12 United States Patent

Qiu et al.

US009300720B1

US 9,300,720 B1
Mar. 29, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)
(%)

(21)
(22)

(60)

(1)

(52)

(58)

(56)

0,091412 A
0,356,931 B2

SYSTEMS AND METHODS FOR PROVIDING
USER INPUTS TO REMOTE MOBILLE
OPERATING SYSTEMS

Applicant: Trend Micro Incorporated, Tokyo (IP)

Inventors: Yinfeng Qiu, Nanjing (CN); Yaozhou
Xu, Nanjing (CN); Gen Chen, Nanjing
(CN)

Trend Micro Incorporated, Tokyo (JP)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 289 days.
Appl. No.: 13/902,013
Filed: May 24, 2013
Related U.S. Application Data

Assignee:

Notice:

Provisional application No. 61/825,839, filed on May

21, 2013.

Int. Cl.

HO4L 15/16 (2006.01)

HO4L 29/08 (2006.01)

HO4L 12/66 (2006.01)

GO6F 9/44 (2006.01)

GO6F 9/455 (2006.01)

GO6F 3/0488 (2013.01)

U.S. CL

CPC HO4L 67/04 (2013.01); GO6F 3/04883

(2013.01); GO6F 9/4445 (2013.01); GO6F
9/45504 (2013.01); HO4L 12/66 (2013.01);
HO4L 67/1095 (2013.01)

Field of Classification Search
None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7/2000 Simonoff et al.
3/2002 Isamel et al.

Zﬁ/\ p
|

CLIENT APP

IME

FLL

F40

43

6,401,154 Bl 6/2002 Razavi et al.
6,433,794 Bl 8/2002 Beadle et al.
6,492,995 B1 12/2002 Atkin et al.
6,647,544 B1 11/2003 Ryman et al.
6,757,895 Bl 6/2004 Beadle et al.
6,799,195 Bl 9/2004 Thibault et al.
6,842,777 Bl 1/2005 Tuli
(Continued)

FOREIGN PATENT DOCUMENTS

EP 1316 873 4/2003
EP 1 377 892 9/2004
(Continued)
OTHER PUBLICATIONS

Chen et al. (“*Android/OSGi Based Vehicular Network management
System” Computer Communications 34, No. 2 (2011), pp. 169-183;
herein referred to as Chen).™

(Continued)

Primary Examiner — Ranodhi Serrao

Assistant Examiner — James Fiorillo
(74) Attorney, Agent, or Firm — Okamoto & Benedicto LLP

(57) ABSTRACT

A virtual mobile infrastructure includes a mobile client
device running a local mobile operating system and a server
computer running a remote mobile operating system. The
mobile client device displays a screen 1mage of the remote
mobile operating system. User text inputs for a remote appli-
cation running on the remote mobile operating system are
received by way of a touchscreen keyboard of a local input
method editor (IME) of the local mobile operating system.
The user text inputs are transmitted from the mobile client
device to the server computer, where the text inputs are pro-
vided to the remote application by a virtual IME of the remote
mobile operating system.

11 Claims, 12 Drawing Sheets

224
o)
A
h

J47

US 9,300,720 Bl

Page 2
(56) References Cited 2012/0331532 ALl* 12/2012 Waltersccoen. HO4L 12/66
726/5
U.S. PATENT DOCUMENTS 2013/0080805 Al1* 3/2013 Vick ..., GO6F 8/4432
713/320
6,842,897 Bl 1/2005 Beadle et al. 2013/0239009 Al* 9/2013 Jeong GOG6F 3/04883
6,941,552 Bl 9/2005 Beadle et al. | 715/863
6,976,059 B1 12/2005 Rogalski et al. 2014/0194094 Al* 7/2014 Ahwa ... GOG6F 21/53
7,039,691 Bl 5/2006 Turnidge 455/410
7.191,211 B2 3/2007 Tuli 2014/0282465 Al1* 9/2014 Matenaar GOG6F 9/45504
7,290,129 B2 10/2007 Chebolu et al. | 717/168
7,506,257 Bl 3/2009 Chavez et al. 2014/0282608 Al* 9/2014 Biancalana GO6F 9/544
7,634,811 Bl 12/2009 Kienzle et al. | 719/312
7,735,138 B2 6/2010 Zhao 2014/0289637 Al* 9/2014 Coviello GO6F 9/4445
8,023,974 Bl 9/2011 Diao et al. 715/738
8,024,790 B2 9/2011 Zhao et al.
8,239,918 Bl 8/2012 Cohen FOREIGN PATENT DOCUMENTS
2001/0054062 A1 12/2001 Ismael et al.
2002/0129281 Al 9/2002 Hatfalvi et al. WO 02/084459 10/2002
2003/0041106 Al 2/2003 Tuli WO 03/017068 2/2003
2004/0148608 Al 7/2004 Gendreau et al. WO 2005066786 7/2005
2004/0158830 Al 8/2004 Chung et al.
2004/0230643 Al 11/2004 Thibault et al. OTHER PUBLICATIONS
2005/0188361 Al 8/2005 Cai et al. | | |
2005/0198485 Al 9/2005 Nguyen et al. Chen et al. (“*Android/OSGi Based Vehicular Network management
2005/0246176 Al 11/2005 Creamer et al. System” Computer Communications 34, No. 2 (2011), pp. 169-183.*
2006/0112342 Al 5/2006 Bantz et al. Hadeel Tariq Al-Rayes, “Studying Main Differences between
2007/0079244 Al 4/2007 Brugiolo Android & Linux Operating Systems™, Oct. 2012, pp. 46-49, vol. 12,
2007/0199058 Al 8/2007 Baumgart et al. No. 5, International Journal of Electrical & Computer Sciences
2011/0167474 Al 7/2011 Sinha [JECS-IJENS.
2012/0089906 Al 4/2012 Reeves HO4L 67/1095
715/255 * cited by examiner

