US009342450B2
a2y United States Patent (10) Patent No.: US 9.342.450 B2
Tsirkin et al. 45) Date of Patent: May 17, 2016
(54) ON-DEMAND HYPERVISOR MEMORY 2008/0109629 Al1* 5/2008 Karamchetiet al. 711/170
MAPPING 2008/0168479 Al* 7/2008 Purtell etal. 719/328
2012/0047312 Al1* 2/2012 Nathupetal. 711/6
(75) Inventors: Michael Tsirkin, Yokneam Yillit (IL); OTHER PUBILICATIONS
Avi Kivity, Tel Aviv (IL)
Sun Microsystems, White Paper, “Memory Management 1n the Java
(73) Assignee: Red Hat Israel, Ltd., Raanana (IL) HotSpotTM Virtual Machine”, Apr. 2006, http://java.sun.com/j2se/
reference/whitepapers/memorymanagement_ whitepaper.pdf, pp.
(*) Notice: Subject to any disclaimer, the term of this 1-21.
patent 1s extended or adjusted under 35 SearchServerVirtualization.com, “Virtual memory management
USC. 154(b) by 44 days. techniques: A beginner’s guwde”, Mar. 30, 2011, http://
searchservervirtualization.techtarget.com/tip/Virtual-memory-man-
(21) Appl. No.: 13/306,040 agement-techniq . . ., pp. 1-2.
White Paper, “Understanding Memory Resource Management in
(22) Filed: Nov. 29. 2011 VMware ESX Server”, Aug. 26, 2009, http://www.wmware.com/
’ files/pdi/perf-vsphere-memory__management.pdf, pp. 1-20.
(65) Prior Publication Data Prpic, Martin, et al., Red Hat Enterprise Linux 6 Resource Manage-
ment Guide, “Managing system resources on Red Hat Enterprise
US 2013/0138863 Al May 30, 2013 Linux 67, May 19, 2011, pp. 1-40.
“Red Hat Enterprise Linux 6 Virtualization Gude, Guide to
(51) Int.Cl. Virtualization on Red Hat Enterprise Linux 6, Edition 3.2, May 18,
GOGF 12/00 (2006.01) 2011, pp. 1-360.
Gool’ 12/02 (2006.01) ¥ cited b .
GO6F 11/14 (2006.01) CHiCE DY CRAILCE
gggﬁi g?jg 5 ggggg; Primary Examiner — Charles Rones
(52) U.S.Cl o Assistant Examiner — Tian-Pong Chang
(2013.01); GO6F 11/1484 (2013.01);, GO6F
9/45533 (2013.01); GO6F 9/45558 (2013.01); (57) | ABSTRACT o
GO6F 2009/4557 (2013.01); GO6F 2212/151 A mechanism for on-demand hypervisor memory mapping 1s
(2013.01) disclosed. A method of the invention includes trapping an
(58) TField of Classification Search access 1nstruction to a memory location from a virtual
CPC GOGE 11/1484: GOGF 9/45558: GOGF machine (VM) managed by a hypervisor of a host machine,
"""""" 0/45533 GOGE 2000/4557 determining whether a number of accesses to the memory
Qee annlication file for comnlete séarch histo location by the VM exceeds a threshold, 1f the number of
PP p L accesses to the memory location by the VM does not exceed
(56) References Cited the threshold, then emulating the access instruction to the
memory location on behalf of the VM, and 1f the number of
U S. PATENT DOCUMENTS accesses to the memory location by the VM exceeds the
threshold, then allocating guest physical memory for the VM
7,793,279 B1* 9/2010 Leetal.ccccorvrnnnnn. 717/168 associated with the memory location.
2004/0255267 Al* 12/2004 Meyerccooeevvvinveennnn, 717/106
2007/0288228 Al* 12/2007 Tadleferetal. 703/28 17 Claims, 5 Drawing Sheets
HOST MACHINE 200
oMTele MRk
Application Layer Application Layer
(Guest Virtual Guest Virtual
Memory 204 Memory 204
............................... F W— Y N—
OS Layer v OS5 Layer
Guest Physical Guest Physical
Memory Memory
206 200
: :
Hypervisor 210

¥

¥

Hypervisor Memory Mapping Data Structure 212
(Guest Physical to Host Physical or Virtual)

