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DETECTION OF MALICIOUS NETWORK
CONNECTIONS

TECHNICAL FIELD

The present disclosure generally relates to methods for
revealing malicious long-term network connections.

BACKGROUND

Malware Command and Control (C&C) channels can take
many shapes and forms—it can be centralized, point-to-point
(P2P)based, fast-tlux, etc. No matter what the channel type 1s,
cach malware mstance mustreceive commands from a master
which controls the malware continuously over time; other-
wise the 1nstance of malware could not fulfill its purpose. I
the malware communicates with 1ts controller via the central-
ized channel, 1t creates so called persistent connections
between a compromised computer and a C&C server.

It 1s understood that referring to a network connection as a
“persistent connection” indicates that the connection occurs
repeatedly 1n time, 1t does not suggest that the connection 1s
periodic or ongoing, or that every occurrence of the connec-
tion has the same properties.

The necessity to receive new commands from the control-

ler and/or to upload stolen data suggests that every connection
that 1s part of a C&C channel 1s also persistent. However, 1t
does not hold true vice versa—mnot every persistent connec-
tion 1s malicious. In fact, most persistent connections are
legitimate.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be understood and appreciated
more fully from the following detailed description, taken in
conjunction with the drawings 1n which:

FIG. 1 1s a simplified depiction of a network comprising a
system on which an embodiment of the present invention 1s
implemented;

FIG. 2A 1s a flowchart diagram of a first loop comprised in
the method utilized by the system of FIG. 1;

FIG. 2B 1s a flowchart diagram of a second loop comprised
in the method utilized by the system of FIG. 1;

FIGS. 3A-3C are exemplary empirical distributions of fea-
ture values for the exemplary target autonomous system over-
all surprisal feature over time, the distributions gathered
within the system of FIG. 1;

FIGS. 4A-4] are exemplary empirical distributions of fea-
ture values for the features determined to be usetul for mea-
suring outliers 1n the system of FIG. 1, as empirically deter-
mined from an actual dataset:;

FIG. SA 1s a histogram showing an empirically measured
number of connections having a particular persistence value
1n a university network.

FIG. 5B 1s a histogram showing an empirically measured
number of connections having a particular persistence value
in a small corporate network.

FIGS. 6 A-6C are a set of ROC curves demonstrating detec-
tion results on a University network over time;

FIGS. 7A-7C are a set of ROC curves demonstrating detec-
tion results on a corporate network over time;

FI1G. 8 1s an ROC curve demonstrating detection results on
a corporate network; and

FIGS. 9A-9C are a set of graphs comparing amounts of
malicious and legitimate connections reported as anomalous
for given values of the limit x.
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2
DESCRIPTION OF EXAMPLE

L]
<

BODIMENTS

Overview

A method, system and apparatus 1s described for detecting
a malicious network connection, the method system and
apparatus including determining, for each connection over a
network, if each connection 1s a persistent connection, if, as a
result of the determining, a first connection 1s determined to
be a persistent connection, collecting connection statistics for
the first connection, creating a feature vector for the first
connection based on the collected statistics, performing out-
lier detection for all of the feature vector for all connections
over a network which have been determined to be persistent
connections, and reporting detected outliers. Related meth-
ods, systems and apparatus are also described.

EXEMPLARY EMBODIMENT

Malware (1.e. malicious solftware) refers to software
designed to act on a computer 1n ways which are concealed
from and typically unwanted by the user and/or owner of the
computer. Viruses, worms, and spyware are typical examples
of malware. It 1s appreciated that malware code need not be
natively executable object code. Malware code may also
include interpreted code, such as a script or an executable
macro. An infected computer may then be formed as “bot-
nets”’, which can then be used to inflict further harm, such as,
but not limited to launching denial of service attacks, or for
sending spam messages.

Reference 1s now made to FIG. 1, which 1s a simplified
depiction of a network 100 comprising a system 105 on which
an embodiment of the present invention 1s implemented. The
network 100 1s connected to the Internet 110, a malware
command and control server (C&C) 120 1s also shown con-
nected to the Internet 110. The network 100 1s depicted 1n
FIG. 1 in one particular configuration. However, any appro-
priate network configuration may, in fact, be found. The net-
work 100 may comprise a corporate network, a umversity
network, a home network, or any other alternative network
100. The network 100 may be a wired network, a wireless
network, or any appropriate combination of wired and wire-
less networks, as 1s known 1n the art.

The network comprises a plurality of hosts 130, 140. Net-
working equipment, such as switches 150 and routers 160, as
are known 1n the art, are used to join the hosts 1n order to form
the network 100. Although not depicted, the network may
also comprise repeaters, bridges and other appropriate net-
working equipment as 1s known 1n the art. At least one net-
work administrator 170 1s connected to the network 100. The
network admainistrator 170 may be one of the host computers
130, a plurality of the host computers 130, or other appropri-
ate device or devices used to monitor the network in the
capacity of the network administrator 170. The system 105
constructed and operative 1 accordance with a first embodi-
ment of the present invention referred to above comprises the
networking equipment, such as switches 150, routers 160,
bridges, and repeaters. The system 105 also comprises the
network administrator 170.

It 1s appreciated that the term “hosts” 130, 140 refers to any
appropriate computing device which connects to the network
100, supports users, and runs application programs. It 1s also
appreciated that some or all of the hosts 130, 140 which are
depicted as belonging to the network 100 may also be mem-
bers of other networks which are not depicted 1n FIG. 1.

One of the hosts 140 on the network 100 1s infected with
malware, the malware being 1n communication with the C&C
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server 120. The C&C server 120, as 1s typical of C&C chan-
nels utilized by botnets and other malware can take many

forms and employ various technologies to avoid detection.
There 1s one property common to all C&C channels connec-
tions which cannot be avoided in order for a botnet to keep its
utility. The members of the botnet, such as infected host 140,
must maintain, over a long period, at least a sporadic connec-
tion with C&C server 120. As 1s known, for a bot (1.e. the host
140 which 1s infected with malware) to be usetul, the bot must
receive new commands from 1ts master (1.e. the C&C server
120) and/or upload stolen or gathered data to the C&C server
120.

The infected hosts 140 termed “bots” above (only one
depicted), may be viewed as clients to the C&C server 120.
The C&C server 120 can be uniquely identified by a tuple: (1ip
address; port; and Transport/IP layer protocol). It follows that
when looking for C&C channels which are hidden among,
other legitimate channels and connections open on the net-
work 100, 1t 1s desirable to monitor connections to the (ip
address; port; and protocol) tuple. Typically, in order to main-
tain a state ol not being detected, these connections are light-
weilght—i.e. they occur only sporadically and only a few
bytes are transferred with each connection.