U.S. Patent Mar. 29, 2016 Sheet 1 of 12 US 9,300,720 B1

707 74 J06 7z
USER INPUT DATA DISPLAY
| PROCESSOR DEVICES STORAGE MONITOR
JO5
705 708
MAIN MEMORY

COMMUNICATIONS 770
INTERFACE SOFTWARE MODULES \

HG. 7

¢ Il

W1SAS d3LNdINOD INA

US 9,300,720 B1

R NER N ¥IAY3S
e .
JIAl TV LEIA
RS /117 RS -
(dnyoeq 1oy ouAgejes "6a) / \ .
. IDIANIS ANOTO == D V174
S SETNSELS \ 530 / Y3AY3S
mu - - ONIMAANT LNJIT0
> XF _ V14 C———
= _H_
7
hes /12 RS - i
— S3ADIA3C
\&
AN3ITO 190N
m I/NQN
=
2 ,
M. d3AYAS ASIHdET NS
> ga av
t @
o M.M
Q)
~
S
A " 274
4

US 9,300,720 B1

I I
_ _
L _ i
“ ! [|
M _ | _ | _ | _
g _ “ NA MINEQ _ _ 9cZ A MIABQ " _
- _ | NILSAS QIOHANY | | NILSAS QIOYANY | _
_ | | | _ 310SNOD _
| | | | | NV |
o ! R | | | _
= 1274 1974 ¥OSIAY3dNS
S _ " SNOILYOITddY dIOHANY “ _ SNOLLVOI'lddY dI0HaNY “ _ _
=N | _
™) | _ | | |
= _ | | | | /\NN _
> _ | | | QI0YANY JLONTY _ _
! | _| L _| _

d4AddS

IillillllIIIIIIIIIIIIIiIIIIIIII

U.S. Patent

n&ﬁ. KO/ Y/
v O
1BAUQ I4IM

_ 18AI(Bi8WEND _

Juswebeuel
lamod

S1OAL(
oipny

US 9,300,720 B1

18AIq pedAsy

1A

JoAL(
(Od\I) Jepuig

IDUIDYM
Alowsy yseld

& _ —
- - . _ 1SS _ _ 198 _
S
_4 .
auIyoe
M.w _m:t_.\ﬂ_ V___,_,_mo _ IM3OM _ _ cIYEETE _ 53| 19uadQ
7
S9leIqr] 9100 aIos fo%%mc_\,w - 1abeueyy soepng
- JWILNNY AIOYANY S3IVHEIT WajsAg
2
- labeuep Jlabeuep 1abeuep Jobeue
M UCHEODUNON UoNEeo0T 99IN0say Auoyds|a | Jabeue}y sbexoed i
R .
< SI9PIAOI Jobeue
> OO é sebeuey Aoy
NHOMINVEH] NOILYOIddV

_

) (eemn) (Cawowa) (oo) (Cowon)| yopeonddy

SNOILVOITddV

U.S. Patent

US 9,300,720 B1

Sheet Sof 12

Mar. 29, 2016

U.S. Patent

13aNE3IA
5o
.
SIAXIJILTINN
£
A LA
P-
I 57 1X41NOD
NIVHO LX3J1INOD

G Ol

OFZ _ dAAIAA 7

————UJHOVLLY - |IH

V_ IX41INOD HOLIMS _

1X41INOD J1v3dD

A
Nz

E-NJLSAS

U.S. Patent Mar. 29, 2016 Sheet 6 of 12 US 9,300,720 B1

200

B

224
224 REMOTE ANDROID
224 — 25 220

APP

APP

DALVIK VM | ANDROID SYSTEM (X86)
DEVICE EMULATOR
257

REMOTE ACCESS DAEMON

207

ZZ6
|
|

227 DRIVER MULTIPLEXER LAYER

LINUX KERNEL | |
| |

| l :
| INPUT SCREEN SENSOR

: A

207 L I
| | 2/

267 267 267 !
| e N ﬁ

APP APP APP CLIENT

/5

N

X

]
|
L

265

ADNDROID SYSTEM (ARM
DALVIK VM (ARM) SENSOR

SERVICE

] Y,
LINUX KERNEL |

HG. 6

U.S. Patent Mar. 29, 2016 Sheet 7 of 12 US 9,300,720 B1

ZWX | 17
MOBILE CLIENT | x
ey | SERVER COMPUTER
|
267 , 280 224
l
CLIENT | LOGIN SERVER REMOTE
, ANDROID
| |
| | - ?
| l | :
{ . AUTHENTICATION |
| | i |
| I | |
,267 ;
LOGIN !
| - START
| 283 '
| START
287 | + TOKEN KEY
TOKEN.
]
l . :
i | l |
| | | |
. | ! I
l | | AUTHENTICATION
I |
| | '
254 | : '
ACCESS + TOKEN — .|
255

ALLOW

US 9,300,720 B1

H344N9 JNVY-
o es JOVNI NITHOS
INIONI
~ ONILISOdWNOD SOIHAYYO 23
m (MooH) ﬁ
0 /52 b4 Zoe
3 N c o o ._
m JOV4HNS z3ovadns | (1 3ov4sns
18 - o
= 222 INIONT SOIHAVYO
3 MOOH
=
2 .
= 2Z3 075 075
o~
= [NddY .o e
o4 / P
_QIOHANY J1OW3

Nz

U.S. Patent

§ Il

v1va
ONILISOdNOD
| 1038103

STIVO IdVY ONIMYAQ

_hm_m_omm

|
|
AHOMLIAN

705

‘ JOVIAI NJJ440S _

dOLISOdNOD FOV4HNS

5272

JOVAINS €44

L

ddVY LN3IO

\.

