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1
VERTEX ORDER IN A TESSELLATION UNIT

TECHNICAL FIELD

This disclosure relates to techniques for video processing,
and more specifically to video processing using tessellated
primitives.

BACKGROUND

Computing devices are increasingly requiring advanced
two-dimensional (2D) and three-dimensional (3D) graphics
applications. For example, computing devices are increas-
ingly offering games, character animations, graphical menu
systems and other applications that require advanced graph-
ics rendering. This advanced graphics rendering, especially
with 3D graphics, involves a substantial amount of data pro-
cessing. The quality of the advanced graphics rendering may
be limited by the amount of processing resources, the capa-
bility of the available processing resources, the amount of
available power and the like.

For example, applications requiring advanced graphics
rendering at a high rendering rate, e.g., measured as frames
per second, may place a significant strain on the available
computing resources. The strain on the available computing
resources may result in a reduced performance 1n other appli-
cations, low quality graphics rendering, or both due to the
heavy load placed on the computing resources. In the context
of mobile computing devices, such as personal digital assis-
tants (PDAs), wireless communication devices, global posi-
tioming devices and the like, the computationally intensive
data processing required for graphics rendering may consume
a significant amount of the available power of the mobile
computing device.

A multi-media processor may include a general-purpose
central processing unit (CPU) coupled to a graphics process-

ing unit (GPU). The GPU 1s dedicated to perform graphics

rendering operations to display computerized graphics on a
display. GPUs are built with a highly-parallel structure that
provides more ellicient processing than conventional, gen-
eral-purpose CPUs for a range of complex graphic-related
algorithms. When the graphic-related algorithms executing
on the CPU requires graphics processing, the CPU tessellates
the graphics and provides the tessellations to the GPU for
rendering to the display. The highly parallel nature of the
GPU allows the GPU to create complex, three-dimensional
images on the display more quickly than drawing the images
directly to the display with the CPU. GPUs may be used 1n a
wide variety of applications, and are very common 1n graphic-
intensive applications, such as video games applications,
complex graphical user interface applications, computer-
aided design programs for engineering or artistic applica-
tions, or any other type of software application that uses 2D or
3D graphics.

Modern GPU architectures may include a tessellation
stage. The tessellation stage may be hardware within the GPU
and may be configured to perform specific fixed functions. As
one example, the tessellation stage of the GPU may tessellate
Quad or Triangle domains into smaller triangles. The domain
may be considered as a portion of the image, and may include
four sides (quad domain) or three sides (triangle domain).
Vertices are buffered in a vertex reuse butter of limited size,
and the connectivity information for triangles 1s outputted.
Due to the limited size of the vertex reuse butler, some ver-
tices need to be recalculated as the connectivity information
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comes 1. Some example approaches produce around 1 primi-
tive per clock cycle. This 1s not necessarily the case for all
implementations, however.

SUMMARY

In general, the techniques described 1n this disclosure are
directed to determining coordinates for points along first and
second portions of an edge of a ring within a domain used for
tessellating. In an example, a point generator, for example,
located 1n a tessellator, may process a domain by following a
sequence or order by which the tessellation triangles are
calculated for a given tessellation level. The ordering of the
primitive output from the tessellation unit may affect the
vertex reuse at the subsequent stage. Accordingly, the tech-
niques may select orderings (sometimes referred to as walk-
ing ) that allow for reuse of the vertexes within the vertex reuse
builer size limit. As described herein, walking may be per-
formed such that calculated vertex information may be
reused.

Various systems, methods, and devices described herein
provide for a changed order of output primitives to etliciently
utilize the vertex reuse builer as to mimmize the number of
times coordinates of a vertex need to be calculated. This may
decrease the number of domain shader invocations. The
domain shader turns coordinates of a vertex into something
tangible (such as, a point 1n 3-D space) for use downstream
from the domain shader. Decreasing the number of domain
shader 1nvocations may save power and increase perfor-
mance.

In one example, the disclosure described a tessellation unit
for tessellating a domain, wherein the tessellation umit divides
the domain 1nto a plurality of portions, including a first por-
tion. The tessellation unit determines coordinates for vertices
for a first set of shapes that reside within the first portion,
wherein each shape of the first set of shapes includes at least
one vertex on a first edge of the first portion. After determin-
ing coordinates for the vertices for the first set of shapes,
determine coordinates for vertices for a second set of shapes
that reside within the first portion. Each shape of the second
set of shapes shares at least one vertex with at least one shape
of the first set of shapes. Additionally, none of the shapes of
the second set of shapes includes a vertex on the first edge of
the first portion.

In another example, the disclosure described a method of
tessellating a domain including dividing the domain 1nto a
plurality of portions, including a first portion. The method
also determines coordinates for vertices for a first set of
shapes that reside within the first portion, wherein each shape
of the first set of shapes includes at least one vertex on a first
edge of the first portion. After determining coordinates for the
vertices for the first set of shapes, determining coordinates for
vertices for a second set of shapes that reside within the first
portion. Each shape of the second set of shapes shares at least
one vertex with at least one shape of the first set of shapes.
Additionally, none of the shapes of the second set of shapes
includes a vertex on the first edge of the first portion.

In another example, the disclosure described a tessellation
unit for tessellating a domain, the tessellation unit including
means for dividing the domain into a plurality of portions,
including a first portion. The tessellation unit further includes
means for determining coordinates for vertices for a first set
of shapes that reside within the first portion, wherein each
shape of the first set of shapes includes at least one vertex on
a first edge of the first portion. After determining coordinates
for the vertices for the first set of shapes, means for determin-
ing coordinates for vertices for a second set of shapes that




US 9,305,397 B2

3

reside within the first portion. Each shape of the second set of
shapes shares at least one vertex with at least one shape of the

first set of shapes. None of the shapes of the second set of
shapes includes a vertex on the first edge of the first portion.

In another example, the disclosure described a non-transi- 3
tory computer-readable medium comprising instructions that
when executed 1n a sink device cause a programmable pro-
cessor to tessellating a domain by performing the following
steps. The processor divides the domain 1nto a plurality of
portions, including a first portion. The processor determines 10
coordinates for vertices for a first set of shapes that reside
within the first portion, wherein each shape of the first set of
shapes includes at least one vertex on a first edge of the first
portion. After determining coordinates for the vertices for the
first set of shapes, determine coordinates for vertices for a 15
second set of shapes that reside within the first portion. Each
shape of the second set of shapes shares at least one vertex
with at least one shape of the first set of shapes. None of the
shapes of the second set of shapes includes a vertex on the first
edge of the first portion. 20

In another example, the disclosure describes a device
including a central processing unit (CPU) and a graphics
processing unit (GPU). The GPU includes a tessellation unit
for tessellating a domain. The tessellation unit 1s configured
to divide the domain into a plurality of portions, including a 25
first portion. The tessellation unit 1s also configured to deter-
mine coordinates for vertices for a first set of shapes that
reside within the first portion, wherein each shape of the first
set of shapes includes at least one vertex on a {irst edge of the
first portion. After determining coordinates for the vertices 30
tor the first set of shapes, determine coordinates for vertices
for a second set of shapes that reside within the first portion.
Each shape of the second set of shapes shares at least one
vertex with at least one shape of the first set of shapes. None
of the shapes of the second set of shapes includes a vertex on 35
the first edge of the first portion.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims. 40

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram illustrating an example of a
graphics processing unit (GPU) that may implement an 45
example of a graphics processing pipeline in accordance with
one or more examples described 1n this disclosure.

FI1G. 2 1s a block diagram illustrating another example of a
GPU that may implement another example of a graphics
processing pipeline in accordance with one or more examples 50
described in this disclosure.

FIG. 3 1s a diagram 1illustrating an example technique of
outputting vertices for tessellation.

FIG. 4 1s a diagram 1llustrating points that may need to be
recalculated in the technique 1illustrated in FIG. 3. 55
FIGS. 5A and 5B are graphical diagrams illustrating a
domain divided into a plurality of primitives in accordance

with one or more examples described 1n this disclosure.

FIG. 6 1s a block diagram illustrating an example of a
tessellation unit connected to a vertex reuse builer in accor- 60
dance with one or more examples described in this disclosure.

FIG. 7 1s a diagram 1llustrating an example technique for
outputting vertices of a quad domain 1n accordance with one
or more examples described 1n this disclosure.

FIG. 8 1s a diagram 1llustrating an example technique for 65
outputting vertices of a triangle domain 1n accordance with
one or more examples described 1n this disclosure.
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FIG. 9 1s a diagram 1illustrating another example technique
for outputting vertices of a quad domain in accordance with
one or more examples described 1n this disclosure.

FIG. 10 1s a diagram illustrating another example tech-
nique for outputting vertices of a quad domain 1n accordance
with one or more examples described in this disclosure.

FIG. 11 1s a diagram 1llustrating an example technique for
a triangle domain having an edge with an odd number of
segments 1n accordance with one or more examples described
in this disclosure.

FIG. 12 1s a diagram 1llustrating an example technique for
a quad domain having an edge with an odd number of seg-
ments 1n accordance with one or more examples described in
this disclosure.

FIG. 13 1s a flow chart illustrating an example method of
tessellating a domain in accordance with one or more
examples described in this disclosure.

FIG. 14 1s a diagram 1llustrating a comparison between an
example algorithm 1n accordance with one or more examples
described in this disclosure to other possible walking
schemes.

FIG. 15 1s a diagram 1illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described in this disclosure to other possible
walking schemes.

FIG. 16 1s a diagram illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described in this disclosure to other possible
walking schemes.

FIG. 17 1s a diagram 1illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described in this disclosure to other possible
walking schemes.

FIG. 18 1s a diagram 1illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described in this disclosure to other possible
walking schemes.

DETAILED DESCRIPTION

Modern mobile devices, such as laptop computer, tablet
computers, smartphones, and digital media players, may
include a CPU (Central Processing Unit), a graphics process-
ing unit (GPU) and system memory. When rendering graph-
ics as part of executing an application, the CPU transmits
instructions and graphics data to the GPU. In some examples,
the graphics data may be 1n the form of vertices, which may
comprise one or more data structures that describes a point 1n
2D or 3D space.

The application executing on the CPU may communicate
with the GPU in accordance with an application program-
ming interface (API). For instance, the application may com-
municate with the GPU in accordance with the DirectX® API
developed by Microsolft® or the OpenGL® API developed by
the Khronos Group, as two examples. For purposes of 1llus-
tration and to ease with understanding, the techniques
described 1n this disclosure are generally described in the
context of the DirectX and OpenGL APIs. However, aspects
of this disclosure should not be considered limited to the
DirectX and OpenGL APIs, and the techniques described 1n
this disclosure may be extended to other APIs as well.

DirectX and OpenGL each define graphics processing
pipelines that are to be implemented by a GPU. These graph-
ics processing pipelines may include a combination of pro-
grammable stages, as well as fixed-function stages. Some
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recent versions of the APIs, such as the Direct3D 11 API and
the OpenGL 4.x API, include a tessellation process that 1s to

be performed by the GPU.

The tessellation process refers to dividing a portion (re-
terred to as domain) of a surface of an object into a plurality
of smaller portions, and interconnecting the smaller portions
together. This results 1n a more highly detailed surface, as
compared to the surface prior to tessellation. Tessellation
allows the application executing on the CPU to define the
surface with low resolution, which may require few points,
and allows the GPU to generate a higher resolution surface.

For example, the tessellation stage may be a hardware unit
that divides a domain into a plurality of triangles. The domain
shader may then take the vertices of the triangles 1n the
domain and convert the vertices 1nto a patch. This conversion
ol a surface into a plurality of primitives results in a more
detailed surface. The GPU may recetve mformation for a
coarse surface, and generate a high resolution surface, rather
than recerving information for the high resolution surface.
Receiving information for the high resolution surface, rather
than the coarse surface, may be bandwidth ineflicient because
the amount of information needed to define the high resolu-
tion surface may be much greater than the amount of 1nfor-
mation needed to define coarse resolution surface. As an
example, the tessellation stage of the GPU may receive a
domain. The tessellation stage of the GPU may divide the
domain into smaller triangles, as one example. When the
smaller triangles are connected together the resulting 1mage
portion may appear more detailed than the original 1image
portion. In accordance with techniques described 1n this dis-
closure, the dividing of the domain 1nto smaller triangles and
the subsequent connection of the smaller triangles may be
considered as tessellation.

With tessellation, computation efficiency may be realized
because the application executing on the CPU may not need
to generate the higher resolution surface, and may instead
offload the generation the higher resolution surface to the
GPU. Furthermore, bandwidth efficiency may also be real-
1zed because the CPU may need to transmit information for
tewer points of the surface because the low resolution surface
includes fewer points as compared to the higher resolution
surface, and the GPU may need to retrieve fewer points of the
surface.

As described above, the GPU applies the tessellation pro-
cess to a patch. A patch may be considered as a specialized
type ol a primitive. A patch 1s defined by one or more control
points that together form a portion of a surface. For example,
an object, such as a sphere, may be divided into a plurality of
surfaces. In this example, the surfaces may be curved surfaces
that, when combined, form the sphere. Each one of the sur-
faces may be divided into one or more patches, where each of
the patches 1s defined by one or more control points.

Generally, a tessellation unit, such as tessellation stage
124, may divide the domain into a plurality of portions,
including a first portion. The tessellation unit may determine
coordinates for vertices for a first set of shapes that reside
within the first portion, wherein each shape of the first set of
shapes includes at least one vertex on a first edge of the first
portion. A point generator, for example, located 1n a tessella-
tor, 1.¢. tessellation unit, may process a domain by “walking”™
“Walking” indicates a sequence or order by which the tessel-
lation triangles are calculated for a given tessellation level.
The ordering of the primitive output from the tessellation unit
may aifect the vertex reuse at the subsequent stage. Accord-
ingly, orderings may be selected that allow for reuse of the
vertexes within the vertex reuse butler size limit As described
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herein, walking may be performed such that calculated vertex
information may be reused to minimize executions of a
domain shader.

Various systems, methods, and devices described herein
provide for a changed order of output primitives to efﬁciently
utilize the vertex reuse buflfer as to minimize vertex misses.
This may decrease the number of domain shader invocations.
The domain shader takes vertices of triangles 1n the domain
and converts the vertices into vertices of a patch for use
downstream from the domain shader. Decreasing the number
of domain shader imnvocations may save power and increase
performance.

When determining an ordering of the primitives output
from the tessellation unit, the following may be considered,
for example, (1) the current tessellator speed, which may be
one primitive per clock cycle may generally need to be pre-
served, (2) the algorithm should not be too complex, and (3)
it may be preferable that changes are only made 1n the tessel-
lator unit. It some examples no change may be made to the
reuse logic. The reuse logic 1s a series of hardware compara-
tors, e.g., exclusive-OR gates (XOR gates), that may be used
to determine 11 vertex information needed 1s stored in the
vertex reuse butler.

