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1
ZERO-COPY CACHING

BACKGROUND

Computer operating system performance 1s often charac-
terized by the maximum rate of input/output (I/0) operations
(also called “I/O performance”) that the operating system can
sustain over a given time interval. As a result, operating
systems employ a variety of well-known mechanisms to
boost I/O performance.

Operating systems are traditionally written using unman-
aged languages (such as assembly language, C, C++) which
provides the system programmer with very fine control of
how memory 1s manipulated. The use of unchecked pointers
may be used to minimize the operating system’s overhead and
allow 1increased throughput or reduced latency. The downside
to the use of these unchecked pointers 1s that they are difficult
to create and reason about, leading to unreliable software and
to security vulnerabilities.

Writing software in a managed programming language
provides substantial correctness benefits and development
time elliciencies. These managed languages prevent pro-
grammers Irom creating many kinds of software defects,
which leads to improved sotftware quality and reduced devel-
opment time. Operating system correctness 1s a critical ingre-
dient for delivering a reliable and secure compute experience.
Therefore, using managed languages to create operating sys-
tems 1s a compelling proposition as operating system reliabil-
ity can improve and development costs can be reduced.

To achieve these benefits, managed programming lan-
guages 1nsert an abstraction layer between the source code
drafted by the programmer and the raw machine resources of
a physical computer system. This abstraction layer generally
serves to constrain what programmers are allowed to write,
and 1n so doing eliminate whole categories of potential
defects. Unfortunately, this abstraction layer introduces over-
head which can hurt the performance of the software being
created. As a result, a common assumption 1s that managed
languages trade correctness defects for performance defects.
Hence, software written in managed languages 1s often inher-
ently considered slower than software written 1n unmanaged
languages.

The particular problem that affects managed code operat-
ing systems 1s the inherent need to copy data between layers
as the data travels through the system. This 1s induced by the
fact that distinct components of the system exist 1n different
1solation contexts and there 1s no clear mechanism to break
out of these 1solation contexts.

SUMMARY

In accordance with at least one embodiment described
herein, caching of an immutable buifer 1s described. The
immutable butifer protects the data populated therein from
changing during the lifetime of the immutable bufler. The
physical address of the immutable buifer 1s also protected
from changing during the lifetime of the immutable buffer. A
first computing entity that maintains a cache of the immutable
butiler and has a strong reference to the immutable butifer. So
long as any entity has a strong reference to the immutable
builfer, the immutable buffer 1s guaranteed to continue to exist
for at least the duration of the strong reference for each entity
that has the strong reference. A second computing entity
communicates with the first computing entity to obtain a
strong reference to the immutable buller and thereafter read
data from the immutable butfer. Upon or after reading the data
from the cache, the second computing entity demotes the
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2

strong reference to the immutable buflfer to a weak reference
to the immutable butifer. A weak reference to the immutable
builer does not guarantee that the immutable butler will con-
tinue to exist for the duration of the weak reference.

This allows the first and second computing entities to have
a cache to the immutable butier without requiring a commu-
nication between the two entities, except for the first commu-
nication to allow the second computing entity to gain initial
access to the strong reference.

This Summary 1s not mtended to 1dentity key features or
essential features of the claimed subject matter, nor 1s 1t
intended to be used as an aid 1n determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which the above-recited
and other advantages and features can be obtained, a more
particular description of various embodiments will be ren-
dered by reference to the appended drawings. Understanding
that these drawings depict only sample embodiments and are
not therefore to be considered to be limiting of the scope of
the 1invention, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings 1n which:

FIG. 1 abstractly illustrates a computing system 1n which
some embodiments described herein may be employed;

FIG. 2 illustrates a flowchart of a method for providing an
immutable buttfer;

FIG. 3A 1llustrates an environment 1n which a process of
populating a bulfer occurs;

FIG. 3B 1llustrates the environment 1n which the populated
butfer 1s made immutable;:

FIG. 4 illustrates a flowchart of a method for using the
immutable buffer;

FIG. 5 illustrates an environment 1n which different com-
puting entities have different views on an immutable butfer;

FIG. 6 1llustrates a flowchart of a method for communicat-
ing the immutable data from one computing entity to the next;

FIG. 7 illustrates a streaming environment in which a
stream of data 1s provided from a stream source 1nto a stream
buifer, and then provided from the bufifer to a stream con-
SUmer;

FIG. 8 1llustrates an environment in which a second com-
puting entity acquires a cache through the cache of a first
computing entity;

FIG. 9 illustrates a flowchart of a method for a second
computing entity to first read from a cache supported by a first
computing entity;

FIG. 10 illustrates a flowchart of a method for the second
computing entity to subsequently read from the cache sup-
ported by the first computing enfity;

FIG. 11 1illustrates a flowchart of a method for the first
computing entity (or the backing cache) to perform eviction;

FIG. 12 illustrates an example managed code system; and

FIG. 13 depicts a normal managed array of bytes which has
two distinct spans pointing into it and allowing the applica-
tion to view portions of the array as different types.

DETAILED DESCRIPTION

In accordance with embodiments described herein, mecha-
nisms are described that promote zero-copy input/output
(I/0) semantics 1n managed operating systems. Some of such
mechanisms may be used in unmanaged code operating sys-
tems as well as 1n managed code operating systems. The
mechanisms are not mutually exclusive as one, some, or even
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all of the mechanisms may be combined to even further pro-
mote zero-copy /O semantics.

“Zero-copy” refers to an architecture designed to enable
data to enter the system by being written to memory and
propagated through many layers of abstractions without the
need to copy the data. A zero-copy architecture does not
guarantee that no data copying occurs. Rather, 1t merely puts
in place mechanism to ensure that most I/O operations can be
done without copying. In this description and 1n the claims,
“memory” 1s defined as any random access memory, which is
typically volatile memory, but may also include non-volatile
portions, or perhaps may be entirely non-volatile. In this
description and in the claims, “memory™ 1s defined as the
primary storage medium of a computing system, compro-
mised of individual addressable locations accessible to the
microprocessors of the computing system and accessible to
hardware devices such as graphics controllers or network
interface controllers via DMA (direct memory access)
mechanisms.

First, immutable sharable zero-copy bulk data mechanisms
that use an immutable buffer of shared data will be described.
Such mechanisms enable the transfer of large butifers of data
throughout the computing system without copying. The
mechanisms will be further extended to the shared use of data
streams within the computing system with full flow-control to
enable ellicient resource utilization, all while maintaining tull
zero-copy semantics. While current type safety of managed
code systems allow for more immediate implementation of
these mechanisms, the use of these mechanisms within
unmanaged code systems may be employed as well.

Second, a mechanism for zero-copy caching will be
described. Such zero-copy caching may be employed in both
unmanaged code systems and managed code systems. Zero-
copy caching makes 1t possible to create a general purpose
caching architecture that feature zero-copy semantics for data
entering the cache as well as data being returned from the
cache.

Third, several mechanisms will be described that further
enhance the performance of managed code systems, whether
or not those systems employ the immutable butier or shared
data. Such managed code mechanisms include uniform
memory access and type-sale type casting. Uniform memory
access enables managed code to uniformly access both man-
aged memory and unmanaged memory (used for IO butfers)
using a consistent and composable approach. Type-sale type
casting enables managed code to perform pointer casting to
allow a given region of memory to be viewed as distinct types
while maintaining full type safety.