Identifying Persistent Connections

Accordingly, a module which 1s implemented on at least
one of the switches 150 and routers 160, or other networking
equipment, uses a sliding window for each connection
between the network 100 and a tuple (ip address; port; and
protocol). Hereinafter, these connections will be denoted:
IP <-> (1p address; port; and protocol). “IP” indicates an IP
address of a host 130, 140 on the network 100. It 1s appreci-
ated that although the above definition of the tuple refers to
the host IP address, the local host side of the connection can
be 1dentified by any user’s 1dentity instead of the IP address i1
it 1s available 1n the data. For example, the local host MAC
address may be used instead of 1ts IP address. The sliding
window, denoted an ‘observation window’, 1s composed of
several “measurements windows”’, also denoted bins. Each
bin 1s associated with a specific time interval. For example,
bins may be of one hour intervals. If a request from a host 130,
140 on the network 100 1s addressed to the tuple (1p address;
port; and protocol) within a specific time interval, then the
associated bin 1s assigned a value of 1. Otherwise, the asso-
ciated bin 1s assigned a value of 0. Accordingly, the persis-
tence, p, ol a connection 1s then calculated as:

1 H
. W - - lﬂ' :
plc, W) HZl "

where:

¢ 1s the connection 1n question;

W=[b,, ... b, ] 1s the observation window composed of n
measurement windows; and

1., 1s a function which 1s equal to 1 1f the connection was
active at least once during the measurement window b, oth-
erwise the function 1_, 1s equal to 0.

Putting the above definition of persistence ito words, the
persistence, p, of a connection 1s the percentage of the number
of bins in the observation window 1n which the connection
was active.

The above equation gives the same weight to a lightweight
connection, which occurs only sporadically and only a few
bytes are transferred with each connection, as it does to more
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heavy traffic connections, since, once there 1s any activity at
all during the time span of the bin, the bin 1s assigned a value
of 1. A connection 1s considered to be persistent if 1ts persis-
tence, as determined using the above equation exceeds a
persistence threshold which is set by the network administra-
tor 170 on the basis of prior knowledge, experimentation, or
some combination of both. The authors of Exploiting Tem-
poral Persistence to Detect Covert Botnet Channels (Giroire,
Frederic and Chandrashekar, Jaideep and Taft, Nina and
Schooler, Eve and Papagiannaki, Dina, In Proceedings of the
12th International Symposium on Recent Advances in Intru-
sion Detection RAID ’09, Saint-Malo, France, 326-345,
Springer-Verlag), have reported that “less than 20% of the
destination atoms have a persistence value greater than 0.2,
1.e. less than 20% of all connections have persistence, as
determined using the above equation, higher than 0.2. It 1s
appreciated that the definition of persistence, p, stated above,

_ 1
1e., plc, W) = EZ L,

i=1

1s a modification of the definition of persistence introduced 1n
the paper by Giroire, et al.

The statement that “less than 20% of the destination atoms
have a persistence value greater than 0.2” 1s 1n agreement with
the above stated assumption that most connections are active
sporadically or only once. Therefore, choosing a threshold

persistence value in the range 01 0.5 to 0.8 to define persistent
connections seems reasonable based on this.

The size of the observation window determines how long
all connections are tracked (1.e. the ‘memory’ of the above
stated method). The size of a single bin determines the reso-
lution of the method. It the observation window consists of
ten bins and each bin represents a one-hour long interval, then
the method 1s well suited to track bots which contact their
C&C servers 120 once every half an hour or once every hour.
However, a bot which communicates with 1ts C&C servers
120 only once a day will, most likely, not be noticed using ten
bins each of which i1s an hour 1n duration.

In that not all bots connect to the C&C server 120 with the
same or even similar intervals, 1t cannot be stated in advance
what time intervals should be used for bins. Therefore, several
different bin sizes (i.e. different durations) are used simulta-
neously 1n order that the method described above 1s invoked
with several different resolutions. As such, 1t becomes pos-
sible to detect connections which occur every hour as well as
connections which occur on the order of once a day. Accord-
ingly, a typical system may run with several observation
windows with the same number of bins in each observation
window, but each of the observation window’s bins are dit-
ferent time intervals 1n length. Accordingly, there may be
several measured persistence values for a single connection.
In that case, the overall persistence of the connection may be
determined as a maximum persistence over the range of reso-
lutions measured:

p(c, W) = max p’(c, W),
S

where p’ 1s persistence for given bin size.

Identification of Outliers

Once persistent connections are 1dentified, malicious con-
nections should then be 1dentified among the 1dentified per-
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sistent connections. It 1s appreciated that while active con-
nections to C&C servers 120 should be persistent, not all
persistent connections are, 1n general, connections to C&C
servers 120. Typically, most of the persistent connections are
found to be connections to servers operated by Google, Face-
book, Twitter, Microsoit, and Akamai. Empirical data avail-
able to the mventors of the present invention for test datasets
ol network connections on both a university network and a
corporate network indicate that nearly 75% of all persistent
connections are with one of ten most frequently wvisited
Autonomous systems (the datasets are discussed in greater
detail below). Prior art systems not utilizing persistence of
connections have utilized a learning period to learn how to
distinguish between “legitimate” and “malicious™ connec-
tions. All connections which were observed 1n the learning
phase were whitelisted—regardless of whether, 1n fact, said
connection was a malicious or a legitimate connection. Only
a new connection which 1s not on the white list 1s flagged for
turther investigation. The clear drawback of the prior art
approach 1s that once a malicious connection 1s marked as
legitimate 1n the learning phase, 1t becomes very difficult, to
later 1dentily that connection as a malicious connection.

Embodiments of the present invention utilize outlier detec-
tion described later, 1n order to separate malicious and legiti-
mate persistent connections. However, persistent connections
generally do not, inherently, have properties based on which
outliers can be i1dentified. Therefore, statistics for several
teatures for each persistent connection are collected in order
to create a feature space. Each persistent connection 1s then
able to be represented as a numerical vector 1n the feature
space. These numerical vectors 1in turn are used as an input for
a method by which outliers may be detected.

The statistics collected, as mentioned above, are only col-
lected for observed persistent connections. It was noted above
that choosing a threshold persistence value in the range 01 0.5
to 0.8 seems reasonable. However, once a connection exceeds
a lower persistence threshold, say 0.4, 1t may then become
flagged as a connection of interest, and the statistics may also
then be collected for that connection. Thus, should a connec-
tion already flagged as a connection of interest later be
flagged as a persistent connection, then statistics are readily
available for that connection sooner, so that the identified
connection can undergo outlier detection.

Reference 1s now additionally made to FIG. 2A, which1s a
flowchart diagram of a first loop comprised 1n the method
utilized by the system of FIG. 1. The first loop 1s run at short
intervals of time, for mstance, every five minutes. Network
traflic data 1s recerved from the networking equipment such as
repeaters, bridges, switches 150 and routers 160 throughout
the network 100. The network traffic data may represent
massively large numbers of network connections, depending,
on the network size. For very large networks, there may be
millions of connections. Network traific 1s processed as
described 1n the following paragraphs (step 200). Processed
network traffic 1s used in order to update persistence of net-
work connections (step 210), as discussed above.