Generally, reuse may be accomplished by dividing a
domain 1nto smaller and smaller portions or sub-portions
until a number of triangles can be “walked” as one set without
over tlowing the vertex reuse builer. For example, a portion or
sub-portion may have a small enough number of triangles to
allow the entire portion or sub-portion to be walked without
overflowing the vertex reuse butlfer. It will be understood that,
although a triangle has three vertices, because of vertex shar-
ing between triangles, the total number of vertices that need to
be stored will generally not be three times the number of
triangles 1n a portion or sub-portion. Additionally, 1t will also
be understood that some vertices 1n a portion or sub-portion
may be overwritten without requiring a subsequent domain
shader 1nvocation, e.g., when the vertex information for that
vertex 1s no longer needed. In some examples, the techniques
assume a vertex reuse buller with thirty-two sets of storage
locations, however the techniques described 1n this disclosure
are not limited to vertex reuse butilers with thirty-two set of
storage locations. Alternatively, a portion or sub-portion may
be larger than, e.g., thirty-two sets of vertex information, but
the path walked may be arranged such that one or more reuses
may occur. For example, 1t may be possible to select a path to
walk such that all needed reuses occur before an over write. In
other cases, 1t may be advantageous to select a path that
allows some over writes to occur while reusing at least a
portion of the vertex data stored 1n the vertex reuse buifer.

The control points may be defined by coordinates (e.g., x
and v coordinates for two-dimensional patches or X, y, and z
coordinates for three-dimensional patches), and the control
points may be considered as vertices of the patch. There may
be any number of control points 1n a patch. For instance, in
some examples, the number of control points in a patch may
be between one control point up to thirty-two control points.
The number of control points in a patch may be fixed or user
defined.

Unlike other primitive types, the control points within the
patches may be connected to one another 1n any way. In other
words, there 1s no predefined way 1n which the control points
ol the patches are connected. For example, a standard triangle
primitive includes three vertices, and the primitive 1s defined
with a specific way in which the three vertices are connected
with one another to form the triangle. The control points, on
the other hand, may not need to be connected 1n any specific
way to form a shape. Rather, as one example, some control
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points 1n a patch may be connected with one another to form
a triangle, other control points 1n the same patch may be
connected with one another to form a rectangle, and yet other
control points 1n the same patch may be connected with one
another to form an octagon. As another example, 1t may be
possible that the control points are connected with another to
form the same type of shapes as well (e.g., connected to only
form a plurality of triangles).

The control points that define a patch of a surface may
define a low resolution surface. With the tessellation process,
additional detail 1s added to create a higher resolution surface.
For example, referring back to the example of the sphere. If
only the control points were used to form the sphere, the
sphere would appear jaggy with stair step like points, rather
than a smooth curved surface. After tessellation, additional
points are added such that when these points are connected,
the sphere appears as 11 1t 1s a smooth sphere.

The tessellation process, 1n accordance with the both the
DirectX API and the OpenGL 4.x API, includes two shaders
and a fixed-function unit. A shader 1s a software application
that executes on a programmable shader core of the GPU, and
provides substantial functional flexibility. For example, a
shader may be used to calculate rendering effects on graphics
hardware with a high degree of flexibility. The fixed-function
unit 1s a hardwired logic unit that performs fixed functions,
and may not provide functional flexibility. However, it may be
possible to implement the functions of the fixed-function unit
using a programmable shader coder to provide additional
functional flexibility. Solely for purposes of illustration, the
functions described 1n this disclosure for the fixed-function
unit are described with a fixed-function unit that provides
limited functional flexibility.

In the DirectX API, a graphics processing pipeline that 1s
configured to implement the tessellation process includes a
hull-shader stage coupled to a tessellation stage, which 1s
coupled to a domain-shader stage. The hull-shader stage and
the domain-shader stage in the DirectX API may form the two
shaders of the tessellation process, and the tessellation stage
may form the fixed-function unit of the tessellation process.
The other stages 1n the graphics processing pipeline are simi-
lar to those 1n DirectX APIs that do not implement the tessel-
lation process.

In the OpenGL 4.x API, a graphics processing pipeline that
1s configured to implement the tessellation process includes a
tessellation control shader coupled to a primitive generator,
which 1s coupled to a tessellation evaluation shader. The
tessellation control shader and the tessellation evaluation
shader 1n OpenGL 4.x may form the two shaders of the
tessellation process, and the primitive generator may form the
fixed-function unit of the tessellation process. The other
stages 1n the graphics processing pipeline may be similar to
those 1n OpenGL APIs that do not implement the tessellation
process.

FIG. 1 1s a block diagram illustrating an example of a
graphics processing unit (GPU) that may implement an
example of a graphics processing pipeline 1n accordance with
one or more examples described in this disclosure. FIG. 1
illustrates device 110 that includes graphics processing unit
(GPU) 112, system memory 114, and central processing unit
(CPU) 116. Examples of device 110 include, but are not
limited to, mobile wireless telephones, video gaming con-
soles that include video displays, mobile video conferencing
units, laptop computers, desktop computers, television set-
top boxes, and the like.

CPU 116 may execute various types ol applications.
Examples of the applications include web browsers, e-mail
applications, spreadsheets, video games, or other applica-
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tions that generate viewable objects for display. Instructions
for execution of the one or more applications may be stored
within system memory 114. CPU 116 may transmit graphics
data of the generated viewable objects to GPU 112 for further
processing.

For example, GPU 112 may be specialized hardware that
allows for massive parallel processing, which functions well
for processing graphics data. In this way, CPU 116 offloads
graphics processing that 1s better handled by GPU 112. CPU
116 may commumicate with GPU 112 1n accordance with a
particular application processing interface (API). Examples
of such APIs include the DirectX® API by Microsoit® and
the OpenGL® by the Khronos group; however, aspects of this
disclosure are not limited to the DirectX and the OpenGL
APIs, and may be extended to other types of APIs that have
been developed, are currently being developed, or are to be
developed 1n the future.

In addition to defining the manner 1n which GPU 112 1s to
receive graphics data from CPU 116, the APIs may define a
particular graphics processing pipeline that GPU 112 1s to
implement. GPU 112, 1n FIG. 1, 1llustrates the graphics pro-
cessing pipeline defined by the Direct3D 11 API As
described in more detail, FIG. 2 illustrates the graphics pro-
cessing pipeline of the OpenGL 4.x API.

Examples of CPU 116 and GPU 112 include, but are not
limited to, a digital signal processor (DSP), general purpose
microprocessor, application specific integrated circuit
(ASIC), field programmable logic array (FPGA), or other
equivalent integrated or discrete logic circuitry. In some
examples, GPU 112 may be specialized hardware that
includes integrated and/or discrete logic circuitry that pro-
vides GPU 112 with massive parallel processing capabilities
suitable for graphics processing. In some instances, GPU 112
may also include general purpose processing, and may be
referred to as a general purpose GPU (GPGPU). The tech-
niques described 1n this disclosure may also be applicable to
examples where GPU 112 1s a GPGPU.

System memory 114 may comprise one or more computer-
readable storage media. Examples of system memory 114
include, but are not limited to, a random access memory
(RAM), a read only memory (ROM), an electrically erasable
programmable read-only memory (EEPROM), flash
memory, or any other medium that can be used to carry or
store desired program code 1n the form of instructions and/or
data structures and that can be accessed by a computer or a
Processor.

In some aspects, system memory 114 may include instruc-
tions that cause CPU 116 and/or GPU 112 to perform the
functions ascribed to CPU 116 and GPU 112 1n this disclo-
sure. Accordingly, system memory 114 may be a computer-
readable storage medium comprising nstructions that cause
one or more processors, e.g., CPU 116 and GPU 112, to
perform various functions.

System memory 114 may, 1n some examples, be consid-
ered as a non-transitory storage medium. The term “non-
transitory” may indicate that the storage medium i1s not
embodied 1n a carrier wave or a propagated signal. However,
the term “non-transitory” should not be interpreted to mean
that system memory 114 1s non-movable. As one example,
system memory 114 may be removed from device 110, and
moved to another device. As another example, a system
memory, substantially similar to system memory 114, may be
inserted into device 110. In certain examples, anon-transitory
storage medium may store data that can, over time, change
(e.g., in RAM).

The execution of the applications on CPU 116 causes CPU
116 to generate a plurality of primitives that connect together
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to form the viewable content. Examples of the primitives
include points, lines, triangles, squares, or any other type of
polygon. CPU 116 may define these primitives by their
respective vertices. For example, CPU 116 may define coor-
dinates and color values for the vertices. The coordinate val-
ues may be three-dimensional (3D) coordinates or 2D coor-
dinates.

In accordance with the techniques described in this disclo-
sure, 1n some cases, CPU 116 may also generate a special type
of primitive referred to as a patch. Similar to the other primi-
tive types, a patch may be defined by a plurality of vertices,
referred to as control points of a patch. Unlike other primitive
types, the patch may not be any particular shape. For example,
CPU 116 may interconnect the control points of the patch in
any manner, so that the interconnected control points form
any desired shape. For other primitive types such as triangles,
CPU 116 may define the specific manner 1n which the vertices
are interconnected (e.g., such that interconnection of the ver-
tices results 1n a triangle).

Also, unlike other primitive types, the number of control
points 1n a patch may be variable. For example, the applica-
tion executing on CPU 116 may define a maximum number of
control points that are allowed for a patch, or the maximum
number of control points may be user-defined. In some
examples, the number of control points in a patch may be one
to thirty-two control points; however, the techniques
described 1n this disclosure are not so limited.

CPU 116 may utilize the control patch for purposes of
tessellation. As described above, a tessellation process refers
to CPU 116 defining a portion of a surface of a viewable
object 1 low resolution, and tessellating the portion to gen-
crate a higher resolution version of the surface. For example,
CPU 116 may define control points of the patch such that
when the control points are interconnected the patch forms a
portion of a surface of a viewable object. If a surface were to
be formed only from the control points of the patch, the
surface may not appear with high resolution and may appear
jaggy. With tessellation, additional primitives are added to the
patch, such that when the primitives are interconnected they
add detail to the patch, which increases the resolution of the
patch and results 1n higher quality viewable content.

GPU 112 may be configured to implement tessellation. In
this way, CPU 116 may not need to define the vertices for all
the additional primitives needed to create the higher resolu-
tion patch, which saves on computations performed by CPU
116. Also, CPU 116 may need to transmit fewer vertices (e.g.,
the vertices of the control points, and not the vertices of the
primitives to be added), and GPU 112 may correspondingly
need to receive fewer vertices, which promotes bandwidth
elficiency due to fewer accesses to system memory 114.

To perform graphics operations, GPU 112 may implement
a graphics processing pipeline. The graphics processing pipe-
line 1ncludes performing functions as defined by software or
firmware executing on GPU 112 and performing functions by
fixed-function units that are hardwired to perform very spe-
cific functions. The software or firmware executing on the
GPU 112 may be referred to as shaders, and the shaders may
execute on one or more shader cores of GPU 112. Shaders
provide users with functional flexibility because a user can
design the shaders to perform desired tasks 1n any concervable
manner. The fixed-function units, however, are hardwired for
the manner in which the fixed-function units perform tasks.
Accordingly, the fixed-function units may not provide much
functional flexibility.

As indicated above, the graphics processing pipeline 1llus-
trated 1n FIG. 1 1s a graphic processing pipeline substantially

as defined by Direct3D 11. In this example, GPU 112 may
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include one or more of input assembler stage 118, vertex
shader stage 120, hull shader stage 122, tessellation stage
124, domain shader stage 126, geometry shader stage 128,
rasterizer stage 131, pixel shader stage 132, and output merge
stage 134. GPU 112 may include more stages than those
illustrated, and 1n some examples, GPU 112 may not neces-
sarily include all of the illustrated stages. Also, the specific
ordering of the stages 1s provided for purposes of illustration
and should not be considered limiting.

In techniques described 1n this disclosure, CPU 116 may
output the control points of a patch to system memory 114.
GPU 112 may then retrieve the control points from system
memory 114. In this manner, CPU 116 may transmit the
control points to GPU 112. As used in this disclosure, CPU
116 transmitting to GPU 112, or GPU 112 receiving from
CPU 116 may generally include CPU 116 writing to system
memory 114, from which GPU 112 receives. Alternatively, 1t
may be possible for CPU 116 to directly transmit to GPU 112,

and for GPU 112 to directly recerve from CPU 116.

Input assembler stage 118 may read the control points from
system memory 114 as defined by CPU 116, and assemble the
control points to form the patch. For instance, input assembler
stage 118 may read the coordinates, color values, and other
such information of the control points. The coordinates, color
values, and other such information may be commonly
referred to as attributes of the control points. Based on the
attributes of the control points, input assembler stage 118 may
determine the general layout of the patch. In this manner,
input assembler stage 118 may assemble the control points to
form the patch. Input assembler stage 118 may be a fixed-
function unit.

Vertex shader stage 120 may process the vertices (e.g., the
control points of the patch) from nput assembler stage 118.
For example, vertex shader stage 120 may perform per-vertex
operations such as transformations, skinning, morphing, and
per-vertex lighting. Vertex shader stage 120 may be a shader.

Hull shader stage 122 receives the control points of the
patch, as processed by vertex shader stage 120, process the
control points, and outputs control points for a processed
patch. In other words, hull shader stage 122 receives an input
patch, as processed by vertex shader stage 120, processes the
input patch, and outputs an output patch. Hull shader stage
122 may perform various functions for processing the input
patch. For example, hull shader stage 122 may modity the
coordinates ol the control points to change the locations of the
control points, or may even add or delete control points.

In addition, hull shader stage 122 may determine values
that indicate how many primitives are to be added to the patch
generated by hull shader stage 122 (i.e., the output patch).
Hull shader stage 122 may utilize various criteria to deter-
mine how many primitives are to be added to the patch.
Described below are two example criteria that hull shader
stage 122 may utilize to determine how many primitives are to
be added to the patch. However, aspects of this disclosure are
not so limited, and hull shader stage 122 may utilize any
criteria to determine how many primitives should be added to
the patch.

As one example, hull shader stage 122 may utilize infor-
mation indicative of the depth of the patch to determine how
many primitives should be added. For instance, a patch that 1s
turther away, from the perspective of the viewer, may not
need high resolution because objects further in distance
appear blurry in real life. However, a patch that is closer, from
the perspective of the viewer, may need higher resolution
because objects closer 1n distance appear sharper 1n real life.
In this example, hull shader stage 122 may determine that
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tewer primitives should be added to the patch that 1s further
away, and more primitives should be added to the patch that 1s
closer, relative to one another.