Some 1ntroductory discussion of a computing system will
be described with respect to FIG. 1. Then, the above-listed
mechanisms will be described in the order provided above
with respect to FIGS. 2 through 13.

Computing systems are now increasingly taking a wide
variety of forms. Computing systems may, for example, be
handheld devices, appliances, laptop computers, desktop
computers, mainirames, distributed computing systems, or
even devices that have not conventionally been considered a
computing system. In this description and 1n the claims, the
term “computing system” 1s defined broadly as including any
device or system (or combination thereof) that includes at
least one physical and tangible processor, and a physical and
tangible memory capable of having thereon computer-ex-
ecutable 1nstructions that may be executed by the processor.
The memory may take any form and may depend on the
nature and form of the computing system. A computing sys-
tem may be distributed over a network environment and may
include multiple constituent computing systems.
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As 1llustrated 1n FIG. 1, 1n 1ts most basic configuration, a
computing system 100 includes at least one processing unit
102 and computer-readable media 104. The computer-read-
able media 104 may conceptually be thought of as including
physical system memory, which may be volatile, non-vola-
tile, or some combination of the two. The computer-readable
media 104 also conceptually includes non-volatile mass stor-
age. If the computing system 1s distributed, the processing,
memory and/or storage capability may be distributed as well.

As used herein, the term “executable module™ or “execut-
able component” can refer to software objects, routings, or
methods that may be executed on the computing system. The
different components, modules, engines, and services
described herein may be implemented as objects or processes
that execute on the computing system (e.g., as separate
threads). Such executable modules may be managed code 1n
the case of being executed 1n a managed environment in
which type safety i1s enforced, and 1n which processes are
allocated their own distinct memory objects. Such executable
modules may also be unmanaged code 1n the case of execut-
able modules being authored 1n native code such as C or C++.

In the description that follows, embodiments are described
with reference to acts that are performed by one or more
computing systems. If such acts are implemented 1n soitware,
one or more processors of the associated computing system
that performs the act direct the operation of the computing
system 1n response to having executed computer-executable
instructions. For example, such computer-executable instruc-
tions may be embodied on one or more computer-readable
media that form a computer program product. An example of
such an operation involves the manipulation of data. The
computer-executable instructions (and the manipulated data)
may be stored in the memory 104 of the computing system
100. Computing system 100 may also contain communica-
tion channels 108 that allow the computing system 100 to
communicate with other processors over, for example, net-
work 110.

Embodiments described herein may comprise or utilize a
special purpose or general-purpose computer including com-
puter hardware, such as, for example, one or more processors
and system memory, as discussed in greater detail below.
Embodiments described herein also include physical and
other computer-readable media for carrying or storing com-
puter-executable instructions and/or data structures. Such
computer-readable media can be any available media that can
be accessed by a general purpose or special purpose computer
system. Computer-readable media that store computer-ex-
ecutable 1nstructions are physical storage media. Computer-
readable media that carry computer-executable instructions
are transmission media. Thus, by way of example, and not
limitation, embodiments of the invention can comprise at
least two distinctly different kinds of computer-readable
media: computer storage media and transmission media.

Computer storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other tangible stor-
age medium which can be used to store desired program code
means 1n the form of computer-executable instructions or
data structures and which can be accessed by a general pur-
pose or special purpose computer.

A “network”™ 1

1s defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information 1s transierred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
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transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able 1nstructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
controller (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-
age media at a computer system. Thus, 1t should be under-
stood that computer storage media can be included in com-

puter system components that also (or even primarily) utilize
transmission media.

Computer-executable instructions comprise, for example,
istructions and data which, when executed at a processor,
cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain
function or group of functions. The computer executable
instructions may be, for example, binaries, mntermediate for-
mat 1nstructions such as assembly language, or even source
code. Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims i1s not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located 1n both local and remote memory storage devices.

Immutable Sharable Zero-Copy Bulk Data

A major challenge for supporting zero-copy has been the
I/0 1interfaces 1n traditional systems which are defined as copy
operations between different layers 1n a system. A read Appli-
cation Program Interface (API) accepts an application butifer
as mput and fills 1t with data from some data source. Similarly,
a write API takes an application bufler and writes 1ts content
into some data target. The semantics of the read/write APIs
grants the application full freedom to the buifer alignment,
allocation space and retention. This simple model has several
inherent limitations being that the model 1s unable to express
non-contiguous butlers or to reduce the number of data copy
operations.

Many operating systems support memory-mapped files as
a mechanism to share pages 1n the file system buffer cache
with applications and avoid the copy operations associated
with the read/write interface. Special APIs have been added to
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6

the network interface to directly send data from the file sys-
tem builer cache using file memory-mappings to speed up
network tratfic.

The memory-mapped file abstraction lacks support to hide
the underlying alignment and sparse layout of buifers and
requires applications to handle and manage the virtual map-
pings and logical data views directly. For example, an appli-
cation accessing a file at offset 10 needs to apply pointer
arithmetic on the mapping base virtual address to derive the
correct address. Extending the file while 1t 1s mapped requires
the application to manage additional views that may not nec-
essarily be contiguous in 1ts address space and cross view
accesses needs to be handled by the application.

Avoiding data copies through memory mapped files has
other drawbacks. Ensuring semantic consistency between
memory-mapped files and read/write operations requires
complex coordination between I/O, memory and file systems.
Memory-mapped I/O imposes the overhead of synchronous
completion since a page-fault miss on a virtual address that
maps to afileregion stalls the thread until the page 1s available
in physical memory.

Copy-on-write virtual memory techniques have also been
used to hide the cost of copy operations. These copy-on-write
techniques alias the application and butiler cache pages based
on the assumption that 1t 1s rare that applications modify input
builers 1n place. This gives the file system an opportunity to
cache the same physical pages without a copy. For some
workloads, this optimization can avoid the copy operation at
the price of considerable complexity especially when the
application and storage stacks are in different protection
domains. Other techniques such as virtual memory page-
remapping have been useful for network recetve paths under
certain conditions when application buffers are properly
aligned.

FI1G. 2 illustrates a flowchart of a method 200 for providing,
an 1immutable buffer. FIG. 3A illustrates an environment
300A 1n which a process of populating a buifer occurs. FIG.
3B illustrates the environment 3008 1n which the populated
butifer 1s made immutable. Accordingly, method 200 of FIG.
2 will now be described with frequent references to FIGS. 3A
and 3B. The environments 300A and 300B may occur within
the computing system 100 of FIG. 1, although not required.
The environments 300A and 300B may be distributed or
located on a single computing system.

The source data that 1s to be used to populate the butler 1s
first accessed by an acquiring computing entity (act 210). The
source data may be any data, but 1n one embodiment, the
source data includes large quantities of bulk data that require
significant computing resources 1n order to generate. In this
description and 1n the claims, a “computing entity” 1s any
component, module, method, function, process, processor, or
any combination thereof, that 1s able to process data in a
computing system. Such a computing entity may be distrib-
uted or reside on a single computer.

The acquiring computing entity may generate all or some
of the source data (act 211). Alternatively or 1n addition, the
acquiring computing entity may acquire all or some of the
source data from a data source (act 212). For istance, refer-
ring to FIG. 3A, the acquiring computing entity 320 acquires
(as represented by arrow 301) source data 311 from a data
source 310. The data source might be, for example, a network,
or a non-volatile storage device such as a disk.