Hypervisor Memory Management Module 215

U.S. Patent May 17, 2016 Sheet 1 of 5 US 9,342,450 B2

HOST CONTROLLER 107 100
)
ffﬂx“a
ff’/ff EHHH
‘ ff’ EH‘“EA
VIRTUAL VIRTUAL VIRTUAL VIRTUAL
MACHINE 1 MACHINE N MACHINE MACHINE N
131 131 131 131
VM 1 VM N VM 1 VM N
Memory Memory Memory Memory
Mappings Mappings Mappings Mappings
135 139 135 135
P — ap =
i i i/
I N J!
Hypervisor 132 Hypervisor 132
VM-to-Host Memory VM-to-Host Memory
Mappings 133 Mappings 133
Host Machine 103 Host Machine 103

- HH) .--,-' -
., e
", rd
™, e

CLIENT 101 CLIENT 101 CLIENT 101

FIG. 1

U.S. Patent May 17, 2016 Sheet 2 of 5 US 9,342,450 B2

HOST MACHINE 200
VM 1 202 VM N 202
Application Layer Application Layer
Guest Virtual Guest Virtual
Memory 204 Memory 204
_______________________________ A A
OS Layer OS Layer
Y Y
Guest Physical Guest Physical
Memory Memory
206 200
A A
A A
Y Y
i i Hypervisor 21
Y Y yP £1V
Hypervisor Memory Mapping Data Structure 212
(Guest Physical to Host Physical or Virtual)
Hypervisor Memory Management Module 215

FIG. 2

U.S. Patent

May 17, 2016 Sheet 3 of 5 US 9,342,450 B2

Trap memory access from a VM

oy
-
-

Y

.-"--f—-- H-q“'“-a
- -
- -
__a—-'-- T

__—Memory access to—-.__

Yes -
change or remove
T amemory mapping?
v T
Immediately perform change or No
removal of memory mapping at
hypervisor memory mapping data
structure
~__——"Number of -
No " VM accesses to memory —-._Yes
. exceed threshold?

Increase memory access record
associated with the VM by 1 (if no
record of access, create memory

access record for VM, set to 1)

350

Y

Emulate memory access on behalf
of the VM

36

\j

Return control to the VM

—

Y
Allocate guest physical memory

and add memory mapping to
hypervisor memory mapping data
structure
380

:

Return control to VM to allow VM
fo perform memory access
390

Fig. 3

U.S. Patent

May 17, 2016 Sheet 4 of 5

Clear all flags associated with memory mappings, where each memory mapping

US 9,342,450 B2

IN a hypervisor memory mapping data structure 1s associated with a flag -
410
Reset and begin timer
420
\
Yes P Timer expired? H"“‘Hah}‘
“““HHHH 430 f*’
No
___—""Memory mapping -._
- -—__ No
< accessed by VM7 = >
T 440 T
Yes L
Clear flag associated with the accessed memory mapping
450
Remove all memory mappings with flags set
46

Fig. 4

U.S. Patent

Processing Device 502

Processing Logic
526

Main Memory 504

Instructions
5272

Static Memory
506

Network Interface
Device
508

May 17, 2016

Sheet 5 of 5

US 9,342,450 B2

Video Display
510

Alpha-Numeric
Input Device

512

cursor Control
Device

514

signal Generation
Device

516

Data Storage Device 518

Machine-Accessible

Storage Medium 528
N~ N

Software
H24

Fig. 5

US 9,342,450 B2

1

ON-DEMAND HYPERVISOR MEMORY
MAPPING

TECHNICAL FIELD

The embodiments of the invention relate generally to vir-
tualization systems and, more specifically, relate to a mecha-
nism for on-demand hypervisor memory mapping.

BACKGROUND

In computer science, a virtual machine (VM) 1s a portion of
software that, when executed on appropriate hardware, cre-
ates an environment allowing the virtualization of an actual
physical computer system. Each VM may function as a seli-
contained platform, running its own operating system (OS)
and software applications (processes). Typically, ahypervisor
manages allocation and virtualization of computer resources
and performs context switching, as may be necessary, to cycle
between various VMs.

A host machine (e.g., computer or server) 1s typically
enabled to simultaneously run multiple VMs, where each VM
may be used by a local or remote client. The host machine
allocates a certain amount of the host’s resources to each of
the VMs. Each VM 1s then able to use the allocated resources
to execute applications, including operating systems known
as guest operating systems. The hypervisor virtualizes the
underlying hardware of the host machine or emulates hard-
ware devices, making the use ol the VM transparent to the VM
operating system or the remote client that uses the VM.