As another example, hull shader stage 122 may determine
how many primitives should be added based on the size of the
patch. For a smaller sized patch, hull shader stage 122 may
determine that fewer primitives should be added because the
patch encompasses a smaller area. For a larger sized patch,
hull shader stage 122 may determine that more primitives
should be added because the patch encompasses a larger area.

Based on a determination of how many primitives should
be added, hull shader stage 122 may output a domain type and
values that indicate how many primitives are to be added to
the patch to tessellation stage 124. The values that indicate
how many primitives are to be added to the patch, in the
Direct3D 11 API, are referred to as tessfactors.

The domain may be a considered as a template shape that
tessellation stage 124 uses {for tessellation purposes.
Examples of the domain type include a line, a triangle, a quad
(e.g., atfour sided polygon), or any other type of polygon. The
domain may be a two-dimensional (2D) shape, even 1f the
patches define a three-dimensional (3D) surface or a 2D sur-
face. When the domain 1s a line, the domain may be a one-
dimensional (1D) shape (1.e., a line), even 1f the patches
define a 3D surface, a 2D surface, or a 1D surface. For pur-
poses of illustration, the techniques described 1n this disclo-
sure are described with respect to the domain being a 2D
surface. For instance, the techniques are described with
domain shapes that are the trnangle or quad.

In some examples, hull shader stage 122 may not explicitly
indicate the domain type. Rather, tessellation stage 124 may
determine the domain type based on the number of transmiut-
ted tessiactors. For example, the presence of four tessfactors
may indicate that the domain type 1s a triangle domain type,
and the presence of six tessfactors may indicate that the
domain type 1s a quad domain type.

In some examples, a quad domain may be defined by 2D
Cartesian coordinates (u, v). In some examples, a triangle
domain may be defined by Barycentric coordinates. Barycen-
tric coordinates utilize three coordinates to identily any point
within the triangle. For example, the vertices of the triangle
domain may be defined as (u, v, w), as described below 1n
more detail. The location of any point within the triangle 1s
defined by vertex weighting that indicates 1ts proximity to a
vertex. For instance, the closer apointis to a vertex, the higher
its vertex weighting, and the further away the point 1s from the
vertex, the lower its vertex weighting.

As an example, assume the vertices of the triangle are
defined with Barycentric coordinates (u, v, w) as follows: (1,
0, 0), (0, 1, 0), and (0, O, 1). In this example, the center point
1s located at (13, 14, 1/3) because the center point 1s equally
distant from each of the vertices. Also, with the given defini-
tion of the vertex coordinates, 1n this example, the sum of the
u, v, and w coordinates for any point within the triangle
domain should equal one.

The Cartesian and Barycentric coordinates are described
for purposes of 1llustration only, and should not be considered
limiting. In other examples, 1t may be possible to define the
quad domain with Barycentric coordinates or Cartesian coor-
dinates, and the triangle domain with Cartesian coordinates or
Barycentric coordinates. In general, a domain, of any type,
may be defined using any coordinate system.

Tessellation stage 124 may tessellate (e.g., divide) the
domain into a plurality of primitives. It should be understood
that, 1n this example, tessellation stage 124 1s not dividing the
patch outputted by hull shader stage 122 into primitives, but
rather dividing the domain into the primitives. In some
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examples, tessellation stage 124 may not even have access to
the patch outputted by hull shader stage 122. Tessellation
stage 124 may be a fixed-function unit, although aspects of
this disclosure need not be so limited.

Tessellation stage 124 may utilize the tessfactors outputted
by hull shader stage 122 to tessellate (e.g., divide) the domain
into a plurality of primitives. For example, in addition to
defining the domain type (e.g., triangle or quad) the tessiac-
tors may define how many rings are to be included within the
domain.

A ring may be a series ol concentric shapes within the
domain, where the concentric shapes are the same shape as
the domain shape. For example, 11 the domain shape 1s a quad,
the perimeter of the quad may be considered as the outer ring.
Hull shader stage 122 may define the number of 1nner rings,
which may be series of smaller sized quads that reside within
the quad domain. Stmilarly, if the domain shape 1s a triangle,
the perimeter of the triangle may be considered as the outer
ring, and the mner rings may be series of smaller sized tri-
angles that reside within the triangle domain.

In addition to defining the number of rings within a
domain, the tessiactors define the points that reside along the
rings. The points that reside along the rings should not be
confused with control points. The control points define the
patch. The points that reside along the rings are points gen-
crated by tessellation stage 124 based on the tessiactors.

These points are generated within the domain, and not within
the patch.

Also, 1t 1s these points that tessellation stage 124 connects
together to divide the domain 1nto a plurality of primitives.
For example, assume that the primitives that tessellation stage
124 will divide the domain 1nto are triangles. In this example,
tessellation stage 124 may connect one point that resides
along the outer ring, with two points that reside along the
inner ring to form a triangle primitive. Alternatively, tessel-
lation stage 124 may connect two points that reside along the
outer ring with one point that resides along the 1nner ring to
form a triangle primitive. In this way, by defining the domain
type, the number of rings within the domain, and the number
ol points along the outer and inner rings, hull shader stage 122
may define the number of primitives into which tessellation
stage 124 should divide the domain.

In some examples, the number of points that can reside
along an edge of ring may be one point to sixty-five points.
For example, 11 the domain type 1s a triangle, than there may
be up to 635 points per edge of the triangle domain. Similarly,
if the domain type 1s a quad, than there may be up to 65 points
per edge of the quad. However, the techniques described in
this disclosure are not limited to an edge having a maximum
of sixty-five points.

Furthermore, the number of points that reside along a ring
may be different for outer and inner rings. For example, the
number of points that reside along an edge of the outer ring
may be more than or less than the number points that reside
along an edge of the inner ring. It may also be possible that
number of points that reside along the edge of the outer ring
and the 1inner ring are the same number of points.

Moreover, the number points along an edge of the same
ring may be different. For example, for a triangle domain, the
number of points that reside along one of the edges may be
different than the number of points that reside along one other
edge, or both edges. Stmilarly, for a quad domain, the number
of points that reside along one of the edges may be different
than the number of points that reside along one, two, or all
three other, remaining edges. It may also be possible for each
of the edges of the rings to have the same number of points.




US 9,305,397 B2

13

As described above, 1n some examples, tessellation stage
124 may not divide the patch into a plurality of primitives.
Accordingly, in some examples, tessellation stage 124 may
not receive any information such as the number of control
points, the locations of the control points, or the size of the
patch. Without any information as to the size of the patch and

the locations of the control points, tessellation stage 124 may
not be able to define the size of the domain that 1s used or the
specific coordinates for the vertices of the domain.

To address this, tessellation stage 124 may rely upon a
normalized coordinate system for defimng the vertices of the
domain, as well as for determining the locations of the inter-
connected points within the domain. As one example of the
normalized coordinates, tessellation stage 124 may define the
vertices ol a quad domain, 1nu, v coordinates, as: (0, 0), (1, 0),
(0,1),and (1, 1), which1s a unit square. Tessellation stage 124
may define the vertices of a triangle domain, 1n u, v, w coor-
dinates, as: (0, 0, 1), (0, 1, 0), and (1, 0, O0), which 1s an
equilateral triangle. Tessellation stage 124 may determine the
coordinates for the interconnected vertices of the plurality of
primitives 1n this normalized coordinate system.

Tessellation stage 124 may output the vertices of the plu-
rality of primitives of the domain to domain shader stage 126
in the normalized coordinate system (e.g., theu, v coordinates
or the u, v, w coordinates, as applicable). The function of
domain shader stage 126 may be to map the vertex coordi-
nates, as recerved from tessellation stage 124, on to the patch.
For example, while tessellation stage 124 may not receive
information of the patch as defined by hull shader stage 122,
domain shader stage 126 may recerve such information from
hull shader stage 122.

Domain shader stage 126 may execute for each vertex
coordinate outputted by tessellation stage 124. With the coor-
dinates of the control points of the patch from hull shader
stage 122, domain shader stage 126 may determine the loca-
tion of the vertex, as outputted by tessellation stage 124, on
the patch. Because tessellation stage 124 outputs vertices of
the plurality of primitives generated by tessellation stage 124,
and domain shader stage 126 adds these primitives to the
patch, the combination of hull shader stage 122, tessellation
stage 124, and domain shader stage 126 together add addi-
tional primitives to the patch. This results 1n a mesh of primi-
tives that are added to the patch creating a higher resolution,
more detailed patch, as compared to the patch defined by CPU
116. In this manner, hull shader stage 122, tessellation stage
124, and domain shader stage 126 implement a tessellation
pProcess.

As described herein, a domain may be divided into a plu-
rality of portions, which may be same sized portions. In some
examples, the techniques may output the vertices of the tri-
angles within the portion such that 1f a vertex 1s shared
between two triangles, the techmiques may execute the
domain shader once per vertex. In other words, 1f a vertex 1s
shared between a first triangle and a second triangle within the
portion, and the techmiques execute the domain shader to
convert the coordinates of the vertex when tessellation stage
124 outputs the vertices of the first trnangle, then, the tech-
niques may ensure that the vertex 1s available in the vertex
reuse builer when tessellation stage 124 outputs the vertices
of the second triangle. In this manner, the techniques may
execute the domain shader only once to convert the coordi-
nates of the vertex from the coordinates 1n the domain to the
coordinates of the patch for the shared vertex between the first
and second triangles, rather than executing the domain shader
when tessellation stage 124 outputs the vertex as part of the
vertices of the first triangle, and then executing again the
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domain shader when tessellation stage 124 outputs the vertex
as part of the vertices of the second triangle.

In some examples, the number of triangles within a portion
may be so large or the size of the vertex reuse buflfer may be
too small to guarantee that vertices that are shared between
triangles within the portion are available in the vertex reuse
builer when the vertices of each of these triangles 1s outputted
by tessellation stage 124. To address this, 1n some examples,
tessellation stage 124 may further divide a portion 1nto sub-
portions. Tessellation stage 124 may implement the vertex
output scheme described in this disclosure within each of the
sub-portions. For example, tessellation stage 124 may divide
a portion into sub-portions such that tessellation stage 124
can ensure that shared vertices for the triangles within the
sub-portion will be available 1n the vertex reuse bufier when
tessellation stage 124 outputs the vertices of such triangles.

In this way, tessellation stage 124 may process a portion or
sub-portion such that the vertex reuse buller may be used
ciliciently as to mimimize or reduce vertex misses which may
occur when coordinates of a vertex are needed that are not
stored 1n the reuse builer. For example, a vertex miss may
occur when coordinates of a vertex are outputted that have not
been processed by the domain shader and stored 1n the reuse
buifer. A vertex miss may also occur, for example, when a
vertex has previously been processed by the domain shader
and stored 1n the reuse butier, but that data has been overwrit-
ten. The techniques process the vertices in such a manner to
reduce the number of times a vertex 1s outputted that 1s not
available 1n the reuse buller by generally processing each
triangle that includes a particular vertex before information
on that vertex 1s over written in the reuse buftier. It will be
understood, however, that this may not always be possible.
Accordingly, some examples may attempt to decrease the
number of recalculations of the data stored in the reuse bufter,
rather than limit these calculations to a single domain shader
invocation for each vertex. Thus, various examples may
decrease the number of domain shader invocations. In some
cases 1t may be possible to decrease the number of domain
shader invocations to one per vertex, in other cases, 1t may
only be possible to decrease, rather than eliminate recalcula-
tions 1n the domain shader.

Geometry shader stage 128 receives the vertices of the
primitives added to the patch by domain shader stage 126 and
may further generate additional vertices for the primitives to
add even more resolution. Rasterizer stage 130 receives the
primitives from geometry shader stage 128 and converts the
primitives into pixels for the display. For example, the primi-
tives may be defined as vectors that indicate the interconnec-
tion of the primitives, and may be defined 1n a coordinate
space that 1s independent of the display on which the image 1s
to be displayed. Rasterizer stage 130 converts these vectors
into the display coordinates, and performs any additional

functions such as removing points within primitives that are
occluded.

Pixel shader stage 132 receives the pixels as outputted by
rasterizer stage 130 and performs post processing to assign
color values to each of the pixels that are to be displayed. For
example, pixel shader stage 132 may receive constant values
stored 1n system memory 114, texture data stored 1n system
memory 114, and any other data to generate per-pixel outputs
such as color values. Pixel shader stage 132 may also output
opacity values that indicate the opaqueness of the pixels.

Output merge stage 134 may perform any final pixel pro-
cessing. For example, output merge stage 134 may utilize
depth information to further determine whether any of the
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pixels should be removed from being displayed. Output
merge stage 134 may also perform blending operations to
generate final pixel values.

Output merge stage 134 may output the final pixel values to
a frame buller, generally located within system memory 114,
but which may be located within GPU 112. A display proces-
sor (not shown) may retrieve the pixel values from the frame
butiler and cause pixels of a display (not shown) of device 110
to 1lluminate accordingly to the pixel values to cause the
display to display the image.

As described above, tessellation stage 124 interconnects
points of the outer and inner rings within the domain to
generate a plurality of primitives within the domain. In an
example, tessellation stage 124 may process domain by walk-
ing 1n a particular order. For example, walking may be per-
formed such that calculated vertex information may be
reused. An order for processing output primitives may be
selected to efficiently (or at least more efficiently) utilize the
vertex reuse butler.

When determining an ordering of the primitives output
from the tessellation stage 124, the following may be consid-
ered, for example, (1) the current tessellator speed, which
may be one primitive per clock cycle, may need to be pre-
served to allow primitives to be processed 1n a timely fashion,
(2) the algorithm should not be too complex, and (3) it may be
preferable that changes are only made 1n the tessellation stage
124. In some examples no change may be made to the reuse
logic. As discussed above, the reuse logic 1s a series of hard-
ware comparators, €.g., exclusive-OR gates (XOR gates), that
may be used to determine 1f vertex information needed 1s
stored 1n the vertex reuse builer. In some examples, the reuse
logic may be a controller (illustrated 1n FIG. 9) 1n the reuse
butiler that compares the thirty-two stored thirty-four bit indi-
ces stored 1n the reuse butler with an a thirty-four bit index of
an incoming vertex. It will be understood that, in other
examples, the reuse butler may be sized differently and the
index may include more or fewer bits. As will discussed
below with respect to FIGS. 7 and 8, quad and triangular
domains, respectively, may be walked 1n an order selected to

most etficiently (or at least more efficiently) utilize the vertex
reuse builer as to minimize vertex misses.

