyboard 112, mouse 113 and speaker 114 may all be inter-
connected to bus 102 through user interface adapter 110. A
display monitor 115 may be connected to system bus 102 by
display adapter 111. In this manner, a user i1s capable of
inputting to computer system 100 through keyboard 112 or
mouse 113 and receiving output from computer system 100
via display 115 or speaker 114.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present mven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-

10

15

20

25

30

35

40

45

50

55

60

65

4

able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, 1s not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface i each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, 1instruction-set-architecture (ISA) 1nstructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware 1nstructions, state-setting data, or either
source code or object code written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone sotftware package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program 1nstructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the tlow-
chart illustrations and/or block diagrams, can be 1mple-
mented by computer readable program 1nstructions.

These computer readable program instructions may be pro-
vided to a processor ol a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other

US 9,348,726 B2

S

programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored 1n a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function 1n a particular manner, such that the computer read-
able storage medium having mstructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the tlow-
chart and/or block diagram block or blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the tlowchart
or block diagrams may represent a module, segment, or por-
tion of 1nstructions, which comprises one or more executable
instructions for implementing the specified logical function
(s). In some alternative implementations, the functions noted
in the block may occur out of the order noted 1n the figures.
For example, two blocks shown 1n succession may, 1n fact, be
executed substantially concurrently, or the blocks may some-
times be executed 1n the reverse order, depending upon the
tfunctionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi-
nations of blocks i1n the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.

As stated 1n the Background section, problems may occur
when the class loader loads the classes, such as class cast
exceptions (1ndicates that the code has attempted to cast an
object to a subclass of which it 1s not an 1nstance), class not
found exceptions (e.g., class 1s not visible on the logical
classpath of the context class loader, the application incor-
rectly uses a class loader API, a dependent class 1s not vis-
ible), no class definition found exceptions (e.g., class 1snot 1n
the logical class path, class cannot load), etc. Currently, when
a class loader problem occurs, traces, logs or memory dumps
are analyzed to determine the causes of the class loader errors.
However, such analysis occurs after the classes have been
deployed to the production environment involving time con-
suming analysis to debug these problems, especially 1n large
and complex product enterprise environments. If, however,
potential class loader problems could be 1dentified or detected
prior to or during the deployment of the classes to the pro-
duction environment, then class loader errors could be elimi-
nated (e.g., eliminate a class cast exception error) thereby
saving programmers time from no longer having to debug
class loader problems. Unfortunately, there 1s not currently a
means for 1dentifying or detecting potential class loader prob-
lems prior to or during the deployment of the classes to the
production environment.

The principles of the present invention provide a means for
identifying or detecting potential class loader problems prior
to or during the deployment of the classes to the production

5

10

15

20

25

30

35

40

45

50

55

60

65

6

environment by utilizing the class search path sequence for
cach class loader 1n a set of class loaders arranged hierarchi-
cally into parent-child relationships as discussed further
below 1n connection with FIGS. 2-5. FIG. 2 1s a flowchart of
a method for identitying potential class loader problems prior
to or during the deployment of the classes to the production
environment. FIG. 3 illustrates a hierarchical arrangement of
the class loaders in parent-child relationships. FIG. 4 1s a
flowchart of an algorithm implementing the sub-steps of steps
203-205 of the method of FIG. 2. FIG. 3 1llustrates the class
search path sequence for each class loader in the hierarchical
arrangement of FIG. 4.

As stated above, FIG. 2 1s a flowchart of a method 200 for
identifying potential class loader problems prior to or during
the deployment of the classes to the production environment
in accordance with an embodiment of the present invention.

Referring to FI1G. 2, in conjunction with FIG. 1, in step 201,

a set of class loaders 1s loaded 1nto memory, such as memory
106.

In step 202, the set of class loaders 1s arranged hierarchi-
cally mto parent-child relationships as illustrated 1n FIG. 3.
FIG. 3 illustrates a hierarchical arrangement 300 of the class
loaders 1n parent-child relationships 1 accordance with an
embodiment of the present invention.

Reterring to FIG. 3, FIG. 3 1llustrates hierarchical arrange-
ment 300 of the class loaders utilizing a parent-delegation
model. The delegation model requires that any request for a
class loader to load a given class 1s first delegated to 1ts parent
class loader before the requested class loader tries to load the
class 1tself. The parent class loader, 1n turn, goes throughout
the same process of asking its parent. This chain of delegation
continues through to the bootstrap or root class loader (also
known as the primordial or system class loader). If a class
loader’s parent cannot load a given class, it returns that class.
Otherwise, the class loader attempts to load the class itself.

