US009311430B2
12 United States Patent (10) Patent No.: US 9,311,430 B2
Watanabe et al. 45) Date of Patent: Apr. 12, 2016
(54) LOG-LINEAR DIALOG MANAGER THAT (56) References Cited
DETERMINES EXPECTED REWARDS AND
USES HIDDEN STATES AND ACTIONS U.s. PALIENT DOCUMENTS
8,433,578 B2 4/2013 Willi t al.
(71)  Applicant: Mitsubishi Electric Research 20110010164 A1 12011 Williams et al
Laboratories, Inc., Cambridge, MA 2011/0137654 Al 6/2011 Williams et al.
(US) 2012/0022952 Al1* 1/2012 Cetin .....oovvvvnne. G06Q) 10/04
705/14.73
_ . s : _ 2012/0053945 Al 3/2012 Gupta et al.
(72) Inventors: Shinji Watansze, Arlington, MA (US); 2013/0159826 Al* 6/2013 MasoOn ......o....... GO6F 17/30873
Hao Tang, Chicago, IL (US) 715/205
2015/0025931 Al1* 1/2015 Li .o, G06Q 10/0633
(73) Assignee: Mitsubishi Electric Research 705/7.27
Laboratories, Inc., Cambridge, MA OTHER PUBLICATIONS
US
(US) Young et al. “Using POMDPS for Dialog Management,” Spoken
(*) Notice: Subject to any disclaimer, the term of this Language lechnology Workshop, 2006. IEEE, Dec. 10, 2006. pp.
‘ : . 8-13.
patent 1s extended or adjusted under 35 Yoshino et al. “Statistical Dialogur Management using Intention
U.S.C. 154(b) by 305 days. Dependency Graph.” International Joint Conference on Natural Lan-
guage Processing. Oct. 1, 2013. internet. https://www.merl.co/pub-
(21) Appl. No.: 14/106,968 lications/docs/TR2013-096.pdf. retrieved Feb. 16, 2015.
Williams et al. “Partially Observable Markov Decision Proceses for
(22) Filed: Dec. 16. 2013 Spoken Dialog Systems.” Computer Speech and Language, Elsevier,
’ London, GB. vol. 21, No, 2, Nov. 12, 2006.
(65) Prior Publication Data * cited by examiner
US 2015/0169553 Al Jun. 18, 2015 Primary Examiner — David Vincent
(74) Attorney, Agent, or Firm — Gene Vinokur, Dirk
(51) Int.CL Brinkman
GO6l’ 15/18 (2006.01)
GOGF 17/30 (2006.01) (57) ABSTRACT
GO6l’ 17/27 (2006.01) A dialog manager receives previous user actions and previous
GI10L 15722 (2006.01) observations and current observations. Previous and current
GI0L 15/18 (2013.01) user states, previous user actions, current user actions, future
572 U.S. CL system actions, an fure observations are othesized.
(52) y ! d fu b ! hypothesized
CPC GO6F 17/30976 (2013.01); GO6F 17/279 The user states, the user actions, and the user observations are
(2013.01); GO6F 17/2785 (2013.01); G10L hidden. A feature vector 1s extracted based on the user states,
15/22 (2013.01); GIOL 15/1822 (2013.01) the system actions, the user actions, and the observations. An
(58) Field of Classification Search expected reward of each current action is based on a log-linear

CPC ....... GO6N 99/005; G06Q 10/04; G10L 13/00

USPC e 706/12, 45
See application file for complete search history.

f,ﬂ-"” 101
\

[{Oh”‘:ot}

model using the feature vectors. Then, the current action that
has an optimal expected reward 1s outputted.