As described above, the tessellation unit may divide the
domain into a plurality of portions, and may determine ver-
tices of the shapes (e.g., triangles) within the portion. For
example, each portions may include a plurality of shapes.
These shapes may be represented by a set of shapes. For
example, a plurality of sets of the shapes form the shapes
within a portion.

In accordance with some of the techniques described in this
disclosure, the tessellation unit may determine the coordi-
nates of the vertices for the shapes within a first set of shapes
within the portion of the domain. For each vertex, the domain
shader may convert the coordinates into coordinates of the
patch and store the coordinates 1n the reuse butfer. For shared
vertices (e.g., vertices that are common to two triangles
within the first set of shapes), there may be no need to execute
the domain shader as the converted coordinates may already
be stored 1n the reuse buifer.

After outputting the coordinates of vertices of the shapes
within the first set of shapes, the tessellation unit may output
the vertices of shapes within the second set of shapes. To
minimize the execution of domain shader, the tessellation unit
may output vertices of shapes 1n the second set of shapes such
that many of the vertices of the shapes 1n the second set of
shapes are shared with vertices of shapes in the first set of
shapes. Because the first set of shapes and the second set of

10

15

20

25

30

35

40

45

50

55

60

65

16

shapes share many vertices, the example techniques
described 1n this disclosure may minimize the execution of
the domain shader.

For instance, the first set of shapes may be located along a
first edge of the portion. Again, the domain may be divided
into a plurality of portions. Each of the portions may include
a plurality of edges, and the first set of shapes may be located
along one of the edges of one of portions (1.€., a first edge of
the plurality of edges). In the techniques described 1n this
disclosure, each shape 1n the second set of shapes may share
at least one vertex with at least one shape of the first set of
shapes. Also, none of the shapes of the second set of shapes
may include a vertex on the first edge of the portion.

In the techmques described 1n this disclosure, the tessella-
tion unit may walk through the first set of shapes, and then
walk through the second set of shapes, where the relationship
between the first set of shapes and the second set of shapes 1s
described above. Because many vertices are shared between
the first set of shapes and the second set of shapes, and the
tessellation unit walk through the second set of shapes imme-
diately after walking through the first set of shapes, many of
the converted coordinates may still be available 1n the reuse
butter. Therefore, the number of times the domain shader 1s
executed may be reduced.

FIG. 2 1s a block diagram 1llustrating another example of a
graphics processing unit (GPU) that may implement another
example of a graphics processing pipeline 1n accordance with
one or more examples described in this disclosure. For
instance, FIG. 1 illustrated a graphics processing pipeline
formulated substantially in accordance with the Direct3D 11
API. FI1G. 2 1llustrates the graphics processing pipeline sub-
stantially 1n accordance with the OpenGL 4.x API.

The OpenGL 4.x graphics processing pipeline may func-
tion 1 a substantially similar fashion as the Direct3D 11
graphics processing pipeline. Accordingly, for purposes of
brevity, reference 1s made to FIG. 1 to describe components
that are similar to both the Direct3D 11 graphics processing,
pipeline and the OpenGL 4.x graphics processing pipeline.

As 1llustrated 1n the example of FIG. 2, GPU 112 includes
input assembler 136, vertex shader 138, tessellation control
shader 140, primitive generator 142, tessellation evaluation
shader 144, geometry shader 146 chppmg umt 148, rasterizer
150, fragment shader 152, and post-processor 154. Similar to
FIG. 1, 1n the example 1illustrated in FIG. 2, GPU 112 may
include more or fewer components than those illustrated 1n
FIG. 2. Also, the specific ordering of the unit 1s provided for
purposes of 1llustration and should not be considered limiting.

In some ways, the tessellation process with the OpenGL
4 x graphics processing pipeline may be substantially similar
to the tessellation process with the Direct3D 11 graphics
processing pipeline. For example, OpenGL 4.x tessellation
process may rely upon patches and control points, 1n the
manner similar to that described above with respect to FIG. 1.
For instance, imnput assembler 136 and vertex shader 138 of
FIG. 2 may function substantially similar as input assembler
stage 118 and vertex shader stage 120 of FIG. 1, respectively.

For example, in FIG. 2 primitive generator 142 may be
equivalent or comparable to a tessellation unit. The tessella-
tion unit may determine a number of points that reside along
a first edge of a first ring within a domain. Additionally, the
tessellation unit may determine a first set of coordinates for a
first portion of the points that reside along the first edge of the
first ring within the domain. The tessellation unit may also
determine a second set of coordinates for a second portion of
the points that reside along the first edge of the first ring
within the domain based on the first set of coordinates for the
first portion. The tessellation unit may also be configured to
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stitch points that reside along the first edge of the first ring
with points that reside along a second edge of a second ring to
divide the domain into a plurality of primitives that are
mapped to a patch.

As more examples, for tessellation, tessellation control
shader 140 of FIG. 2 may function substantially similarly to
hull shader stage 122 of F1G. 1. However, tessellation control
shader 140 outputs tessellation levels, which may be analo-
gous to the tessfactors of Direct3D 11. For example, the
tessellation levels of OpenGL 4.x may define the domain
type, the number of rings within the domain, and the number
of points per ring edge.

Primitive generator 142 may function in a substantially
similar manner as tessellation stage 124. For example, primi-
tive generator 142 may utilize the tessellation levels and the
domain type to divide the domain into a plurality of primi-
tives.

Tessellation evaluation shader 144 of FIG. 2 may function
substantially similarly to domain shader stage 126 of FI1G. 1.
For example, tessellation evaluation shader 144 may receive
the vertices of the generated primitives from primitive gen-
erator 142 and add the primitive to the patch outputted by
tessellation control shader 140. In this manner, the graphics
processing pipeline of the OpenGL 4.x API may perform
tessellation on a patch to increase the resolution of the patch.
Additionally, similar to above, with respect to FIG. 3, the
order of output primitives may be predetermined and imple-
mented 1n, for example, a point generator, to efliciently utilize
the vertex reuse bulfer to minimize or at least lower vertex
misses. For example, a domain may be processed by walking
in a particular order such that calculated vertex information
may be reused. As discussed above, the order for processing
output primitives may be selected to most efliciently (or at
least more elfficiently) utilize the vertex reuse builer as to
mimmize vertex misses. This may decrease the number of
tessellation evaluation shader 144 invocations.

Geometry shader 146 may function substantially similar to
geometry shader stage 128. The combination of clipping unit
148 and rasterizer 150, 1n FIG. 2, may function substantially
similarly to rasterizer stage 30 in FIG. 3. Fragment shader 152
and post-processor 154 1n FIG. 2 may function substantially
similar to pixel shader stage 132 and output merge stage 134
in FIG. 3, respectively. Post-processor 154 may output the
final pixel values to a frame buifer and the display processor
may retrieve the pixel values from the frame buffer and cause
a display to 1lluminate according to the pixel values to display
the 1image.

As described above, tessellation control shader 140, primi-
tive generator 142, and tessellation evaluation shader 144 of
FIG. 2 function substantially similar to hull shader stage 122,
tessellation stage 124, and domain shader stage 126 of FI1G. 3,
respectively, for implementing the tessellation process.
Accordingly, both the Direct3D 11 and the OpenGL 4.x APIs
rely upon two programmable shader units and one fixed-
function unit to implement the tessellation process.

For purposes of generality, the techniques described 1n this
disclosure may be described with a first tessellation shader
unit, a tessellation unit, and a second tessellation shader unit.
Examples of the first tessellation shader unit imnclude hull
shader stage 122 and tessellation control shader 140.
Examples of the tessellation unit include tessellation stage
124 and primitive generator 142. Examples of the second
tessellation shader unit include domain shader stage 126 and
tessellation evaluation shader 144.

Also, Direct3D 11 uses the term “tessfactors” and OpenGL
4 x uses the term ““tessellation levels,” which may be consid-
ered analogous terms. For purposes of generality, this disclo-
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sure uses the term “tessellation factor,” examples of which
include tessiactors and tessellation levels. In this way, the first
shader unit may be considered as outputting tessellation fac-
tors to the tessellation unit, and the tessellation unit may
output vertices to the second shader unit 1n response to the
tessellation factors.

It should be noted that while the Direct3D 11 and OpenGL
4 x utilize two shader units and one fixed-tfunction unit, the
techniques described 1n this disclosure are not so limited. For
example, it may be possible 1n other systems for the first and
second shader units to be fixed-function units and the tessel-
lation unit to be a shader unit. As another example, all may be
fixed-function units or all may be shader units, or any com-
bination thereof.

Therefore, 1n some examples, 1t may be considered that a
first unit performs functions similar to the first shader unit, but
may be a shader unit or a fixed-function unit, a second unit
performs functions similar to the tessellation unmit, but may be
a shader unit or a fixed-tunction unit, and a third unit performs
functions similar to the second shader unit, but may be a
shader unit or a fixed-function unit. Moreover, although the
first shader unit, the tessellation unit, and the second shader
unit are 1llustrated as separate units 1n FIGS. 1 and 2, aspects
of this disclosure are not so limited. These units, and possibly
any umt of the graphics processing pipelines illustrated 1n
FIGS. 1 and 2, may be combined together into a common unit.
Accordingly, while the functionality of these units 1s
described separately for ease of description, these units may
be implemented 1n shared hardware or as distinct compo-
nents.

FIG. 3 1s a diagram 1illustrating an example technique of
outputting vertices for tessellation. In the example tessella-
tion solution of FIG. 3 the entire area of domain 160, which 1s
a triangle domain, 1s divided into smaller triangles 162.
Arrows 164, 166, 168, 170 illustrate an order in which the
triangles 162 may be processed and mapped to the patch.
Conceptually, 1t will be understood that the vertices of the
various triangles, such as triangle 162 reside on rings that are
generally made up of lines that parallel arrows 164, 166, 168,
and 170. For example, triangle 162 includes two vertices that
reside on an outer ring and one vertex that resides on an inner
ring. More generally, some triangles may have two vertices
that reside on an outer ring and one vertex that resides on an
inner ring, such as triangle 162, while other triangles may
have one vertex that reside on an outer ring and two vertices
that resides on an 1nner ring.

As 1llustrated 1 FI1G. 3, a point generator may process the
domain by “walking” from the outmost ring, which 1s the
boundary of the domain 160 all the way to the center ring 170.
“Walking” indicates a sequence or order by which the tessel-
lation triangles are calculated for a given tessellation level. As
illustrated 1n FIG. 3 the sequence or order by which the
tessellation triangles are calculated for a given tessellation
level proceeds one ring at a time 1n a spiral-like fashion.

The problem with this algorithm 1s that, due to the limited
s1ze of vertex reuse buller, when the algorithm finishes out-
putting the triangles on the first ring 164 and proceeds to the
next one all the vertices on the border of first two rings 164,
166 will be vertex misses (e.g., not present in the vertex reuse
builer). In other words, a loss of vertex information occurs
because the vertex bulifer 1s not large enough to store all of the
calculated coordinates.

FIG. 4 1s a diagram 1llustrating points that may need to be
recalculated 1n the technique illustrated in FIG. 3 As illus-
trated 1n FIG. 4, because of vertex misses some points may
need to be recalculated. For example, when path 172 1s used,
cach of the eighteen vertices on the interior ring, such as
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vertex 174, may need to be recalculated. Note that these
vertices will be overwritten because when walking path 172,
not only will the eighteen vertices on the interior ring be
stored, but so will the twenty—tour vertices on the exterior
ring. Accordingly, for a vertex reuse buliler capable of storing
information for thirty-two vertices, these forty-two vertices
will over flow the vertex reuse builer 1f the 1llustrated path
order 1s used.

In an example, “walk™ wider than single-width rings may
be used to decrease vertex misses. For example, walking a
path may represent more than just the outermost ring. A
double ring may be walked, for example. Unfortunately such
an approach will generally require more point generator units
if 1t 1s desired to be able to process one primitive per clock
cycle. Walking a “donut,” e.g., processing two rows at the
same time, quickly converges to 1.3 vertices per primitive and
stays there. Walking even wider may not make processing
much faster, only achieving at max <1.5 vertices per primi-
tive. Additionally, hardware for such processing may con-
sume significantly more power and occupy a lot more die
area.

FIGS. SA and 5B are graphical diagrams illustrating a
domain divided into a plurality of primitives 1n accordance
with one or more examples described 1n this disclosure. For
example, FIG. 5A illustrates triangle domain 176 divided
(1.e., tessellated) 1nto a plurality of primitives, and FIG. 5B
illustrates quad domain 178 divided into a plurality of primi-
tives.

In FIGS. SA and 5B, the interconnection of the points that
form the triangle may be based on the tessellation factors. For
example, the tessellation units described above may include a
first unit that determines a number of points that reside along
a first edge of a first ring within a domain such as the edges of

the triangle domain 176 of FIG. SA and the quad domain 178
divided illustrated 1n FIG. 5B. As illustrated in FIGS. SA and
5B the domains may be divided (1.e., tessellated) 1into a plu-
rality of primitives. As 1llustrated 1n FIG. 5A each edge of a
triangular domain may be divided into the same number of
segments. This 1s referred to as uniform tessellation. Quad
domains may also be divided into the same number of seg-
ments and have uniform tessellation. As 1illustrated 1n FIG.
5B, however, quad domain 178 1s a non-uniform tessellation.

As described in more detail below, the tessellation unitmay
determine a first set of coordinates for a first portion of the
points that reside along the first edge of the first ring within
the domain and determine a second set of coordinates for a
second portion of the points that reside along the first edge of
the first ring within the domain based on the first set of
coordinates for the first portion. As illustrated 1n FIGS. SA
and 3B, different rings may be divided 1nto different numbers
of coordinates. These rings may then be walked in a way that
decreases the number of domain shader invocations, as
described herein. Additionally, each set of coordinates (each
point) in the first portion of the points may be symmetric with
a corresponding set of coordinates (point) 1n the second por-
tion of the points.

The number of triangles within a portion and the si1ze of the
vertex reuse builer may dictate 1 the vertex reuse butfer will
overflow when processing a given portion. If the number of
triangles within a portion 1s too large or the size of the vertex
reuse butler 1s too small the oldest entry may be deleted when
enough vertices of each of these triangles 1s outputted by
tessellation stage 124 to {ill the vertex reuse butler. Accord-
ingly, the deleted entry (or entries) will not be available if that
vertex information 1s needed. Thus, 1t will need to be recal-
culated 1t 1t 1s needed. To address this, 1n some examples,
tessellation stage 124 may further divide a portion 1nto sub-
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portions. Tessellation stage 124 may implement the vertex
output scheme described 1n this disclosure within each of the
sub-portions. In one example, tessellation stage 124 may
divide a portion 1nto sub-portions to ensure that all vertices
for the triangles within the sub-portion may be processed
without an overtlow occurring. It will be understood that
various vertices in the vertex reuse buffer may be overwritten
when they are no longer needed. In some examples, this may
be done 1n a first-1n first-out fashion. In such an instance the
oldest entry, the first in, 1s the first value that will be over
written. Additionally, some vertices are shared between tri-
angles.