The acquiring computing entity also acquires a bulifer (act
220). This buifer acquisition (220) 1s shown 1n parallel with
the acquiring of source data (act 210), as the very broadest
aspect of the principles described herein do not require either
act to occur first. However, 1n some systems, one may be
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required belfore the other and/or they acts may at least par-
tially occur concurrently. Referencing FIG. 3A, the acquiring
computing entity 320 acquires the buffer 330 to the extent that
the acquiring computing entity may then populate the butier
330 with data.

Regardless of whether the acquiring computing entity gen-
erates the source data, or recerves the source data from a data
source, or both, the acquiring computing entity populates the
butler with data (act 230). Referring to FIG. 3 A, for example,
the acquiring computing entity 320 populates (as represented
by arrow 302) the data 311 into the buiier 330.

The buttfer 1s then classified as immutable (act 240). FIG.
3B illustrates an environment 300B that 1s similar to the
environment 300A of FIG. 3A, except that data 311 1s shown
secured within the buffer 330, which 1s shown as having a
cross-hatched boundary 331 abstractly representing that the
butiler 330 1s now immutable. This classification protects the
data (e.g., data 311) populated within the immutable buffer
(e.g., bulfer 330 1n FIG. 3B) from changing during the life-
time of the immutable buffer, and also protects the immutable
bulfer from having its physical address changed during the
lifetime of the immutable butler. Because of this immutable
characteristic, access to the immutable data may be given to
an arbitrary number of computing entities without risk of
coniflict since each of those computing entities may only
observe the data.

In a native language environment (such as C or C++), this
immutability may be achieved by writing to a Memory Man-
agement Unit (MMU) of a processor to restrict the processor
from writing to certain ranges of memory. This can be quite
expensive, and the restriction on memory accesses are not
very granular, being achieved often at the relatively large page
level. Further, this can be an expensive operation, and does
not avoid circumstances 1n which copying is performed in
order to hide data from different levels at granularities smaller
than the page level.

In a managed environment (an environment that includes a
managed runtime), software 1s used to declare memory as
immutable, and to enforce the immutability. Furthermore, the
lifetime of a memory builer may be maintained through a
usage count, which increments when a new pointer to the
memory 1s given to an entity, and decremented when a pointer
to the memory 1s no longer being used by an entity. When the
use count returns to zero, the butfer 1s unreachable, and can be
reclaimed by the memory manager. In one embodiment, the
kernel grants authority to different entities to access the
memory and maintains a usage count, whereas a managed
runtime provides views on the immutable memory, enforces
immutability, and provides constraints on the data. More
regarding managed environments are described below with
respect to FI1G. 12.

FIG. 4 1llustrates a flowchart of a method for using the
immutable bufler. First, a view component offers tlexible
views on the immutable butier (act 401), and then provides
the views as appropriate to different consumers of the 1mmu-
table butler (act 402). The computing entity then may access
the immutable buffer only through its respective view (act
403). For instance, referencing the environment 500 of FIG.
5, a first computing entity 501 accesses (as represented by
arrow 521) the immutable butler 330 through a first view 511,
and a second computing entity 502 accesses (as represented
by arrow 522) the immutable bufier 330 through a second
view 512. The ellipses 513 show that this may continue for
more than just these two computing entities 301 and 502. The
views 511 and 512 may be different views, but may also be the
same view. Regardless, the view component 520 1s capable of
providing different views of the underlying immutable butier
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330. In this description, the terms “first” and “second” are
used merely to distinguish one 1tem from another, and do not
imply any sort of sequence, priority, position, or importance.

In some embodiments, the computing entities that con-
sume data from the immutable buffer are on different sides of
a protection or process boundary. For mstance, FIG. 3 1llus-
trates that the computing entities 501 and 502 that consume
data through their respective views 511 and 512 are actually
separated by boundary 330. For instance, the computing enti-
ties 501 and 502 may be distinct processes in which case the
boundary 530 represents the boundary between processes.
The boundary 530 may also be a protection boundary 1n
which case one may not provide data directly to the other
without copying. For instance, the computing entity 501
might be a kernel component within the operating system,
whereas the computing entity 502 might be a user mode
component such as an application component.

Typically, data 1s not shared across process and protection
boundaries unless the data 1s copied. Such copying can take a
significant amount of computing resources, especially if the
amount of data copied 1s very large, or 1f different portions of
the data are to be frequently shared across such boundaries.
The principles described herein provide a convenient and
flexible mechanism for sharing data across process and pro-
tection boundaries without copying. This thereby improves
the performance of the operating system.

The views provided by the view provider 520 may be fine
grained. For instance, suppose that the immutable data to be
read from the immutable buifer 1s network data. The various
layers of the protocol stack may each be interested in different
portions of that network data. The network level components
(such as an Internet Protocol component) may be interested in
the network level headers, whereas the application level com-
ponent may be simply interested in the raw payload. Between
these two layers are different components that are interested
in different portions of the network data.

The principles described herein may be effectively applied
to the processing of this network data without requiring the
network data be copied. For instance, the lowest level of the
protocol stack may be able to view the entire network packet.
That lowest level may process the outermost header of that
packet, and return a view definition to the next higher level
component 1n the protocol stack. The view definition defines
the entire scope of the network packet except for the outer
most packet. This second component provides the view defi-
nition to the view provider 520, which provides this view to
the second component. Thus, the lowest component sees the
entire packet, whereas the next component sees the same
packet without the outermost header. This was done without
copying data at all. Instead, the data stayed within the immu-
table buller. This may be repeated until the highest applica-
tion layer 1s provided with a view definition that defines only
the payload of the packet.

FIG. 6 illustrates a flowchart of a method 600 for commu-
nicating the immutable data from one computing entity to the
next. A first computing entity accesses a view definition (act
601), and provides that view definition to a view provider (act
602). The view provider then provides the view to the first
computing entity (act 603). After the first computing entity
performs 1ts logic (act 604), 1t may then provide another view
definition to the next computing entity (act 605) that 1s to
process the data from the immutable builer. The next com-
puting entity may then repeat this method 600, and thus the
process may continue through multiple layers of the system.

While the above describes consuming buil

ers/streams 1n a
zero-copy manner, the principles described above may also
apply to the production of buffers and streams by a data
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producer. In case of a data producer, there 1s also flexibility for
the application to send its own butlers (allocated separately)
or to ask the data producer to provide writable views (Spans)
into its own 1nternal bufler. This potentially not only elimi-
nates copying but also improves buffer utilization by elimi-
nating need to send half-filled butfers.

Zero-Copy Data Streaming

Bulk data movement through an operating system 1s often
modeled using a stream architecture. A stream represents a
logical conduit between a data source and a data consumer,
allowing the data produced by the source to be delivered to 1ts
destination. Streams typically implement butfering in order
to accommodate throughput incongruities between the pro-
ducer and consumer.