13 Claims, 5 Drawing Sheets
162

|

Y

¥ 3
:la()!*alt‘ e {15

{,-""“‘ ?Qg
6 tog-Linear Dislog Manager
i\ | {planning part}

scssssne O cosicsssmsssssssssmissns

156



US 9,311,430 B2

Sheet 1 of S

Apr. 12, 2016

U.S. Patent

PO} —

{(31ed dujuued)
jadeueial S0IRI( JBOUTT-S07




US 9,311,430 B2

Sheet 2 of S

Apr. 12, 2016

U.S. Patent

- jossaooud
{}1ed dupLiea)
iaujedy dojeiq iesur-don
| N N |




US 9,311,430 B2

Sheet 3 of 5

Apr. 12, 2016

U.S. Patent

£ b1

s,
E . 4
" "

_ :-r»:-.f‘\!;
n%.-a'*‘f

p
.,

7
L
£
%

S

%
\“:'*'-Lt. -""#

8

1 Z":"Z":"Z":'Z":"Z"':'Z"':'Z"':'Z"':'Z"'Z'Z":'Z":'Z"'Z'Z":*Z":"Z":'Z":"Z"':'Z":'Z"':"Z"':'Z"'Z'Z":'Z"':'Z"'Z'Z":*Z":"Z"'Z'Z":*Z"':'Z":'Z":*Z"':'Z"':'Z"':'Z"':'Z'Z'Z':"Z':'Z'Z'Z':*Z':'Z'Z':‘{'

o

wiy et L3 - 3._-... . ol Y
. . u.-.....«.....m.... ” L.....Jv w...&bm.
.- b 3 . w .

%




U.S. Patent Apr. 12, 2016 Sheet 4 of 5 US 9,311,430 B2

stale




U.S. Patent Apr. 12,2016 Sheet 5 of 5 US 9,311,430 B2

.||
It

P

T 1
ol "
L ] &

*. . . . )
LA | V)

,

[ ] k
:
o 1




US 9,311,430 B2

1

LOG-LINEAR DIALOG MANAGER THAT
DETERMINES EXPECTED REWARDS AND
USES HIDDEN STATES AND ACTIONS

FIELD OF THE INVENTION

This invention relates generally to text and speech process-
ing, and more particular to dialog mangers.

BACKGROUND OF THE INVENTION

A dialog manager 1s a system that accomplishes certain
tasks using a dialog, either spoken or text. The dialog alter-
nates between user and system turns. The dialog can include
sequences of user actions and system actions. The user
actions are hidden from the system. The system determines
the user actions from observations. The user has a changing,
state that 1s also hidden from the system. The system uses
planning to determine a next system action given previous
system actions and observations based on user speech or
texts. The planning 1s described below.

The dialog manager can be rule based, or use a statistical

framework, e.g., a Partially Observable Markov Decision
Process (POMDP). In a POMDP dialog system, the dialog 1s
represented by a set of random variables. At each turn, the
dialog including an observed variable representing what the
user said, a hidden state variable representing the progress of
the dialog so far, and a selected system action. The POMDP
model defines two probabilistic dependencies: the condi-
tional probability of the current state given the previous state
and system action; and the conditional probability of the
observation given the current state and previous system
action.

A reward function specifies, for each turn, a fitness crite-
rion as a function of the state and selected action for that turn.
(Given the reward function, it 1s possible to determine a policy
that provides the optimal system action given what 1s known
about the state distribution at the current time. This policy can
then be used to generate system actions in the course of a
dialog. Selecting system actions in order to maximize the
reward 1s called planning.

To have a working system, the model parameters that
define probabilities 1n the POMDP need to be estimated. This
estimation 1s called learning. The parameters are typically
estimated using a maximum likelithood (ML) criterion, rather
than using the reward function. For example, a maximum
likelihood dynamic Bayesian network (DBN) can be used. A
major problem with those approaches 1s that planning and
learning are optimized separately and independently using
different criteria. In addition, planning and learning are noto-
riously difficult optimization problems because inference
becomes intractable 1n variable spaces large enough to handle
real problems.

SUMMARY OF THE INVENTION

The embodiments of the invention provide text and spoken
dialog systems based on a statistical dialog framework. In
contrast with a generative model used 1 conventional
approaches, the invention uses a discriminative model to rep-
resent the relationship between system actions, observations,
and other information based on a log-linear model frame-
work. Then, the dialog manager outputs an appropriate sys-
tem action given a sequences ol previous observations and
system actions by directly optimizing an expected reward
using a belief propagation (BP) procedure.
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Because the mvention uses a log-linear model, various
teatures obtained during dialogs can be incorporated in the
model. The parameters 1n the log-linear model can be statis-
tically trained by using dialog data based on the belief propa-
gation procedure to improve performance using refined sys-
tem actions.

