12 United States Patent

Kolam et al.

US009298455B1

US 9,298,455 B1
Mar. 29, 2016

(10) Patent No.:
45) Date of Patent:

(54) PROVISIONAL EXECUTION OF DYNAMIC

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(60)

(1)

(52)

(58)

CONTENT COMPONENT

Applicant: Instart Logic, Inc., Palo Alto, CA (US)

Inventors: Hariharan Kolam, Palo Alto, CA (US);

Peter Blum, Palo Alto,
Assignee:

Notice:

CA (US)

Instart Logic, Inc., Palo Alto, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/644,791

Filed: Mar. 11, 2015

Related U.S. Application Data

Continuation-in-part of application No. 13/836,512,

filed on Mar. 15, 2013.

Provisional application No. 62/176
3, 2015.

Int. CL.
GO6F 9744 (2006.01)
HO4L 29/08 (2006.01)
GO6F 17/30 (2006.01)
U.S. CL

879, filed on Mar.

CPC .. GOG6F 8/76 (2013.01); GOGF 8/71 (2013.01);
GOGF 17/30861 (2013.01); HO4L 67/2842
(2013.01); HO4L 67/34 (2013.01)

Field of Classification Search

CPC . HO4L 67/02; HO4L 67/2842; HO4L 67/2819;

HO4L 67/2861; HO4L 67/10; HO4L 41/0803;

HO4L 67/284°7, HO4L 67/34; GO6F 17/30902;

GO6F 8/60; GO6F 8/71;

GO6F 8/76; GO6F

11/2273; GO6F 17/30861; GO6F 17/30893
See application file for complete search history.

Fecaive a request for content

'

hf:quest the requested content from an origin
content pronvader

'

Determine that a subset/component of the
requested content has been cached

Y

Provide the cached subset of the requested
content that has been identified for pre-

ExXeguron

l

Recelve the requested content from the
orngin content server

l

S N (__/
— ——
''_'_ _—I—'- — -
—_ - —_____

""" Pre-execution is to be abandened/ T—__

=

e mvalidated?

T——
- -
- _ _'_F'_-_'__-I—'_
T -
—_
—_— —_

Y
IEE -

—_—
—

--'_'-'__'-

514

Provide an instruction to ebandon the pre-
eXECIion

b

518

Identify and provide remaining components
of the requested content not already
provided and/or abandoned/invalidated

(56) References Cited

U.S. PATENT DOCUMENTS

5,680,623 A * 10/1997 Onuma GO6F 8/61
717/162
5,832,275 A * 11/1998 Oldscoovvvviviinnn. GO6F 8/67
707/999.202
6,023,586 A * 2/2000 Gaistord GO6F 8/60
707/999.01
6,598,048 B2 7/2003 Carneal et al.
6,678,793 B1* 1/2004 Doyleocoevvvvivveniiinnn, 711/133
6,983,318 B2* 1/2006 Doyleccoooeeeeieiinnnnn, 709/223
7,389,330 B2 6/2008 Dillon et al.
7,506,060 B2 3/2009 Anderson
7,519,630 B2* 4/2009 Brownccooeeeiin GO6F 8/71
8,522,131 Bl 8/2013 Geddes
8,635,339 B2 1/2014 Luna
(Continued)
OTHER PUBLICATIONS

Fagni et al. “Boosting the performance of web search engines: Cach-
ing and prefetching query results by exploiting historical usage data.”
ACM Transactions on Information Systems (TOIS) 24.1 (2006):
51-78.

(Continued)

Primary Examiner — Ramy M Osman
(74) Attorney, Agent, or Firm — Van Pelt, Y1 & James LLP

(57) ABSTRACT

Expediting content delivery 1s disclosed. A request for con-
tent 1s recerved from a requestor. A cached component of the
requested content that includes at least some cached execut-
able content 1s identified. The cached component of the
requested content 1s provided to the requestor for provisional
execution. It 1s determined whether a change, 1f any, in the
requested content may invalidate the provisional execution.
In the event 1t 1s determined that the change 1n the requested
content may invalidate the provisional execution, the
requestor 1s instructed to abandon the provisional execution.