It will be understood that the systems and methods
described herein may be modified to adjust for different ver-
tex reuse bulfer sizes other than thirty-two. As described in
greater detail below, the tessellation unit may also be config-
ured to stitch points that reside along the first edge of the first
ring with points that reside along a second edge of a second
ring to divide the domain 1nto a plurality of primitives that are
mapped to a patch.

FIG. 6 1s a block diagram 1llustrating an example system or
sub-system 180 including a tessellation unit 182 connected to
a domain shader 184 and a vertex reuse builer 186 1n accor-
dance with one or more examples described in this disclosure.
Tessellation unit 182 may be configured to tessellate (e.g.,
divide) the domain into a plurality of primitives. As described
herein, the tessellator unit 182 (e.g. tessellator) may divide a
domain into a plurality of triangles. The domain shader 184
then may take the vertices of the triangles 1n the domain and
convert the vertices into vertices of the patch. A pair of point
generators 188, including an outer point generator and an
inner point generator may process the patch by walking the
tessellation triangles 1n a sequence or order. For example,
starting with triangle 1, the outer point generator will generate
the two vertical vertices of triangle 1, and the 1nner point
generator will generate the third vertex. A connectivity gen-
erator 190 will connect the three vertices indicating that these
three vertices belong to triangle 1, and output the vertices. A
controller 192 of the vertex reuse buifer 186 may determine
whether the outputted vertices are in the vertex reuse butler
186 and invoke instances of the domain shader 184 for every
vertex not 1n the vertex reuse butier 186.

Then, the outer point generator will generate a vertex of
triangle 2, and the inner point generator will generate the two
vertical vertices of triangle 2. The connectivity generator 190
will connect the three vertices indicating that these three
vertices belong to triangle 2, and output the vertices. The
controller 192 of the vertex reuse buifer 186 will determine
whether the outputted vertices are in the vertex reuse builer
186 and invoke 1nstances of the domain shader 184 for every
vertex not 1n the vertex reuse butter 186, and so forth.

The ordering of the primitive output from the tessellation
unit may affect the vertex reuse at the subsequent stage.
Accordingly, orderings may be selected that allow for reuse of
the vertexes within the vertex reuse bufler size limit. The
walking order used by the point generator may be predeter-
mined. Additionally, the walking order used by the point
generator may be an order for walking the tessellation tri-
angles such that calculated vertex information may be reused.

Various systems, methods, and devices described herein
provide for a changed order of output primitives in a way that
may most efficiently utilize or may at least more etliciently
utilize the vertex reuse builer 186 as to minimize vertex
misses. This may decrease the number of domain shader 184
invocations. Various examples of different walking orders,
also referred to as paths, are 1llustrated in, for example, FIGS.
7-9, discussed below. These are only example orders, gener-
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ally, any order that starts at a particular triangle 1n a domain,
walks through additional triangles, and then walks another
series of triangles, one or more of which share a vertex, may
be used to increase vertex reuse.

As described above, adomain (e.g., triangle, quad) may be
divided into rings. A ring may be a series of concentric shapes
within the domain, where the concentric shapes are the same
shape as the domain shape. For example, 11 the domain shape
1s a quad, the perimeter of the quad may be considered as the
outer ring. The inner rings may be series of smaller sized
quads that reside within the quad domain. Similarly, 11 the
domain shape 1s a triangle, the perimeter of the triangle may
be considered as the outer ring, and the mner rings may be
series of smaller sized triangles that reside within the triangle
domain.

Domain shader 184 may generate surface geometry from
transformed control points from a hull shader and UV coor-
dinates from tessellation unit 182. Additionally, 1t will be
understood that UVW coordinates may be provided by the
tessellation unit 182, for example, when Barycentric coordi-
nates are used. The domain shader 184 may be invoked for
cach vertex generated by the fixed function tessellator unit
182. The mputs may be UV coordinates of the point on the
domain, as well as all of the output data from the hull shader
including control points and patch constants. The output of
the domain shader 184 may be a vertex. As described above,
however, because vertex reuse buifer 186 may be limited in
s1ze, when the algorithm finishes outputting, e.g., triangles on
a first ring and proceeds to the next ring all the vertices on the
border of first two rings may be vertex misses (e.g., not
present 1n the vertex reuse buifer 186). In other words, a loss
ol vertex information occurs because the vertex reuse builer
186 1s not large enough to store all of the calculated coordi-
nates. This may lead to additional domain shader 184 invo-
cations unless walking 1s performed in such a way that cal-
culated vertex information may be reused, as described
herein.

In some examples, vertex reuse buifer 186 may be a butler
that includes memory to store thirty-two sets of calculated
coordinates. It will be understood, however, that different
s1izes ol vertex reuse buffer 186 may be used i1n other
examples. The vertex reuse bulfer 186 may be used to store
coordinates calculated by the domain shader 184. Generally,
the coordinates stored in the vertex reuse butler 186 are not
UV coordinates. The UV coordinates may generally be one
input to the domain shader 184, which may generate surface
geometry from transformed control points from a hull shader
and UV (or UVW) coordinates from the tessellation unit 182.
The output from the domain shader 184 may then be stored 1n
the vertex reuse buifer 186. The UV or UV W coordinates may
function as an index 1nto reuse builer 186.

As described herein, the vertex reuse butfer 186 may be a
thirty-two location deep reuse cache. The tessellation unit
may, for example, generate UV coordinates (u,v) which can
be thirty-four bits (17-bits for u and 17 bits v). These thirty-
four bits may be used to index of a vertex. Accordingly, the
vertex reuse buller 186 may store the UV coordinates (u, v) as
an 1ndex to mdicate which stored vertex mnformation calcu-
lated by the domain shader 184 1s available in the vertex reuse
buffer 186.

The UV coordinates may be compared with the entry in the
vertex reuse budl

er 186. For example, some embodiments
may use a series ol comparators, e.g., XOR gates located in
the vertex reuse butler 186 to perform the comparisons used
to determine 1f an entry 1s in the vertex reuse buffer 186. The
reuse cache store a thirty-four bit index. The comparators may
coming the thirty-four bit index with thirty-two stored thirty-
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four bit indices which may be stored in the vertex reuse butifer
186. If the incoming index matches what 1s 1n the reuse table,

then a hit occurs. Otherwise a miss occurs. When a hit occurs
the domain shader 184 does not need to be invoked because
the needed information is stored 1n the vertex reuse bufler 186
and may be accessed from there. Otherwise, if a miss occurs
the domain shader 184 will generally be invoked. In one
example system comparators may be configured to compare
all three triangle indices for a given triangle 1n parallel with all
thirty-two entries 1n reuse table, where each entry 1s mdex
(thirty-four bit).

For example, if any of thirty-two entries match the thirty-
four bit index then that vertex 1s stored in the vertex reuse
builfer 186 and does not have to be calculated (or re-calcu-
lated) by the domain shader 184. Rather, it may be read from
the vertex reuse bulfer 186. Otherwise a vertex miss occurs
and the vertex mformation needs to be calculated (or re-
calculated) by the domain shader 184. Additionally, one entry
from reuse cache may be read out of the FIFO to make room
for the newly calculated information for the vertex miss. As
described, the vertex reuse builer 186 may store vertex infor-
mation calculated by the domain shader 184. This missed (u,
v) may be used as a new index which 1s 1ssued to the shader
system for vertex processing (domain shader 184 process-
ng).

When a vertex miss occurs the block primitive controller
(PC), which may be before vertex fetcher decoder (VED) and
high level sequencer (HLSQ) sends the UV coordinates to the
VFD, which may also before the HLSQ. The VFD sends the
UV coordinates to the HLSQ which may also be before the
shader units. The HLSQ sends the UV coordinates to the
shader unit (SP) and loads the UV coordinates into a GPR.
This 1s one fiber (one thread) out of thirty-two fibers which
makes a wave. Once a wave 1s composed this way, 1t 1s 1ssued
for execution of domain shader 184.

FIG. 7 1s a diagram 1illustrating an example technique for
outputting vertices of a quad domain 1n accordance with one
or more examples described in this disclosure. The proposed
approach may use a walking pattern that may be considered
more complicated when compared to those discussed with
respect to FIGS. 3 and 4. In FIG. 7 a walking pattern 1s
illustrated for a quad domain. In the example illustrated 1n
FIG. 7, the tessellation may be performed by “walking™ 1n
numerical order, e.g., 1, 2, 3, 4, etc. Such an order will allow
for the reuse of values 1n the vertex reuse buffer 186, which
decreases the need for recalculating vertices.

As 1llustrated 1n FIG. 7, quad domain 200 may be divided
into four different portions 202, 204, 206, 208. Each portion
202, 204, 206, 208, may be processed separately. For the
purposes of this discussion, portion 208 will be considered a
first portion. It will be understood that any of the portions 202,
204, 208, 208 may be considered the first portion.

Referring now to portion 208, the tessellation may be per-
formed by walking 1n numerical order, starting for example at
an outer edge, at “1” and proceeding inward, e.g., 2, 3, 4, 5, 6,
7, 8. For example, a tessellation unit may divide the domain
into a plurality of portions, including a first portion. The
tessellation unit may determine coordinates for vertices for a
first set of shapes that reside within the first portion (e.g., the
first set of shapes include the triangles labeled 1 to 8), wherein
cach shape of the first set of shapes includes at least one vertex
on a first edge of the first portion. After determining coordi-
nates for the vertices for the first set of shapes, the tessellation
unit may determine coordinates for vertices for a second set of
shapes that reside within the first portion (e.g., the second set
of shapes include the triangles labeled 9 to 16). Each shape of
the second set of shapes shares at least one vertex with at least
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one shape of the first set of shapes. Further, none of the shapes
ol the second set of shapes includes a vertex on the first edge
of the first portion. This may allow for additional vertices to
be processed while vertex information for those vertices 1s
still 1n the vertex reuse buffer 186.

The vertex reuse builer 186 may store thirty-two sets of
coordinates calculated by the domain shader 184. Accord-
ingly, as the tessellation unit 182 (e.g., point generators 188
and connectivity generator 190) walks from, for example
outer edge at 9 inward to 16 each of the 8 values for 1 to 8 may
be available 1n the vertex reuse bufier 186. Additionally, in
some examples, values along an edge of portion 206 that 1s
shared with portion 208 may be available 1n the vertex reuse
buifer 186 when walking from 1 to 8 in portion 208. After
walking from 9 to 16 the tessellation may continue by walk-
ing 1n numerical order, starting for example at the outer edge,
at “17” and proceeding inward.

In the illustrated example of F1G. 7, each portion 202, 204,
206, 208 includes a number of triangles. In the example each
set of values calculated for the portion 202,204,206, 208 may
be stored 1n the vertex reuse buller 186 for use while that
portion 1s being processed. (Note again that the vertex reuse
buifer 186 may include, for example, thirty-two storage loca-
tions for the calculated vertex information.)

As 1llustrated 1 FIG. 7, portion 208 has a small enough
number of triangles to allow the entire portion 208 to be
walked without overflowing the vertex reuse builer 186.
More specifically, the number of vertices that need to be
stored 1s small enough that the vertex reuse bulfer 186 does
not overtlow, assuming a vertex reuse buller with, for
example, thirty-two storage spaces. It will be understood that,
although a triangle has three vertices, because of vertex shar-
ing between triangles, the total number of vertices that need to
be stored will generally not be three times the number of
triangles 1n a portion or sub-portion. Additionally, 1t will also
be understood that some vertices 1n a portion or sub-portion
may be overwritten without requiring a subsequent domain
shader invocation, e.g., when the vertex information for that
vertex 1s no longer needed.

As tnangles are walked from 1 to 8, ten vertices will be
stored, leaving twenty-two storage spaces. As triangles 9 to
16 are walked, five of the needed vertices will already be
available 1n the vertex reuse butfer 186 and the domain shader
184 will not need to be invoked to calculate them. Addition-
ally, five of the vertices from triangles 1 to 8 will not be
needed to calculate triangles 9 to 16 and these may be dis-
carded from the vertex reuse butfer 186. In other words, the
vertices along first edge 212 may be discarded. It will be
understood that these vertices might need to be recalculated
when processing portion 206, however, they are not needed
again form the processing of portion 208. The process can
continue 1n numerical order, reusing vertices as needed and
discarding vertices when they are not needed to process the
portion 208.

In another example however, information related to verti-
ces along one or more edges of a portion 202, 204, 206, and
208 might be maintained for use 1n processing another por-
tion 202, 204, 206, and 208. For example first edge 212 1s an
edge shared by portion 206 and 208. In some cases 1t may be
possible to maintain vertex information for vertices along first
edge 212 for use 1 processing both portion 206 and 208.
More specifically, triangles 1 to 8 might be walked and infor-
mation for ten vertices may be stored. Then triangles 9 to 16
may be walked and an information for an additional five
vertices might be stored. Triangles 9 to 16 share five vertices
with triangles 1 to 8. The total number of vertices now stored
might be fifteen, assuming no information was stored in the
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vertex reuse builer before starting to process portion 208.
Note that the vertex reuse buifer 186 has not overtlowed and
that the entire portion 208 might be processed without dis-
carding any vertex information. If portion 206 1s processed
next, the vertex information for the vertices along first edge
212 may still be available 1n the vertex reuse builfer 186.
While vertex information for the entire portion 208 might be
stored the vertex reuse butfer 186, 1t may still be useful to over
right vertex information that 1s no longer needed.

The tessellation unit 182 may include two point generators
188 (1inner and outer) and a connectivity generator 190. As
discussed herein, the triangle may be walked in numerical
order. For example 1n one system triangles 1 to 8 may be
walked first. In the quad domain 200 the outer point generator
may generate the vertices to the right of the triangles 1 to 8 of
quad domain 200 and the 1nner point generator may generate
vertices to the lett of triangles 1 to 8 of quad domain 200. The
connectivity generator 190 in the tessellation unit 182 may
stitch triangles 1-8 together, taking vertices from both inner
and outer point generator outputs.

More specifically, starting with triangle 1, the outer point
generator will generate the two vertical vertices of triangle 1,
and the mnner point generator will generate the third vertex.
The connectivity generate will connect the three vertices indi-
cating that these three vertices belong to triangle 1, and output
the vertices. A controller 192 in the vertex reuse buifer 186
(1.e. vertex reuse logic) will determine whether the outputted
vertices are in the vertex reuse builer 186 and invoke
instances of the domain shader 184 for every vertex not in the
vertex reuse buller 186.