The embodiments provide a coherent system that has the
advantage of a consistent optimization criterion, and at the
same time 1s more efficient to optimize. The dialog system 1s
modeled using a log-linear probability distribution. Thus, the
invention provides a log-linear dialog manager.

Log-linear distributions have been, used to model
sequences since the introduction of conditional random fields
(CRF). Although log-linear models 1n general cannot repre-
sent all distribution families, their flexible use of feature
functions enables the models to express a wide family of
probabilistic models. Because the model 1s a Markov chain,
elficient procedures can be exploited, for optimization. In
particular, the embodiments optimize a sum of rewards along
the time axis.

To represent the space of possible states, user actions, and
system actions, context-five grammar (CFG) are used each of
which 1s based on a graph of semantic representations related
to the domain of the dialog system.

Instead of being simple multinomials, the random vari-
ables take values 1n the space of parse trees generated by the
CFGs. This provides a rich structure that enables the extrac-
tion of a wide range of features. Because of the flexible use of
features mherent 1 log-linear models, the features can be
designed to make the dialog system behave exactly like a
conventional rule-based dialog system as a special case. This
1s done by implementing the rules of the dialog system as
indicator-function features, and initializing the parameters,
such that the log-linear probability distributions correspond
to these rules.

BRIEF DESCRIPTION THE FIGURES

FIG. 1 1s a flow diagram of a planning part of a dialog
manager according to embodiments of the invention;

FIG. 2 1s a flow diagram of a learning part of a dialog
manager according to embodiments of the invention;

FIG. 3 1s an example parse tree according to embodiments
of the invention;

FIG. 4 1s a parse tree of an example state according to
embodiments of the invention; and

FIG. 5 15 a block diagram of example production rules for
the parse tree of FIG. 4.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS
Planning

As shown 1n FIGS. 1 and 2, the embodiments of our inven-
tion provide a log-linear dialog manager. The system includes
a planning part 100 and a learning part 200. The methods for
the two parts can be performed in processors 150 and 250
connected to memory and input/output interfaces by busses as
known 1n the art. Processors 150 and 250 can be combined.

System Model

Our probabilistic model has four variables at each time step
t. Two are observable variables: a system action a, 102 and an
observation o, 101. The other two are latent variables are
inferred: a user action u, 201 and the state s..

Each step of the dialog proceeds as follows. Based on all of
the previous system actions and previous observations up to
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time t-1, the system prompts the user with a query a,_;. The
response by the user 1s represented by o.. In one embodiment,
0, 1s a sequence of words spoken by the user. However, 1t 1s
understood that response can be typed text, or the response
can be entered into the system by other means.

The meaming of the response 1s represented by the user
action u, which can be inferred from the observation. The
new state s,, can be inferred, based on the system action a,_,
and user action u, and the previous state s,_,. In our system,
the state s, represents the user’s intention, although in general
it could also include additional contextual in formation.

Using subscripted colons to denote sequences, €.g.,
So.7=1S0s S{» - - - » Syt a dialog session of duration T is
represented by four variable sequences: s,.,a,.,70 .U, .

FIG. 3 shows the model for a dialog session as represented
by a factor graph, which for our log-linear model corresponds
to the following joint probability distribution over the vari-
ables:

(1)

p(So.T, do.T, UL.T, O1.T) =

1

T T
Z—gexp Z Qj:%ﬂf(»?n iy Stols Usr1) + Z Qgﬁﬂg(ﬂn 01)|,
+=0) =1 i

where Zg 1s a normalizing constant, ¢-and ¢, are vectors of
teature functions, and 0 .and 6, are vectors of the correspond-
ing model parameters, respectively.

At time t=1, s, ; and u, , are undefined, so as shown 1n
tactor f,. ot the factor graph. At time t=T we define ¢, as a
function of only its first two 1nputs. To simplily notation, we
also define the following vectors:

0,
O

Qr(Sry Qry Sely Uptl) (2)
, plI) = ,

g lits, 01)

I
ll

which enable us to rewrite equation (1) more succinctly as

(3)

T '
p(so.7, do.Ts UL.T» O1.T) = —€XP Z QT‘P(I‘) .
ZE t=0 i

(4)

R i
where Zy = E exp Z QT@(I) .
| =0 ]

0. T.40. T
H1.7.901.T

1s the partition function of p(s,. ~a,.7U;.70;. 7).