As 1llustrated in FIG. 3, at the top of hierarchy 300 1s the
root or primordial class loader 301A. Class loader 301 A has
two children class loaders 301B, 301C. Class loader 301B has
two child class loaders 301D, 301E, whereas, class loader
301C has a single child class loader 301F. As further 1llus-
trated 1n FIG. 3, class loader 301D has a single child class
loader 301G and class loader 301F has a single child class
loader 301H. Class loaders 301A-301H may collectively or
individually be referred to as class loaders 301 or class loader
301, respectively. FIG. 3 1s not to be limited in scope to any
particular number of child class loaders 301. Each class
loader 301 1n hierarchical arrangement 300 of the class load-
ers may have zero or more child class loaders 301.

Furthermore, as illustrated in FIG. 3, each class loader 301
includes one or more loaded classes 1n the class loader. For
example, root class loader 301 A has class K and class L. Class
loader 301B contains classes D, E and F. Class loader 301C
contains classes M, N and O. Furthermore, class loader 301D
contains classes A, B and F. Class loader 301F contains
classes GG, H, I and K. Class loader 301F contains classes P
and Q. Additionally, class loader 301G contains classes M
and F. Furthermore, class loader 301H contains classes R and
L.

As further illustrated in FIG. 3, each class loader 301 1s
designated with either a parent-first or a parent-last delegation
mode. Such a designation will be used to determine whether
to append the class loader’s parent node’s class search path
sequence before or after the class loader’s classes as dis-
cussed 1n further detail below 1n connection with FIG. 5. A
class search path sequence refers to the path used by a virtual
machine or compiler to locate these classes.

US 9,348,726 B2

7

Returning now to FIG. 2, in conjunction with FIGS. 1 and
3, in step 203, the class search path sequence for each class
loader 301 in hierarchy 300 1s generated to detect and 1dentily
potential class loader problems. A further description of the
steps mmvolved in generating the class search path sequence
will be provided below 1n connection with FIG. 4.

In step 204, the class loaders with a duplicate class 1n its
class search path sequence are 1dentified. As will be discussed
turther below, those class loaders that contain a duplicate
class 1n 1ts class search path sequence may pose a potential
problem. By incorporating the algorithm of the present inven-
tion to 1dentify such class loaders during compile time or
build time 1n a development environment (e.g., test system),
those class loaders that are potentially problematic (1.e., those
class loaders that have may have a problem loading the
classes resulting 1n class cast exceptions, class not found
exceptions, no class definition found exceptions, etc.) can be
identified prior to or during the deployment of the classes
thereby preventing the problems from occurring. A further
description of the steps involves 1n 1dentifying the class load-
ers with a duplicate class 1n the class search path sequence
will be provided below 1n connection with FIG. 4.

In step 205, a message 1s displayed identifying the 1denti-
fied class loaders as being potentially problematic. A further
description of the steps mvolves in displaying a message
identifyving the identified class loaders as being potentially
problematic will be provided below 1n connection with FIG.
4.

Referring now to FIG. 4, FIG. 4 1s a flowchart of an algo-
rithm 400 for implementing the sub-steps of steps 203-205 of
method 200 of FIG. 2 1n accordance with an embodiment of
the present invention.

Referring to FI1G. 4, 1n conjunction with FIGS. 1-3, 1n step
401, the current class loader 301 is pushed to a stack. In one
embodiment, hierarchical arrangement 300 of the class load-
ers as shown 1n FIG. 3 1s implemented by a stack.

In step 402, a determination 1s made as to whether the stack
1s empty. IT the stack 1s empty, then, 1n step 403, the process 1s
completed for generating the class search path sequence for
cach class loader.

If, however, the stack 1s not empty, then, in step 404, a class
loader 1s popped from the stack.

In step 405, a determination 1s made as to whether the
delegation mode of the class loader 1s parent-first. I the
delegation mode of the class loader 1s parent-first, then, 1n
step 406, a class search path sequence 1s composed by pre-
fixing the parent node’s class search path.

If, however, the delegation mode of the class loader 1s not
parent-first (1.e., parent-last), then, in step 407, a class search
path sequence 1s composed by postiixing the parent node’s
class search path.

An 1llustration of composing the class search path
sequence based on the delegation mode 1s shown 1n FIG. 5.

FIG. 5 illustrates the class search path sequence for each
class loader 301 1n hierarchical arrangement 300 of FIG. 3
utilizing algorithm 400 1n accordance with an embodiment of
the present invention.

Referring to FIG. §, in conjunction with FIGS. 1-4, since
class loader 301B has a delegation mode of parent-first, the
class search path sequence for class loader 301B 1s composed
by prefixing 1ts parent node’s class search path (the class
search path of class loader 301A) to the class loader’s classes
thereby forming the class search path sequence of KL DEF.

In another example, class loader 301C has a delegation
mode of parent-last. As a result, the class search path
sequence for class loader 301C 1s composed by postiixing its
parent node’s class search path (the class search path of class

10

15

20

25

30

35

40

45

50

55

60

65

8

loader 301 A) to the class loader’s classes thereby forming the
class search path sequence of MNO KL.