20 Claims, 7 Drawing Sheets

jﬂ?
fﬁﬂd

,_)EUE

208

510

N
!ﬂ,-f

Provide an instruction to validate the pre-
eXeruton

316

~al}

US 9,298,455 Bl

Page 2
(56) References Cited 2009/0106349 Al 4/2009 Harris
2010/0017696 Al 1/2010 Choudhary et al.
U.S. PATENT DOCUMENTS 2011/0214111 ALl* 9/2011 Vidalcoocevvvinninnn, 717/168
2011/0321014 Al* 12/2011 Nagora GOO6F 11/2289
2002/0055964 Al* 5/2002 Lukccocvvviviinnnn, GO6F 9/383 | | | | 717/125
718/107 2012/0089695 Al 4/2012 Fainberg et al.
2002/0062384 Al 5/2002 Tso 2012/0110435 Al 5/2012 Green
2003/0140100 A1* 7/2003 Pullaracccccoovneee. 709/203 2012/0331037 A1* 12/2012 Love ..., 709/203
2003/0158951 Al* 82003 Primaketal. 709/229 2013/0246638 Al 9/2013 Kovvali et al.
2004/0015961 Al* 1/2004 Chefalas HO041. 67/34 2015/0012614 Al 1/2015 Kolametal. 709/218
717/178
2004/0044731 Al* 3/2004 Chenetal. ..oococvivvinn.. 709/203 OTHER PUBLICATIONS
2004/0205165 AL 1072004 “Melamed et al Srinivasta et al. “Web usage mining: Discovery and applications of
2004/0258053 Al 12/2004 Toporek et al. ‘ 8¢ mining 1y 4ne app
7005/0198309 Al 0/2005 1. et al. usage patterns from web data.” ACM SIGKDD Explorations News-
2006/0064467 Al 3/2006 Libby letter 1.2 (2000): 12-23.
2006/0161895 A1* 7/2006 Speeter GO6F 8/71 Kroptberger et al. “A Multimedia-based Guidance System for Vari-

717/121 ous Consumer Devices,” In WEBIST (2), pp. 33-90. 2007.

2008/0208789 Al 8/2008 Almog
2008/0320225 Al* 12/2008 Panzeretal. ... 711/130 * cited by examiner

U.S. Patent Mar. 29, 2016 Sheet 1 of 7 US 9,298.455 B1

. -
O
-
O
- N
~ O
=
)
=
4D,
=
®
O
00
-
- T
O
LL.
< =
- O
A =
@

102

*| lasmoug gapn

U.S. Patent Mar. 29, 2016 Sheet 2 of 7 US 9,298.455 B1

200
/
<htmli>
<head>
<title>Welcome</title>
</head>
<bodgy>

<h1>HelloWorld </h1>

<video>

<source src = “url for video” type = "video/ogg” />
</video>

‘ <script type = “text/javascript™>
- <l--scrip

: *** Some javascript code is placed here

- </script>

r

</body>
htmi>

Script
FIG. 2

U.S. Patent Mar. 29, 2016 Sheet 3 of 7 US 9,298.455 B1

106

—> | Content

108

—

Intermediary
Server

FIG. 3

102

|i

U.S. Patent

Mar. 29, 2016 Sheet 4 of 7

Recelve a request for the webpage
directed to a third-party site

Send the request for the webpage to
the third-party site

:’/402

404
/_/

Y

Determine the likely components
corresponding to the webpage based
On previous responses to similar
requests

406
|

Y

408

Send the determined likely

components 1n response to the request

Receive the webpage from the third-
party site

Determine remaining components not
already sent

Send the remaining components

410

412

414

US 9,298,455 B1

FIG. 4

U.S. Patent Mar. 29, 2016 Sheet 5 of 7 US 9,298.455 B1

(jsoz
_po4

Request the requested content from an origin

Recelve a request for content

content provider

/_)506

Determine that a subset/component of the
requested content has been cached

l 508

Provide the cached subset of the requested —
content that has been 1dentified for pre-

execution

Y

Receive the requested content from the /J
origin contcnt scrver

510

—_—

Yes 514 No 516
Y ot Y et

Provide an instruction to abandon the pre- Provide an instruction to validate the pre-

execution

execution

l _ 018

Identify and provide remaining components
of the requested content not already -

provided and/or abandoned/invalidated

FIG. 5

U.S. Patent Mar. 29, 2016 Sheet 6 of 7 US 9,298.455 B1

Monitor content requests and responses

Dectermine that one or more content portions
of requested content received 1n one or more
of the responses to requests for content
located at the same content location are

correlated

Cache correlated content portions

Determine that a received request for the
content 1s correlated with the cached content

component of the content

010

Provide the cached version of the correlated

content component

FIG. 6

U.S. Patent Mar. 29, 2016 Sheet 7 of 7 US 9,298.455 B1

Recerve 1dentifications of content portions
of a requested content that have been

identified as cacheable and/or pre- 702
executable

Translate the 1dentifications of the content 04
portions of the requested content

06

Utilize content portions with the translated

1dentifications

FIG. 7

US 9,298,455 Bl

1

PROVISIONAL EXECUTION OF DYNAMIC
CONTENT COMPONENT

CROSS REFERENCE TO OTHER
APPLICATIONS

This application 1s a continuation in part of co-pending
U.S. patent application Ser. No. 13/836,512 entitled EFFI-

CIENT DELIVERY OF WEBPAGES filed Mar. 15, 2013,
which 1s incorporated herein by reference for all purposes.

This application claims priority to U.S. Provisional Patent
Application No. 62/176,879 entitled PROVISIONAL
EXECUTION OF DYNAMIC CONTENT COMPONENT

filed Mar. 3, 2015 which 1s incorporated herein by reference
tor all purposes.