Variable Spaces

Welet S, U, A, and O represent the variable spaces, 1.e., the
set of all possible values for the variables s, u, a, and o,
respectively. Each observation 0eO can be waveforms, acous-
tic features, recognized texts, and/or linguistic features. We
use 0e0 to represent the mput sequence, and we define the
variable space O as the set of all sequences of words 1n a
vocabulary set V.

We define each of the variable spaces S, U, and A using a
context-free grammar (CFG) including a set of production
rules. Each variable space 1s defined as the set of all possible
parse trees that can be generated by 1ts CFG.

FIG. 5 shows some of the production rules in the CFG that
defines the variable space S. Each parse tree in S 1s a possible
value of the state s.. F1G. 5 shows one possible value for state
s, which one parse tree 1n S that was generated using the
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production rules shown i boldface in FIG. 4. In FIG. 4,
terminals are enclosed in quotation marks, while nonterma-

nals are not. The variable SADDRESSS can either be further
extended with other production rules or remain as a free
variable.

Features

As can be seen 1n the factor graph in FIG. 3 and 1n equation
(1), there are two types of factors in our model. The first,
denoted 1, models statistical dependencies between the pre-
vious and current state, the system action, and the user action.
The second, denoted g, models dependencies between
observed word sequences and their semantic interpretations.
For the variables whose spaces are defined using CFGs, we
treat each variable value (each parse tree) as a set of active
production rules. For example, the production rules that are
active 1n the parse tree of FIG. 5 are shown 1n boldface 1n the
production rules of FIG. 4.

Suppose G, G, and G, are the set of production rules in
the CFGs that define the variable spaces for S (states), U (user
actions), and A (system actions ), respectively. For factor g, we
associate each production rule in a user action with alanguage
model for the associated word sequences. Specifically, given
a user action u, and observation o,, we have features of the
form 1,., ., .. .., Which denotes an indicator function that
equals 1 11 and only i1 a particular production rule keGy,; 1s
active 1n the parse tree of user action u, and a particular bigram
w._, W, 1s present 1n the word sequence of observation o..

The language model for a production rule that appears
close to the root of the tree models a general class ol utterance,
whereas production rules that appear close to the leaves of the
tree are more specialized. For factor I, we can consider
production rules that co-occur. For example, the feature
Lies,  aes, Which concerns two particular production rules
k.k'eG., equals 1 1f and only 1 k 1s active 1n state s,_,;, and k'
1s active in state s.. Another type of feature type typically seen
in dialog systems 18 1., e je. , Which also requires that
production rule 1eG, 1s active in system action a, ;. This
feature indicates that a particular system action tends to
induce a particular state transition.

Planning and Learning,

The two basic problems a dialog manager needs to solve
are planning 100 and learning 200. We assume there 1s a
reward function r:SxA—R™ that assesses our model. We now
describe the planning and learning in terms of the reward
function.

Planning

Planning at time T 1s the problem of determining the opti-
mal system action a_, given all previous system actions a,.._,
and observations o, .. Suppose the dialog has a duration T. We
define the planning; problem as determining a_ to maximize
the expected reward E as an objective function

1 (5)

T+1

F
30:.T-91+1:T>
H1.T27+1:T

s -
Z F(Sh 'ﬂl‘) | to.r—1, Ol |-
=0 ]

The expectation 1s taken over all variables not given, 1.¢., all
states, all user actions, and all future system actions and
observations.

The objective function could be optimized exactly by
hypothesizing each action a_, determining the expected
reward given that action using the sum-product procedure,
and selecting the action that maximized expected reward.

However, for ease of implementation and speed, we instead
optimize the objectives variational lower bound,
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P i ( F(Sy, ) )TI (6)
ﬂﬂ:f—la {]l:'{' n

so.7 i 1T | oo YT+ 1)

H1.T:97+1:T

obtained from Jensen’s inequality, where the y, are variational
parameters such that 2 v =1. Although the v, can be optimized
using an expectation-maximization (EM) procedure, take
vy =1/(T+1) to further simplify the computation.