Similarly, class loader 301D has a delegation mode of
parent-first. As a result, the class search path sequence for
class loader 301D 1s composed by prefixing its parent node’s
class search path (the class search path of class loader 301B)
to the class loader’s classes thereby forming the class search
path sequence of KL DEF ABF.

In a further example, class loader 301E has a delegation
mode of parent-last. As a result, the class search path
sequence for class loader 301E 1s composed by postiixing 1ts
parent node’s class search path (the class search path of class
loader 301B) to the class loader’s classes thereby forming the
class search path sequence of GHIK KL DEF.

In another example, class loader 301F has a delegation
mode of parent-first. As a result, the class search path
sequence for class loader 301F 1s composed by prefixing 1ts
parent node’s class search path (the class search path of class
loader 301C) to the class loader’s classes thereby forming the
class search path sequence of MNO KL PQ).

Similarly, class loader 301G has a delegation mode of
parent-last. As a result, the class search path sequence for
class loader 301G 1s composed by postiixing its parent node’s
class search path (the class search path of class loader 301D)
to the class loader’s classes thereby forming the class search
path sequence of MF KL. DEF ABF.

In a turther example, class loader 301H has a delegation
mode of parent-last. As a result, the class search path
sequence for class loader 301H 1s composed by postfixing its
parent node’s class search path (the class search path of class
loader 301F) to the class loader’s classes thereby forming the
class search path sequence of RL MNO KL PQ).

Returning now to FIG. 4, 1n conjunction with FIGS. 1-3
and 5, 1n step 408, a determination 1s made as to whether there
1s a duplicate class 1n the class search path sequence.

If there 1s a duplicate class 1n the class search path
sequence, then, in step 409, a determination 1s made as
whether the first class 1in the duplicate class recited 1n the class
search path sequence 1s one of the class loader’s classes.

If the first class in the duplicate class recited in the class
search path sequence 1s not one of the class loader’s classes,
then, 1n step 410, the class loader 1s marked with a “warning”
as being a potential problem. In step 411, a message 1s dis-
played to the user (i.e., user of computer system 100) 1denti-
tying the class loader as being marked with a “warning.”

If, however, the first class in the duplicate class recited 1n
the class search path sequence 1s one of the class loader’s
classes, then, 1n step 412, the class loader 1s marked as ““sus-
pect” as being a potential problem. In step 413, a message 1s
displayed to the user (1.e., user of computer system 100)
identifying the class loader as being marked as “suspect.”

As used herein, the designation of “warning’” 1s an 1ndica-
tion of a lesser potential problem then the designation of
“suspect.” That 1s, the designation of “warning’” corresponds
to one level of severity of a potential problem and the desig-
nation of “suspect” corresponds to another level of severity of
a potential problem. The designation of “suspect” has a
higher level of severity of a potential problem than the des-
ignation of “warning.”

For example, as illustrated 1n FIG. 3, class loaders 301D,
301E, 301G and 301H each have a duplicate class 1n 1ts class
search path sequence. With respect to class loader 301D, the
first class F of the duplicate class F recited 1n the class search
path sequence for class loader 301D 1s not found 1n the classes
of class loader 301D. Instead, the first class F of the duplicate
class F recited in the class search path sequence for class
loader 301D 1s found 1n 1ts parent’s class loader. As a result,

US 9,348,726 B2

9

there 1s less of a potential class loader problem (e.g., class cast
exceptions, class not found exceptions, no class definition
found exceptions, etc.) than the alternative of having the first
class of the duplicate class recited 1n the class search path
sequence of class loader 301 being one of the classes of class

loader 301 as 1s the case with class loaders 301F, 301G and

301H. In such a scenario, class loader 301 1s marked with a
“warning” 301 as shown 1n FIG. 5.

As further shown 1n FIG. 5, with respect to class loader
301E, the first class K of the duplicate class K recited 1n the
class search path sequence for class loader 301E 1s found 1n
the classes of class loader 301E. Similarly, with respect to
class loader 301G, the first class F of the duplicate class F
recited 1n the class search path sequence for class loader 301G
1s found 1n the classes of class loader 301G. In another
example, with respect to class loader 301H, the first class L of
the duplicate class L recited 1n the class search path sequence
for class loader 301H 1s found 1n the classes of class loader
301H. When the first class of the duplicate class recited in the
class search path sequence for class loader 301 1s found 1n
class loader’s 301 classes, there 1s a greater potential for a
class loader problem (e.g., class cast exceptions, class not
found exceptions, no class defimition found exceptions, etc.)
than the alternative of having the first class of the duplicate
class recited 1n the class search path sequence of class loader
301 not being one of the classes of class loader 301. In such a
scenario, class loader 301 1s marked with the designation of
“suspect” 502A-502C as shown 1n FIG. § for class loaders
301E, 301G and 301H, respectively. While the foregoing
discusses designating class loaders 301 with the designation
of “warning” or “suspect,” the principles of the present inven-
tion are not to be limited to such designations. The principles
of the present invention include any designation that1s used to
signity different levels of severity in potential class loader
problems.