/ 005

V1774

30IA3dd LN3ITO 190N /N.QN

U.S. Patent Mar. 29, 2016 Sheet 9 of 12 US 9,300,720 B1

ol
47

APP

224
h VIRTUAL IME
M

S4F

G, 9

SLL

/252
CLIENT APP
IME

207 \
F40

U.S. Patent Mar. 29, 2016 Sheet 10 of 12 US 9,300,720 B1

LOCAL REMOTE

AMENONENER,

AEPAERORN
JMBAF

] 6L

U.S. Patent Mar. 29, 2016 Sheet 11 of 12 US 9,300,720 B1

LOCAL REMOTE

NEED USER

TEXT INPUTS
-—ee

J67L

@@l@lll[ﬂ
IBHHE@@II

357 LOCAL REMOTE
— —
| |
Q |linput text JIEN ‘ - [JInput text Q]
| |
| |
TEXT INPUTS

0T 0EEE

H(ERAIEE
"II@@@I

J

U.S. Patent Mar. 29, 2016 Sheet 12 of 12 US 9,300,720 B1

LOCAL REMOTE

S64
J [lInput text & l g [finput text 1@'

Google search results: ... Google search results: ...

DONE WITH
PROVIDING

TEXT INPUTS
—_—

Jb6J

G, 10F

LOCAL REMOTE
O —— —_—_————
—
gHInputtext HE| | gHInputtext __”E
\ (Google search results: ... Google search results: ...
| |
l CLOSE | |
TOUCHSCREEN
\| KEYBOARD
- ‘ | |
|
| |
& B o Q & B © Q

US 9,300,720 Bl

1

SYSTEMS AND METHODS FOR PROVIDING
USER INPUTS TO REMOTE MOBILE
OPERATING SYSTEMS

CROSS-REFERENCE TO RELAT
APPLICATION

s
w

This application claims the benefit of U.S. Provisional

Application No. 61/825,839, filed on May 21, 2013, which 1s
incorporated herein by reference 1n 1ts entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to mobile devices,
and more particularly but not exclusively to computing 1nfra-
structures for supporting operation of mobile devices.

2. Description of the Background Art

Mobile devices, such as smartphones and tablets, have
become commonplace and are now employed as replace-
ments for portable (e.g., laptops and netbooks) and desktop
(e.g., personal computers) computing devices. For example,
smartphones are now employed not just to make voice calls
over traditional mobile telephone networks, but also to
browse the Internet, watch streamed video, and play online
games. Some employers even allow employees to bring their
own devices, the so-called BYOD policy.

One problem with mobile devices 1s that they run mobile
operating systems, such as the ANDROID and the 10S oper-
ating systems. Unlike traditional desktop operating systems,
such as the WINDOWS operating system, mobile operating
systems are not as powerful and extensible, allowing them to
run securely on a mobile device that has limited computing,
resources. Accordingly, mobile devices running mobile oper-
ating systems cannot readily take advantage of some comput-
ing inirastructures available to computers that run desktop
operating systems.

SUMMARY

In one embodiment, a wvirtual mobile infrastructure
includes a mobile client device running a local mobile oper-
ating system and a server computer running a remote mobile
operating system. The mobile client device displays a screen
image ol the remote mobile operating system. User text
inputs for a remote application running on the remote mobile
operating system are received by way of a touchscreen key-
board of a local input method editor (IME) of the local mobile
operating system. The user text inputs are transmitted from
the mobile client device to the server computer, where the text
inputs are provided to the remote application by a virtual IME
of the remote mobile operating system.

These and other features of the present invention will be
readily apparent to persons of ordinary skill in the art upon
reading the entirety of this disclosure, which includes the
accompanying drawings and claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic diagram of a computer that may
be employed with embodiments of the present invention.

FIG. 2 shows a schematic diagram of a virtual mobile
infrastructure 1n accordance with an embodiment of the
present invention.

FIG. 3 shows a schematic diagram of a server computer
running a plurality of ANDROID operating systems 1n accor-
dance with an embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 shows the three layers of an ANDROID operating,
system.

FIG. 5 shows a tlow diagram of a method of multiplexing
a plurality of ANDROID operating systems to a single kernel
driver 1n accordance with an embodiment of the present
ivention.

FIG. 6 shows a schematic diagram 1llustrating components
ol a server computer and a mobile client device 1n accordance
with an embodiment of the present invention.

FIG. 7 shows a flow diagram of a method of logging nto
one of a plurality of ANDROID operating systems 1n accor-
dance with an embodiment of the present invention.

FIG. 8 shows a schematic diagram 1illustrating client-side
rendering 1n accordance with an embodiment of the present
invention.

FIG. 9 shows a schematic diagram of a virtual input method
editor IME) operating with a local IME 1n accordance with
an embodiment of the present invention.

FI1G. 10, which consists of FIGS. 10A-10F, shows screen
shots 1llustrating an example operation of a virtual IME and a
local IME 1n accordance with an embodiment of the present
ivention.

The use of the same reference label 1n different drawings
indicates the same or like components.

DETAILED DESCRIPTION

In the present disclosure, numerous specific details are
provided, such as examples of apparatus, components, and
methods, to provide a thorough understanding of embodi-
ments of the invention. Persons of ordinary skill 1in the art wall
recognize, however, that the invention can be practiced with-
out one or more of the specific details. In other instances,
well-known details are not shown or described to avoid
obscuring aspects of the mnvention.