The method then processes each one of the individual
network connections received 1n step 200. For each individual
connection, 1t 1s determined if the connection 1s a persistent
connection or a connection of interest (step 220). 11 the par-
ticular individual connection being analyzed 1s not one of a
persistent connection or a connection of interest, then the next
connection 1s analyzed (step 230). If the connection 1s 1den-
tified as being one of a persistent connection or a connection
of interest, then statistics about the 1dentified connection are
passed on to statistics collectors (step 240) which are dis-
posed 1n the monitoring system.
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The loop of FIG. 2A may be viewed as executing the
tollowing steps of pseudo-code:

every loop_interval minutes:
for each flow f:
updatePersistence(1);
if (1sPersistent(f)
1sOfInterest(f))
recordStatistics(f)
end
end
end

OR

It 1s appreciated that the term “flow™, as used above, refers
to the flow of network traffic through a connection, and there-
fore, may be viewed as the connection 1tself.

Reference 1s now made to FIG. 2B, which 1s a flowchart
diagram of a second loop comprised in the method utilized by
the system of FIG. 1, The loop of FIG. 2B 1s performed at
intervals of once every bin size (e.g., 1f the bin size 1s one hour,
the loop of FIG. 2B 1s performed once every hour). It 1s
appreciated that the bin size may vary, or may be configured
as needed. After persistent connections are i1dentified using
the loop of FIG. 2A, a second loop 1s run for each of the
identified persistent connections (step 243). A feature vector
1s created for each of the identified persistent connections on
the basis of the statistics collected for that connection (step
250). Feature vectors creation and properties are discussed 1n
greater detail below. The loop continues until feature vectors
are created for all of the persistent connections. Once the
vectors are ready, the outlier detection takes place resulting in
identification of which persistent connections are outlying
(step 260).

The connections which are outliers are identified (1n step
260). Those 1dentified connections are then reported to the
network administrator 170 (step 270). The persistence of
connections and connections of interest are then predeter-
mined by the system (step 280). It 1s appreciated that box 290
aggregates steps 260, 270, and 280. This 1s because these
three steps are performed 1n bulk for all of the feature vectors
created 1n step 2350.

FIG. 2B may be viewed as execution of the following steps
of pseudo-code:

every loop_interval:

for each persistent connection pc:

create_feature_vector (pc)

end

perform_outlier_detection

recalculate persistence

In typical embodiments of the present invention, the
method discussed 1n FIG. 2A, 1s implemented at statistics
collectors located at the networking equipment such as
repeaters, bridges, switches 150 and routers 160, and 1s per-
formed periodically, for example, at five minute intervals
(1.e., loop_interval, 1n the pseudo code, 1s 5 minutes). Typi-
cally, the method discussed 1n FIG. 2B, where feature vectors
are constructed and outlier detection i1s performed occurs
once an hour (1.e., loop_interval, i the pseudo code, 1s 1
hour). It 1s appreciated that 1 hour 1s given as an exemplary

time, and other appropnate times might be used nstead of 1
hour.

The term “feature” as used herein 1s understood to refer to
a property of the object on an operation 1s performed. For
example, the feature, “average flow duration” 1s a property of
the particular persistent connection being analyzed.
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Feature vectors are formed by taking the values for more
than one of the features 1n the list of selected features, and
arranging those values in a vector array.

In order to perform outlier detection, outliers are defined as
anomalies having a score s_. of the persistent connection
denoted c¢ represented by a feature vector v, as given by the
following equation:

s.=2-log pAv;°)

where p, 1s an estimated probability density function for fea-
ture 1, and v,° is the i” element (that is to say a value of the
feature 1) of the feature vector v°. The sum s_ 1s over all
features, 1.e., 1=1, . . . , nz where n. 1s the total number of
features. An anomaly having a score 5, above some preset
value 1s then considered to be an outlier. The concrete values
ol the threshold which would be used 1n production depends
on the given network environment, but one example can be
that some quantile will be used. For example, and without
limiting the generality of the foregoing, the 10% most anoma-
lous connections will be reported as outliers. In this case, the
threshold would be set to the value for which 1t holds that 90%
of connections have their anomaly scores below this value
and 10% have their anomaly scores greater or equal to that
value.

Those of skill 1n the art might interchange the above equa-
tion for outlier determination with the defimition of Shannon
entropy. By way of example, consider two connections, ¢,
and c,. By way of example, let all the features of ¢, have an
empirical probability p.(v.“)=0.1 and values of all {eatures for
connection ¢, have an empirical probability p,(v,“)=0.3. Thus,
¢, should have a higher anomaly score than c,. However, the
Shannon entropy for feature values probabilities for ¢, 1s
computed as —20.1 log 0.1, which 1s lower than the Shannon
entropy for c,, which 1s computed as -0.3 log 0.3.

It 1s appreciated that the motivation for using the given
definition of anomaly scores 1s that the score should be higher
the less probable are the feature values for the persistent
connection ¢, which 1s not the case for Shannon entropy.

It 1s further appreciated that this definition of outlier-ness 1s
not based on some arbitrary number of nearest neighbors of
persistent connection for which outlier-ness 1s being deter-
mined, but rather on a whole attribute distribution. Therefore,
this definition 1s more resilient to small changes 1n the feature
space or additional and/or missing entities. Moreover, when
collecting features for a window of several hours, it 1s pos-
sible to use “floating” statistics, wherein statistics for one
hour are calculated and the overall statistics over several
hours are then aggregated. Although the techniques used to
implement “tloating” statistics depend on the type of statistic
collector, nonetheless, each statistic collector holds data for
cach hour separately and when the aggregated data are
needed, it merges them together. Using floating statistics, as
described ensures empirical distribution stability 1n time of
the gathered statistics in contrast to a case where alter each
time interval of interest all data are dropped and statistics are
then, per force, recalculated from scratch.