BACKGROUND OF THE INVENTION

Typically a webpage that includes dynamic content that
may change over time 1s not cacheable. Thus the dynamic
webpage 1s requested from an origin content source every
time the dynamic webpage 1s requested by a user. The wait
time experienced by an end-user includes the time it takes for
the origin content source to generate the dynamic webpage as
well as the transit time 1t takes to request and receive the
content. This wait time can be long and may contribute a
negative user experience. Therefore, improved techmiques for
delivering information are desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed 1n the
tollowing detailed description and the accompanying draw-
Ings.

FIG. 1 1s a block diagram illustrating an embodiment of a
web browser accessing webpages and other information
through a network.

FIG. 2 1s a diagram illustrating an embodiment of a
webpage 200 described by an HITML file.

FI1G. 3 15 a block diagram 1llustrating an embodiment of an
optimized content delivery environment.

FIG. 4 1s a flow chart illustrating an embodiment of a
process for delivering a webpage with dynamic content.

FIG. 5 1s a flow chart illustrating an embodiment of a
process for pre-executing an executable content component
ol a dynamic content.

FIG. 6 1s a flowchart illustrating an embodiment of a pro-
cess for correlating responses to requests for content.

FI1G. 7 1s a tlowchart illustrating an embodiment of a pro-
cess for translating tagged executable content.

DETAILED DESCRIPTION

The mvention can be mmplemented 1n numerous ways,
including as a process; an apparatus; a system; a composition
ol matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the mvention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that 1s temporarily configured
to perform the task at a given time or a specific component

10

15

20

25

30

35

40

45

50

55

60

65

2

that 1s manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention s provided below along with accompanying figures
that 1llustrate the principles of the invention. The mvention 1s
described 1n connection with such embodiments, but the
invention 1s not limited to any embodiment. The scope of the
invention 1s limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth 1n the
following description 1n order to provide a thorough under-
standing of the invention. These details are provided for the
purpose ol example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarnty, technical material that 1s
known 1n the technical fields related to the mvention has not
been described 1n detail so that the invention 1s not unneces-
sarily obscured.

Expediting content delivery 1s disclosed. In some embodi-
ments, a request for content 1s recerved at a server. For
example, an edge server of a content delivery network
receives a request for a webpage from a client. The requested
content of the client may include dynamic content compo-
nents that may dynamically change and the edge server may
be unable to cache the entire requested content. In some
embodiments, once the request for content 1s recerved by the
server, the content 1s requested by the server from an origin. It
may take a relatively long time for the origin to receive the
request, dynamically generate the requested content, and
send the requested content via a network that may be slow.
Thus 11 the server (e.g., edge server) that recerved the 1nitial
request 1s able to quickly provide to the client a portion of the
requested data that will be likely included 1n the requested
data, the client has a head start on recerving and processing
the content. In some embodiments, components of dynamic
content that likely will not change are 1dentified and cached.
However, because the cached components could still change
from one request to another, the special handling 1s required
in the event a cached component that has been provided 1n
response to a request 1s not valid.

In some embodiments, 1t 1s determined that a cached subset
ol the requested content includes at least some cached execut-
able content. For example, it 1s determined that a JavaScript
content component of the requested content that has been
cached 1s included. The cached subset of the content 1s sent to
a client for provisional execution. For example, the cached
JavaScript content component that has been cached by a
proxy/edge server 1s provided to the client to allow the client
to start pre-execution of the JavaScript.

However, the cached subset that was provided for pre-
execution may have changed since being cached and different
content may be recerved from a content origin source. For
example, 1n response to a request by the proxy server from the
origin source for the requested dynamic content, updated
dynamic content 1s received that does not include the cached
subset provided for pre-execution. In some embodiments, 1t 1s
determined that a change 1n the requested content may 1nvali-
date the provisional pre-execution and the client 1s instructed
to abandon the provisional pre-execution. For example, the
provisional pre-execution of the cached subset was executed
by the client 1n a separate worker thread (e.g., in a protected/
sandbox area of a separate hidden web browser tab thread)
that may be discarded to invalidate the provisional pre-execu-
tion. In some embodiments, 1f 1t 1s determined that the cached
subset 1s confirmed to be included 1n the requested content,

US 9,298,455 Bl

3

the provisional pre-execution 1s made permanent. For
example, aresult of a provisional pre-execution of the cached
subset that was executed by the client in a separate worker
thread 1s merged/included 1n a main browser thread (e.g.,
document object model elements combined).

Identifying content correlation 1s disclosed. In some
embodiments, content requests are monitored at a server. For
example, an edge server of a content delivery network moni-
tors requests by clients for content. The edge server may be
serving a proxy for the requests. The server also monitors the
responses to the requests. For example, the edge server moni-
tors responses received from content origin servers in
response to the client content requests.