Then, the outer point generator will generate a vertex of
triangle 2, and the inner point generator will generate two
vertical vertices of triangle 2. The connectivity generator 190
will connect the three vertices indicating that these three
vertices belong to triangle 2, and output the vertices. The
controller 192 of the vertex reuse buffer 186 will determine
whether the outputted vertices are in the vertex reuse builer
186 and invoke 1nstances of the domain shader 184 for every
vertex not 1n the vertex reuse bulter 186, and so forth.

In this example, the point generators 188 and the connec-
tivity generator 190 first constructing triangle 1, then con-
structing triangle 2, by “walking” from triangle 1 to triangle 2
and then continuing numerically walking though triangle 3 to
8. Accordingly, triangles 1 to 8 may be considered a first set of
shapes that reside within a first portion (portion 208 1n this
example). As 1llustrated 1n FIG. 7, the first set of shapes that

reside within the first portion include at least one vertex, e.g.,
210 (and sometimes two) on a first edge 212 of first portion
208. For example, vertex 210 1s a vertex of triangles 6, 6, and
7. Triangles 5 and 7 include two vertices on first edge 212,
while triangle 6 1ncludes only one vertex on first edge 212.
Then the point generators 188 will “walk” triangles 9 to 16
in generally the same fashion. Triangles 9 to 16 may be
considered a second set of shapes that reside within the first
portion 208. The outer point generator may generate the ver-
tices to the right of the tnangles 9 to 16 of quad domain 200,
and the mner point generator may generate vertices to the left
of triangles 9 to 16 of quad domain 200. The connectivity
generator 190 1n the tessellation unit 182 may start stitching
triangles 9 to 16, taking vertices from both mnner and outer
point generator outputs. This process may continue for the
rest of the triangles 1n portion 208 and with triangles 1n other
portions, 202, 204, 206. As 1llustrated 1n FI1G. 7, each shape of
the second set of shapes (triangles 9 to 16) shares at least one
vertex with at least one shape of the first set of shapes, e.g.,
vertex 214. Additionally, as illustrated 1n FIG. 7, none of the
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shapes of the second set of shapes includes a vertex on the first
edge 212 of the first portion 208.

In an example, the first edge 212 may reside between two
boundaries 216, 218, of the quad domain 200. Additionally,
the first portion 208 may include four edges, such that a first
212 and second edge 220 of the at least four edges reside
within boundaries of the domain and wherein a third and

tourth edge of the four edges each reside on the boundaries of
the domain 218, 222.

It will be understood that portions 202, 204, 206, and 208
may be processed in various orders. The example walking,
schemes generally results 1n fewer invocations of the domain
shader 184 because more vertices are available 1n the vertex
reuse buller 186 as compared to walking around the rings. It
will also be understood that the sets of shapes may be pro-
cessed 1n various orders other than 1 to 8, followed by 9 to 16,
17 to 24, and 25 to 32. For example, 25 to 32 might be
considered the first set of shapes and shapes 17 to 24 might be
considered the second set of shapes. Additionally, the orien-
tation of the sets of shapes might me changes, e.g., triangles 1,
2,9,10,17, 18, 25, 26 might be a first set of shapes. Further,
it will also be understood that portions might be sized differ-
ently than 1n the example of FIG. 7.

FIG. 8 1s a diagram 1llustrating an example technique for
outputting vertices of a triangle domain 1n accordance with
one or more examples described 1n this disclosure. The pro-
posed approach may use a walking pattern that may be con-
sidered more complicate when compared to those discussed
with respect to FIGS. 3 and 4. In FIG. 8 a walking pattern 1s
illustrated for a triangle domain. In the example illustrated 1n
FIG. 8, the tessellation may be performed by “walking” 1n
numerical order, e.g., 1, 2, 3, 4, etc. Such an order will allow
for the reuse of values 1n the vertex reuse buffer 186, which
decreases the need for recalculating vertices.

As 1llustrated 1n FIG. 8, tnangular domain 225 may be
divided into three different portions 227, 229, 231. Each
portion 227,229, 231, may be processed separately. For pur-
poses of this example, portion 231 may be considered the first
portion, however, it will be understood that any of portions
227,229, 213 might be considered the first portion. Referring
now to portion 231, the tessellation may be performed by
walking in numerical order, starting for example at an outer
edge, at “1” and proceeding inward, e.g., 2,3, 4,5, 6,7, 8.

Similar to the discussion of FIG. 7, above, a tessellation
unit may determine coordinates for vertices for a first set of
shapes (e.g., triangles 1 to 8) that reside within the first por-
tion 231. Each shape of the first set of shapes includes at least
one vertex on a first edge 233 of the first portion. After
determining coordinates for the vertices for the first set of
shapes (triangles 1 to 8), determine coordinates for vertices
for a second set of shapes (triangles 9 to 16) that reside within
the first portion 231. Each shape of the second set of shapes
(triangles 9 to 16) shares at least one vertex with at least one
shape of the first set of shapes (triangles 1 to 8), for example,
vertex 236. Additionally, none of the shapes of the second set
of shapes includes a vertex on the first edge 233 of the first
portion 231. FIG. 8 illustrates boundaries 235 of triangular
domain 225. Additionally, as illustrated in FIG. 8, two edges
237 reside within the boundaries 235 of the triangular domain
225,

The vertex reuse builer 186 may store thirty-two sets of
coordinates calculated by the domain shader 184. Accord-
ingly, as the point generator walks from, for example outer
edge at 9 inward to 16 each of the 8 values for 1 to 8 may be
available 1n the vertex reuse butier 186. Additionally, in some
examples, values along an edge of portion 229 that 1s shared
with portion 231 may be available 1n the vertex reuse builer
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186 when walking from 1 to 8 1n portion 231. After walking
from 9 to 16 the tessellation may continue by walking 1n
numerical order, starting for example at the outer edge, at 17
and proceeding inward to 24, followed by 25 to 31. Portion
227 may then be walked following a path 33, 34, 33, etc. It
will be noted that this path allows for reuse of calculated
values for the edge between 231 and 227. (Note again that the
vertex reuse buffer 186 may include, for example, thirty-two
storage locations for the sets of calculated vertex informa-
tion. )

As discussed herein, the tessellation unit 182 may include
two point generators 188 (inner and outer) and a connectivity
generator 190 unit. In the triangle domain 225 the outer point
generator may generate the vertices to the right of the tri-
angles 1 to 8 of triangle domain 225, and the inner point
generator may generate vertices to the left of triangles 1 to 8
of triangle domain 225. The connectivity generator 190 in the
tessellation unit 182 may start stitching triangles 1-8, taking
vertices from both mnner and outer point generator outputs.
Then the point generators 188 will “walk™ triangles 9 to 16.
This process may continue for the rest of the triangles 1n
portion 231 and with triangles 1n other portions, 227, 229. It
will be understood that portions 227, 229, and 231 may be
processed 1n various orders.

Similar to the discussion of the example of FIG. 7, 1n the
example of FIG. 8 portion 231 has a small enough number of
triangles to allow the entire portion to be walked without
overflowing the vertex reuse buffer 186. As triangles are
walked from 1 to 8, ten vertices will be stored, leaving twenty-
two storage spaces. As triangles 9 to 16 are walked, five of the
needed vertices will already be available 1n the vertex reuse
buffer 186 and the domain shader 184 will not need to be
invoked to calculate them. Additionally, five of the vertices
from triangles 1 to 8 will not be needed to calculate triangles
9 to 16 and these may be discarded from the vertex reuse
buifer 186. Accordingly, each set of values calculated for the
portion 227,229, 231 may be stored 1n the vertex reuse builer
186 for use while that portion 1s being processed. FIGS. 7 and
8 illustrate quad and triangular examples respectively for a
low tessellation level. An example for tessellation levels
greater than 30 1s 1llustrated with respect to FIG. 9, discussed
below.

FIG. 9 1s a diagram 1illustrating another example technique
for outputting vertices of a quad domain 1n accordance with
one or more examples described in this disclosure. FIG. 9
illustrates an example for tessellation levels greater than 30.
In each of the low tessellation level examples of FIGS. 7 and
8 discussed above, the tessellation may be performed by
“walking” in numerical order, 1, 2, 3, 4, etc. Such an order
will allow for the reuse of the butter, which decreases the need
for recalculating vertices. In examples for Tessellation levels
greater than thirty 1t may be impractical to walk all the way to
the center, so 1n one example a system may have to partition
the walks of height e.g. 15 (or 30 triangles per walk). This 1s
illustrated in FIG. 9.

For example, quad domain 250 may be divided into four
portions, including portion 252. The portions may be further
divided into sub-portions, such as 254 and 256. In this way
cach sub-portion may be walked separately to allow for vertex
reuse from the data stored in the vertex reuse butfer 186. It
will be understood, however, that some regeneration of the
vertex data may be necessary, for example, at the boundary
2358 between sub-portion 254 and 256. For example, a tessel-
lation unit may determine coordinates for vertices for a first
set of shapes of a first sub-portion 260. The first set of shapes
of the first sub-portion reside within the first sub-portion 258.
Each shape of the first set of shapes of the first sub-portion
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260 includes at least one vertex on a first edge 262 of the first
sub-portion 254. After determining coordinates for the verti-
ces for the first set of shapes of a first sub-portion 254, the
tessellation unit may determine coordinates for vertices for a
second set of shapes of the sub-portion 264 that reside within
the first sub-portion 260. None of the shapes of the second set
of shapes of a first sub-portion 264 includes a vertex on the
first edge 262 of the first sub-portion 254.

As described herein, there 1s a relationship between the
vertex reuse bufler 186 size and the path selected. Larger
vertex reuse builers may allow for longer walking paths, for
example. It may be preferable, however, not to increase the
s1ze ol the vertex reuse buffer size. For example, larger reuse
butler sizes may increase the complexity of vertex reuse logic
used to determine what information 1s being stored in the
vertex reuse buller 186. Additionally, the vertex reuse butler
186 may be a fixed size. For example, the vertex reuse butfer
186 may be 1n a separate component from the tessellation unit
and 1t may be preferable to avoid redesign of the component
that includes the vertex reuse buifer 186.

FIG. 10 1s a diagram illustrating another example tech-
nique for outputting vertices of a quad domain 375 1n accor-
dance with one or more examples described 1n this disclosure.
In a non-uniformed tessellation case edges of a domain have
different tessellation factors, the interior has different tessel-
lation factors from the edge, or both. For example, 1n cases
where edges have different tessellation factor than the inte-
rior, the system might not walking 1n the manor demonstrated
with respect to FIGS. 7-9. Rather, such a case may be pro-
cessed by handling the outmost ring or portions of the outer
most ring, where the irregularity occurs, and then handling
the mterior of the domain. For example, as 1llustrated in FIG.
10, one example of the algorithm may proceed 1n numerical
order, starting with edge 1, and proceeding through areas 2, 3,
4 ... 12. Note that, unlike FIGS. 7-8, as 1llustrated in FIG. 10,
the number 1 to 12 indicate an example order for processing,
areas made up of a number of triangles, rather than an order
for the individual triangles themselves. Accordingly, essen-
tially each quadrant of a quad (or ¥4 of the triangle case, not
illustrated) will be sandwiched between 1ts two neighboring
half edges. Generally, tessellation may be performed 1n a
walking order that generally reuses data stored in the vertex
reuse buller 186. For example, walks 1in order 1 to 12 may
reuse much of the data calculated along the border 377
between the different portions of quad domain 375.

FIG. 11 1s a diagram 1llustrating an example technique for
a triangle domain having an edge with an odd number of
segments 1 accordance with one or more examples described
in this disclosure. FI1G. 12 1s a diagram 1llustrating an example
technique for a quad domain having an edge with an odd
[ segments 1 accordance with one or more

number of
examples described in this disclosure.

As 1llustrated 1n FIGS. 11 and 12, domains with odd side
lengths may be split off the central axis. In such examples, the
point generator may process a patch by walking each portion
separately. This 1s not intended to indicate that the order may
not be selected such that reuse may occur between different
portions of the patch, triangle 300 or quad 325. The ordering
of the primitive output from the tessellation umt may atlect
the vertex reuse at the subsequent stage. Accordingly, order-
ings may be selected that allow for reuse of the vertexes
within the vertex reuse butfer size limit. As described herein,
walking may be performed such that calculated vertex infor-
mation may be reused.

For example, as illustrated in FIG. 11, trnangle 300 may
include portions 302, 304, 306, and center 308. Portions 302,

304, 306, and center 308 may be walked separately. For
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example, a walking scheme from outside edge to the interior
may be used such as ones generally similar to the walking
scheme discussed with respect to FIG. 8. The center may be
walked separately. As will be understood, some reuse may be
possible between center 308 and at least one of portions 302,
304, 306. It should also be understood that, while not neces-
sary 1n the specific example of FIG. 11, the concepts dis-
cussed with respect to FIGS. 9 and 10 may be applied as
necessary to deal with larger tessellation values and non-
uniform tessellation. For example, 1n each portion 302, 304,
306, the tessellation unit may walk from an edge to the inte-
rior at a boarder with another portion without overtlowing the
vertex reuse buller 186 when, for example, the number of
vertices 1s smaller than the size of the vertex reuse butler 186.
Again, 1t will be understood that, although a triangle has three
vertices, because ol vertex sharing between triangles, the total
number of vertices that need to be stored will generally not be
three times the number of triangles 1n a portion or sub-por-
tion. Accordingly, reuse may generally occur similar to the
discussion of FIG. 8. IT necessary, however, portions of a
domain with odd side lengths and larger tessellation factors
may be further divided into sub-portions as discussed with
respect to FIG. 9. Note that center 308 1s a single triangle and
accordingly, may be handled without further dividing. In
some examples, with higher tessellation values, however,
different divisions into portions and sub-portions may be
possible. Non-uniform tessellations for a domain including
an edge with an odd number of segments 1s also possible.

As 1illustrated 1n FIG. 12, quad 325 may include portions
327, 329, 331, 333. Portions 327, 329, 331, 333 may be
walked separately. For example, a walking scheme from out-
side edge to the interior may be used such as ones generally
similar to the walking scheme discussed with respect to FIG.
7. It should also be understood that, while notnecessary in the
specific example of FIG. 12, the concepts discussed with
respect to FIGS. 9 and 10 may be applied as necessary to deal
with larger tessellation values and non-uniform tessellation.
For example, in each portion 327, 329, 331, 333, the tessel-
lation unit may walk from an edge to the interior at a boarder
with another portion while processing a low enough number
of vertices such that the vertex reuse buller 186 1s not over-
flowed. Accordingly, reuse may generally occur similar to the
discussion of FIG. 7. If necessary, however, portions of a
domain with odd side lengths and larger tessellation factors
may be further divided into sub-portions as discussed with
respect to FIG. 9. Non-umiform tessellations for a domain
including an edge with an odd number of segments 1s also
possible.