For instance, FIG. 7 illustrates a streaming environment
700 1n which a stream of data 711 1s provided (as represented
by arrow 701) from a stream source 710 1nto a stream buiier
720, and then provided (as represented by arrow 702) from
the butfer 720 to a stream consumer 730. The environment
700 also 1ncludes a stream manager 740 that performs flow
control. The stream manager 740 causes the stream portions
to be fed to the stream consumer 730 from the butier 720 (as
represented by arrow 702) at a satisfactory rate for the stream
consumer 730. Furthermore, the stream manager 730 per-
forms proper read ahead of the stream (as represented by
arrow 701) to ensure that the amount of stream portions
within the stream butifer 720 are not so few that the stream
consumer 730 1s at risk of running out of stream portions, and
not so many that an unnecessary amount of memory of the
stream buflfer 720 1s occupied. The stream manager 740 also
manages the lifetime of the stream portions within the stream
buffer 720 such that the memory occupied by the stream
portion may be reclaimed once the stream portion 1s con-
sumed.

Streams often logically cross multiple process and/or pro-
tection boundaries. For example, when an application reads
data from a file, the data 1s often read from the physical disk
under the control of a protected-mode device driver. The data
then passes through a file system layer, and then is finally
made available to application code. Often, layer crossing can
involve data copying which impacts performance and power
consumption.

However, the principles of the zero-copy immutable butier
described above may be used to formulate a stream buifer
(such as stream buifer 720) 1n which the need to copy stream
portions across processes or protection boundaries 1s elimi-
nated.

Specifically, suppose that an immutable buifer (such as that
described with respect to FIGS. 2 through 6) 1s established for
cach of the multiple stream portions in the stream. Further-
more, suppose that the method of FIG. 2 and the processes of
FIGS. 3A and 3B are performed to create an associated
immutable buffer containing a single stream portion, each
time a stream portion 1s received.

Such an immutable buffer allows any data, including
stream portions, to be passed through different layers and
components of the system, allowing each to have their own
specific view on the data, without requiring copying of the
data, as described with respect to general data in FIGS. 5 and
6. The stream builer 720 in that case would simply be a
collection of immutable buifers, each having a corresponding
stream portion contained as data therein. As each stream
portion 1s consumed, the memory of the corresponding
immutable buifer 1s allowed to be reclaimed. Thus, zero-copy
data streaming 1s possible using the principles described
herein.
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Zero-Copy Caching

Caching 1s an important aspect of any operating system’s
IO subsystem. Latency 1s reduced and effective throughput is
increased by leveraging the fact that data access patterns tend
to be clustered and the same data 1s often retrieved multiple
times. Traditional caching 1s done by having dedicated pools
of memory at varying layers of the operating system managed
independently each with orthogonal retention and replace-
ment policies. Accessing data from a cache often 1nvolves
copying data out of cache buflfers into application butfers.

The principles described above with respect to FIGS. 2
through 6 allow sharing of immutable buflers between pro-
cesses and across protection boundaries, through which tunc-
tion calls cannot be placed, but rather a much more expensive
inter-process communication or a cross protection boundary
communication must be used for communication across
boundaries.

These principles may be used to implement a cache. As
data flows from Direct Memory Access (DMA) operations,

the data 1s mtroduced into the system as immutable builers
(such as the immutable buffer 330 of FIGS. 3A, 3B and 5).

The immutable builers can be circulated around the system to
communicate the new data and can at the same time be snap-
shot 1nto a cache for later reuse. When a later request for the
data emerges, the same immutable bufler can be retrieved
from cache and reused—all without ever copying or indeed
even accessing the underlying data. This leads to substantial
eificiency gains.

For instance, one substantial efficiency gain that might
occur 1n a managed code system results from mitigation 1n
garbage collection costs in managed code systems. Copying
data requires allocations of heap memory, which increases the
amount of work required for garbage collectors. This
increased garbage collection work 1s especially onerous for
IO butfers as they are typically much larger than normal heap
objects. Though characterizing 10 bulfers as immutable
caches, the garbage collection required in a managed code
system 1s thus significantly reduced.

In accordance with the principles described herein, when a
computing entity holds a cache that 1s based on the underlying
data in the immutable butiler, the computing entity has a
“strong” reference to the underlying data in the immutable
builer, and may use that strong reference to access the data of
the immutable butier. The use of the term “strong™ to modily
reference 1s merely used to distinguish the reference from
what will be termed “soft” and “weak™ references below.
Likewise, the use of the term “weak™ and “soit” to modity
reference 1s merely used to distinguish the references from
cach other and from a strong reference.

So long as any entity has a strong reference to an 1immu-
table butfer within the cache, the immutable bufter and its
data 1s guaranteed to continue to exist for at least the duration
of the strong reference for each entity that has the strong
reference. A “soit” reference to an immutable buffer cannot
be used to access data from the immutable butier without first
converting the soft reference to a strong reference. A strong
reference may be converted to a soit reference once the data
access 1s completed.

The soft reference may be used as a form of memory
management hint. I there are only soft references to a given
immutable buifer by any computing entity and the system 1s
running low on memory, the system may choose to reclaim
the memory backing that immutable buifer. If this occurs,
then the next attempt to convert the soft reference 1nto a strong
reference will fail. The contents of the builer are lost and the
computing entity would have to re-generate the contents of
another immutable builer from the data source.
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This soft reference 1s a valuable way to use as much system
memory as possible for caches without requiring high accu-
racy for tuning the sizes of the caches in the system. For
example, a cache can choose to hold a large portion of 1ts data
as soft rather than strong references. The memory usage of
another process can then spike large enough to drive the
system to a low memory state. The system can then react
quickly and free up memory from these soit references with-
out needing to make any choices about how much memory to
give which process.

A computing entity may also hold a “weak” reference to a
given immutable bufler. As with a soft reference, a weak
reference must be converted to a “strong” reference to allow
access to the data within the immutable buffer. A strong
reference may also be converted into a weak reference. The
weak reference provides a second form of memory manage-
ment for these butlers. It 1s used to retain potential access to
an immutable bufler without causing the computing entity
that holds the weak reference to be charged with the memory
used by that buifer. If there are only weak references to a
given immutable bulfer by any process, then the underlying
buifer may be immediately released.

Weak references to immutable buffers may be used to
mitigate the cost of inter process and cross protection bound-
ary communications that would be required to retrieve the
strong reference to the immutable buffer from another pro-
cess that has a strong reference to the immutable butfer. That
1s, a cache of weak references could be created 1n one com-
puting entity (e.g., one process) to mitigate the costs of
retrieving those builers from another computing entity (e.g.,
another process), even 1f they were already cached by that
other computing entity.

FI1G. 9 1llustrates a flowchart of a method 900 for a second
computing entity to first read from a cache supported by a first
computing enftity. FIG. 10 illustrates a flowchart of a method
1000 for the second computing entity to subsequently read
from the cache supported by the first computing entity.
Together, the methods 900 and 1000 allow the second com-
puting entity to build a local cache based on the cache held by
the first computing entity. The methods 900 and 1000 may be
performed 1n the context of the environment 800 of FIG. 8,
and thus will be described with frequent reference to FIG. 8.

Referring first to the environment 800 of FIG. 8, a first
computing entity 810 has a cache 811 of data supported by the
immutable bufler 801. A second Computmg entity 820 1s to
acquire data from immutable builer also. The second com-
puting entity 820 1s also to maintain a cache 812 of data
derived from the immutable buffer 801. However, the cache
812 1s a weak cache 1n the sense that 1t may not wait for a
release command from the second computing entity before
ceasing to exist. Thus, the second computing entity 820 does
not have control over when its cache 812 1s released.