In some embodiments, it 1s determined that requested con-
tent 1n response to the requests 1s correlated over a plurality of
content requests for content located at the same content loca-
tion. The requested and recerved content may be dynamic
content and an edge server may be unable to cache the entire
requested content. However, it may take a relatively long time
for the origin to recerve the request, dynamically generate the
requested content, and send the requested content via a net-
work. Thus 11 a server (e.g., edge server) that recerved the
initial request 1s able to quickly provide to the client a portion
of the requested data that will be likely included in the
requested data recerved from the content origin, the client has
a head start on recerving and processing the content. In some
embodiments, correlating the responses includes 1dentifying
portions of each response that likely will not change for
subsequent requests for the same content (e.g., request for the
same webpage) and that can be cached by an intermediary
server to quickly provide to a client prior to receiving the
requested content from the content origin. The cacheable
portion may be identified as executable content (e.g., JavaS-
cript) and may be provided to the client for pre-execution
prior to receiving the requested content from the content
origin.

In some embodiments, rather than attempting to only auto-
matically 1dentity which portion of the requested content 1s
cacheable and/or pre-executable, one or more portions of the
requested content have been explicitly tagged/identified as
cacheable and or pre-executable. For example, a developer or
other user/system has identified portions of the requested
content with idenfifier tags to explicitly identity cacheable
and/or pre-executable portions of the requested content. The
explicitly identified portions may be cached and/or pre-ex-
ecuted. However, these tags/identifiers may be included in the
requested content as custom tags/identifiers (e.g., does not
conform to HTML or other standardized protocol/language
understood by a web browser) that cannot be understood/
processed by an end client. Thus the tags/identifiers may need
to be translated and/or removed from the requested content
before being cached and/or provided to the client. For
example, content tagged using custom/non-standard tags that
identify the ability to be cached/pre-executed are translated to
conventional standardized tags able to be processed by a
client (e.g., understood by a standard web browser).

FIG. 1 1s a block diagram 1illustrating an embodiment of a
web browser accessing webpages and other information
through a network. As shown 1n FI1G. 1, a web browser 102 of
client 104 1s connected to a server 106 (e.g., an edge server)
through a network 108. Network 108 may be any combina-
tion of public or private networks, including intranets, local
area networks (LLANs), wide area networks (WANs), radio
access networks (RANs), Wi-Fi networks, the Internet, and
the like. Web browser 102 may run on different types of
devices, including laptop computers, desktop computers, tab-
let computers, smartphones, and other mobile devices.

10

15

20

25

30

35

40

45

50

55

60

65

4

A webpage accessed by web browser 102 may be described
by different markup languages, including Hypertext Markup
Language (HTML), Extensible Markup Language (XML),
and the like. The webpage may also be described by different
scripting languages, including JavaScript Object Notation
(JSON), and the like. The webpage may be described by other
custom languages as well. HTML 1s used hereinafter as an
example of the various languages for describing webpages.
Note that the examples of HIML are selected for 1llustration
purposes only; accordingly, the present application 1s not
limited to these specific examples.

FIG. 2 1s a diagram illustrating an embodiment of a
webpage 200 described by an HIML file. To display the
webpage, web browser 102 sends a Hypertext Transier Pro-
tocol (HT'TP) request message to server 106 requesting the
HTML webpage file. After server 106 locates the requested
HTML webpage file, server 106 returns the requested HTML
webpage file 1n an HT'TP response message to web browser
102. As web browser 102 begins to render the webpage on a
screen, web browser 102 parses the recerved webpage file and
builds a data structure to represent the various components
and resources of the webpage 1n a local memory.

Since the network latency associated with different types
of networks varies widely, and web browser 102 needs to
receive webpage 200 and its dependent resources before web
browser 102 can complete the rendering of webpage 200, the
startup wait time experienced by the end-user of the browsing,
session may be insignificant 1n low-latency networks, such as
Wi-F1 networks, but unacceptably long for an end-user 1n
higher-latency networks, such as 3G networks. Traditionally
by caching content such as webpages or webpage compo-
nents close to a requestor of the content, the content can be
quickly retrieved from the cache rather than the origin server,
saving bandwidth and time. However, caching 1s of limited
value when requested content 1s dynamic, such that cached
content 1s likely to change after the content was last cached.
Once cached content has changed, the cached content must be
discarded and updated content must be retrieved from the
origin server. Therefore, when at least a portion of content 1s
dynamic, the content 1s typically not cacheable. Therelore,
improved techniques for delivering information are desirable.

Webpage content may include executable content such as
the script shown 1n webpage 200. Examples of executable
content include a script, a program, a web program/script,
JavaScript, and any other program code. As compared to
non-executable content, executable content requires extra
processing time and resources to load and process the execut-
able code. Executing the executable content may even require
processing tasks such as DNS lookup and TCP connection
establishment that consumes processing resources and time.
However, once a client requests a webpage, the client may be
sitting 1dle while waiting for the requested content to be
provided for processing/rendering. It would be desirable to be
able to provide at least a portion of the requested content as
soon as possible to the requesting client to allow the client to
utilize 1ts i1dle resources as soon as possible to reduce the
overall processing/rendering time.