Reference 1s now made to FIGS. 3A-3C, which are exem-
plary empirical distributions of feature values for the exem-
plary target autonomous system overall surprisal feature (de-
fined below) over time, the distributions gathered within the
system of FIG. 1. FIG. 3A shows the probability of finding a
given value of the target autonomous system overall surprisal
teature after 8 hours. FI1G. 3B shows the probability of finding
a given value of the target autonomous system overall sur-
prisal feature after 16 hours. FIG. 3C shows the empirical
probability of the target autonomous system overall surprisal
feature after 24 hours. The term “surprisal”, in all of 1ts
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grammatical forms, 1s understood to mean a value of —log(p),
where p 1s some probability value. Surprisal 1s discussed in
depth 1n K. Noto, C. E. Brodley, and D. Slonim. FRaC: A
Feature-Modeling Approach for Semi-Supervised and Unsu-
pervised Anomaly Detection. Data Mining and Knowledge
Discovery, 25(1), pp. 109-133, 2011

The mventors of the present invention, based on their tests
on actual network data have selected the following set of
teatures for use 1n forming the feature space used to practice
many embodiments of the present invention. A large potential
pool of features was tested, with an eye to reducing the num-
ber of members of that pool, in order that issues such as
memory requirements not become problematic. Feature
selection was used 1n order to determine an appropriate num-
ber and combination of features which should be used to form
the feature space to be used. It was observed that none of the
teatures 1ndividually provided a definitive separation
between the malicious and legitimate persistent connections.
The method used to perform {feature selection will be
described further below. It 1s appreciated that the following
list 1s provided as a non-exhaustive exemplary list of features,
and other appropriate features may also be used in some
embodiments.

LIST OF SELECTED FEATUR.

L]

S

Average flow duration—this feature measures the average
duration 1n millisecond of outgoing flows that belong to the
same persistent connection.

Flows inter-arrival times mean—1or each persistent con-
nection, this feature computes the mean of times between
consecutive outgoing flows belonging to that connection.

Flows inter-arrival times variance—this feature measures
the variance of time intervals between consecutive outgoing
flows for the given persistent connection.

Target autonomous system overall surprisal—(see FIGS.
3A-C) target autonomous systems of all observed persistent
connections are monitored. Then an empirical probability
distribution for all such connections 1s built, giving the esti-
mation of the probability of visiting each autonomous system
by a persistent connection. As a feature value for the given
connection, the normalized surprisal value, —(log p)-H, where
p 1s the probability value, and H 1s the entropy of the empirical
distribution of all target autonomous systems, also defined 1n
Noto, et al.) 1s determined from the probability distribution.
Accordingly, the lower number of requests to a particular
target autonomous system from all users 1n the network 100,
the higher the normalized surprisal value for that autonomous
system.

Target autonomous system per-service surprisal—this fea-
ture 1s similar to the target autonomous system overall sur-
prisal feature. However, the autonomous system per-service
surprisal feature computes surprisal for the target autono-
mous system based on the remote service used by the given
persistent connection. For each distinct remote service type
represented by the above-mentioned tuple of (1p address;
port; and protocol), a separate empirical distribution of 1s
used.

Unique local ports count—this feature comprises the num-
ber of distinct port numbers that were used 1n the given
persistent connection on the local side of the connection (1.¢.
on a host 130, 140 within network 100). As the persistent
connection within network 100 1s determined only by the IP
address of the host 130, 140, the host 130, 140 can make
connections from different ports within one persistent con-
nection.
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Number of bytes weighted by target autonomous system
exclusivity—the value . for this feature for persistent con-
nection ¢ with target remote autonomous system A 1s given

by:

f. = logh, -log| — |

Fla

where b 1s the total number of bytes sent by the connection c,
n 1s the total number of users (i.e. hosts 130, 140) 1n network
100, and n , 1s the number of users 1n network 100 who have
at least one persistent connection to the autonomous system
A. It1s appreciated that one persistent connection can include
only one local host 130, 140.

User overall daily activity match—a daily activity profile s
maintained for each user, the daily activity profile comprising,
an empirical probability distribution of all of the user’s Net-
Flow starting times over the day. The term “Nettlow™ 1s
understood to mean a network flow comprising a unidirec-
tional sequence of packets that all share the following 7
values:

1. Ingress interface (1.e. SNMP 1fIndex);

2. Source IP address:

3. Destination IP address;

4. IP protocol;

3. Source port for UDP or TCP (0 for other protocols);

6. Destination port for UDP or TCP, type and code for

ICMP (0O for other protocols); and

7. IP type of service.

Netflow 1s a Cisco® standard which 1s well known 1n the art.

When calculating a value for the user overall daily activity
match for a given persistent connection ¢ belonging to a user
U, the surprisal values (as discussed above, with reference to

FIGS. 3A-3C) of the starting times of all of the netflows

t,,...1 belonging to connection ¢ are calculated, with respect
to user U’s daily activity profile. That 1s to say, surprisals
s =—log(p(1,)), where p(1,) 1s a probabaility of the starting time
of flow 1, empirically determined from the daily activity
profile of user U. The feature value for connection c 1s the
calculated mean value of values s, . . . s, . In other words, the
user overall daily activity match provides a measure of how
much the activity within persistent connection ¢ matches the
user’s overall behavior.

Remote service entropy—ior each user in the protected
network 100 this feature holds a histogram H of visit counts of
all service types represented by pairs, 1.e. (port, protocol)
based on the persistent connection remote services of that
user. The feature value for a given persistent connection ¢ 1s
then given by the entropy of service type histogram H of the
user of the local endpoint of the persistent connection ¢. The
calculation of entropy 1s pertormed using standard techniques
known 1n the art (1.e. using Shannon’s equation). It 1s appre-
ciated that the “user’ can be 1dentified by a duple of (userlD,
MAC), where the user ID 1dentifies a particular user using a
particular device, and the MAC 1s the MAC address of the
particular device. Using this duple enables the system to
distinguish between different connections on two different
devices, both belonging to the same user. The MAC address 1s
used, rather than the IP address, in order to avoid DHCP
changes of the IP address of the particular device.

Remote service ratio—this feature uses a list S of remote
service endpoints visited by each user by persistent connec-
tions. The feature value 1. for any connection ¢ to remote
service s 1s computed according to the formula:

10

15

20

25

30

35

40

45

50

55

60

65

10

|5
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loglS]

where S' € S 15 a list of all remote service endpoints having
the same port and protocol as the remote service s.

The above list of features were selected using backwards
feature selection, as described below. Other features which
were tested but not selected by the backwards feature selec-
tion 1ncluded:

Logarithm of the total amount of bytes sent or received

within the persistent connection.

Autocorrelation of time series generated by sent bytes of
packets within the persistent connection. The inventors of the
present invention tested two versions of this autocorrelation
feature: one using a complete time series; and another one
using an original time series with skipped zero values.

Ratio of bytes sent and recerved by host within the persis-
tent connection.

In order to identily the best subset of all of the defined
teatures that provided good detection performance, backward
feature selection was performed on empirically performed
measurements of actual large networks for each of the above
listed features. Backward feature selection starts with the tull
set of the above mentioned features and in each step it
removes the worst feature. It continues until it ends up with a
single feature. At that stage, there are possible sets of features
and one 1s chosen that provides the best results. The inventors
ol the present invention used an average area under all hourly
created recerver operating characteristic (ROC) curves as the
quality criterion. ROC curves are well known 1n the art as

being graphical plots which 1llustrate the performance of a
binary classifier system as the system’s discrimination
threshold 1s varied.