This product form has the nice property that the reward
factorizes with time. In other words, equation (6) can be
expanded to

L[ (50 @) \] 7
—exp s IQT@(I) +'}’r1Dg(;:T jl))]

|

where 7! 1s the partition function of p with a,.__,, 0, .. given.
Now, the optimal a_ can be determined by a conventional
sum-product procedure on the graphical model with an addi-
tional term for the reward.

First, we collect beliefs from both ends of the graphical
model to time T, and determining the a_ there that maximizes
equation (6). If we write out the belief propagation explicitly,
then 1t becomes a forward-backward procedure. For example,
the forward message

m o (Sp1)
T84

from factor node 1, to variable node s, _, 1s determined by the
following summations over of the messages

m (s;),and m (i)

m (ﬂf)a
5t 1 1= Jt

ar— f

with the (un-normalized) probability distribution of time

r(sy 'ﬂr"))
yor (T + 1)/

rtor+1 exp(@jzgaf(sr, Siils Oty Uy 1) + ¥y loOg

e, A
r(S,, Q)
m o (1) = E exp| > 0 o(t') +yylog ,
fi—=s,0 &l Lr"Z:D f ’yrf(T-l- l))
S0:t-4] 141>
“4.t21:+1
= m (a,) m (s;,) m (U)X
Z Lﬁfr Vsmfi eyt
N LY |
F(S P, ad !)
E’XP(QJI‘JQJ“(SH Stals Qps Ury1) + Yy lﬂg%! ET +Il) ]]
Here,

m ()
ar— fi r
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1s the message from variable node a, to factor node 1,. We can
use any distribution, including a uniform distribution where
we don not assume any prior distributions for

a; - m_ (S;)
5t f

1s the message from variable node s, to factor node

fe- m (s:)

5t ft

1s recursively determined from the previous step.

The message trom variable node u_, , to factor node {1, 1s

mo (U ).
17

message 1s determined from the distribution as

N

t
m f(”rﬂ) = E E’KP[Z QT@g(ﬂHla ) |-

o —>
t+1 ¢
f"':[} y.

Or+1

Thus, we avoid the summation over sequences

(> )

30:2:8] 141>
091 r+1

to determine the message

m (Sey1).
Tt=54]

The other messages can also be determined efliciently with-
out computing the summation over the sequences based on
the belief propagation methods.

Note that averaging over future actions using the sum-
product procedure 1s different from conventional POMDP
optimization, which seeks to maximize the reward over future
system actions. It 1s also possible to use a max-product pro-
cedure on a, while using sum-product on the other variables to
achieve maximization over future system actions. However,
the model 1tself contains a stochastic policy that provides a
predictive distribution over future actions.

Learning

The learning part 200 1s sumilar to planning, except that

instead of determining the optimal action we are interested 1n
determining the optimal model parameters. In other words,
we want to find 0 103 such that the expected reward

1 L ' (8)
RO)= E |77 ), risi adl aor ovr
HI.T - =0 -
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1s maximized given all system actions a,., and all observa-
tions 0,... Again the expectation 1s taken over all variables not
given, namely all states and all user actions. Similar to the
planning part, we could also use the variational lower bound
of equation (8) here.

We use gradient descent to optimize the learning objective.
In general, for any utility function v(x) and probability dis-
tribution of the form based on the log-linear model

| 9
p(x) = Z—Hexp(eﬂa(x))a where 7 = Z (6" o(x)), &)

the derivative of the expected utility 1s:

(10)

G
75 L] = Ecle(av(0)] = Ed[pIE[(x)];

Note that for each parameter 0, 1n 0, the dervative 1s the
covariance between the corresponding teature ¢, and the util-
ity. Thus, the parameters corresponding to features that are
positively correlated with utility are increased, while those
whose corresponding features are negatively correlated with
utility are decreased.

Applying this to our model gives:

IREO)
00

(T \( T
E
N (;; (1) [TD

_ /
“1.T7

(11)

T

2,

t=0)

F(STE 'ﬂl‘)
T+1 |

.
F(S:, ay)
T+1

. ]
_E th(r) E

SO:T> —0 30:7T>
€1.T - CH].T

/4

where expectations are determined using p(s,.U;.Aaq.
0,.r). In the general case, it may be hard to determine these

quantities. We use particle belief propagation.
Particle Belief Propagation

Because the variable spaces are too large to marginalize
over, we solve the problem using particle belief propagation.