FIG. 3 1s a block diagram 1llustrating an embodiment of an
optimized content delivery environment. FIG. 4 15 a flow
chart 1llustrating an embodiment of a process for delivering a
webpage with dynamic content. In some embodiments, the
process o FIG. 4 1s implemented on intermediary server 302
of FIG. 3.

Continuing with the HTML webpage illustrative example
above, when web browser 102 sends an HI'TP request mes-
sage requesting for the HITML webpage, the HI'TP request
message 1s recerved by intermediary server 302. In some

US 9,298,455 Bl

S

embodiments, intermediary server 302 1s an edge server that
belongs to a content delivery network or content distribution
network (CDN). In some embodiments, intermediary server
302 1s a proxy server.

Intermediary server 302 may cache content to be provided
to client 104. For example, intermediary server 302 1s a cach-
ing proxy server that caches content from origin server 106.
When client 104 requests data of origin server 106, interme-
diary server 302 1s able to provide the requested data from 1ts
cache rather than obtaining the data from origin server 106 1f
the requested content has been cached by intermediary server
302. Because mtermediary server 302 1s located closer to
client 104 and may be servicing a fewer number of requestors,
intermediary server 302 1s able to provide requested content
faster than origin server 106. However, intermediary server
302 may not be able to cache every type of content of origin
server 106. For example, dynamic content of origin server
106 (¢.g., dynamic webpage) 1s typically unable to be cached
because the content may change after the dynamic content
has been cached. However, although dynamic content such as
a dynamic webpage in 1ts entirety may be uncacheable, the
dynamic content often includes components that may not
change or may inirequently change over time. These rela-
tively static portions may be cached.

After receiving the HT'TP request message, intermediary
server 302 forwards the HI'TP request message to a third-
party site (e.g., origin server 106) and waits for the HIML
webpage 1n an HT'TP response message, which 1s expected to
be sent by origin server 106 in response to the HI'TP request
message (see step 404).

Without waiting for the arrival of the HT'TP response mes-
sage from origin server 106, intermediary server 302 may
generate a temporary webpage (hereinaliter referred to as the
tast-delivery webpage) based on profiling information corre-
sponding to the requested webpage (see step 406) and send
the fast-delivery webpage to web browser 102 (see step 408).
The fast-delivery webpage generated by intermediary server
302 includes information and resources that intermediary
server 302 predicts web browser 102 would actually receive
or need to further download had the actual webpage been
received by web browser 102. Once web browser 102 begins
to receive the fast-delivery webpage from intermediary server
302, web browser 102 no longer needs to stay idle, but 1s
unblocked from handling different tasks. For example, web
browser 102 may begin to process any information included
in the fast-delivery webpage or load some of the information
onto memory, or begin to imtiate any further downloading of
dependent resources, including 1mages, videos, audio clips,
and the like.

In some embodiments, the fast-delivery webpage includes
an 1njected nanovisor program component that may manage
received content, process recerved content, obtain dependent
resources, modily a webpage, and/or modify/virtualize a
DOM (Document Object Model) of the webpage. For
example, webpage components or other information and
resources related to the webpages that are sent to web browser
102 may be intercepted, filtered, processed, or provided by
the nanovisor. The nanovisor may be coded 1n a managed
programming language (e.g., runs 1n a Common Language
Runtime) such as JavaScript, Java, .Net, etc. In some embodi-
ments, the nanovisor may be injected by adding JavaScript
code 1n the head section of an HIML webpage file. In some
embodiments, the nanovisor may be included 1nto the fast-
delivery webpage using standards-based (e.g., HITML, Java-
Script, ActionScript, etc.) code. For example, intermediary
server 302 may 1nject a nanovisor program component 1nto
the fast-delivery webpage and the response back to web

5

10

15

20

25

30

35

40

45

50

55

60

65

6

browser 102. In some embodiments, the nanovisor may have
been already included in content recerved from a content
origin (e.g., included by server 106).

In some embodiments, the nanovisor may manage pre-
execution of executable content components. For example,
when cached executable content of a dynamic webpage 1s
received for pre-execution, the provisional pre-execution of
executable content may need to be discarded 1n the event the
pre-executed content 1s determined to be no longer valid. The
nanovisor may coordinate the pre-execution by allowing the
pre-execution to take place 1 a separate protected environ-
ment (e.g., within a worker thread of a separate hidden tab
environment of a web browser) before allowing the results of
the pre-execution to be included 1n a main environment (e.g.,
main thread of a main browser tab) or discarded based on
whether the cached content of the pre-execution has been
confirmed as valid or invalid.