The hypervisor 1s also responsible for maintaining a global
memory mapping for each VM that 1t manages. Virtual
memory 1s a well-known technique used 1n most general-
purpose operating systems, and almost all modern processors
have hardware to support it. Virtual memory creates a uniform
virtual address space presented to the applications and allows
the operating system and hardware to handle the address
translation between the virtual address space and the physical
address space. This technique no only simplifies the program-
mer’s work, but also adapts the execution environment to
support large address spaces, process protection, file map-
ping, and swapping 1n modern computer systems.

When runming a VM, the hypervisor creates a contiguous
addressable memory space for the VM. This memory space
has the same properties as the virtual address space presented
to the applications by the guest operating system. This allows
the hypervisor to run multiple VMs simultaneously while
protecting the memory of each VM from being accessed by
others. Therefore, from the view of the application running
inside the VM, the hypervisor adds an extra level of address
translation that maps the VM physical addresses to the host
virtual address or host physical addresses (depending on the
particular virtualization implementation).

The VM may request to change, add, or remove a memory
mapping. However, updating the memory mappings by the
hypervisor for a VM 1s an expensive and inefficient operation.
In addition, the number of mappings allowed fora VM at any

time 1s also limited, further constraining the resources of the
virtualization system.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the invention. The draw-

10

15

20

25

30

35

40

45

50

55

60

65

2

ings, however, should not be taken to limit the invention to the
specific embodiments, but are for explanation and under-

standing only.

FIG. 1 1s a block diagram of an exemplary network archi-
tecture 1n which embodiments of the present mnvention may
operate;

FIG. 2 1s a block diagram of a host machine providing
on-demand hypervisor memory mapping according to
embodiments of the invention;

FIG. 3 1s a flow diagram 1illustrating a method for on-
demand hypervisor memory mapping to economically add
memory mappings according to an embodiment of the mnven-
tion;

FIG. 4 1s a flow diagram 1illustrating a method for on-
demand hypervisor memory mapping to reduce memory
mappings according to an embodiment of the invention; and

FIG. 5 illustrates a block diagram of one embodiment of a
computer system.

DETAILED DESCRIPTION

Embodiments of the mvention provide a mechanism for
on-demand hypervisor memory mapping. A method of
embodiments of the invention includes trapping an access
istruction to a memory location from a virtual machine
(VM) managed by a hypervisor of a host machine, determin-
ing whether a number of accesses to the memory location by
the VM exceeds a threshold, 1f the number of accesses to the
memory location by the VM does not exceed the threshold,
then emulating the access mstruction to the memory location
on behalf of the VM, and if the number of accesses to the
memory location by the VM exceeds the threshold, then allo-
cating guest physical memory for the VM associated with the
memory location.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown 1n block diagram form, rather than in detail, 1n
order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented 1n terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
cifectively convey the substance of theirr work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though notnecessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such

as “sending’”’, “recerving”’, “attaching”, “forwarding”’, “cach-
e B Y 4

ing”, “trapping”, “determiming”’, “emulating”, “allocating”,
or the like, refer to the action and processes ol a computer
system, or similar electronic computing device, that manipu-

lates and transtorms data represented as physical (electronic)

US 9,342,450 B2

3

quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or 1t may com-
prise a general purpose computer selectively activated or
reconiigured by a computer program stored in the computer.
Such a computer program may be stored 1n a machine read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMSs), ran-
dom access memories (RAMs), EPROMs, EEPROMSs, mag-
netic or optical cards, or any type of media suitable for storing
clectronic 1nstructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct more specialized apparatus to per-
torm the required method steps. The required structure for a
variety of these systems will appear as set forth 1n the descrip-
tion below. In addition, the present invention 1s not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
invention. A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form read-
able by amachine (e.g., a computer). For example, a machine-
readable (e.g., computer-readable) medium includes a
machine (e.g., a computer) readable storage medium (e.g.,
read only memory (“ROM”), random access memory
(“RAM”), magnetic disk storage media, optical storage
media, tlash memory devices, etc.), etc.

Embodiments of the mvention provide a mechanism for
on-demand hypervisor memory mapping. The on-demand
hypervisor memory mapping of embodiments of the mnven-
tion 1s an optimization to the memory management functions
performed by the hypervisor. The optimization includes the
hypervisor adding a memory mapping requested by a VM
only when the numbers of requests to access the mapping
exceeds a threshold. Otherwise, the hypervisor emulates the
request for the VM without adding the mapping. In addition,
embodiments of the invention include the hypervisor remov-
ing memory mapping for a VM that have not been accessed
during a time interval tracked by a timing mechanism in the
hypervisor.