Average areas under curves (AUCs) were computed for all
hourly generated ROC curves 1n three different datasets, in
order to prevent overfitting (i1.e. describing random error or
noise 1nstead of the underlying relationship) of selected fea-
tures to specific data.

The ROC curves are discussed below 1n greater detail with
reference to FIGS. 6 A-8, as well as the discussion of analysis
of empirical results, below.

Reterence 1s now made to FIGS. 4A-4], which are exem-
plary empirical distributions of feature values determined to
be useful for measuring outliers 1n the system of FIG. 1, as
empirically determined from a test dataset. These features are
defined above. The empirical probability determined using all
connections in the actual dataset 1s depicted in clear, outlined
histograms 1n the figures. The shaded distributions 1n FIGS.
4 A-4] 1llustrate distributions of feature values for malicious-
only connections. The empirical distribution curves of FIGS.
4A-4] are derived using a ground truth (defined below). The
values of statistics for malicious and legitimate persistent
connections are determined by the ground truth (as discussed
below).

FIG. 4A 1s an empirical distribution of the average tlow
duration feature showing and contrasting the probability of
various feature values for all connections and malicious con-
nections 1n the actual dataset.

FIG. 4B 1s an empirical distribution of the inter-arrival
times mean feature showing and contrasting the probability of
various feature values for all connections and malicious con-
nections in the actual dataset.

FIG. 4C 1s an empirical distribution of the inter-arrival
times variance feature showing and contrasting the probabil-
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ity of various feature values for all connections and malicious
connections 1n the actual dataset.

FIG. 4D 1s an empirical distribution of the target autono-
mous system overall surprisal feature showing and contrast-
ing the probability of various feature values for all connec-
tions and malicious connections 1n the actual dataset.

FIG. 4E 1s an empirical distribution of the target autono-
mous system per-service surprisal feature showing and con-
trasting the probability of various feature values for all con-
nections and malicious connections 1n the actual dataset.

FIG. 4F 1s an empirical distribution of the unique local
ports count feature showing and contrasting the probability of
various feature values for all connections and malicious con-
nections 1n the actual dataset.

FIG. 4G 1s an empirical distribution of the number bytes
weighted by target autonomous system exclusivity feature
showing and contrasting the probability of various feature
values for all connections and malicious connections in the
actual dataset.

FIG. 4H 1s an empirical distribution of the user’s daily
activity match feature showing and contrasting the probabil-
ity of various feature values for all connections and malicious
connections 1n the actual dataset.

FIG. 41 1s an empirical distribution of the remote service
entropy feature showing and contrasting the probability of
various feature values for all connections and malicious con-
nections 1n the actual dataset.

FIG. 4] 1s an empirical distribution of the remote service
ratio feature showing and contrasting the probability of vari-
ous feature values for all connections and malicious connec-
tions 1n the actual dataset.

The distributions of features depicted in FIGS. 4 A-4J show
probabilities of specific values of the given statistic (for the
two groups—all persistent connections and malicious persis-
tent connections).

Implementation

It 1s appreciated, in view of the above discussion, that
measuring persistence ol connections may require large
amounts of memory. Consider, for example, a bin size set to
1 day, 1n order to capture lightweight and infrequent connec-
tions. This bin size, with 1ts accompanying default observa-
tion window size ol 10 bins means that effectively, 10 days’
worth of connection records have to be stored. The memory
requirements to store 10 days” worth of connection records,
particularly on huge networks with little or no central admin-
istration, for example, may be very large; even more so 1f
point-to-point traific 1s common on such a network.

One approach to overcoming these 1ssues would entail
keeping all encountered connections as keys and their obser-
vation windows as values in a map, as described 1n Frederic
Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, and
Dina Papagiannaki. 2009. Exploiting Temporal Persistence
to Detect Covert Botnet Channels. In Proceedings of the 12th
International Symposium on Recent Advances in Intrusion
Detection (RAID ’09), Engin Kirda, Somesh Jha, and Davide
Balzarotti (Eds.). Springer-Verlag, Berlin, Heidelberg, 326-
3435. Observation windows can seemingly efficiently be rep-
resented by bit arrays. However, because of the need to keep
the keys in memory as well, in order to access the observation
windows, the keys are represented by a structure that holds all
of the information, 1.e., a host IP address as well as the tuple,
(ip address; port; and protocol) for the connection. A key
would have to be kept in memory as long as there is at least
one bit set to 1 1n the binary array for that key’s observation
window. In effect, these keys occupy more memory than the

10

15

20

25

30

35

40

45

50

55

60

65

12

actual data (1.e. the observation windows) does. By way of
example, on a 40 Gb/sec network with maximum 8 hour
window sizes, with 10 bins i1n the observation window, this
implementation has been empirically determined by the
inventors of the present invention to require approximately 12
(GB of memory for the particular traific patterns present in the
networks 40 Gb/sec network described above. If this scheme
were to be optimized the memory requirement could be
reduced to approximately 6 GB. It 1s appreciated that optimi-
zation 1s 1mplementation specific. By way of example, 1n a
Java environment, optimization may be performed by not
representing each vector with a new object but some very
common bitmaps (1.e. observation windows) may be repre-
sented by only one object and shared by various persistent
connections. Doing so saves memory and also time required
for memory management. Another optimization may be per-
tformed algorithmically, 1.e. some persistent connections are
removed even belore reaching zero persistence, because 1t
can be shown that 1f the persistent connection reaches certain
age, even 11 the persistent connection started to be active and
its persistence value would increase each time step, the origi-
nal only occurrence value would be erased before becoming
persistent and thus 1t would be pointless to keep 1t in memory.

Accordingly, optimization of the storage of this data should
attempt to limit the storage of the connection data (1.e. the
keys). The mventors of the present mvention have used a
Bloom filter, which 1s a probabilistic data structure well
known 1n the art, to reduce the memory requirements of the
system by limiting the storage of the keys. A Bloom filter 1s a
memory-eificient set representation. A Bloom filter can be
used to determine whether a certain element 1s contained in
the set represented by the Bloom filter with a one-sided error.
That 1s to say, a query of the Bloom filter returns either
“possibly 1n set” or “definitely not 1n set”. The Bloom filter
will not be wrong 11 1t returns “definitely not in set”. Bloom
filters use a combination of hashing functions and bit fields.
Additionally, Bloom filters can guarantee a false positive
probability 1f the number of elements 1n the set to which the
Bloom filter 1s applied does not exceed a certain threshold
specified during the creation of the Bloom filter.

In order to utilize Bloom filters the data storage scheme

needs to be redesigned. An array of n Bloom filters 1s kept,
where n 1s the size of the observation window, instead of
keeping a map with connections as keys and their respective
observation windows as values. However, only one observa-
tion window 1s then kept for all connections.