In some embodiments, method API calls by web browser
102 or any JavaScript code to manipulate the objects 1n a
DOM tree may be intercepted, processed, or modified by the
nanovisor. The nanovisor may also manipulate the DOM tree
by making the appropriate method API calls to the DOM tree.
As a result, the nanovisor may allow a virtualization engine
for the DOM of web browser 102. The virtualization engine
may access and manipulate a DOM tree, including the cre-
ation, deletion, or update of nodes within the DOM tree to
enable optimized content delivery using intermediary server
302 as compared to normal content delivery system server
106. In some embodiments, one or more resources requested
using a dynamic request (e.g., request made via JavaScript)
may be intercepted and handled by a client such as the nano-
visor due to the client’s ability to handle and intercept
resource requests. For example, the nanovisor 1s able to reor-
der, pretetch, and/or provide a cached version of one or more
resources of a webpage requested using a dynamic request.

Virtualization of the DOM of web browser 102 may be
applicable to different types of optimization. In some
embodiments, using the virtualization engine, optimized
delivery of information over a network by segmentation and
reprioritization of downloaded information can be achieved.
For example, using the virtualization engine, the delivery of
the information (e.g., the order 1n which the mformation 1s
delivered or the granularity of the information delivered) and
the actual content of the delivered information corresponding
to any nodes of the DOM tree may be altered, thereby speed-
ing up the rendering of a webpage without compromising the
end-user’s experience. In some embodiments, the virtualiza-
tion of the DOM of web browser 102 1s transparent to web
browser 102. In some embodiments, the virtualization of the
DOM of web browser 102 1s also transparent to the end-users.
The end-users are not required to 1nstall any plugins. In some
embodiments, the virtualization of the DOM of web browser
102 1s also transparent to the content publishers, without
requiring the content publishers to change any codes.

Intermediary server 302 continues to wait for the actual
HTML webpage in an HT'TP response message, which 1s
expected to be sent by web server 106 in response to the
HTTP request message. When the HT'TP response message 1s
finally generated and sent by web server 106, intermediary
server 302 intercepts the HI'TP response message (see step
410). Intermediary server 302 scans and processes the
received webpage, and determines any additional or updated
information that needs to be sent to web browser 102 for
rendering the actual HTML webpage (see step 412). Interme-
diary server 302 then completes the response to web browser
102 by sending the additional information to web browser

US 9,298,455 Bl

7

102, such that web browser 102 may complete the rendering
of the actual HIML webpage (see step 414).

In one illustrative example, intermediary server 302
receives a request from an end-user trying to access an online
merchant’s website. Intermediary server 302 makes a predic-
tion that web server 106 would send back certain information
to web browser 102 based on profiling. Intermediary server
302 may immediately send certain content to web browser
102, while web server 106 runs in parallel to obtain and return
the remainder of the dynamic content. Intermediary server
302 then relays the remaining dynamic content to web
browser 102 when the content becomes available to interme-
diary server 302.

In the above illustrative example, the original HIML
webpage of the website may take web server 106 a significant
period of time to generate. The original HTML webpage 1s
thus deconstructed mto two parts: the first part 1s sent by
intermediary server 302 to web browser 102 without delay,
and the second part 1s the entire webpage minus the first part
that has already been sent by intermediary server 302.
Because web browser 102 can begin to parse the first part of
the webpage immediately on receipt without waiting for the
second part to arrive, web browser 102 may take further
actions, including mmitiating any further downloading of
dependent resources, loading JavaScript onto the memory,
pre-executing executable content, and the like. The above
described technique enables more elficient use of both band-
width and computing resources by reducing the 1dling time
within which bandwidth and computing resources are unuti-
lized.

In some embodiments, the generation of the fast-delivery
webpage 1s based at least 1n part on profiling information
collected by intermediary server 302 1in relation to the
requested webpage. The process of profiling may include
determining the static content (e.g., not dynamic content) of
the requested webpage and predicting at least some of the
dynamic content of the requested webpage. Since the static
content of the requested webpage 1s likely present in the
webpage, the static content may be embedded 1n the fast-
delivery webpage and sent to web browser 102 without fur-
ther delay. Examples of static content include web templates,
website or company logos, and the like.

The fast-delivery webpage may also include dynamic con-
tent. For example, intermediary server 302 may analyze and
profile the content and the generation of the requested
webpage based on many users. The analysis and profiling
may be performed on a per-user basis or per-group basis. By
continuously examining the pattern for a large number of
users accessing the particular webpage, itermediary server
302 may predict the dynamic content that 1s going to be
included 1n the actual webpage generated by web server 106,
or the dependent resources that the actual webpage 1s going to
direct web browser 102 to further download, or the data that
1s going to be loaded 1n response to the parsing or rendering of
the actual webpage. Based on these predictions, intermediary
server 302 may 1dentily cacheable and/or pre-executable con-
tent components. For example, the fast-delivery webpage
may include the predicted cached dynamic pre-executable
content components. The fast-delivery webpage may also
include code (e.g., JavaScript, ActionScripts, etc.) to cause
web browser 102 to preload certain data into memory or
cache, or cause web browser 102 to download additional
resources. In some embodiments, the prediction of which
content components to cache/pre-execute may be aided by
analyzing the number of confirmations and/or abandonments
as a result of correctly and/or incorrectly identifying content
for caching/pre-execution. In some embodiments, the con-

10

15

20

25

30

35

40

45

50

55

60

65

8

tent/webpage provided by a content provider (e.g., provided
by server 106) has been coded/marked to 1dentify specific
content components that may be cached and/or pre-executed.
For example, a developer may tag components of a webpage
to 1dentity that the tagged components are sale to cache
and/or pre-execute.