FI1G. 1 i1llustrates an exemplary network architecture 100 in
which embodiments of the present invention may operate.
The network architecture 100 may include a host machine
103 coupled to one or more clients 101 over a network 102.
The network 102 may be a private network (e.g., a local area
network (LAN), wide area network (WAN), intranet, etc.) or
a public network (e.g., the Internet). In other embodiments,
the host machine 103 and clients 101 may be part of the same
machine. The host 103 may be coupled to a host controller
107 (via a network or directly). Alternatively, the host con-
troller 107 may be part of the host 103.

10

15

20

25

30

35

40

45

50

55

60

65

4

In one embodiment, the clients 101 may include computing,
devices that have a wide range of processing capabilities.
Some or all of the clients 101 may be thin clients, which serve
as access terminals for users and depend primarily on the host
103 for processing activities. For example, the client 101 may
be a desktop computer, laptop computer, cellular phone, per-
sonal digital assistant (PDA), etc. The client 101 may run
client applications such as a Web browser and a graphic user
interface (GUI). The client 101 may also run other client
applications to receive multimedia data streams or other data
sent from the host 103 and re-direct the recerved data to a
display or other user interface.

In one embodiment, the host 103 includes a server or a
cluster of servers to run one or more VMs 131. Each VM 131
runs a guest operating system (OS) that may be different from
one another. The guest OS may include Microsoit Windows,
Linux, Solaris, Mac OS, etc. The host 103 also includes a
hypervisor 132 that emulates the underlying hardware plat-
form forthe VMs 131. The hypervisor 132 may also be known
as a VM monitor (VMM), a kernel-based hypervisor or a host
operating system.

Each VM 131 can be accessed by one or more of the clients
101 over the network 102. In one scenario, the VM 131 can
provide a virtual desktop for the client 101. The VMs 131 can
be managed by the host controller 107. The host controller
107 may also add a VM, delete a VM, balance the load on the
server cluster, provide directory service to the VMs 131, and
perform other management functions.

Embodiments of the invention enable optimization of
memory management 1n the hypervisor 132. The hypervisor
132 creates contiguous addressable memory space 135 for the
VMs 131 it manages. This memory mapping space 135 1s a
virtual memory space that i1s presented to applications of the
VM 131 and allows the guest OS of the VM 131 to handle
address translation between the virtual address space of the
VM 131 and the physical address space of the VM 131. The
hypervisor 132 further creates an extra level of address trans-
lation that maps the VM physical addresses of the VM
memory mapping 135 to virtual or physical addresses of the
host machine 103. This VM-to-host machine mapping 1s
maintained by the hypervisor 132 1n a memory mapping data
structure 133.

In one embodiment, the hypervisor 132 provides optimized
memory management of the VMs” 131 virtual memory in the
form of on-demand hypervisor memory mapping. The hyper-
visor 132 adds memory mappings requested by a VM 131 1t
manages only when the numbers of requests to access the
mapping by the VM 131 exceeds a pre-determined threshold.
If the request does not exceed the threshold, then the hyper-
visor 132 emulates the request for the VM 131 without adding
the mapping. In addition, the hypervisor 132 tracks whether
memory mappings fora VM 131 have been accessed during a
time interval, and 1f a mapping has not been accesses the
hypervisor 132 removes the mapping.

FIG. 2 1s a block diagram of a host machine 200 providing,
on-demand hypervisor memory mapping according to
embodiments of the invention. In one embodiment, host
machine 200 1s the same as host machine 103 described with
respectto FI1G. 1. The host machine 200 includes a hypervisor
210 that manages one or more VMs 202. In one embodiment,
hypervisor 210 1s the same as hypervisor 132 described with
respect to FIG. 1. The hypervisor 210 may contain or other-
wise control a hypervisor memory mapping structure 212 and
a hypervisor memory management module 215.

The hypervisor 210 includes a hypervisor memory man-
agement module 215 that creates a contiguous addressable
memory space for the VMs 202 1t manages. The contiguous

US 9,342,450 B2

S

address memory space allocated by the hypervisor memory
management module 215 to the VM 202 1s visible to the OS
of the VM 202 and 1s considered the guest physical memory

206. The guest physical memory 206 1s further presented by
the VM 202 OS to applications of the VM 202 as continuous
virtual address space known as guest virtual memory 204.
This allows the VM 202 OS to handle address translation
between the guest virtual memory 204 and the guest physical
memory 206.