A boundary 830 (an inter processor or protection bound-
ary) 1s between the first computing entity 810 and the second
computing entity 820). In one example, implementation, sup-
pose the first computing entity is a file system, and the second
computing entity 1s a web server that serves up and/or pro-
cesses files provided by the file system.

When the first computing entity acquires the cache (e.g., a
file cache 1n the case of a file system), the first computing
entity gains faster and more local access to the data (hence the
term “cache’), but also acquires a strong reference to the
immutable buffer that supports the cache. The strong refer-
ence provides the guarantee that the immutable buifer (and 1ts
data) will continue to exist for at least as long as the first
computing system continues to hold the strong reference (and
potentially longer 1f other entities also hold strong references
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to the immutable butfer). In this state, we enter the description
of FIG. 9, which illustrates a method 900 for the second
computing entity (e.g., second computing entity 820) to 1ni-
tially read from the cache (e.g., cache 811) supported by the
first computing entity (e.g., {irst computing entity 810).

The second computing entity communicates with the first
computing entity to obtain a strong reference to the immu-
table data (act901). This 1s an inter process or cross protection
boundary communication, and thus 1s an expensive commu-
nication. However, 1t may well be the only cross boundary
communication required for so long as the immutable buifer
that supports the cache continues to exist. For instance, sup-
pose that the web server received a first request for a file
contained within the cache. This 1nitial request may cause the
web server to perform this initial communication and obtain
a strong reference to the immutable buffer from the file sys-
tem. Using this strong reference, the second computing entity
may read data from the immutable butter (act 902). Upon or
alter reading the data from the cache, the second computing
entity demotes the strong reference to the immutable buifer
that to a weak reference to the immutable buffer (act 903).

FIG. 10 illustrates a flowchart of a method 1000 for the
second computing entity to subsequently read from the cache
supported by the first computing entity 11 the cache of the
second computing entity does not have the data. Upon recerv-
ing a request to read from the cache while the weak reference
to the cache still exists (act 1001), the second computing
entity determines whether the immutable buffer still exists
(decision block 1002). If the immutable butter still exists
(““Yes” 1n decision block 1002), the second computing entity
converts 1ts weak reference to a strong reference to the immu-
table buifer (act 1011), reads from the buffer (act 1012) (and
locally caches that data in the local cache 812), and thereafter
converts the strong reference back to a weak reference (act
1013). This 1s done without performing an inter-process or
cross protection boundary commumnication with the first com-
putmg entlty Rather, the second computmg entity simply
acquires a view on the immutable butler, and reads from the
immutable butfer.

If the immutable buffer does not still exist (“INo” 1n deci-

s1ion block 1002). An inter-process or cross protection bound-
ary communication 1s performed with the first computing
entity to thereby cause the first computing entity to re-acquire
the data and recreate a new immutable buffer (act 1021).
Then, returning to the method 900, the second computing
entity may then gain a strong reference to a new immutable
butfer (act 901) and read from the butler (act 902).
In a caching system, 1t 1s often the case that the server (1.e.,
first computing entity) of the cache replaces an 1tem 1n that
cache (e.g., key X has its value changed from A to B). In this
weak/strong caching system described herein, once the value
A for key X 1s cached as weak, the client (i.e., the second
computing entity) never communicates with the server, and
so will not see that the value of X has been changed. The
client’s own copy of X has the value A due to some users
somewhere 1n the system, maintaining a strong reference to
that value. In some embodiments, this 1s addressed by mnvali-
dating all weak references to a given value. This imnvalidation
process flags the underlying immutable buffer such that a
weak to strong conversion 1s no longer possible. This forces
any weak caches to refetch the value for X, which will cause
the weak cache to detect the new value B.

The second computing entity may be viewed as having a
weak cache (one that may have to be rebuilt before the second
computing entity 1s done using the weak cache) that 1s dertved
from the strong cache of the first computing entity (one that
remains 1n place at the control of the first computing entity).
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Building this second “weak’ cache on top of another strong
cache raises some problems with the replacement (or evic-
tion) policy on the backing cache. Eviction refers to a mecha-
nism in which less used data (1.e., “cold” data) 1s removed (or
evicted) from the cache to make room for more frequently
used data (1.e., “hot” data). Eviction 1s based on statistics
regarding Ifrequency in which certain items of data are
accessed. The weak cache 812 and the strong cache 811 have
distinct statistics regarding frequency of access of cache por-
tions since they see different requests for data.

Specifically, the weak cache 812 will be used to serve
requests by the second computing entity 820 first before
falling back to the backing cache 811. This weak cache will
thus absorb all but the 1nitial references to hot data, hiding
their usefulness to the backing cache 811. Thus, when the
backing cache 811 receives requests for new items, without
addressing this, the backing cache might cause the data that 1s
“hot” according to the statistics of the weak cache 812, to
replace 1tems that are still being retained by the weak cache
812. This replacement may remove the last persistent strong/
soit reference to the underlying buitfer, releasing the buffer
corresponding to the weak reference in the weak cache. The
nextrequest for that item against the weak cache will then fail.

In accordance with embodiments described herein, this
problem 1s addressed by communicating the usefulness of the
hot data (as seen by the weak cache 812) to the backing cache
811. The system may provide this mechanism as a side effect
when the second computing entity converts a weak reference
for the data 1nto a strong reference for the data. The system
counts the number of times this occurs per underlying buifer
and exposes this count as a metadata property on the buifer
itself. The backing cache can then query this value and deter-
mine the number of references that have occurred between
any two points 1n time. This information can be used by the
backing cache’s replacement algorithm to keep that item alive
in both caches.

FI1G. 11 1llustrates a flowchart of a method 1100 for the first
computing entity (or the backing cache) to perform eviction.
First, the backing cache uses 1ts own statistics 1 order to
identily candidates for eviction (act 1101). The first backing
cache then confers with the second statistics of the weak
cache for those 1dentified candidates (act 1102). The eviction
decision regarding the identified candidates 1s then commiut-
ted (act 1103) atter having conferred with the second statistic
such that 11 the second statistic indicates more frequent access
of the i1dentified candidate, the identified candidate may be
kept within the cache for the time being.

This eviction policy allows for arbitrarily complicated
weak cache architectures. Due to the nature of the eviction
policy used by the strong cache, which counts weak to strong,
conversions ol a given builer, the source of that conversion 1s
not relevant. It 1s thus possible to have any number of weak
caches holding many independent weak references to the
same underlying builer, while having the same equivalent
eifect on the eviction policy of the strong cache. Furthermore,
this effect 1s the same even for architectures that have multiple
levels of nested weak caches based on a strong cache. The
caching system may thus be used with rich system designs.
For instance, a web server may be structured over a file system
on top of a log structured store. The strong cache would be at
the bottom 1n the log structured store. The file system would
have the first level of weak cache. The web server would have
the second level of weak cache. The same data item (e.g., a
portion of a file) may be held 1n all three caches.

These first three concepts (namely, Immutable Sharable
Zero-Copy Bulk Data, Zero-Copy Data Streaming, and Zero-
Copy Caching) may be applied 1n unmanaged code systems
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as well as managed code system. However, since the views
provided by managed systems may be create more quickly
and made much more fine-grained than those of unmanaged
systems, the principles may be most effectively used with
managed systems.