Referring now to FIG. 1, there 1s shown a schematic dia-
gram ol a computer 100 that may be employed with embodi-
ments of the present invention. The computer 100 may be
employed as a mobile client device, a server computer for a
virtual mobile infrastructure, and other devices described
below. The computer 100 may have fewer or more compo-
nents to meet the needs of a particular application. The com-
puter 100 may include a processor 101. The processor 101
may comprise an ARM processor when the computer 100 1s a
mobile client device or an x86 processor when the computer
100 15 a server computer, for example. The computer 100 may
have one or more buses 103 coupling 1ts various components.
The computer 100 may include one or more user 1put
devices 102 (e.g., keyboard, touchscreen), one or more data
storage devices 106 (e.g., flash memory, umiversal serial bus
(USB) drive), a display monitor 104 (e.g., touchscreen, liquid
crystal display), one or more communications interfaces 103
(e.g., network adapter, cellular interface), and a main memory
108 (e.g., random access memory). The computer 100 1s a
particular machine as programmed with software modules
110. The software modules 110 comprise computer-readable
program code stored non-transitory in the main memory 108
for execution by the processor 101.

FIG. 2 shows a schematic diagram of a virtual mobile
inirastructure (VMI) 200 1n accordance with an embodiment
of the present invention. In the example of FIG. 2, the virtual
mobile infrastructure 200 includes a VMI computer system
202. The VMI computer system 202 may include a plurality
of server computers 211, with each server computer 211
running a plurality of mobile operating systems. As its name
implies, a mobile operating system 1s an operating system

US 9,300,720 Bl

3

designed to run on mobile devices, which are also referred to
as “handheld devices.” Examples of mobile devices include
smartphones and tablets.

A mobile operating system 1s lightweight i that 1t con-
sumes less computing resources, such as processor and
memory resources, compared to desktop operating systems.
A mobile operating system also supports communications
over a mobile phone network, such as a cellular network, to
provide telephony. In one embodiment, a server computer
211 comprises a single LINUX operating system server that
runs several mobile operating systems in the form of
ANDROID operating systems, with each ANDROID operat-
ing system being implemented on a LINUX container. A
mobile operating system running on a server computer 211 1s
also referred to herein as a “remote mobile operating system”™
to distinguish 1t from a corresponding mobile operating sys-
tem running on a mobile client device 201. In general, com-
ponents on a mobile client device 201 are referred to herein as
“local” components, and components on the server computer
211 are referred to herein as “remote” components.

In the example of FIG. 2, the virtual mobile infrastructure
200 includes one or more mobile client devices 201, with each
mobile client device 201 comprising a mobile device that runs
a mobile operating system. The mobile operating system of a
mobile client device 201 may be the same as a corresponding,
remote mobile operating system running on a server com-
puter 211. In one embodiment, the mobile client devices 201
cach comprises a smartphone or tablet that runs the
ANDROID operating system. An ANDROID operating sys-
tem running on a mobile client device 201 1s also referred to
herein as a “local ANDROID operating system” and an
ANDROID operating system running on a server computer
211 1s also referred to herein as a “remote ANDROID oper-
ating system.”

In other embodiments, a mobile operating system of a
mobile client device 201 and a corresponding remote mobile
operating system may be different mobile operating systems.
For example, a mobile client device 201 may be running an
10S operating system and the remote mobile operating sys-
tems may be ANDROID operating systems.

A mobile clhient device 201 may communicate with the
VMI computer system 202 to access one of a plurality of
remote mobile operating systems running on a server com-
puter 211 over a computer network, which may include the
Internet and/or a private computer network. The remote
mobile operating system, which comprises the ANDROID
operating system in this example, includes a plurality of
remote application programs (also commonly known as
“applications” or “apps”). A user of the mobile client device
201 accesses the remote apps on the remote ANDROID oper-
ating system as if the remote apps are running on the mobile
client device 201. For example, the screen image of the
remote ANDROID operating system 1s displayed on the
touchscreen of the mobile client device 201. The user may
evenreplace the mobile client device 201 with another mobile
client device 201 to access the same remote apps on the same
remote ANDROID operating system. This 1s particularly
advantageous in workplaces that allow employees to use their
own personal mobile client devices. In particular, employees
with different mobile client devices 201 can work on remote
apps running on remote mobile operating systems that are
owned and managed by their employers.

The ANDROID operating system 1s a so-called “touch-
screen mobile operating system” 1n that 1t 1s primarily
designed to work with touchscreen-enabled smartphones and
tablets. These smartphones and tablets do not have physical
keyboards. Instead, they have touchscreen keyboards (also

10

15

20

25

30

35

40

45

50

55

60

65

4

known as “virtual keyboards™) that are displayed on the
touchscreen. Accordingly, the ANDROID operating system
has provisions for an input method editor (IME) that allows a
user to enter text by way of a touchscreen keyboard displayed
by the IME. In one embodiment, a mobile client device 201
may provide text inputs to a corresponding remote
ANDROID operating system using a local IME of the local
ANDROID operating system. The text inputs are received by
a local IME of a client application, which provides the text
inputs to a virtual IME running on the remote ANDROID
operating system. The virtual IME provides the user inputs to
the corresponding remote application running on the remote
ANDROID operating system.

In one embodiment, the VMI 200 employs client-side ren-
dering to display a screen image of a remote ANDROID
operating system on the mobile client device 201. More spe-
cifically, the final screen 1image of the remote ANDROID
operating system may be completed locally on the mobile
client device 201. For example, data for drawing surfaces and
data for compositing the surfaces to create a final screen
image may be generated on the remote ANDROID operating
system and then sent to the mobile client device 201. There,
the final screen 1mage 1s generated by locally drawing the
surfaces and compositing the surfaces on the local
ANDROID operating system.

Client-side rendering minimizes network bandwidth con-
sumption by not having to transmit the final screen 1mage over
the computer network. However, graphics generation, 1in gen-
eral, 1s computation intensive and increases battery consump-
tion. In one embodiment, a mobile client device 201 performs
client-side rendering during normal operation, but changes to
server-side rendering when its battery level 1s below a certain
battery threshold. With server-side rendering, the final screen
image 1s generated on the remote ANDROID operating sys-
tem and the pixel information of the final screen 1image 1s sent
to the mobile client device 201.