An occurrence of a connection 1s then recorded by apply-
ing the connection to the Bloom filter which represents the
current bin. Each bloom represents one bin. Therefore the
number of Bloom Filters 1s equal to the number of bins 1n the
observation window. (This 1s 1n the case that there 1s no
extension of the bloom filter caused by excessive traffic. Note
that only one observation window 1s kept for all connections.)

The persistence of a connection 1s then determined by
dividing the number of Bloom filters which contain the con-
nection (1.e. which indicate that the connection 1s “possibly in
set”) by the total number of Bloom filters in the array.

The sliding of the observation window 1s implemented by
removing one Bloom filter (typically, the oldest of the Bloom
filters would be the one removed) and adding a new Bloom
f1lter.

The following three issues need to be addressed when
using Bloom filters instead of sets and maps:

1. What is the rate of false positives of this implementation?

2. How are all persistent connections enumerated?
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3. How 1s the size of the Bloom filters determined (bearing
in mind that this parameter needs to be known 1n

advance)?

Rate of False Positives of this Implementation 5

As 1s known 1n the art, Bloom filters provide a guarantee of
the false positive rate, given that their capacity (1.¢. the thresh-
old limiting the number of elements 1n the set to which the
Bloom filter 1s applied) 1s not exceeded. The false positive rate
can be arbitrarily chosen and impacts the size of the Bloom
filter. In some embodiments of the present invention, the
probability of a connection being persistent 1s of interest, and
not the false positive rate of an individual Bloom filter. Thus,
what 1s significant 1s the probability of a connection which 1s
not persistent being reported as being persistent. This prob-
ability, denoted Prob(error), ditfers based on the true value of
persistence of the connection and the persistence threshold
value, and can be expressed as: 20

10

15

5176, —piC)

SIZE B p(C) SiZ€ C)—i
Prob(error) = E ( E ]fpp (1 — fpp)cePto
i=p—pl(c) 25

where: p(c)1s true persistence of connection multiplied by the
size of the observation window:

p, 1s the persistence threshold;

size_ 1s the size of the observation window; and

tpp 1s the false positive probability of the used Bloom
filters.

By way of example, 1f Bloom filters are used with 1% false
positive probability and a persistence threshold of 0.6, then 35
the probability that a connection with persistence 0.5 would
be reported 1s less than 5% and the probabaility that a connec-
tion with persistence 0.4 would be reported 1s less than 0.1%.

30

Enumeration of Persistent Connections 40

The detector of malicious persistence connections as
implemented herein preferably uses a set of all persistent
connections as mput. The Bloom filter implementations of
persistence measurement, therefore, may be used in order to 45
enumerate all connections that exceed the persistence thresh-
old. Bloom filters themselves cannot enumerate all items 1n
the set they “contain”. Thus an extension of the Bloom filter
1s needed to enable said enumeration.

Accordingly, in an embodiment of the present invention 50
using Bloom filters, every time a connection 1s recorded, the
connections persistence 1s checked after recording. If the
connection exceeds the persistence threshold, then 1t 1s stored
In a separate set containing only persistent connections.
Hence knowledge of the persistence threshold 1s required 1n 55
advance. Information about connections must also be
recorded, as in the simpler implementation, without using
Bloom filters. However, the number of connections for which
this information 1s stored (1.e. only the connections 1n the set
of persistent connections) 1s much lower than 1n the simpler 60
implementation described above. By way of 1llustration that
there are fewer connections requiring storage of data, refer-
ence 1s now made to both FIGS. 5A and 3B. FIG. 5A 15 a
histogram showing an empirically measured number of con-
nections having a particular persistence value in a university 65
network. FIG. 5B 1s a histogram showing an empirically
measured number of connections having a particular persis-
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tence value 1n a small corporate network. The empirical mea-
surements represented i FIGS. SA and 3B were performed

over a 48 hour period.

Setting the Bloom Filter Size

As 1s known 1n the art, false positive probability guarantees
of the Bloom filters are based on an assumption that the
Bloom filter’s projected capacity 1s not exceeded. The pro-
jected capacity must be known before the creation of the
Bloom filter. Since network traific follows trends based on the
type of the network, the size of the Bloom filter should vary,
depending on the time of the day and the time of the week. For
example, 1 a corporate network, the tratfic volume 1is
expected to be at 1ts highest values during work days between
8:00 AM and 6:00 PM. A corporate network 1s less likely to be
in use over weekends. In order to determine proper size of the
Bloom filters, a memory which stores maximal encountered
traffic volume for specific days of the week and hours of the
day 1s employed When a Bloom {ilter 1s about to be created,
its size 1s then determined based on the maximal traffic in the
period of time during which the Bloom filter 1s to be active.

It 1s appreciated, however, that a sporadic event may occur
in the network, for example a huge network scan or a distrib-
uted denial of service attack, and the number of connections
in the network will rise significantly while this event 1s 1n
progress. In the case of such an event a safeguard 1s employed
that monitors the number of connections which are 1nput to
the Bloom filter. If the number of connections input to the
Bloom filter reached the projected size value, then a new
Bloom filter 1s created and new connection occurrences are
stored 1n the newly created Bloom filter. Queries about con-
nections are now executed on both the orniginal Bloom filter
and the new Bloom filter.

It has been empirically observed by the inventors of the
present invention that when an embodiment using Bloom
filters 1s run on the same data as an embodiment where all
connections are stored 1n memory, that the implementation
using Bloom filters requires around 800 MB of memory.

In order to provide feature values for building the feature
vectors, as mentioned above, the statistic collectors are typi-
cally regularly updated with new data and also need to store
the newly collected data. As was mentioned above, statistics
collectors located at the networking equipment such as
repeaters, bridges, switches 150 and routers 160, continu-
ously collect flow data. Only flows of data belonging to con-
nections of interest are selected and used for updates.

Outlier detection 1s then performed from time to time, for
example, hourly, 1n this exemplary implementation, and thus,
feature vectors need to be built by the system 1n a timely
tashion. It follows that the statistics collectors need to store at
least the data from the last hour of network traffic. Storing
only the last hour of statistics about network traffic may not
always be sullicient, because of the low robustness of outlier
detection. It 1s appreciated that the more data that 1s collected,
the “smoother” and more reliable the results will be. If there
1s only a small amount of data, then outlier detection might
not be robust, 1.e. providing results that change dramatically
from hour to hour (e.g. one connection 1s found to be mali-
cious, then legitimate, then malicious again—it changes
every hour). That 1s to say, the more data that 1s available, the
more the results become smoother and more reliable. For
example, during the night, when total tratfic volume 1s typi-
cally smaller, the results of outlier detection can become
relatively unstable from hour to hour. Accordingly, a floating
memory 1s used for the statistics collectors. Each of the sta-
tistics collectors has its own list containing data collected
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during the last n hours, where n 1s a preset length of the
floating memory for a given collector. That 1s to say, the
memory length 1s set for each of the statistics collectors
individually and independently. The feature values provided
for feature vectors to be constructed are based on aggregation
of data from the entire statistic collector’s memory. The sta-
tistics collectors can thereby store different data structures,
and thus, for each of the collectors there 1s a data aggregator
which handles aggregation of data from the tfloating memory.