FIG. 12 illustrates an example managed code system 1200.
The managed system 1200 includes managed memory 1201.
The managed system 1200 has multiple managed code com-
ponents 1230, each having exclusive access to entity-specific
memory. For instance, the running managed code compo-
nents 1230 are illustrated as including seven components
1231 through 1237, though the ellipses 1238 represent great
flexibility 1n this number. For instance, the components 1231
through 1237 may be processes.

Each of the seven running components 1231 through 1237
has a corresponding entity-specific memory 1211 through
1217. A managed component may not access the entity-spe-
cific memory of another entity-specific memory. Thus, there
1s 1solation protection between entity-specific memory such
that only the corresponding managed component may access
that entity-specific memory. For instance, component 1231
accesses entity-specific memory portion 1211, but not entity-
specific memory portions 1212 through 1217; component
1232 accesses entity-specific memory portion 1212, but not
entity-specific memory portion 1211 or entity-specific
memory portions 1213 through 1217, and so forth.

The managed code memory 1210 also includes shared
memory 1219. This shared memory 1219 1s an example of the
immutable buffer 330 of FIGS. 3A, 3B and 5. That said, the
above described principles do not rely on a managed code
system at all. However, the final two concepts described
herein are limited to managed environments. A few further
clements of FIG. 12 will be described with respect to the
description of these final two concepts (namely, Uniform
Memory Access and Type-Sate Type Casting.

Uniform Memory Access

Memory in a managed language environment 1s a poten-
tially very dynamic thing. Objects are allocated out of a heap
and are managed by a garbage collector. Referencing FI1G. 12,
the managed system 1200 includes a garbage collector 1221.
Based on heuristics, the garbage collector regularly performs
maintenance of the heap by compacting objects together in
order to reclaim previously used space. Compacting objects
together implies that the memory address of an object 1s
essentially unstable, subject to change by the garbage collec-
tor. The garbage collector depends on particular code genera-
tion patterns and on support from the operating system to be
able to move objects 1n a way that 1s transparent to applica-
tion-level code.

An operating system’s 1/0O subsystem 1s responsible for
shuffling large quantities of data through system memory.
When reading, data 1s typically acquired from an external
device and put into memory through a DMA operation man-
aged by the device 1tsell with minimal interaction with the
processor. Similarly, when writing data out, DMA memory
operations can automatically read the content of memory.

DMA operations cannot contend with the content of
memory being relocated during the operation. Doing so
would require fine-grained coordination between the proces-
sor and the devices which would impact performance and
power elliciency dramatically. As a result of this constraint,
there are two broad options to support DMA 1n a managed
operating system:

Special pinning operations are used against regions of
memory to instruct the garbage collector not to relocate speci-
fied objects. This allows DMA operations to see a consistent
snapshot of affected memory while they execute.
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DMA operations occur 1n special memory regions which
are not subject to garbage collection.

The first approach can substantially hamper the efficiency
of the garbage collector as dealing with pinned regions of
memory complicates the compaction process and reduces its
elficiency. The second approach avoids that problem, but can
casily lead to excessive memory copying as specialized logic
1s needed to transfer data between normal memory regions
and the special DMA-irnendly memory regions.

A unified memory access architecture delivers a systematic
way to reference memory, whether 1t 1s normal managed
memory or whether 1t 1s special DMA-Iriendly memory
regions. This makes 1t possible for programmers to manipu-
late data in DMA-Iriendly memory regions directly in a com-
pletely safe way, avoiding both the need to pin objects and to
copy between normal memory and DMA-Iriendly memory.

In a managed language environment, bulk data 1s typically
held 1n arrays. The managed language environment (e.g.,
managed system 1200) directly understands arrays, allowing
access to mndividual array elements and ensuring program-
mers cannot exceed the bounds of the array. Being managed
by the language environment, arrays are constrained to be
located 1n the managed heap.

In the managed system 1200 of FIG. 12, the immutable
buffer 1219 1s located outside of the managed heap and so
under normal circumstances would not be directly accessible
from managed programs. Reading and writing from I1/0
memory would normally be done using a classic I/O package
with explicit read and write operations which induce implicit
copying between normal memory in the managed heap and
I/O memory.

The managed system includes an abstraction (referred to
herein as a “span’) which provides a mechanism to directly
access the immutable buffer 1219 from a managed code com-
ponent. Referencing FI1G. 12, the managed memory portion
1211 includes a variety of objects, including the abstractly
represented span abstraction 1240. Spans can safely be cre-
ated to provide direct access to any region of an I/O buller 1n
a manner very similar to how arrays work. Further, spans can
be constructed to reference managed memory. Software
abstractions built on top of spans can therefore be agnostic to
the location of the span’s underlying memory. This provides
the ultimate composition story, allowing abstractions to be
designed 1n a natural way to operate on managed memory
(e.g., memory portions 1211 through 1218) or the immutable
buffer 1219.

Spans are created by interacting with the underlying stor-
age for the span. For example, the immutable buffer 1219 may
provide method calls to return spans that reference the immu-
table buffers controlled by the span directly. Similarly, arrays
provide methods that return spans that point to them or por-
tions of them. Once a span has been materialized, 1t can be
passed around and used largely like arrays are used in normal
managed languages.

A particular subtlety with spans relates to the lifetime
management of the underlying storage. One of the primary
benefits of a managed programming environment 1s that the
garbage collector takes on the responsibility to detect when
objects are no longer referenced and their storage can be
recycled. This 1s what happens when arrays are no longer
usetul for example.

When the memory underlying a span 1s outside of the
normal garbage collected heap, then the lifetime of that
memory should be managed carefully such that spans created
that reference the memory do not outlive the memory buiier
itself. This can be arranged 1n a number of ways, such as by
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using reference counters on the underlying memory or
bounding the lifetime of spans themselves.

In one embodiment, a span object holds a specially-anno-
tated pointer to the region of memory it represents. The gar-
bage collector understands these special pointers and treats
them specially. During a garbage collection operation, 1f the
garbage collector encounters a special pointer 1t considers the
address that the pointer holds. If the garbage collector detects
that the pointer points outside of the managed heap, the gar-
bage collector 1gnores the pointer completely from that point
forward. I1 1nstead, the pointer 1s found to point within the
managed heap, the garbage collector treats the pointer as a
reference to a managed object and hence automatically
adjusts the pointer’s value 1n the eventuality that the under-
lying object 1s relocated.

Spans can be created to represent sub-regions of other
spans. This makes spans a very convenient way to carve out a
chunk from a bigger memory region 1n a safe and cheap way
without making copies. The resulting span looks like any
other span even though 1t 1s aliased to a subset of the memory
of another span.

Type-Sate Type Casting.

A primary role of managed programming languages is to
enforce type satety which prevents a program from taking an
arbitrary address in memory and manipulating it as an object.
For instance, the managed system 1200 of FIG. 12 includes a
type system 1222 that ensures type safety. All objects are
acquired explicitly and the address of each object 1s con-
trolled firmly by the garbage collector (e.g., garbage collector
1221). In such a system, memory not under the direct control
of the garbage collector cannot be used directly by application
code. Instead, memory ends up needing to be copied from the

special memory back mto memory controlled by the garbage
collector betfore i1t can be used, which 1s inefficient.