In the example of FI1G. 2, the plurality of server computers
211 of the VMI computer system 202 may share data storage
devices by way of, for example, a distributed file system
(DES). The VMI computer system 202 may also take advan-
tage of cloud services 204, such as remote backups, and other
computing infrastructures, such as admimstrator (AD) sup-
port, database (DB) access, and backup services, that are
typically available 1n an enterprise network.

FIG. 3 shows a schematic diagram of a server computer
211 runming a plurality of ANDROID operating systems 1n
accordance with an embodiment of the present invention. In
one embodiment, the components shown 1n FIG. 3 comprise
computer-readable program code that may be stored 1n main
memory and executed by a processor of the server computer
211. In the example of FIG. 3, the server computer 211 runs
the LINUX operating system, which supports a plurality of
remote ANDROID operating systems 224. In one embodi-
ment, each remote ANDROID operating system 224 1s imple-
mented 1n 1ts own, separate LINUX container. That 1s, each
server computer 211 runs a plurality of LINUX containers,
with each container supporting an ANDROID operating sys-
tem.

As 15 well known, an ANDROID operating system has

three layers, namely, an ANDROID application layer, an
ANDROID system layer, and a LINUX kernel. Referring to

FIG. 4, which shows the three layers of an ANDROID oper-
ating system, the ANDROID application layer 1s the topmost
layer and includes the applications. Below the ANDROID
application layer 1s the ANDROID system layer, which
includes the application framework, the libraries, and the
ANDROID runtime. The ANDROID runtime includes a Dal-

US 9,300,720 Bl

S

vik process virtual machine, which 1s a process virtual
machine for running an application. In contrast to a system
virtual machine, which supports execution of an entire oper-
ating system, a process virtual machine supports execution of
a single program. The ANDROID system runs on top of a
LINUX kernel, which provides device drivers and other ker-
nel functions.

In marked contrast to hosted virtualization where each
virtual machine has 1ts own guest operating system that runs
on and 1s separate from a host operating system, the
ANDROID operating systems 224 of the server computer 211
share the same LINUX kemel. More particularly, each
ANDROID operating system 224 has 1ts own applications
225 and an ANDROID system 226 with a Dalvik process
virtual machine. However, all of the remote ANDROID oper-
ating systems 224 share the same, single kernel 223; a con-
tainer does not have a kernel. In one embodiment, the kernel
223 includes a LINUX kernel and additional ANDROID ker-
nel drivers for supporting an ANDROID operating system.
The ANDROID kernel drivers are merged with the LINUX
kernel to create the kernel 223, which 1s then made the boot
kernel of the LINUX operating system of the server computer
211. The server computer 211 may comprise an X86 processor
that runs the LINUX operating system, and thus includes a
LINUX kernel in the form of the kernel 223, and a LINUX
supervisor and console 221.

In one embodiment, the kernel 223 includes an ANDROID
driver multiplexer 227, which comprises computer-readable
program code for allowing multiple ANDROID systems 226
to access the same kernel device driver. The ANDROID driver
multiplexer 227 multiplexes several ANDROID systems 226
to a single kernel device driver as now explained with refer-
ence to FI1G. 3.

FIG. 5 shows a flow diagram of a method of multiplexing
a plurality of ANDROID operating systems to a single kernel
driver 1in accordance with an embodiment of the present

invention. In one embodiment, the method of FIG. 5 1s per-
formed by the ANDROID driver multiplexer 227. In the

example of FIG. 5, the ANDROID system 226-1 1s of a first
ANDROID operating system 224 on a container, and the
ANDROID system 226-2 1s of a second ANDROID operating,
system 224 on 1ts own, separate container. The driver multi-
plexer 227 allows both ANDROID systems 226-1 and 226-2
to access the same kernel device driver 240 on the kernel 223,
one after another.

In the example of F1G. 5, the driver multiplexer 227 creates
a context for an ANDROID system 226 11 one 1s not available.
A context comprises a set of data saved for an ANDROID
system 226. When an ANDROID system 226 accesses a
kernel device driver, the driver multiplexer 227 checks to see
if this 1s the first time the ANDROID system 226 accesses the
driver (step 232). If so, the driver multiplexer 227 creates a
context for accessing the driver for the ANDROID system
(step 233). When the ANDROID system 226 has previously
accessed the dniver, the driver multiplexer 227 simply
retrieves the saved context for the ANDROID system 226 and
switches to that context (step 234) to access the driver.

In the example of FIG. 5, the ANDROID system 226-1
makes a request to access the kernel device driver 240 (see
arrow 231). If this 1s the first time the ANDROID system
226-1 1s accessing the kernel device driver 240, the driver
multiplexer 227 creates a context 241 for the ANDROID
system 226-1. The driver multiplexer 227 switches to the
context 241 to allow the ANDROID system 226-1 to access
the kernel device driver 240. The driver multiplexer 227 saves
all context data for the ANDROID system 226-1 to the con-
text 241. Thereafter, the ANDROID system 226-2 makes a

5

10

15

20

25

30

35

40

45

50

55

60

65

6

request to access the kernel device driver 240 (see arrow 236).
In this example, the ANDROID system 226-2 already has a
saved context 242. Accordingly, the driver multiplexer 227
simply switches from the context 241 (or some other previous
context) to the context 242 to allow the ANDROID system
226-2 to access the kernel device driver 240.

FIG. 6 shows a schematic diagram illustrating the compo-
nents of a server computer 211 and a client device 201 in
accordance with an embodiment of the present invention. As
shown 1n FIG. 6, a server computer 211 may be running a
plurality of remote ANDROID operating systems 224. A
remote ANDROID operating system 224 includes a plurality
of applications 225 on an application layer and an ANDROID
system 226 with its Dalvik process virtual machine for
executing the applications 225. A device emulation 252
allows the ANDROID system 226, which 1s typically
designed to operate on an ARM processor, to run on the x86
processor of the server computer 211. In one embodiment,
cach remote ANDROID operating system 224 includes a
remote access daemon 251 for communicating with and ser-
vicing service requests from a client application 262 runming
on the mobile client device 201.