The guest physical memory 206 1s backed by the host
machine’s virtual or physical memory (depending on the
particular virtualization implementation), which means the
hypervisor 210 provides the mapping from the VM to the host
memory. In one embodiment, the hypervisor memory man-
agement module 215 provides this VM-to-host memory map-
ping using the hypervisor memory mapping data structure
212. Memory transier between the guest physical memory
206 and guest virtual memory 204 1s driven by the OS of the
VM 202, while memory transier between the guest physical
memory 206 and the host machine 1s driven by the hypervisor
210.

When a VM 202 first starts, 1t has no pre-allocated guest
physical memory 206. The VM 202 cannot explicitly allocate
host memory through any standard interfaces, so must rely on
the hypervisor 210 for this purpose. The hypervisor memory
management module 215 creates the definitions of “allo-
cated” or “free” guest physical memory 206 fora VM 202 1n
its own hypervisor memory mapping data structure 212. The
hypervisor 210 1s responsible for intercepting VM 202
memory accesses and allocating host memory for the VM
202.

In one embodiment, on a VM’s 202 first memory access,
the hypervisor memory management module 2135 traps this
memory access request and creates a record of 1t. However,
the hypervisor memory management module 215 does not
add the requested mapping to the hypervisor memory map-
ping structure 212 at this point. Instead, the hypervisor 210
emulates the memory access for the VM 202 and then returns
control back to the VM 202. In some embodiments, the emu-
lation by the hypervisor 210 may involve determining the host
memory the instruction meant to access, fetching the data
from the host memory, and performing the function of the
instruction utilizing the fetched data on behalf of the VM 202.

When the VM 202 tries to access the mapping again, the
hypervisor memory management module 2135 again traps the
access and records it. I1 this 1s not the first memory access and
the mapping 1s not 1n hypervisor memory mapping structure
212, the hypervisor 210 also determines whether the number
ol accesses to this mapping by the VM 202 exceeds a pre-
determined threshold value. IT not, then the hypervisor
memory management module 215 emulates the access for the
VM 202 again. On the other hand, if the access does exceed
the threshold, then the hypervisor memory management
module 215 adds the mapping to hypervisor memory map-
ping structure 212 and returns control to the VM 202 1n order
to let the VM 202 perform the access without any emulation
done by the hypervisor 210.

In some embodiments, the VM 202 may issue a change or
removal request for a mapping that has not yet been added
because the number of accesses to the mapping by the VM
202 have not exceeded the threshold. In this case, the hyper-
visor memory management module 2135 does not have to
perform any mapping management because the mapping
does not exist 1n the hypervisor memory mapping structure
212 yet. On the other hand, 11 the mapping associated with the
change or removal request has been mapped to structure 212,

10

15

20

25

30

35

40

45

50

55

60

65

6

then this memory mapping change or removal 1s performed
immediately as these memory updates should not be delayed.

In some embodiments, the hypervisor memory manage-
ment module 215 may track each of 1ts mappings 1n structure
212 to determine whether any mappings should be removed
from the structure 212. Hypervisor memory management
module 215 may utilize one or more timers to determine
whether any mappings have been accessed during a pre-
determined time interval. If a time interval expires and the
hypervisor memory management module 2135 determines that
a mapping was not accessed, then the hypervisor memory
management module 215 removes this mapping from struc-
ture 212.

For example, 1n one embodiment, each memory mapping,
in structure 212 may have a flag associated with it and at the
beginning of the time 1interval tracked by a timer of the hyper-
visor 210 all flags are cleared (or set). Then, when any map-
pings are accessed, the hypervisor memory management
module 215 sets (or clears) the flag for that particular map-
ping. When the timer expires, the hyper visor memory man-
agement module 215 determines which flags are still cleared
(or set) and removes those mappings from structure 212.

FIG. 3 1s a flow diagram 1illustrating a method 300 for
on-demand hypervisor memory mapping to economically
add memory mappings according to an embodiment of the
invention. Method 300 may be performed by processing logic
that may comprise hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), software (such as
instructions run on a processing device), firmware, or a coms-
bination thereol. In one embodiment, method 300 15 per-
formed by hypervisor 132 of FIG. 1 and/or hypervisor
memory management module 215 of FIG. 2.

Method 300 begins at block 310 where a memory access 1s
trapped from a VM. Then, at decision block 320, it 1s deter-
mined whether the memory access 1s to change or remove a
memory mapping. If so, then at block 330, the change or
removal 1s immediately performed by the hypervisor with
respect to the hypervisor memory mapping data structure.
Then, method 300 ends.

If, at decision block 320, the memory access 1s not to
change or remove a memory mapping, the method 300 pro-
ceeds to decision block 340, where 1t 1s determined whether
the number whether the number of accesses by the VM to
memory reference din the access exceeds a threshold. In one
embodiment, this threshold 1s configurable by an administra-
tor of the hypervisor or VM. In another embodiment, the
number ol VM accesses may be stored 1in hypervisor memory.