As data flows 1n and out of a system through DMA opera-
tions, the data manipulated by the DMA devices typically has
some 1nherent shape. For example, when writing data out
through DMA, some data structure 1n the garbage collected
heap typically holds the data that needs to be written out. A
“serialization” step 1s then used to transcribe the data 1in those
structures 1nto the shape needed for the DMA operation. This
serialization step 1s tedious, error prone, and 1netficient. Seri-
alization and deserialization are usually part and parcel of
managed programming languages.

By leveraging the span abstraction, a general-purpose
model enables programmers to directly interact with DMA
memory regions using object-oriented semantics. Special
type casting support makes 1t possible for the programmer to
view DMA memory regions as objects and hence directly
read and write the memory 1n a natural way, maximizing
eificiency, improving correctness, and simplifying the pro-
grammer’s task. The model extends beyond merely DMA
memory and supports extended type casting semantics for
normal garbage collected memory as well.

To maintain type safety, 1t 1s not possible nor desirable to
allow type casting between arbitrary types. Instead, specific
rules exist that constrain the set of allowed types that can be
involved 1n this extended type casting. The rules are fairly
broad however and end up working pertectly for the kind of
data usually mnvolved in DMA operations.

In a managed programming language, whenever memory
1s allocated 1t 1s assigned a given type. The type determines
the significance of different portion of the block of memory
and the operations that can be performed against the block of
memory. The type cannot be changed for the block of memory
until the memory becomes 1nactive and is recycled through a
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garbage collection process. At all times, the language envi-
ronment 1s responsible for allocating, typing, and recycling,
blocks of memory.

Type casting 1s the ability to treat some memory as a type
other than the one 1t 1s known to be by the managed environ-
ment. Type casting 1s common 1n native programming lan-
guage, but managed languages generally do not offer type
casting. Instead, managed environments provide type conver-
sion mechanisms that make 1t possible to copy one type of
value 1nto another type. For example, 1t 1s possible to convert
an mteger value to a tloating-point value. This 1s always done
through copying however—the original memory location
remains unchanged.

In accordance with the principles described herein, type
casting 1s introduced as a general-purpose facility in managed
languages. Restrictions are applied to ensure type safety 1s
preserved, as explained later.

In a managed operating system, memory used for I/O
operations must either be pinned objects or be regions of
memory dedicated to I/O. As mentioned previously, pinning,
objects in memory to prevent them from moving 1s expensive
and leads to many problems 1n a garbage collected environ-

ment. The principles described herein use dedicated 1/0O
memory in the guise of immutable butfers (such as the immu-
table buifer 330 of FIGS. 3A, 3B and 5).

I/O memory 1s outside of the reach of the managed memory
subsystem. The managed environment does not control the
type of this memory and hence 1t 1s not possible to directly
access this kind of memory from a managed program.
Instead, special connecting (1.e., glue) code would normally
be used 1n order to allow this memory to be read or written
using explicit calls. Accessing any kind of structured data
within these /O buflers mvolves tremendously inefficient
code, or 1nvolves copying data to and from the I/O memory
into the normal managed memory, which 1s also 1nefficient.

Consider an immutable buifer acquired from a network
device. In this butfer, there 1s a TCP header holding network-
ing protocol information. There are basically two ways that
the data 1n the TCP header can be used 1n a managed pro-
gramming language. The table below shows both approaches
and the steps mvolved 1n each.

Classic Managed Environment Type Casting

Determine the offset of
the TCP header in the butfer.
Cast the approprate section of

the immutable butfer to a TCP
header object.

Determine the offset of the TCP header in
the buffer.

For each field in the TCP header

Read the field through an API like
ReadInt32 or ReadIntl6.

Store the field into local temporary
storage.

When all fields are read, create a TCP
header object in the managed heap. This
once again involves explicitly copying
each field in the TCP header, this time
from local storage into heap storage.
Access the TCP header object to perform
whatever action 1s necessary.

Access the TCP header object
to perform whatever action
1S necessary.

Obtaiming a usable TCP header object 1s considerably
faster with type casting then 1t 1s with the traditional
approach. The new approach mimics what happens 1n anative
operating system, where pointer math 1s possible and 1s taken
advantage of frequently in this kind of scenario. Pointer math
1s not available 1n managed programming languages, but
type-sale type casting delivers the same functionality.

Variations are possible on the traditional approach, which
lead to more or less overhead. For example, 1t 1s possible that
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the memory builfer 1n question 1s directly available to the
programmer and so can be accessed more eificiently than by
using Read/Write methods. However, 1n that case the pro-
grammer 1s still responsible for turning a sequence of bytes
into a higher-level object which 1s tedious, error-prone, and
performs poorly.

What makes type casting possible and ensures that type
safety 1s preserved 1s that type casting 1s only possible with
types that are designed to allow 1t. In order to participate in
type casting, types: 1) are value types (as opposed to reference
types), 2) are composed only of other types which support
type casting, 3) are not be composed of references, 4) are
defined using specific memory layout, and 5) tolerate any bit
pattern 1n any of 1ts fields.

These restrictions mean that in order to be used for type
casting, a type cannot contain references to other objects. It
turns out that these restrictions perfectly describe the charac-
teristics of types defined to represent data formats like TCP
headers and a vast set of other such data structures.

As described, type-sate type casting can be used to read or
write to 1/0 builers which are located outside of the reach of
the managed memory environment, and can also be used to
view managed memory as a different type. In particular, this
technique 1s useful to view arrays of bytes as instances of one
or more richer types instead.

FIG. 13 depicts anormal managed array of bytes which has
two distinct spans pointing into i1t and allowing the applica-
tion to view portions of the array as different types. Any
number of spans can be created 1n this way, each with distinct
types. The spans can freely overlap, referencing potentially
the same region of memory as different types.

The rule that says any bit pattern must be tolerable in any of
its fields 1s important to the reliability of the model. When
using type casting, instances of otherwise normal-looking
objects are introduced into the environment without having
had the type constructor executed. Normally, a constructor
performs validation of input arguments and serves to ulti-
mately constrain the set of allowed values that make up an
object. But with type casting, 1t 1s possible to create an object
out of thin air by viewing an existing span of memory as 1t 1f
were a different type.

The traditional approach of copying data into a distinct
object 1n the managed heap provides an opportunity to vali-
date the data as 1t 1s pushed into the constructor of the man-
aged object. This means that in a real-world system, invalid
versions of the managed object never exist within the system,
the constructor ensures that only valid versions can be cre-
ated. Contrast this with type casting where any bit pattern
may appear. If there are values which are semantically
invalid, they cannot be detected since object construction
doesn’t take place.

The solution to the correctness 1ssue 1s to mtroduce an
additional abstraction layer in the software. In particular, 1f
we take the example of reading a TCP header again, you can
imagine that the developer has defined two distinct types:
RawTcpHeader and ValidTcpHeader.