In the example of FI1G. 6, the client mobile device 201 may
comprise a conventional smartphone running a local
ANDROID operating system. The local ANDROID operat-
ing system has a plurality of applications 261 on an applica-
tion layer, an ANDROID system 263, and a LINUX kernel
264. The ANDROID system 263 has a Dalvik process virtual
machine for executing the applications 261 on the ARM
processor of the client mobile device 201.

In one embodiment, the client mobile device 201 includes
the client application 262. In one embodiment, the client
application 262 comprises computer-readable program code
for communicating and interfacing with a remote ANDROID
operating system 224 running on the server computer 211 to
allow a user of the client mobile device 201 to access a remote
application 225 Like other applications, the client application
262 1s running on application layer of the local ANDROID
operating system.

Reterring to FIG. 7, the client application 262 may connect
to one of the plurality of remote ANDROID operating sys-
tems 224 by way of a login server 280 running on the server
computer 211. During a registration process, the client appli-
cation 262 logs into the login server 280 to provide a user-
name and password for accessing a particular remote
ANDROID operating system 224 (see arrow 281). When the
client application 262 has been authenticated as being autho-
rized to access the remote ANDROID operating system 224,
the login server 280 provides the client application 262 the
remote ANDROID’s 224 connection address and a security
token (see arrow 282). Thereaftter, the client application 262
may connect to the remote ANDROID operating system 224
by providing access information (e.g., the username and pass-
word) and the security token (see arrow 284). The remote
ANDROID operating system 22 allows access to the client
application 262 after authenticating the client application 262
(see arrow 285).

Continuing with FIG. 6, on the server computer 211, a
remote access daecmon 221 receives user mputs (see arrow
2'71) and sensor information (see arrow 273; e.g., accelerom-
eter or gyroscope information of the client device 201) from
the client application 262 and provides the user inputs and
sensor information to a corresponding component on the
remote ANDROID operating system 224. In the case of cli-
ent-side rendering, the remote access daemon 221 may
receive screen data for generating a final screen 1image and
provide the screen data to the mobile client device 201, where

US 9,300,720 Bl

7

the screen data are processed to locally generate the final
screen 1mage for display on the touchscreen of the mobile
client device 201. As will be more apparent below, the screen
data may comprise drawing API calls and compositing data
intercepted on the remote ANDROID operating system 224 5
and redirected to the client application 262 on the local
ANDROID operating system.

FIG. 8 shows a schematic diagram that 1llustrates client-
side rendering 1n the virtual mobile infrastructure 200 1n
accordance with an embodiment of the present mnvention. In 10
the example ol FIG. 8, aremote ANDROID operating system
224 includes a graphics engine 310 and a graphics compos-
iting engine 311. The graphics engine 310 and the graphics
compositing engine 311 may comprise services or compo-
nents provided by the ANDROID system 226 of the remote 15
ANDROID operating system 224. In one embodiment, the
graphics engine 310 may comprise the ANDROID SKIA
graphics engine for two-dimensional (2D) graphics and the
ANDROID OpenGL ES graphics engine for three-dimen-
sional (3D) graphics, and the graphics compositing engine 20
311 may comprise the ANDROID SurfaceFlinger graphics
compositing engine.

Generally speaking, in an ANDROID operating system,
the final screen 1mage to be displayed on the touchscreen
comprises a plurality of surfaces that are composited together. 25
Each of the surfaces may comprise a screen image for an
application. More particularly, each of the remote applica-
tions 225 may 1ssue drawing commands, €.g., by making
application programming interface (API) calls to the graphics
engine 310 to generate a surface (see arrows 320). For 30
example, an application 225 may issue drawing API calls to
generate a surface for a background and another application
225 may i1ssue drawing API calls to generate a surface for
icons. The graphics engine 310 recerves the drawing API calls
and generates the corresponding surfaces (see arrows 321). 35
The graphics compositing engine 311 receives the surfaces
(see arrows 322) and creates the final screen image by com-
positing the surfaces together (see arrow 323). In the just-
mentioned example, the graphics compositing engine 311
generates a final screen 1mage showing a background and 40
icons, 1.e., the composited screen 1mages of the applications
225. The final screen 1mage 1s stored in a frame butiler for
subsequent displaying on the touchscreen. In the case of
server-side rendering, a corresponding remote access daemon
251 sends the pixel information of the final screen 1mage to 45
the mobile client device 201. That 1s, 1n server-side rendering,
the completed final screen 1image 1s sent to the mobile client
device 201. Because of the relatively large size of the final
screen 1mage, server-side rendering consumes a large amount
of network bandwidth. 50

In the case of client-side rendering, the final screen 1image
generated by the remote ANDROID operating system 1s not
forwarded to the mobile client device 201. Instead, screen
data for generating the final screen 1mage are sent from the
remote ANDROID operating system to the mobile client 55
device 201. There, the screen data are processed to locally
generate the final screen image. More specifically, for client-
side rendering, drawing API calls made by the remote appli-
cations 2235 to generate surfaces and the compositing data for
compositing the surfaces together are intercepted on the 60
remote ANDROID operating system and redirected to the
local ANDROID operating system.