Evaluation of Test System Results

Anomaly detection techniques can be sensitive to the net-
work they are deployed on. An algorithm which 1s optimized
for a corporate network which has strict and centralized secu-
rity rules might not perform well on a network operated by a
telecommunications provider where there 1s no centralized
enforcement of rules and every user 1s free to do what he
wants. Therefore, some embodiments of the present invention
have been tested using three datasets that were collected from
different types ol networks. Data collected from each of these
three networks were 1n a form of five-minute batches contain-
ing Cisco NetFlow (commercially available from Cisco, see:
www.cisco.com/en/US/partner/products/ps6601/product-
s_10s_protocol_group_home.html) records collected from
hardware or software probes installed 1n the networks. Cisco
NetFlow provides a set of services for IP applications, includ-
ing network tratfic accounting, usage-based network billing,
network planning, security, Denial of Service monitoring,
capabilities, and network momitoring. It 1s appreciated that
Cisco NetFlow 1s one example of a system which can be used
with the method and system described herein. Any appropri-
ate system which supports NetFlow/Internet Protocol Flow
Information Export (IPFIX) format may be used with the
method and system described herein.

The first dataset 1s from a university network where only a
few restrictions exist. Namely, on some (not all) subnets the
incoming UDP ftraffic 1s blocked; and no outgoing connec-
tions to port 25 (1.e. SMTP) over TCP are allowed. Other than
that, there are no restrictions and users generally have root
access to the machines they are using. The university network
has several subnets, with users using Windows, Linux and
Mac OS systems. The dataset which was collected spans 32
hours and contains approximately 1000 users with public IP
addresses and many other users behind gateways.

The second data set was collected from a network within a
manufacturing company. This company puts heavy emphasis
on their itellectual property rights protection. It 1s a highly
controlled environment. The number of users within that net-
work 1s approximately 800. The data was collected over two
days.

The third data set 1s from the public sector with data com-
ing from a single provider serving several government offices
and schools, having, all together, thousands of users. This 1s a
rather heterogeneous environment with government oifices
having strict I'T administration and schools having very loose
to none centralized computer administration. This data set
was shorter, covering only about 12 hours of traffic.

The data sets were not labeled, 1.e. there was no ground
truth available. That 1s to say that there was no standard data
set to which one of the data sets were comparable. Labeling
data sets 1s very time consuming; and with only the Cisco
NetFlow data available, the labeling was limited in scope.
Since embodiments have been developed for finding mali-
cious persistent connections, only persistent connections
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need to be labeled. This reduces the size of the problem
considerably. Nonetheless, 1t 1s impractical to manually label
all persistent connections.

Rather, this task was approached 1n a semi-automatic way.
First, HTTP connections and non-HTTP connections were
separated. Non-HTTP connections were labeled manually.
HTTP connections were labeled automatically using virusto-
tal.com, a free online service that analyzes suspicious {files
and URLs and facilitates the quick detection of viruses,
worms, Trojans, and all kinds of malware, 1n the following
fashion: persistent connections were labeled as malicious 1f a
remote IP-address was contacted by at least one binary that
was detected by at least 10 different anti-virus engines as a
malicious binary, according to the virustotal.com database.

The inventors of the present invention were aware of the
high false-positive probability when labeling connections
malicious based on the virustotal.com reports. Therefore, the
inventors manually reviewed and verified all results of auto-
matic labeling and removed connections that were not appar-
ently malicious. By way of example, an IP address belonging
to a major service provider was reported as malicious, but 1t
was done so because of an advertisement served from that IP
that was malicious. That does not mean that the IP address of
the major service provider in question 1s, 1n general, mali-
cious. After removing those, most malicious persistent con-
nections belonged to a small set of users, each user having
several malicious persistent connections. This adds confi-
dence 1n the chosen method of determining ground truth (i1.e.
for determining the accuracy of results from the data sets).

With the labeled data detection, performance was assessed
using ROC curves (as mentioned above). Fach point on the
curve represents detection performance (expressed by TP
(true positive) and FP (false positive) rate values 1n that point)
for certain threshold values (which has associated the x %
limit for reporting the most anomalous connections) of
anomaly score that i1s used to determine which persistent
connection will be marked as anomalous and which as nor-
mal. That 1s to say that outlier detection 1s performed and
persistent connections are then ordered by their outlier/
anomaly score (discussed above with reference to FIG. 2B).
The higher the anomaly score, the higher the connection 1s 1n
the list. Then 1% of all connections are selected from the list,
TP and FP are determined, and a point 1s placed in the ROC.
Similarly, continuing with 2%, 3% and so on.

Another method for assessing the quality of malicious
connection detection 1s to determine the number of malicious
and legitimate persistent connections reported as anomalous
depending on the value of limit x (1.e., depending on the total
amount of all persistent connections that are reported as
anomalous). ROC curves demonstrating detection results on
the University network are shown in FIGS. 6A-6C, where
FI1G. 6 A shows detection results after 9 hours; FIG. 6B shows
detection results after 21 hours; and FIG. 6C shows detection
results after 25 hours. The resulting curves for the corporate
network are shown 1n FIGS. 7A-7C, where FIG. 7TA shows
detection results after 9 hours; FIG. 7B shows detection
results after 21 hours; and FIG. 7C shows detection results
after 43 hours. The results for the third data set, the one
coming from the single ISP, are shown 1n FIG. 8. As the ISP
data set was shorter than the other two, the results are pre-
sented for only one time point (after 6 hours of traffic). The
graphs comparing amounts of malicious and legitimate con-
nections reported as anomalous for given values of the limit x
are presented 1n FIGS. 9A-9C. Looking, for example, at the
results for the University network, the graph mn FIG. 9A,
indicates that 1f the 10% “most anomalous™ of all persistent
connections are reported, slightly under 10% of all legitimate
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connections will be reported as anomalous, while 1n case of
malicious ones, about 85% will be reported as anomalous.
Similar conclusions can be reached looking at FIG. 9B. In a
similar way, the accuracy can be determined for the third data
set (1.e. the ISP) presented in FIG. 9C, which shows a graph
after 6 hours.