In another example, a uniform walking scheme will give us
better results than the non-uniform one, one example system
may, at the setup stage of the tessellation umt 182, determine
a tlag as to whether all tessellation factors are equal or not.
Since most applications do not make use of adaptive tessel-
lation, this will give us performance advantage.

FIG. 13 1s a flow chart 1llustrating an example method for
tessellation 1n accordance with one or more examples
described 1n this disclosure. For purposes of 1llustration only,
reference 1s made to FIG. 6. As described above, FIG. 6
provides an example of a tessellation unit. Examples of the
tessellation unit include tessellation stage 124 of FIG. 1 and
primitive generator 142 of FI1G. 2, as well as tessellation unit
182 of FIG. 6.

In an example system, a tessellation unit may divide a patch
into a plurality of portions (350). In some cases, for example,
the tessellation unit may divide a quad domain into four
portions. Similarly, 1n another example the tessellation unit
may divide a triangular domain into three portions. In some




US 9,305,397 B2

29

cases, the tessellation unit may then further divided a quad or
triangular domain 1nto sub-portions. In this way a portion or
sub-portion may be processed 1n groups such that the vertex
reuse bufller 186 may be used elliciently as to minimize or
reduce vertex misses. This may decrease the number of
domain shader 184 invocations. For example, a portion or
sub-portion may have a small enough number of triangles to
fewer than thirty-two pairs of triangles, allowing the entire
portion or sub-portion to be walked without overtlowing the
vertex reuse buifer. It will be understood that, although a
triangle has three vertices, because of vertex sharing between
triangles, the total number of vertices that need to be stored
will generally not be three times the number of triangles 1n a
portion or sub-portion. Additionally, 1t will also be under-
stood that some vertices 1n a portion or sub-portion may be
overwritten without requiring a subsequent domain shader
invocation, €.g., when the vertex information for that vertex is
no longer needed.

In some examples, the number of triangles within a portion
may be so large or the size of the vertex reuse bulfer may be
too small to guarantee that vertices that are shared between
triangles within the portion are available 1n the vertex reuse
butlter when the vertices of each of these triangles 1s outputted
by tessellation stage 124. To address this, in some examples,
tessellation stage 124 may further divide a portion into sub-
portions. Tessellation stage 124 may implement the vertex
output scheme described 1n this disclosure within each of the
sub-portions. For example, tessellation stage 124 may divide
a portion into sub-portions such that tessellation stage 124
can ensure that shared vertices for the triangles within the
sub-portion will be available in the vertex reuse buffer when
tessellation stage 124 outputs the vertices of such triangles.

Additionally, the plurality of portions may include a first
portion, which may be the first portion to be processed. In an
example, the first portion may be portion 208 of FIG. 7 or
portion 231 of FIG. 8. As discussed above, the first portion
may be processed 1n order by walking triangles 1 to 8, fol-
lowed by triangles 9 to 16, 17 to 24, and 25 to 32.

In an example system, a tessellation unit may determine
coordinates for vertices for a first set of shapes that reside
within the first portion (352). In an example, each shape of the
first set of shapes may include at least one vertex on a first
edge of the first portion, such as first edge 212 of FIG. 7 or first
edge 233 of FIG. 8.

Depending in the ordering of the primitive output from the
tessellation unit the vertex mnformation stored in the vertex
reuse buffer 186 may be reused at the subsequent stage.
Accordingly, orderings may be selected that allow for reuse of
the vertexes within the vertex reuse buller size limit. As
discussed above, it may be advantageous to not increase the
butfer size.

The tessellation unit may determine coordinates for verti-
ces for a second set of shapes that reside within the first
portion (354). This may occur after determining coordinates
for the vertices for the first set of shapes (352). Each shape of
the second set of shapes shares at least one vertex with at least
one shape of the first set of shapes. Further, none of the shapes
of the second set of shapes includes a vertex on the first edge
of the first portion. The order of output primitives may eifi-
ciently utilize the vertex reuse buffer 186 as to minimize
vertex misses (€.g., needed vertex information not present in
the vertex reuse buller 186). This may decrease the number of
domain shader 184 1nvocations by increasing reuse of previ-
ously calculated information stored 1n the vertex reuse buifer
186. Decreasing the number of domain shader 184 invoca-
tions may save power and increase performance.
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Generally, reuse may be accomplished by dividing a patch
into smaller and smaller portions or sub-portions until a num-
ber of triangles can be “walked” as one set without over
flowing the vertex reuse buffer 186. For example, a portion or
sub-portion may have a small enough number of triangles to
allow the entire portion or sub-portion to be walked without
overflowing the vertex reuse buffer. Although a triangle has
three vertices, because of vertex sharing between triangles,
the total number of vertices that need to be stored will gen-
erally not be three times the number of triangles in a portion
or sub-portion. Additionally, some vertices 1n a portion or
sub-portion may be overwritten without requiring a subse-
quent domain shader invocation, e.g., when the vertex infor-
mation for that vertex 1s no longer needed. (Vertex reuse
builer 186 may generally have thirty-two storage locations in
some examples.) Alternatively, a portion or sub-portion may
be sized such that, for example, the portion or sub-portion
may be walked from an edge to a predetermined interior
location while only filling half of the vertex reuse butfer 186
so that that stored information may be used as another part 1s
walked from edge to a predetermined interior location and the
other half of the vertex reuse butfer 186 1s filled. In yet another
example, one or more portions or sub-portions of a patch may
be sized such each pass nearly fills the vertex reuse butier 186
and, 1n a subsequent pass, vertex information in the vertex
reuse builer 186 may be used and then overwritten by new
vertex information. Additional more specific examples are
provided herein.

FIG. 14 1s a diagram 1llustrating a comparison between an
example algorithm 1n accordance with one or more examples
described 1n this disclosure and other possible walking
schemes. The diagram provides an 1llustration of the 1deal
reuse case 500, an example of the current approach 502,
walking double rings 504 and walking a single ring 506. The
example 1s for a triangle domain with uniform tessellation
levels 1. .. 64 (1.e. same tessellation factors on all edges and
interior). As 1llustrated 1n FI1G. 14, the vertical axis 1s the ratio

of number of primitives divided by number of vertex misses.
The horizontal axis 1s tessellation level.

FIG. 15 1s a diagram 1illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described 1n this disclosure to other possible
walking schemes. The diagram provides an illustration of
triangle domain results for the 1deal reuse case 510, a uniform
case 512, a double ring case 514 and a single ring case 516.
Similar to FIG. 14, as 1llustrated in FIG. 15, the vertical axis
1s the ratio of number of primitives divided by number of
vertex misses. The horizontal axis is tessellation level.

FIG. 16 1s a diagram 1illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described in this disclosure to other possible
walking schemes. The diagram provides an illustration of
quad domain results for the ideal reuse case 520, a uniform
case 522, a double ring case 524 and a single ring case 526.
Similar to FIGS. 14-15, as illustrated in FIG. 16, the vertical
axis 1s the ratio of number of primitives divided by number of
vertex misses. The horizontal axis 1s tessellation level.

FIG. 17 1s a diagram 1illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described in this disclosure to other possible
walking schemes. The diagram provides an illustration of
triangle domain performance loss vs ideal. FIG. 17 illustrates
the performance loss (vs. 1deal) for single ring 530, non-
uniform 534 and uniform 536 walking schemes. Additionally,
for interior tessellation levels 2 . . . 64, FIG. 17 illustrates the
worst 532 possible outer tessellation level results. As illus-
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trated in FI1G. 17, the vertical axis indicates performance loss.
The horizontal axis 1s tessellation level.

FIG. 18 1s a diagram 1illustrating another comparison
between an example algorithm 1n accordance with one or
more examples described in this disclosure to other possible 53
walking schemes. The diagram provides an illustration of
quad domain performance loss verses i1deal. FIG. 18 1llus-
trates the performance loss (vs. 1deal) for single ring 540,
non-uniform 3544 and uniform 546 walking schemes. Addi-
tionally, for interior tessellation levels 2 . . . 64, FIG. 18 10
illustrates the worst 542 possible outer tessellation level
results. As 1llustrated in FIG. 18, the vertical axis indicates
performance loss. The horizontal axis 1s tessellation level.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any combi- 15
nation thereof. If implemented 1n software, the functions may
be stored as one or more mstructions or code on a computer-
readable medium. Computer-readable media may include
computer data storage media. Data storage media may be any
available media that can be accessed by one or more comput- 20
€rs Or one or more processors to retrieve structions, code
and/or data structures for implementation of the techniques
described 1n this disclosure. By way of example, and not
limitation, such computer-readable media can comprise ran-
dom access memory (RAM), read-only memory (ROM), 25
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium that can be used to store desired program code in the
form of instructions or data structures and that can be
accessed by a computer. Disk and disc, as used herein, 30
includes compact disc (CD), laser disc, optical disc, digital
versatile disc (DVD), floppy disk and Blu-ray disc where
disks usually reproduce data magnetically, while discs repro-
duce data optically with lasers. Combinations of the above
should also be included within the scope of computer-read- 35
able media.

The code may be executed by one or more processors, such
as one or more digital signal processors (DSPs), general
purpose microprocessors, application specific integrated cir-
cuits (ASICs), field programmable logic arrays (FPGAs), or 40
other equivalent integrated or discrete logic circuitry. Accord-
ingly, the term “processor,” as used herein may refer to any of
the foregoing structure or any other structure suitable for
implementation of the techniques described herein. Also, the
techniques could be fully implemented 1n one or more circuits 45
or logic elements.

The techniques of this disclosure may be implemented in a
wide variety of devices or apparatuses, including a wireless
handset, an integrated circuit (IC) or a set of I1Cs (1.e., a chip
set). Various components, modules or units are described 1n 50
this disclosure to emphasize functional aspects of devices
configured to perform the disclosed techniques, but do not
necessarily require realization by different hardware units.
Rather, as described above, various units may be combined 1n
a hardware unit or provided by a collection of iteroperative 55
hardware units, including one or more processors as
described above, 1n conjunction with suitable software and/or
firmware.

Various examples have been described. These and other
examples are within the scope of the following claims. 60

What 1s claimed 1s:
1. A tessellation unit for tessellating a domain, the tessel-
lation umit comprising circuitry, wherein the tessellation unit
1s configured to: 65
divide the domain into a plurality of portions, including a
first portion;
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divide at least the first portion into a plurality of sub-
portions based on a number of shapes 1n the first portion
and a size of a reuse butler, such that storage of coordi-

nates for a plurality of shapes within a first sub-portion
of the sub-portions does not overtlow the reuse buffer;

determine coordinates for vertices for a first set of shapes
that reside within the first sub-portion, wherein each
shape of the first set of shapes includes at least one vertex
on a first edge of the first portion, wherein at least one
shape of the first set of shapes includes at least one vertex
on a boundary of the domain, and wherein the first edge
of the first portion 1s not one of the boundaries of the
domain; and

alter determining coordinates for the vertices for the first

set of shapes, determine coordinates for vertices for a
second set of shapes that reside within the first sub-
portion,
wherein a shape 1n the first set of shapes for which the
tessellation unit determines coordinates last shares no
vertex with a shape in the second set of shapes for which
the tessellation unit determines coordinates first,

wherein each shape of the second set of shapes shares at
least one vertex with at least one shape of the first set of
shapes, and at least one shape of the second set of shapes
includes at least one vertex on the same boundary of the
domain as the at least one shape of the first set of shapes,
and
wherein none of the shapes of the second set of shapes
includes a vertex on the first edge of the first portion;

alter determining coordinates for vertices for shapes 1n the
first sub-portion, determine coordinates for vertices for a
first set of shapes of a second sub-portion of the first
portion wherein each shape of the first set of shapes of
the second sub-portion includes at least one vertex on a
first edge of the second sub-portion;

alter determining coordinates for the vertices for the first

set of shapes of the second sub-portion, determine coor-
dinates for vertices for a second set of shapes of the
second sub-portion,

wherein none of the shapes of the second set of shapes of

the second sub-portion includes a vertex on the first edge
of the second sub-portion; and

output the determined coordinates for the first set of shapes

of the first sub-portion, the determined coordinates for
the second set of shapes of the first sub-portion, the
determined coordinates for first set of shapes of the
second sub-portion, and the determined coordinates for
second set of shapes ol the second sub-portion for graph-
1CS processing.

2. The tessellation unit of claim 1, where the domain 1s a
triangular domain and wherein the domain 1s divided nto
three portions.

3. The tessellation unit of claim 1, wherein the domain 1s a
quad domain and wherein the domain 1s divided into four
portions.

4. The tessellation unit of claim 1, wherein the first edge of
the first portion resides between two boundaries of the
domain, wherein one of the two boundaries includes the
boundary for the at least one shape of the first set of shapes of
the first sub-portion that includes the at least one vertex on the
boundary of the domain.

5. The tessellation unit of claim 1, wherein the first portion
comprises at least four edges and wherein a first edge and a
second edge of the at least four edges reside within bound-
aries of the domain and wherein a third edge and a fourth edge
of the four edges each reside on boundaries of the domain.
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6. The tessellation unit of claim 1, wherein, when the
domain includes a side having an odd side length, the domain
1s split offset from a central axis of the side.

7. The tessellation unit of claim 1, wherein to divide the
domain, the tessellation unit 1s configured to divide the
domain into at least one portion having a non-uniform tessel-
lation factor relative to the first portion, and wherein the
tessellation unit 1s further configured to determine coordi-
nates for a vertex that reside within the portion having the
non-uniform tessellation factor separately from determining,
coordinates for a vertex in the first portion.

8. The tessellation unit of claim 7, wherein the at least one
portion having a non-uniform tessellation factor relative to
the first portion resides along a boundary of the domain.