If the number of VM accesses to the memory does not
exceed the threshold at decision block 340, then method 300
continues to block 350 where a memory access record asso-
ciated with the VM 1s increased by 1. In one embodiment, 1f
a memory access record does not exist for the VM (e.g., first
memory access by the VM), then this record 1s created by the
hypervisor and mitialized to 1. Then, at block 360, the
requested memory access 1s emulated by the hypervisor on
behalf of the VM. Subsequently, at block 370, processing
control 1s returned to the VM by the hypervisor. Then, method
300 ends.

I1, at decision block 340, the number of VM access to the
memory does exceed the threshold, the method 300 proceeds
to block 380. At block 380, the guest physical memory for the
VM 1s allocated for the requested memory access. In addition,
the memory mapping 1s added to the hypervisor memory
mapping data structure. The, at block 390, control 1s returned
to the VM 1n order to allow the VM to perform the memory
access 1itsell using its allocated guest physical and virtual
memory. The, method 300 ends.

US 9,342,450 B2

7

FIG. 4 1s a flow diagram illustrating a method 400 for
on-demand hypervisor memory mapping to reduce memory
mappings according to an embodiment of the ivention.
Method 400 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as mnstructions
run on a processing device), firmware, or a combination
thereol. In one embodiment, method 400 1s performed by
hypervisor 132 of FIG. 1 and/or hypervisor memory manage-
ment module 215 of FIG. 2.

Method 400 begins at block 410 where all flags associated
with memory mappings maintained by a hypervisor are
cleared. In one embodiment, these flags are stored with each
memory mapping ol a hypervisor memory mapping data
structure. Then, at block 420 a timer 1s reset and started. In
one embodiment, the timer may be set to count down from a
pre-determined time that 1s configurable by an administrator
of the hypervisor and host machine.

Then, at decision block 430, 1t 1s determined whether the
timer has expired. If so, method 400 proceeds to block 460,
which 1s described 1n further detail below. If the time has not
expired, then method 400 proceeds to decision block 440,
where 1t 1s determined whether a memory mapping 1s
accessed by the VM. In one embodiment, the hypervisor traps
any VM accesses to a memory mapping, and utilizes this trap
to determine whether particular memory mappings are
accessed. If there have been no memory accesses, then
method 400 returns to decision block 430 to continue check-
ing the timer for expiration.

If a VM has accessed a memory access at decision block
440, then method 400 continues to block 450 where the flag
associated with the accessed memory mapping is cleared. The
method 400 returns to decision blocks 430 and 440 to itera-
tively check the timer for expiration and memory mapping,
accesses until the time has expired.

When the time has expired at decision block 430, then
method 400 proceeds to block 460, where all memory map-
ping with their flags set 1n the hypervisor memory mapping,
data structure are removed. Then, method 400 may return to
block 410 to start method 400 over from the beginning. In this
way, hypervisor may keep memory mappings that are not
being utilized to a minimum, saving resources of the virtual-
1zation system.

FIG. 5§ illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine may operate 1n the capacity of a server or a client
machine 1n a client-server network environment, or as a peer
machine 1n a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of mnstructions (sequential or otherwise) that specily
actions to be taken by that machine. Further, while only a
single machine is 1llustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of mstructions to
perform any one or more of the methodologies discussed
herein.

The exemplary computer system 300 includes a processing,
device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory

10

15

20

25

30

35

40

45

50

55

60

65

8

(DRAM) (such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 506 (e.g., tlash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 5318, which communicate with each other via a bus
530.

Processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 502 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. The processing device 502 1s configured to execute
the processing logic 526 for performing the operations and
steps discussed herein.

The computer system 500 may further include a network

interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liguiad crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).
The data storage device 318 may include a machine-acces-
sible storage medium 528 on which 1s stored software 524
embodying any one or more of the methodologies of func-
tions described herein. For example, software 524 may store
instructions to perform a mechanism for on-demand hyper-
visor memory mapping by hypervisor 132 described with
respect to FIG. 1. The software 524 may also reside, com-
pletely or at least partially, within the main memory 504
and/or within the processing device 502 during execution
thereol by the computer system 500; the main memory 504
and the processing device 502 also constituting machine-
accessible storage media.