It can be seen from the results that what can be considered
“the most proper” value of x which should be applied 1s
dependent on the nature of the network, the network’s size
and also on the demands on the detection. The method
described herein may be deployed either as a standalone
method or as a filtering method. As a standalone method, the
outlying connections are directly reported to a security ana-
lyst/administrator. As a filtering method, for example, further
automatic detection mechanisms recerve the filtered network
data. In this case the method reduces the amount of data that
needs to be further processed while storing as many of the
potentially malicious connections as possible (1.e., high
recall).

In any case, the present method for detecting anomalous
persistent connections can markedly help with identification
of malicious connections as demonstrated by the difference
between amounts of reported legitimate and malicious con-
nections, as shown in FIGS. 9A-9C.

The lower detection performance on the third dataset (1.e.
the ISP) 1s probably caused by high heterogeneity of traffic in
the network. As was mentioned above, this network 1s com-
posed of many sub-networks that are very diverse, because
they are operated 1n several different institutions or compa-
nies. The inventors believe that the detection could be
improved 1f the detection on the entire network were to be
divided to those sub-networks, such that the outlier detection
would be performed on each sub-network separately. As can
be expected, the legitimate traific in the sub-networks could
be better profiled by means of the feature values distributions,
and the malicious activity could be better separated in that
case.

It 1s appreciated that software components of the present
invention may, 1f desired, be implemented in ROM (read only
memory) form. The software components may, generally, be
implemented 1n hardware, 1i desired, using conventional
techniques. It 1s further appreciated that the software compo-
nents may be instantiated, for example: as a computer pro-
gram product or on a tangible medium. In some cases, 1t may
be possible to instantiate the software components as a signal
interpretable by an appropriate computer, although such an
instantiation may be excluded 1n certain embodiments of the
present invention.

It 1s appreciated that various features of the invention
which are, for clarity, described in the contexts of separate
embodiments may also be provided in combinationin a single
embodiment. Conversely, various features of the invention
which are, for brevity, described 1n the context of a single
embodiment may also be provided separately or in any suit-
able subcombination.

It will be appreciated by persons skilled 1n the art that the
present invention 1s not limited by what has been particularly
shown and described hereinabove. Rather the scope of the
invention 1s defined by the appended claims and equivalents
thereol.

What 1s claimed 1s:
1. A method for detecting a malicious network connection,
the method comprising:
determining, for each connection over a network, 1f each
connection 1s a persistent connection, wherein the per-
sistence, p, of a connection 1s defined as:
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where:

¢ 1s the connection in question;

W=[b,, .. .Db, ] 1s the observation window composed of n

measurement windows; and
1¢.b, 1s a function which 1s equal to 1 1f the connection was
active at least once during the measurement window b,
otherwise the function 1¢.b, 1s equal to O;

if, as a result of the determiming, a first connection 1s
determined to be a persistent connection, collecting con-
nection statistics for the first connection;
creating a feature vector for the first connection based on
the collected statistics, wherein the feature vectors com-
prise more than one of the following features:

logarithm of the total amount of bytes sent or received
within the persistent connection;

autocorrelation of time series generated by sent bytes of

packets within the persistent connection; and

ratio of bytes sent and received by the persistent connec-

tion;

performing outlier detection for all of the feature vectors

for all connections over a network which have been
determined to be persistent connections, wherein the
outlier detection 1s based on detecting deviation from an
anticipated value of a curve of at least one feature of the
feature vectors showing feature values versus probabil-
ity; and

reporting detected outliers.

2. The method according to claim 1 wherein the persistent
connection comprises a connection where the connection
occurs repeatedly 1n time.

3. The method according to claim 1 wherein a persistent
connection 1s characterized as having a value p=0.2.

4. The method according to claim 1 wherein a persistence
threshold 1s where p 1n the range of 0.5-0.8.

5. The method according to claim 1 wherein the steps of
determining 1f each connection 1s a persistent connection and
collecting connection information are performed repeatedly.

6. The method according to claim 1 wherein the steps of
creating the feature vector, performing outlier detection, and
reporting detected outliers are performed repeatedly.

7. The method according to claim 1, wherein the feature
vectors comprise more than one of the following features:

average flow duration;

flows inter-arrival times mean;

flows inter-arrival times variance:

target autonomous system overall surprisal;

target autonomous system per-service surprisal;

unique local ports count;

bytes amount weighted by target autonomous system

exclusivity;

user overall daily activity match;

remote service entropy; and

remote service ratio.

8. The method according to claim 1 wherein the calculating,
statistics for the at least one identified connection of 1nterest
1s performed using at least one Bloom f{ilter.

9. The method according to claim 8, wherein, every time a
connection 1s recorded 1n the Bloom filter, the persistence of
the connection 1s checked right after recording the connec-
tion.
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10. The method according to claim 8, wherein when a
Bloom filter 1s to be created, 1ts size 1s determined based on
projected maximal network traflic 1n a period of time during
which the to be created Bloom filter 1s to be active.

11. The method according to claim 8, wherein a safeguard
1s employed that monitors a number of connections which are
input to the Bloom filter, if the number of connections inputto
the Bloom filter reaches a projected size value, then a new
Bloom filter 1s created and new connection occurrences are
stored 1n the newly created Bloom filter, and queries about
connections are executed on both the original Bloom filter
and the new Bloom filter.

12. The method according to claim 8 and further compris-
ing using at least one Bloom filter in order to conserve
memory.

13. The method according to claim 1 wherein the observa-
tion window 1s represented by a bit array.

14. The method according to claim 13 wherein encoun-
tered connections are stored as keys and a corresponding,
observation window for that key 1s stored as values in a map.

15. A system for detecting a malicious network connection,
the method comprising:

a first hardware processor which determines, for each con-

nection over a network, if each connection 1s a persistent

connection, wherein the persistence, p, of a connection
1s defined as:
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where:
¢ 1s the connection in question;
W=[b,, .. .b ] 1s the observation window composed of n

measurement windows; and

1¢.b, 1s a function which 1s equal to 1 1f the connection was
active at least once during the measurement window b,
otherwise the function 1c b, 1s equal to O;

a statistics collector which collects connection statistics for
the first connection 11 the processor determined that a
first connection 1s a persistent connection;

a second hardware processor operative to create a feature
vector for the first connection based on the collected
statistics, wherein the feature vectors comprise more
than one of the following features:

logarithm of the total amount of bytes sent or received
within the persistent connection;

autocorrelation of time series generated by sent bytes of
packets within the persistent connection; and

rat1o of bytes sent and received by the persistent connec-
tion;

an outhier detection processor which performs outlier
detection for all of the feature vectors for all connections
over a network which have been determined to be per-
sistent connections, wherein the outlier detection 1s
based on detecting deviation from an anticipated value
of a curve of at least one feature of the feature vectors
showing feature values versus probability; and

a reporter which reports detected outliers.

16. The system according to claim 15 wherein the persis-

tent connection comprises a connection where the connection
occurs repeatedly 1n time.
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