By utilizing the class search path sequence for each class
loader 301 to identily those class loaders 301 with a class
search path sequence that contains a duplicate class, class
loaders 301 that may pose a potential problem can be 1denti-
fied. By implementing such an algorithm to identify such
class loaders during compile time or build time 1n a develop-
ment environment (e.g., test system), those class loaders that
are potentially problematic (i.e., those class loaders that have
may have a problem loading the classes resulting 1n class cast
exceptions, class not found exceptions, no class definition
found exceptions, etc.) can be 1dentified prior to or during the
deployment of the classes thereby preventing the problems
from occurring.

Returning to step 408 of FIG. 4, 1n conjunction with FIGS.
1-3 and 5, 11 there 1s not a duplicate class 1n the class search
path sequence, or upon displaying a message identitying class
loader 301 as being marked with a “warning™ or as *“suspect”
in steps 411 and 413, respectively, then, 1n step 414, a deter-
mination 1s made as to whether class loader 301 has any
children.

If class loader 301 does not have any children, then a
determination 1s made as to whether the stack 1s empty 1n step
402.

If, however, class loader 301 has children, then, in step 4135,
the children are pushed to the stack.

Code written 1n the Java® programming language for
implementing algorithm 400 1s shown below.

procedure detectSuspectClassLoader(ClassLoader node):
Stack stack = new Stack

5

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

stack.push(node)
while not stack.isEmpty(}{
node = stack.pop()
if(node.isParentFirst()){
node.setSearchPathSequence(node.getParentSearchPath()+
node.getClasses())
} else {
node.setSearchPathSequence(node.getClasses() +
node.getParentSearchPathSequence())
h
if(node.getParentSearchPathSequence().con-
tains(node.getClasses())){
node.setWarning(true)
for each duplicate class {
if(node.getClasses().contains(first duplicate

class)){
node.setSuspect(true)
h
h
h
if(node.hasChildren(){
for each node.child{
stack.push(node.child)
h
h
h

As discussed above, algorithm 400 may be implemented
during compile time or build time 1n a development environ-
ment (e.g., test system) to detect possible class loader prob-
lems betfore production deployment. In this manner, those
class loaders that are potentially problematic (1.e., those class
loaders that have may have a problem loading the classes
resulting 1n class cast exceptions, class not found exceptions,
no class definition found exceptions, etc.) can be 1dentified
prior to or during the deployment of the classes thereby pre-

venting the problems from occurring.

The descriptions of the various embodiments of the present
invention have been presented for purposes of 1llustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill imn the art to
understand the embodiments disclosed herein.

The invention claimed 1s:
1. A method for 1dentifying potential class loader prob-
lems, the method comprising:

loading a set of class loaders into memory;

arranging said set of class loaders hierarchically into par-
ent-child relationships;

generating, by a processor, a class search path sequence for
each class loader;

identifying one or more class loaders with a duplicate class
in 1ts class search path sequence;

marking a first class loader with a first level of severity of a
potential problem in response to detecting a first class of
a duplicate class 1n a class search path sequence of said
first class loader as one of one or more classes of said
first class loader:

marking a second class loader with a second level of sever-
ity of a potential problem 1n response to detecting a first
class of a duplicate class 1n a class search path sequence
of said second class loader that 1s not one of one or more
classes of said second class loader, wherein said first

US 9,348,726 B2
11

level of severity of said potential problem 1s a greater
potential problem than said second level of severity of
said potential problem; and

displaying a message identifying said identified one or

more class loaders as being potentially problematic. 5

2. The method as recited 1n claim 1 further comprising:

composing said class search path sequence for a class

loader by prefixing a parent node’s class search path to
one or more classes of said class loader in response to
said class loader having a delegation mode of parent- 10
first.

3. The method as recited 1n claim 1 further comprising:

composing said class search path sequence for a class

loader by postiixing a parent node’s class search path to
one or more classes of said class loader 1n response to a 15
class loader having a delegation mode of parent-last.

4. The method as recited 1n claim 1, wherein said hierar-
chical arrangement 1s implemented by a stack.

5. The method as recited in claim 1, wherein said class
search path sequence for each class loader 1s generated during 20
one of the following: a compile time 1n a development envi-
ronment and a build time 1n said development environment.

6. The method as recited 1n claim 5, wherein said develop-
ment environment 1s a test system.

¥ ¥ # ¥ ¥ 25

	Front Page
	Drawings
	Specification
	Claims