The machine-readable storage medium 528 may also be
used to store instructions to perform methods 300 and 400 for
on-demand hypervisor memory mapping described with
respect to FIGS. 3 and 4, and/or a software library containing
methods that call the above applications. While the machine-
accessible storage medium 528 1s shown 1n an exemplary
embodiment to be a single medium, the term “machine-ac-
cessible storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of mstructions. The term “machine-acces-
sible storage medium” shall also be taken to include any
medium that 1s capable of storing, encoding or carrying a set
of instruction for execution by the machine and that cause the
machine to perform any one or more of the methodologies of
the present invention. The term “machine-accessible storage
medium”™ shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

Whereas many alterations and modifications of the present
invention will no doubt become apparent to a person of ordi-
nary skill in the art after having read the foregoing descrip-
tion, 1t 1s to be understood that any particular embodiment
shown and described by way of illustration i1s 1n no way
intended to be considered limiting. Therefore, references to
details of various embodiments are not intended to limit the
scope of the claims, which in themselves recite only those
teatures regarded as the invention.

US 9,342,450 B2

What 1s claimed 1s:

1. A method, comprising;:

trapping, by a processing device executing a hypervisor of
a host machine, an access instruction to a memory loca-
tion, the access 1instruction 1ssued from a virtual machine

(VM) of a plurality of VMs executed by the host

machine and managed by the hypervisor;

monitoring, by the hypervisor for each of the plurality of
VMs, a number of accesses to the memory location per
cach VM during runtime of each VM;

maintaiming, by the hypervisor, the number of accesses to
the memory location by the VM 1n a memory access
record for the memory location, the memory access
record corresponding to the VM;

determining, by the hypervisor, whether the number of
accesses maintained in the memory access record for the
memory location and the VM exceeds a threshold;

in response to the number of accesses to the memory loca-

tion by the VM exceeding the threshold during the runt-
ime of the VM, allocating, by the hypervisor during the
runtime of the VM, guest physical memory for the VM to
correspond to the memory location;

in response to the number of accesses to the memory loca-

tion by the VM being less than or equal to the threshold
during the runtime of the VM, emulating, by the hyper-
visor during the runtime of the VM, the access mnstruc-
tion to the memory location on behalf of the VM without
allocating the guest physical memory; and

removing, by the processing device via the hypervisor

during the runtime of the VM, memory mappings for the

VM that have not been accessed by the VM during a time

interval of the runtime of the VM, wherein removing the

memory mappings comprises:

setting all flags 1n a memory mapping data structure of
the hypervisor, wherein each memory mapping in the
memory mapping data structure 1s associated with a
flag;

resetting a timer of the hypervisor after the timer expires;

starting the timer;

clearing any flag associated with a memory mapping
that 1s accessed by a VM managed by the hypervisor;
and

removing the memory mappings in the memory map-
ping data structure with flags set when the time 1nter-
val of the timer expires.

2. The method of claim 1, further comprising 1n response to
the number of accesses to the memory location by the VM
being less than or equal to the threshold, increasing the
memory access record corresponding to both of the VM and
the memory location by one.

3. The method of claim 2, wherein in response to the
memory access record corresponding to both of the VM and
the memory location not existing, creating the memory access
record corresponding to both of the VM and the memory
location and setting the memory access record to one.

4. The method of claim 1, further comprising returning,
control to the VM aftter allocating the guest physical memory,
the returming control to allow the VM to perform the access
instruction to the memory location.

5. The method of claim 1, wherein 1n response to the access
instruction to the memory location being for at least one of a
change or a removal of a memory mapping for the memory
location, immediately performing the access instruction to at
least one of change or remove the memory mapping at a data
structure of the hypervisor.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

6. The method of claim 1, wherein the hypervisor maps
guest physical memory to corresponding virtual memory of
the host machine.

7. The method of claim 1, wherein emulating the access
istruction further comprises executing, by the hypervisor,
the access mstruction without mapping the access and return-
ing control to the VM.