In the example of FIG. 8, client-side rendering 1s per-
tformed by intercepting drawing API calls made by the appli-
cations 2235. Compositing data for compositing the surfaces 65
together to form the final screen 1mage are also intercepted.
The interception of drawing API calls and compositing data

8

may be performed by a hook module running in each indi-
vidual remote ANDROID operating system 224 at the
ANDROID system 226 layer. The hook module may hook
API calls to the ANDROID Skia graphics engine for 2D
graphics and to the ANDROID OpenGL ES graphics engine
for 2D or 3D graphics. The hook module may also hook
compositing data for compositing multiple surfaces to gen-
crate the final screen 1mage. The hook module may hook
surface creation/deletion/locking/unlocking events and each
of the surface’s attributes, such as size, position, z-order, etc.
More specifically, in one embodiment, the hook module may
intercept the following:

Surface Creation. For example, hooking the ANDROID
SurfaceFlinger to get aa new surtace’s 1D, width, height,
and bitmap format.

Surface Deletion. For example, hooking the ANDROID
SurfaceFlinger to get a deleted surface’s 1D.

Surface Lock. For example, hooking surface JNI (Java
Native Interface) interface to get the mapping between
surface ID and backend buffer’s address, such as <sur-
face 1d, front_buffer address, back_ bufter address>.

Surface Unlock. For example, hooking surface JNI inter-
face to the surface unlock event.

Surface Drawing. For example, hooking the ANDROID
Skia’s primitive API 1n SkCanvas to get the following
relationship: <SK__API, buffer_address>.

Surface Attribute. For example, hooking SurfaceFlinger to
get surface attribute change, such as size, position, z-or-
der.

Other data for creating a final screen 1image may also be
intercepted without detracting from the merits of the present
invention.

In the example of FIG. 8, aremote access daemon (see 251
in FIG. 6) redirects the intercepted drawing API calls (see
arrow 301) and compositing data (see arrow 302) to the
mobile client device 201. There, the client application 262
running on the local ANDROID operating system receives the
drawing API calls, and makes the drawing API calls to the
local graphics engine on the local ANDROID operating sys-
tem to locally draw the corresponding surfaces 312. A surface
compositor 313 of the client application 262 receives the
surfaces 312 (see arrow 303) and generates the final screen
image (see arrow 304) that 1s displayed on the touchscreen of
the mobile client device 201 by compositing the surfaces 312
together.

More specifically, the client application 262 may create the
surfaces 312 with double-butier (front and back) using the
same ID and size as on the remote ANDROID operating
system. The client application 262 may then lock the surfaces
312 to bind the front buifer to the context of the ANDROID
Skia or OpenGL ES graphics engine, whichever 1s applicable.
The client application 262 untlattens the stream of redirected
drawing API calls and executes them, by making the drawing
API calls to the applicable graphics engine, to draw the sur-
faces 312. The client application 262 then unlocks the sur-
faces 312 to trigger the surface compositor 313 to generate the
final screen 1mage by compositing the surfaces 312. The
client application 262 therealiter updates the attributes of the
surtaces 312 as needed.

In one embodiment, the virtual mobile infrastructure 200
employs a local mnput method editor (IME) to provide user
inputs to a remote ANDROID operating system. This feature
ol the virtual mobile inirastructure 200 1s schematically 1llus-
trated 1n FI1G. 9.

In the example of FIG. 9, a user of a mobile client device
201 employs the client application 262 to access a remote
application 2235 running on a remote ANDROID operating

US 9,300,720 Bl

9

system 224. The application 225 employs a virtual IME 341
to recerve user inputs (see arrow 342). The virtual IME 341
may comprise an ANDROID application with IME services.
The virtual IME 341 displays 1ts touchscreen keyboard when-
ever the application 225 requires user mputs. Because the
client application 262 is accessing the remote ANDROID
operating system 224, the touchscreen keyboard of the virtual
IME 341 1s also displayed on the mobile client device 201
(see arrow 343) by client-side rendering, for example. When
the user needs to enter text input, the client application 262
hides the touchscreen keyboard of the virtual IME 341 from
the client mobile device 201 and invokes a local IME 340 that
uses a local IME service, for example. This allows the user to
enter text mputs via the touchscreen keyboard of the local
IME 340. The client application 262 recerves the text inputs
from the local IME 340, and sends the text inputs to the virtual
IME 341 (see arrow 344), which then provides the text inputs
to the remote application 225.

FIG. 10, which consists of FIGS. 10A-10F, shows screen
shots 1llustrating an example operation of the virtual IME 341
and the local IME 340 1n accordance with an embodiment of
the present invention. In the example of FIG. 10, the left hand
figures show screen shots of the local ANDROID operating
system and the right hand figures show screen shots of the
remote ANDROID operating system. As explained, the
remote ANDROID operating system 1s one of a plurality of
ANDROID operating systems running on a server computer
211 (see FIG. 2). Accordingly, the remote ANDROID oper-
ating system 1s not running on a tablet and may not have a
touchscreen or display screen as shown. FIG. 10 1s provided
for 1llustration purposes only.

In FIG. 10A, the local ANDROID operating system (on the
left) and the remote ANDROID operating system (on the
rlg_lt) are mitially displaying the same screen 1mage
In FIG. 10B, the user touches a text input region 361 on the
screen of the local ANDROID operating system. The touch
event 1s passed to the remote ANDROID operating system,
which automatically invokes the virtual IME 341 to display a
touchscreen keyboard 362. Because the client application 262
1s displaying the screen 1image of the remote ANDROID oper-
ating system, the touchscreen keyboard 362 of the virtual
IME 341 1s also displayed on the local ANDROID operating
system. As can be appreciated, using the IME 341 for the
remote ANDROID operating system and corresponding
remote applications allows for context-sensitive automatic
displaying of a touchscreen keyboard.