The fast-delivery webpage may include any elements that
can be included 1n a typical webpage. For example, the fast-
delivery webpage may include some or all of the elements as
illustrated 1n FI1G. 2, including the <head>, <title>, <body>
tags, and the like.

In some embodiments, chunked transfer encoding 1s used
to transter updated or additional information of the requested
webpage to web browser 102 once the information 1s returned
to intermediary server 302 by web server 106. Chunked trans-
fer encoding 1s a data transfer mechanism in version 1.1 of
HTTP wherein data 1s sent in a series of “chunks.” The
mechanism uses the Transfer-Encoding HT'TP header in
place of the Content-Length header, which the protocol
would otherwise require. Because the Content-Length header
1s not used, the sender does not need to know the length of the
content before it starts transmitting a response to the receiver;
senders can begin transmitting dynamically-generated con-
tent before knowing the total size of that content. The size of
cach chunk 1s sent right before the chunk 1tself, so that the
receiver can tell when 1t has fimshed receiving data for that
chunk. The data transfer 1s terminated by a final chunk of
length zero.

For example, intermediary server 302 may use chunked
transier encoding to send the static content and predicted
dynamic content corresponding to the requested webpage 1n
a series of 1nitial “chunks™ to web browser 102. The remain-
der of the requested webpage may be sent to web browser 102
in a series of subsequent “chunks.” When all the information
corresponding to the requested webpage has been sent, the
data transter 1s terminated by a final chunk of length zero.

In some cases, the mitial “chunks” of the fast-delivery
webpage may include content that 1s unnecessary or mcor-
rect. Inone example, the fast-delivery webpage includes extra
content that 1s not present 1n the actual webpage or the fast-
delivery webpage includes code that causes web browser 102
to preload or download data that 1s unnecessary. In another
example, the fast-delivery webpage includes content that 1s
inconsistent with the content present in the actual webpage or
the fast-delivery webpage includes codes that cause web
browser 102 to preload or download incorrect data.

To handle these cases, intermediary server 302 may further
determine whether there are any side-efiects or errors asso-
ciated with the extraneous or incorrect content. Based on
different criteria, intermediary server 302 may make a deter-
mination as to whether further actions should be taken to undo
or correct any eflects caused by the extraneous content. The
criteria considered may include the time and computation
resources required to correct the effects, the degree of severity
of the errors or side-effects, the extent to which the side-
elfects and errors are perceivable by the end-users, and the
like. In one embodiment, 1f the side-effect or errors are deter-
mined to be objectionable to the end-users, web browser 102
may be directed to refresh or reload the webpage again.

In another example, the mitial “chunks” of the fast-delivery
webpage lack a Set-Cookie header, which 1s present 1n the
actual webpage generated by web server 106. HI'TP cookies
provide the server with a mechamism to store and retrieve state
information on the client application’s system. This mecha-
nism allows web-based applications the ability to store infor-
mation about selected items, user preferences, registration
information, and other information that can be retrieved later.

US 9,298,455 Bl

9

The Set-Cookie header 1s sent by the server i response to an
HTTP request, and used to create a cookie on the user’s
system. In some embodiments, intermediary server 302 scans
the HI'TP response message from web server 106 for any
Set-Cookie header. If a Set-Cookie header 1s found, then
intermediary server 302 may add code (e.g., JavaScript) in the
subsequent “chunks™ of the fast-delivery webpage to set the
cookie.

In some cases, sending certain types ol content ahead of
time 1n the fast-delivery webpage may cause side-ellects,
including triggering out-of-sequence events or triggering
unintended events to happen. Some webpages may include
Adobe Flash file format (SWF) files, and an embedded SWF
file may 1include additional SWF files within 1tself. For
example, a main SWF file embedded in a webpage may load
other SWF files, e.g., SWEF2 file, SWF3 file, and so on. If the
SWE2 file or the SWF3 file 1s sent ahead of the main SWF file
by mntermediary server 302, web browser 102 will create the
document object model (DOM) objects corresponding to
those files. For example, if the SWE2 file includes an audio
clip, web browser 102 will play the audio immediately as a
result of the prefetching, causing unexpected side-etlects.