8. A system, comprising:

a memory; and

a processing device communicably coupled to the memory,

the processing device executing a hypervisor to virtual-
1z¢ the memory and the processing device for one or
more virtual machines (VMs) and to:
trap an access struction to a memory location, the
access 1nstruction 1ssued from a VM of the one or
more VMSs;
monitor, for each of the plurality of VMs, a number of
accesses to the memory location per each VM during
runtime of each VM,
maintain the number of accesses to the memory location
by the VM 1n a memory access record for the memory
location, the memory access record corresponding to
the VM
determine whether the number of accesses maintained in
the memory access record for the memory location
and the VM exceeds a threshold;
in response to the number of accesses to the memory
location by the VM exceeding the threshold during
the runtime of the VM, allocate, during the runtime of
the VM, guest physical memory for the VM to corre-
spond to the memory location;
in response to the number of accesses to the memory
location by the VM being less than or equal to the
threshold during the runtime of the VM, emulate,
during the runtime of the VM, the access instruction to
the memory location on behalf of the VM without
allocating the guest physical memory; and
remove, during the runtime of the VM, memory map-
pings for the VM that have not been accessed by the
VM during a time interval of the runtime of the VM,
wherein the hypervisor to remove the memory map-
pings comprises the hypervisor further to:
set all flags 1n a memory mapping data structure of the
hypervisor, wherein each memory mapping 1n the
memory mapping data structure 1s associated with
a flag;
reset a timer of the hypervisor after the timer expires;
start the timer;
clear any flag associated with a memory mapping that
1s accessed by a VM managed by the hypervisor;
and
remove the memory mappings in the memory map-
ping data structure with flags set when the time
interval of the timer expires.

9. The system of claim 8, wherein the hypervisor 1s further
to, 1n response to the number of accesses to the memory
location by the VM not exceeding the threshold, increase the
memory access record corresponding to both of the VM and
the memory location by one.

10. The system of claim 9, wherein the hypervisor 1s further
to, in response to the memory access record corresponding to
both of the VM and the memory location not existing, create
the memory access record corresponding to both of the VM
and the memory location and setting the memory access
record to one.

11. The system of claim 8, wherein the hypervisor 1s further
to return control to the VM after allocating the guest physical

US 9,342,450 B2

11

memory, the returning control to allow the VM to perform the
access struction to the memory location.
12. The system of claim 8, wherein the hypervisor 1s further
to, 1n response to the access mstruction to the memory loca-
tion being for at least one of change or aremoval of a memory
mapping for the memory location, immediately perform the
access 1nstruction to at least one of change or remove the
memory mapping at a data structure of the hypervisor.
13. The system of claim 8, wherein the hypervisor 1s further
to map guest physical memory to corresponding virtual
memory of the host machine.
14. A non-transitory machine-readable storage medium
including instructions that, when accessed by a processing
device, cause the processing device to:
trap, by a hypervisor executed by the processing device of
a host machine, an access instruction to a memory loca-
tion, the access instruction 1ssued from a virtual machine
(VM) of a plurality of VMs executed by the host
machine and managed by the hypervisor;
monitor, by the hypervisor for each of the plurality of VMs,
a number of accesses to the memory location per each
VM during runtime of each VM;

maintain, by the hypervisor, the number of accesses to the
memory location by the VM 1n a memory access record
for the memory location, the memory access record cor-
responding to the VM;

determine, by the hypervisor, whether the number of
accesses maintained 1n the memory access record for the
memory location and the VM exceeds a threshold;

in response to the number of accesses to the memory loca-

tion by the VM exceeding the threshold during the runt-
ime of the VM, allocate, by the hypervisor during the
runtime of the VM, guest physical memory for the VM to
correspond to the memory location;

in response to the number of accesses to the memory loca-

tion by the VM being less than or equal to the threshold
during the runtime of the VM, emulate, by the hypervi-

10

15

20

25

30

35

12

sor during the runtime of the VM, the access instruction
to the memory location on behalf of the VM without
allocating the guest physical memory; and

remove, by the hypervisor during the runtime of the VM,

memory mappings for the VM that have not been

accessed by the VM during a time 1nterval of the runtime

of the VM, wherein removing the memory mappings

comprises the processing device further to:

set all flags 1n a memory mapping data structure of the
hypervisor, wherein each memory mapping in the
memory mapping data structure 1s associated with a
flag;

reset a timer of the hypervisor after the timer expires;

start the timer;

clear any tlag associated with a memory mapping that 1s
accessed by a VM managed by the hypervisor; and

remove the memory mappings in the memory mapping
data structure with flags set when the time interval of
the timer expires.

15. The non-transitory machine-readable storage medium
of claim 14, wherein the processing device 1s further to, 1n
response to the number of accesses to the memory location by
the VM not exceeding the threshold, increase the memory
access record corresponding to both of the VM and the
memory location by one.

16. The non-transitory machine-readable storage medium
of claim 135, wherein the processing device 1s further to, 1n
response to the memory access record corresponding to both
of the VM and the memory location not existing, create the
memory access record corresponding to both of the VM and
the memory location and setting the memory access record to
one.

17. The non-transitory machine-readable storage medium
of claim 14, wherein the time 1s set to a pre-determined time
that 1s configured by an administrator of the hypervisor.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