9. A method of tessellating a domain comprising:

dividing, with a graphics processing unmit (GPU), the

domain 1nto a plurality of portions, including a first
portion;

dividing, with the GPU, at least the first portion into a

plurality of sub-portions based on a number of shapes in
the first portion and a size of a reuse buifer, such that
storage of coordinates for a plurality of shapes within a
first sub-portion of the sub-portions does not overtlow
the reuse bufter;

determining, with the GPU, coordinates for vertices for a

first set of shapes that reside within the first sub-portion,
wherein each shape of the first set of shapes includes at
least one vertex on a first edge of the first portion,
wherein at least one shape of the first set of shapes
includes at least one vertex on a boundary of the domain,
and wherein the first edge of the first portion 1s not one of
the boundaries of the domain;

after determining coordinates for the vertices for the first

set of shapes, determining, with the GPU, coordinates
for vertices for a second set of shapes that reside within
the first sub-portion,

wherein a shape in the first set of shapes for which the

coordinates are determined last shares no vertex with a
shape 1n the second set of shapes for which the coordi-
nates are determined first,
wherein each shape of the second set of shapes shares at
least one vertex with at least one shape of the first set of
shapes, and at least one shape of the second set of shapes
includes at least one vertex on the same boundary of the
domain as the at least one shape of the first set of shapes,
and
wherein none of the shapes of the second set of shapes
includes a vertex on the first edge of the first portion;

after determining coordinates for vertices for shapes in the
first sub-portion, determining, with the GPU, coordi-
nates for vertices for a first set of shapes of a second
sub-portion of the first portion, wherein each shape of
the first set of shapes of the second sub-portion includes
at least one vertex on a first edge of the second sub-
portion;

after determining coordinates for the vertices for the first

set of shapes of the second sub-portion, determining,
with the GPU, coordinates for vertices for a second set of
shapes of the second sub-portion,

wherein none of the shapes of the second set of shapes of

the second sub-portion includes a vertex on the first edge
of the second sub-portion;

adding, with the GPU, primitives to a patch based on the

determined coordinates for vertices for the first set of
shapes of the first sub-portion, and the determined coor-
dinates for vertices for the second set of shapes of the
first sub-portion, the determined coordinates for vertices
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for the first set of shapes of the second sub-portion, and
the determined coordinates for vertices for the second
set of shapes of the second sub-portion;

performing, with the GPU, graphics processing on the

primitives of the patch to generate pixel values for pixels
to be displayed; and

outputting, with the GPU, the pixel values.

10. The method of claim 9, where the domain 1s a triangular
domain and wherein the domain 1s divided into three portions.

11. The method of claim 9, wherein the domain 1s a quad
domain and wherein the domain 1s divided into four portions.

12. The method of claim 9, wherein the first edge of the first
portion resides between two boundaries of the domain,
wherein one of the two boundaries includes the boundary for
the at least one shape of the first set of shapes of the first
sub-portion that includes the at least one vertex on the bound-
ary of the domain.

13. The method of claim 9, wherein the first portion com-
prises at least four edges and wherein a first edge and a second
edge of the at least four edges reside within boundaries of the
domain and wherein a third edge and a fourth edge of the four
edges each reside on boundaries of the domain.

14. The method of claim 9, wherein, when the domain
includes a side having an odd side length, the domain 1s split
olfset from a central axis of the side.

15. The method of claim 9, wherein dividing the domain
into a plurality of portions, further comprises dividing the
domain into at least one portion having a non-uniform tessel-
lation factor relative to the first portion and determining coor-
dinates for a vertex that reside within the portion having the
non-uniform tessellation factor separately from determining,
coordinates for a vertex 1n the first portion.

16. The method of claim 15, wherein the at least one
portion having a non-uniform tessellation factor relative to
the first portion resides along a boundary of the domain.

17. A graphics processing unit (GPU) comprising:

circuitry comprising a tessellation unit for tessellating a

domain, the tessellation unit comprising;:

means for dividing the domain 1nto a plurality of portions,

including a first portion;

means for dividing at least the first portion into a plurality

ol sub-portions based on a number of shapes 1n the first
portion and a size of a reuse bulfer, such that storage of

coordinates for a plurality of shapes within a first sub-
portion of the sub-portions does not overflow the reuse
buftfer;

means for determiming coordinates for vertices for a first
set of shapes that reside within the first sub-portion,
wherein each shape of the first set of shapes includes at
least one vertex on a first edge of the first portion,
wherein at least one shape of the first set of shapes
includes at least one vertex on a boundary of the domain,
and wherein the first edge of the first portion 1s not one of
the boundaries of the domain; and

means for determining coordinates for vertices for a sec-
ond set of shapes that reside within the first sub-portion
after determining coordinates for the vertices for the first
set of shapes,

wherein a shape 1n the first set of shapes for which the
coordinates are determined last shares no vertex with a
shape 1n the second set of shapes for which the coordi-
nates are determined first,

wherein each shape of the second set of shapes shares at
least one vertex with at least one shape of the first set of
shapes, and at least one shape of the second set of shapes
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includes at least one vertex on the same boundary of the
domain as the at least one shape of the first set of shapes,
and
wherein none of the shapes of the second set of shapes
includes a vertex on the first edge of the first portion;

means for determining coordinates for vertices for a first
set of shapes of a second sub-portion of the first portion,
wherein each shape of the first set of shapes of the
second sub-portion includes at least one vertex on a first
edge of the second sub-portion after determining coor-
dinates for vertices for shapes in the first sub-portion;

means for determining coordinates for vertices for a sec-
ond set of shapes of the second sub-portion after deter-
mining coordinates for the vertices for the first set of
shapes of the second sub-portion,

wherein none of the shapes of the second set of shapes of

the second sub-portion includes a vertex on the first edge
of the second sub-portion; and

means for outputting the determined coordinates for the

first set of shapes of the first sub-portion, the determined
coordinates for the second set of shapes of the deter-
mined coordinates for the first sub-portion, the first set of
shapes of the second sub-portion, and the determined
coordinates for the second set of shapes of the second
sub-portion for graphics processing.

18. The GPU of claim 17, where the domain 1s a triangular
domain and wherein the domain 1s divided 1nto three portions.

19. The GPU of claim 17, wherein the domain 1s a quad
domain and wherein the domain 1s divided 1nto four portions.

20. The GPU of claim 17, wherein the first edge of the first
portion resides between two boundaries of the domain,
wherein one of the two boundaries includes the boundary for
the at least one shape of the first set of shapes of the first
sub-portion that includes the at least one vertex on the bound-
ary of the domain.

21. The GPU of claim 17, wherein the first portion com-
prises at least four edges and wherein a first edge and a second
edge of the at least four edges reside within boundaries of the
domain and wherein a third edge and a fourth edge of the four
edges each reside on boundaries of the domain.

22. The GPU of claim 17, wherein, when the domain
includes a side having an odd side length, the domain 1s split
offset from a central axis of the side.

23. The GPU of claim 17, wherein dividing the domain into
a plurality of portions, further comprises dividing the domain
into at least one portion having a non-uniform tessellation
factor relative to the first portion and wherein the tessellation
unit 1s further configured to determine coordinates for a ver-
tex that reside within the portion having the non-uniform
tessellation factor separately from determining coordinates
for a vertex 1n the first portion.

24. The GPU of claim 23, wherein the at least one portion
having a non-uniform tessellation factor relative to the first
portion resides along a boundary of the domain.

25. A non-transitory computer-readable medium, that 1s
not a signal, comprising instructions that when executed
cause a programmable processor to:

divide a domain into a plurality of portions, including a first

portion;

divide at least the first portion into a plurality of sub-

portions based on a number of shapes 1n the first portion
and a size of a reuse buller, such that storage of coordi-
nates for a plurality of shapes within a first sub-portion
of the sub-portions does not overtlow the reuse butler;
determine coordinates for vertices for a first set of shapes
that reside within the first sub-portion, wherein each
shape of the first set of shapes includes at least one vertex
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on a first edge of the first portion, wherein at least one
shape of the first set of shapes includes at least one vertex
on a boundary of the domain, and wherein the first edge
of the first portion 1s not one of the boundaries of the
domain; and

alter determining coordinates for the vertices for the first

set of shapes, determine coordinates for vertices for a
second set of shapes that reside within the first sub-
portion,

wherein a shape 1n the first set of shapes for which the

coordinates are determined last shares no vertex with a
shape 1n the second set of shapes for which the coordi-
nates are determined first,
wherein each shape of the second set of shapes shares at
least one vertex with at least one shape of the first set of
shapes, and at least one shape of the second set of shapes
includes at least one vertex on the same boundary of the
domain as the at least one shape of the first set of shapes,
and
wherein none of the shapes of the second set of shapes
includes a vertex on the first edge of the first portion;

alter determining coordinates for vertices for shapes 1n the
first sub-portion, determine coordinates for vertices for a
first set of shapes of a second sub-portion of the first
portion wherein each shape of the first set of shapes of
the second sub-portion includes at least one vertex on a
first edge of the second sub-portion;

alter determining coordinates for the vertices for the first

set of shapes of the second sub-portion, determine coor-
dinates for vertices for a second set of shapes of the
second sub-portion,

wherein none of the shapes of the second set of shapes of

the second sub-portion includes a vertex on the first edge
of the second sub-portion; and

output the determined coordinates for the first set of shapes

of the first sub-portion, the determined coordinates for
the second set of shapes of the first sub-portion, the
determined coordinates for the first set of shapes of the
second sub-portion, and the determined coordinates for
the second set of shapes of the second sub-portion for
graphics processing.

26. The computer-readable medium of claim 25, where the
domain 1s a triangular domain and wherein the domain 1s
divided 1nto three portions.

277. The computer-readable medium of claim 25, where the
domain 1s a quad domain and wherein the domain 1s divided
into four portions.

28. The computer-readable medium of claim 235, where the
first edge of the first portion resides between two boundaries
of the domain, wherein one of the two boundaries includes the
boundary for the at least one shape of the first set of shapes of
the first sub-portion that includes the at least one vertex on the
boundary of the domain.

29. The computer-readable medium of claim 25, where the
first portion comprises at least four edges and wherein a first
edge and a second edge of the at least four edges reside within
boundaries of the domain and wherein a third edge and a
tourth edge of the four edges each reside on boundaries of the
domain.

30. The computer-readable medium of claim 25, where
when the domain mcludes a side having an odd side length,
the domain 1s split offset from a central axis of the side.

31. The computer-readable medium of claim 25, wherein
the instructions causing the processor to divide the domain
into a plurality of portions further comprise instructions caus-
ing the processor to divide the domain into at least one portion
having a non-uniform tessellation factor relative to the first
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portion and to determine coordinates for a vertex that reside
within the portion having the non-uniform tessellation factor
separately from determining coordinates for a vertex in the
first portion.

32. The computer-readable medium of claim 31, where the
at least one portion having a non-uniform tessellation factor
relative to the first portion resides along a boundary of the
domain.

33. A device comprising:

a central processing unit (CPU); and

a graphics processing unit (GPU) configured to receive

information indicating a domain, the GPU comprising:
a tessellation unit for tessellating the domain, the tessel-
lation unit configured to:
divide the domain 1nto a plurality of portions, includ-
ing a first portion;
divide at least the {irst portion 1nto a plurality of sub-
portions based on a number of shapes 1n the first
portion and a size of a reuse bulfer, such that stor-
age ol coordinates for a plurality of shapes within a
first sub-portion of the sub-portions does not over-
flow the reuse buftter;
determine coordinates for vertices for a first set of
shapes that reside within the first sub-portion,
wherein each shape of the first set of shapes
includes at least one vertex on a first edge of the first
portion, wherein at least one shape of the first set of
shapes includes at least one vertex on a boundary of
the domain, and wherein the first edge of the first
portion 1s not one of the boundaries of the domain;
alter determining coordinates for the vertices for the
first set of shapes, determine coordinates for verti-
ces for a second set of shapes that reside within the
first sub-portion,
wherein a shape 1n the first set of shapes for which the
tessellation unit determines coordinates last shares
no vertex with a shape in the second set of shapes
for which the tessellation unit determines coordi-
nates first,
wherein each shape of the second set of shapes shares
at least one vertex with at least one shape of the first
set of shapes, and at least one shape of the second
set of shapes includes at least one vertex on the
same boundary of the domain as the at least one
shape of the first set of shapes, and
wherein none of the shapes of the second set of shapes
includes a vertex on the first edge of the first por-
tion;
alter determining coordinates for vertices for shapes
in the first sub-portion, determine coordinates for
vertices for a first set of shapes of a second sub-
portion of the first portion, wherein each shape of
the first set of shapes of the second sub-portion
includes at least one vertex on a first edge of the
second sub-portion;
alter determining coordinates for the vertices for the
first set of shapes of the second sub-portion, deter-
mine coordinates for vertices for a second set of
shapes of the second sub-portion,

10

15

20

25

30

35

40

45

50

55

38

wherein none of the shapes of the second set of shapes
of the second sub-portion 1includes a vertex on the
first edge of the second sub-portion; and

output the determined coordinates for the first set of
shapes ol the first sub-portion, the determined coor-
dinates for the second set of shapes of the first
sub-portion, the determined coordinates for the
first set of shapes of the second sub-portion, and the
determined coordinates for the second set of shapes
of the second sub-portion for graphics processing.

34. The device of claim 33, where the domain 1s a triangular
domain and wherein the domain 1s divided 1nto three portions.

35. The device of claim 33, wherein the domain 1s a quad
domain and wherein the domain 1s divided 1nto four portions.

36. The device of claim 33, wherein the first edge of the first
portion resides between two boundaries of the domain,
wherein one of the two boundaries includes the boundary for
the at least one shape of the first set of shapes of the first
sub-portion that includes the at least one vertex on the bound-
ary of the domain.

37. The device of claim 33, wherein the first portion com-
prises at least four edges and wherein a first edge and a second
edge of the at least four edges reside within boundaries of the
domain and wherein a third edge and a fourth edge of the four
edges each reside on boundaries of the domain.

38. The device of claim 33, wherein, when the domain
includes a side having an odd side length, the domain 1s split
olfset from a central axis of the side.

39. The device of claim 33, wherein to divide the domain,
the tessellation unit 1s configured to divide the domain 1nto at
least one portion having a non-uniform tessellation factor
relative to the first portion and wherein the tessellation unit 1s
further configured to determine coordinates for a vertex that
reside within the portion having the non-uniform tessellation
factor separately from determining coordinates for a vertex in
the first portion.

40. The device of claim 39, wherein the at least one portion
having a non-uniform tessellation factor relative to the first
portion resides along a boundary of the domain.

41. The device of claim 33, further comprising:

a domain shader coupled to the tessellation unit and con-
figured to convert coordinates for the vertices of a shape
in the domain mto coordinates for vertices of a patch;

a vertex reuse buller coupled to the domain shader and
configured to store the coordinates for the vertices of the
patch from the domain shader;

a controller within the reuse buifer, the controller including
reuse control logic configured to determine when the
vertex reuse buller 1s storing coordinates for vertices
needed by the tessellation unit; and

wherein the tessellation unit 1s further configured to mnvoke
the domain shader when the controller indicates that the
vertex reuse butler 1s not storing coordinates for vertices
needed by the tessellation unit and to read the coordi-
nates from the vertex reuse buffer when the controller
indicates that the vertex reuse buller 1s storing coordi-
nates for vertices needed by the tessellation unit.
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