The data 1n the input butier would be type cast to a Raw-
TcpHeader. Given that object, then a AcquireValidTcp-
Header method can be mvoked. This method would validate
the fields 1n the RawTcpHeader and would return a new
instance of ValidTcpHeader which would act as a trivial
wrapper around a RawTcpHeader and would tell the holder
that he’s got a guaranteed-valid header in hand. This 1s all
done without a copy, merely the creation of a pass-through
object which 1s the ValidTcpHeader value type.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential character-
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istics. The described embodiments are to be considered 1n all
respects only as 1llustrative and not restrictive. The scope of
the invention 1s, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed 1s:

1. A system comprising:

an immutable butfer that protects the data populated within
the immutable buifer from changing during the lifetime
of the immutable butfer, and also protects the immutable
butifer from having 1its physical address changed during
the lifetime of the immutable bufter;

a first computing entity that maintains a cache of the immu-
table buffer and has a strong reference to the immutable
builer, wherein so long as any entity has a strong refer-
ence to the immutable butffer, the immutable butfer is
guaranteed to continue to exist for at least the duration of
the strong reference for each entity that has the strong
reference; and

a second computing entity that communicates with the first
computing entity to obtain a particular strong reference
to the immutable bufier and thereafter read data from the
immutable butifer, wherein upon or after reading the data
from the cache, the second computing entity demotes the
particular strong reference to the immutable butifer to a
particular weak reference to the immutable builer,
wherein a weak reference to the immutable butier does
not guarantee that the immutable butfer will continue to
exist for the duration of the weak reference.

2. The system 1n accordance with claim 1, wherein function
calls cannot be placed between the first computing entity and
the second computing entity, but rather an inter-process com-
munication or a cross protection boundary communication 1s
used for the first computing entity and the second computing,
entity to communicate.

3. The system 1n accordance with claim 1, further compris-
ng:

a view provider configured to give a different view of the
immutable builer to the first computing entity and the
second computing entity.

4. The system 1n accordance with claim 1, whereupon upon
receiving a request to read from the immutable buifer while
the weak reference to the cache still exists, the second com-
puting enfity determines whether the immutable buffer still
exists, and 1f the immutable buftfer still exists, converts the
weak reference to the immutable builer to a strong reference
to the immutable buffer and reads the data without perform-
ing an inter-process or cross protection boundary communi-
cation with the first computing entity.

5. The system 1n accordance with claim 4, wherein 11 the
immutable buifer does not still exists, the second computing
entity performs an mter-process or cross protection boundary
communication with the first computing entity to thereby
cause the first computing entity to re-create the immutable
buffer and allowing the second computing entity to gain a
strong reference to the immutable buffer and read from the
immutable butfer.

6. The system 1n accordance with claim 1, wherein the first
computing entity maintains {irst statistics regarding fre-
quency of access of immutable bufiers within a cache, and
wherein the second computing entity maintains second sta-
tistics regarding frequency of access of immutable builers
within the cache, the first and second statistics being different.

7. The system 1n accordance with claim 6, wherein the first
computing entity 1s configured to perform the following 1n
order to perform eviction:
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an act of using the first statistics to identity candidates for

eviction amongst immutable butlers 1n the cache;

an act of conferring with the second statistics for at least the

1dentified candidates; and

an act of making an eviction decision regarding the 1den-

tified candidates with respect to each identified eviction
candidate after conferring with the second statistics such
that 1t the second statistics indicate more frequent access
of the identified candidate, the 1dentified candidate may
be kept within the cache for the time being.

8. The system 1n accordance with claim 1, wherein the
system 1s a managed code system.

9. The system 1n accordance with claim 1, wherein the
system 1s an unmanaged system.

10. A method for caching data from an immutable buifer,
the method comprising:

an act of a second computing entity obtaining a strong,

reference to an immutable buiifer to which a first com-
puting entity also has a strong reference in order to create
a cache at the first computing entity, the immutable
buffer protecting the data populated within the 1mmu-
table buffer from changing during the lifetime of the
immutable buifer, and also protects the immutable
butfer from having 1ts physical address changed during
the lifetime of the immutable butfer, wherein so long as
any entity has a strong reference to the immutable butfer,
the immutable buffer 1s guaranteed to continue to exist
for at least the duration of the strong reference for each
entity that has the strong reference; and

an act of the second computing entity obtaiming a particular

strong reference to the immutable buitfer;

while the second computing entity still has the particular

strong reference to the immutable builer, an act of read-
ing data from the immutable buifer,

upon or aiter reading the data from the cache, an act of the

second computing entity demoting the particular strong,
reference to the immutable butier to a weak reference to
the immutable buffer, wherein a weak reference to the
immutable builer does not guarantee that the immutable
butfer will continue to exist for the duration of the weak
reference.

11. The method in accordance with claim 10, wherein
function calls cannot be placed between the first computing
entity and the second computing entity, but rather an inter-
process communication or a cross protection boundary com-
munication 1s used for the first computing entity and the
second computing entity to communicate.

12. The method 1n accordance with claim 10, further com-
prising:

an act of receiving a request to read from the immutable

butfer.

13. The method 1n accordance with claim 12, whereupon
upon receiving the request to read from the immutable butier
while the weak reference to the cache still exists, the second
computing entity performs an act of determining whether the
immutable buffer still exists, and i1f the immutable bufier still
exi1sts, performs an act of converting the weak reference to the
immutable bufler to a strong reference to the immutable
builer and reads the data without performing an inter-process
or cross protection boundary communication with the first
computing entity.

14. The method 1n accordance with claim 13, wherein if the
immutable buifer does not still exists, the second computing
entity performs an inter-process or cross protection boundary
communication with the first computing entity to thereby
cause the first computing entity to re-create the immutable
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buffer and allowing the second computing entity to gain a
strong reference to the immutable bufier and read from the
immutable butfer.

15. The method 1n accordance with claim 1, wherein the
system 1s a managed code system.

16. A method for protecting data populated within an
immutable bufler from changing during the lifetime of the
immutable butifer, the method comprising:

protecting the immutable bufier from having its physical
address changed during the lifetime of the immutable
butter;

a first computing entity maintaining a cache of the immu-
table buifer and having a strong reference to the immu-
table builer, wherein so long as any entity has a strong
reference to the immutable butffer, the immutable butier
1s guaranteed to continue to exist for at least the duration
ol the strong reference for each entity that has the strong
reference; and

a second computing entity communicating with the first
computing entity to obtain a particular strong reference
to the immutable buffer and thereafter read data from the
immutable buffer, wherein upon or after reading the data
from the cache, the second computing entity demotes the
particular strong reference to the immutable buffer to a
particular weak reference to the immutable bulfer,
wherein a weak reference to the immutable bufler does
not guarantee that the immutable builer will continue to
exist for the duration of the weak reference.
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17. The method of claim 16, wherein function calls cannot
be placed between the first computing entity and the second
computing entity, but an inter-process communication or a
cross protection boundary communication 1s used for the first
computing entity and the second computing entity to com-
municate.

18. The method of claim 16, further comprising:

providing a different view of the immutable buffer to the

first computing entity and the second computing entity.

19. The method of claim 16, whereupon upon receving a
request to read from the immutable buffer while the weak
reference to the cache still exists, the second computing entity
determines whether the immutable butfer still exists, and 1f
the immutable butter still exists, converts the weak reference
to the immutable butler to a strong reference to the immutable
butiler and reads the data without performing an inter-process
or cross protection boundary communication with the first
computing enfity.

20. The method of claim 19, wherein if the immutable
builer does not still exists, the second computing entity per-
forms an 1nter-process or cross protection boundary commus-
nication with the first computing entity to thereby cause the
first computing entity to re-create the immutable buifer and
allowing the second computing entity to gain a strong refer-
ence to the immutable buffer and read from the immutable

butter.
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