In FIG. 10C, the virtual IME 341 informs the client appli-
cation 262 that a remote application 223 (e.g., a web browser
or searcher) 1s accepting user text inputs; optionally the vir-
tual IME 341 also informs the client application 262 the
preferred keyboard type of the user. In response to recerving,
the information, the client application 262 automatically
invokes the local IME 340, which displays a touchscreen
keyboard 363. The touchscreen keyboard 363 of the IME 340
1s displayed over the touchscreen keyboard 362 of the remote
ANDROID operating system. FIG. 10C shows a portion of
the touchscreen keyboard 362 being visible on the local
ANDROID operating system for illustration purposes only.
In practice, the touchscreen keyboard 363 of the IME 340 1s
displayed to cover up the touchscreen keyboard 362 of the
virtual IME 341. This way, the user will not notice that the
remote ANDROID operating system 1s still displaying the
touchscreen keyboard 362 of the virtual IME 341, which 1s
displayed underneath the touchscreen keyboard 363.

In FIG. 10D, the user enters text into the text input region
361 using the touchscreen keyboard 363 of the IME 340. The

client application 262 receives the text inputs from the IME

10

15

20

25

30

35

40

45

50

55

60

65

10

340, and provides the text inputs to the virtual IME 341. This
results 1n the text inputs being provided to the remote appli-
cation 225 and being shown on the touchscreen of the remote
ANDROID operating system. The screen image of the remote
ANDROID operating system 1s reflected on the local
ANDROID operating system. This results in the text mnputs
appearing 1n the text input region 361 of the local and remote
ANDROID operating systems.

In FIG. 10E, the user performs an action that indicates end
of user mnput. In the example of FI1G. 10E, this 1s performed by
the user by touching a “go” or “search™ button 364 on the
touchscreen of the local ANDROID operating system. The
client application 262 informs the remote ANDROID oper-
ating system of the user action. In response to the user action,
the remote ANDROID operating system dismisses the virtual
IME 341, which 1n turn closes the touchscreen keyboard 362
on the remote ANDROID operating system. Accordingly, the
touchscreen keyboard 362 1s no longer displayed on the
remote and local ANDROID operating systems.

Betore closing, the virtual IME 341 so informs the client
application 262. In response, as shown in FIG. 10F, the client
application 262 dismisses the IME 340 to close the touch-
screen keyboard 363.

While specific embodiments of the present invention have
been provided, 1t 1s to be understood that these embodiments
are for 1llustration purposes and not limiting. Many additional
embodiments will be apparent to persons of ordinary skill 1n
the art reading this disclosure.

What 1s claimed 1s:

1. A system comprising:

a server computer comprising a processor, memory, and a
storage device, the memory of the server computer com-
prising mstructions that when executed by the processor
of the server computer causes the server computer to run
a remote mobile operating system that comprises an
application layer with applications that run on top of a
system layer with a Dalvik process virtual machine that
executes a first application being accessed by a user of a
mobile client device over a computer network, wherein
the remote mobile operating system receives user text
inputs from the mobile client device and provides the
user text iputs to the first application, and generates a
touchscreen keyboard of a remote input method editor
(IME) of the remote mobile operating system; and

the mobile client device comprising a processor, memory
and a storage device, the memory of the mobile client
device comprising instructions that when executed by
the processor of the mobile client device causes the
mobile client device to run a local mobile operating
system, and display a screen 1mage of the remote mobile
operating system, wherein the local mobile operating
system automatically displays a touchscreen keyboard
of a local IME of the local mobile operating system over
the touchscreen keyboard of the remote IME 1n response
to information from the server computer that the first
application 1s accepting the user text inputs, wherein the
remote touchscreen keyboard from the remote IME 1is
hidden from a user of the mobile device, and wherein the
local mobile operating system recerves the user text
inputs from the touchscreen of the local IME, and pro-
vides the user text mputs to the server computer by
transmitting from the mobile client device over the com-
puter network to the server computer.

2. The system of claim 1 wherein the mobile client device
automatically closes the touchscreen keyboard of the local
IME when the touchscreen keyboard of the remote IME 1s
closed on the server computer.

US 9,300,720 Bl

11

3. The system of claim 1 wherein the mobile client device
comprises a smartphone.

4. The system of claim 1 wherein the mobile client device
comprises a tablet.

5. The system of claim 1 wherein the local mobile operat-
ing system has a system layer that has a Dalvik process virtual
machine.

6. The system of claim 1 wherein the user text iputs are

received 1n the server computer by the remote IME and the
remote IME provides the text inputs to the first application.
7. A computer-implemented method comprising:
displaying in a mobile client device a screen 1mage of a
remote mobile operating system wherein the remote
mobile operating system 1s one of a plurality of remote
mobile operating systems running on a server computer;
accessing from the mobile client device a remote applica-
tion running on the remote mobile operating system;
displaying 1n the mobile client device a remote touchscreen
keyboard of a remote mput media editor (IME) of the
remote mobile operating system:;
in response to the remote application accepting user text
inputs, automatically displaying a local touchscreen
keyboard from a local IME of a local mobile operating
system running on the mobile client device to receive the
user text iputs 1n the mobile client device, wherein the

10

15

20

12

local touchscreen keyboard of the local mobile operat-
ing system 1s displayed over the remote touchscreen
keyboard of the remote mobile operating system,
wherein the remote touchscreen keyboard of the remote
IME 1s hidden from a user of the mobile client device;

transmitting the user text inputs ifrom the mobile client
device to the server computer over a computer network;

receving by the server computer the user text inputs from
the mobile client device; and

providing, in the server computer, the user text inputs to the

remote application running on the remote mobile oper-
ating system.

8. The computer-implemented method of claim 7 wherein
the remote mobile operating system includes a system layer
comprising a Dalvik process virtual machine that executes the
remote application.

9. The computer-implemented method of claim 7 wherein
the remote mobile operating system and the local mobile
operating system each includes a system layer that has a
Dalvik process virtual machine.

10. The computer-implemented method of claim 7 wherein
the mobile client device 1s a smartphone.

11. The computer-implemented method of claim 7 wherein
the mobile client device 1s a tablet.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