Cons%der a message mﬁ*m@ I,LH). passing from factor node
f, to variable node s, ; by marginalizing overs,, a,, and u__:

mo (Si41) =
Tt=8:41

E Lm (a;) m (s;) m (”HI)XEKP(Q}EQJF(SnSHla Gy, Uri1))|-

¢+ ft 51— f i1 2 Jt
Sty ]

If we rewrite the sum with importance sampling, then we
obtain

m o (Sip1) =
ft=s141

E’KP(QJ}:@J"(&:‘ Sels s Uprl))
(U41) X ,
Hr(ﬂr)ﬂr(”r)ﬂf(rgr)

m (a;) m (s;) m
Eimel sioft w1k

for some sampling distribution mt(a), t.(u), m(s) over which
the expectation 1s determined.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

We can then approximate the expectation with a sum

m (Sip1) =
Tt=5:41

N
1
N
=1 -

(i) (1) ) ]
_ . . exp(é’}gﬂf(»ﬁr » St+15 Uy a”r+l))
m @) om (s m )%

ar— It st Jt iy =01 7T (af) i d (uf))frr (55”)
(b (1 NY (N) (N
over samples {(sﬁ ), ag ), uiﬁl), e (55 ),, aﬁ ), ufurf 1.

Although the invention has been described by way of
examples of preferred embodiments, 1t 1s to be understood
that various other adaptations and modifications can be made
within the spirit and scope of the invention. Therefore, 1t 1s the
object of the appended claims to cover all such variations and
modifications as come within the true spirit and scope of the
ivention.

We claim:
1. A dialog manager comprising the steps of:
recerving previous user actions and previous observations
and current observations;
hypothesizing previous and current user states, previous
user actions, current user actions, future system actions,
and future observations, wherein the user states, the user
actions, and the user observations are hidden;
extracting a feature vector based on the user states, the
system actions, the user actions, and the observations;
determining an expected reward of each current action
based on a log-linear model using the feature vectors;
and
outputting the current action that has an optimal expected
reward, wherein the steps are performed 1n a processor.
2. The dialog manager of claim 1, wherein a probabilistic
model has four variables at each time step t, including two
observable variables: the system action a , the observation o,,
and two latent variables: the user action u, and the user state s,
3. The method of claim 2, wherein a dialog session of
duration T 1s represented by four variable sequences
50:750: 750 1: 15Uy . 7
4. The method of claim 3, wherein the dialog session 1s
represented by a factor graph, which corresponds to a joint
probability distribution

p(so.T, Go.T» U1.T» O1.T) =

1 T

- _
Z—gexp Z Qj:c,of(sr, Qry Stols Usr] ) + Z Qgsﬂg(ﬂr, 0t) |,
| =0 t=1 i

where Zg 1s a normalizing constant, ¢ -and ¢, are the feature
vectors, and 0 -and 0, vectors of corresponding model param-
eters, respectively.

5. The method of claim 1, wherein the observations are
spoken words or text.

6. The method of claim 3, wherein S, U, A, and O represent
the variable spaces that 1s a set of all possible values for the
variables s, u, a,, and o, respectively.

7. The method of claim 6, further comprising:

defining the variable spaces S, U, and A using a context-

free grammar (CFG) including a set of production rules.

8. The method of claim 7, wherein each variable space 1s
defined as a set of all possible parse trees that can be generated

by the CFG.
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9. The method of claim 3, wherein a planning part of the
dialog manger determines an optimal system action a_, given
all previous system actions a,.._; and previous observations
0 ...

10. The method of claim 3, further comprising: 5

maximizing an objective function

1 T
E T IZ F(Sh al‘) | 'ﬂﬂ:f—la GIZT 10
so.7 O+ 1.7 £+ 14
.71+ 1.T )

to determine the expected reward.

11. The method of claim 10, further comprising;:

optimizing a variational lower bound on the objective func-

tion.

12. The method of claim 10, wherein the objective, func-
tion optimized using a gradient descent.

13. The method of claim 10, wherein the objective function
1s optimized using particle belief belief propagation.

15
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