In some embodiments, code may be used to selectively
suppress or prevent certain effects that are caused by the
content being sent 1n advance 1n the fast-delivery webpage.
For example, the content sent 1n the fast-delivery webpage
may be the audio portion of a multimedia presentation, and
should not be played until the download of the entire presen-
tation 1s complete. In one embodiment, the SWF files (e.g.,
the SWF2 and SWEF3 files) that are sent 1n advance 1n a
fast-delivery webpage are placed within an iframe. The
<1irame>tag specifies an inline frame which 1s used to embed
another document within the current HIML document.
Attributes of the 1frame may be set 1n such a way that some of
the functions or features are disabled; for example, an
attribute may be set to turn off visibility. When web browser
102 renders this iframe with the visibility attribute set to OFF,
the SWF files (1.e., SWF2 and SWF3 files) embedded within
the iframe are merely loaded into the local cache. When the
main SWF file 1s received by intermediary server 302, inter-
mediary server 302 may send 1t to web browser 102. Web
browser 102 then loads the main SWEF, and when the main
SWE file needs to load SWF2, and SWF2 needs to load
SWE3, all of those dependent SWF files can be fetched from
the local cache rather than from across the network. Render-
ing of the content of the i1frame can be enabled again by
deleting the 1frame or setting the visibility attribute to ON.

In some embodiments, a browser cache of browser 102
stores content that can be utilized by browser 102 to render
web content instead of obtaining the content via network 108.
For example, 11 the desired content of browser 102 1s locally
stored 1n a cache of the machine running browser 102, it
would be faster to obtain the content locally rather than via a
network request. In some embodiments, one or more
resources of a webpage/web content desired to be rendered by
browser 102 are preloaded in a browser cache prior to the
original code of the webpage/web content requesting the
resource. Thus when the preloaded content 1s needed/re-
quested by the original code, the requested content 1s already
in the cache for immediate use rather than requiring a request
to be made via a network for the requested content.

In some embodiments, the order of components of a
webpage/web content to be loaded and/or executed 1s reorga-
nized i an optimized order. Obtaining resources and/or
executing executable content 1n a specified order of the origi-
nal code of the webpage/web content may not be optimal for
rendering the webpage/web content as soon as possible. In

5

10

15

20

25

30

35

40

45

50

55

60

65

10

some embodiments, the ordering in which components
should be obtained/executed 1s reordered and optimized
based at least in part on one or more of the following: an order
of resources requested/executed for the webpage, an
observed order of components placed 1n a DOM, sizes of the
components, a maximum number of possible concurrent con-
nections, a parameter/setting of the browser being utilized, a
type ol browser being utilized, visual importance of the com-
ponents, utilization frequencies of the components, and other
properties/information about the components. The reordering
may be facilitated by a nanovisor and/or intermediary server
302 that reorders code, components, and/or execution process
of the web content to achieve the desired ordering.

FIG. 5 1s a flow chart illustrating an embodiment of a
process for pre-executing an executable content component
ol a dynamic content. In some embodiments, the process of
FIG. 5 1s implemented on intermediary server 302 of FIG. 3.

At 502, a request for content 1s recerved. In some embodi-
ments, the request 1s arequest for web content (e.g., webpage)
from a client. For example, web browser 102 of FIG. 3
requests a webpage and the request 1s recerved by intermedi-
ary server 302. In some embodiments, the request 1s the
request recerved 1n 402. In some embodiments, the request 1s
a request for dynamic content. For example, using an 1denti-
fier of the requested content (e.g., URI), the request 1s 1den-
tified as content that 1s dynamic. In some embodiments, the
requested content 1s recerved at a proxy/cache server (e.g.,
edge server of a CDN) due to content redirection achieved
using DNS redirection. For example, a host name ofa URI of
the requested content 1s mapped to the IP address of the
proxy/cache server istead of the original origin server. The
DNS redirection may be achieved by updating/modifying a
routing table of a DNS server to map the host name to the IP
address of the proxy/cache server.

At 504, the requested content 1s requested from an origin
content provider. For example, intermediary server 302 sends
a request for the requested content to server 106 of FIG. 3. In
some embodiments, the origin content provider may be an
origin server, a mirror of an origin server, a third-party server,
and/or any other server that 1s able to dynamically generate
and/or provide a valid version of the requested content. In
some embodiments, requesting the content includes sending
a new request for the content to the origin content server. In
some embodiments, the requesting the content includes for-
warding at least a portion of the received request to the origin
content server. In some embodiments, the requested content
1s requested from the origin content provider 1n response to a
determination that the requested content imncludes dynamic
content. In some embodiments, the requested content is
requested from the origin server in response to a determina-
tion that the requested content has not been completely
cached. For example, it 1s determined that the entire requested
content has not been cached and/or a valid cached version of
the requested content 1s not stored 1n the cache (e.g., cached
version has expired).

At 506, 1t 1s determined that a subset/component of the
requested content has been cached. For example, an execut-
able content component of the requested content has been
cached to allow pre-execution of the executable content com-
ponent. In some embodiments, pre-execution of the execut-
able content component includes allowing execution of
executable content prior to determining that the executable
content component 1s still valid. In some embodiments, pre-
execution of the executable content component includes
allowing execution of executable content prior to receiving
the executable content component from an origin content
provider. In some embodiments, pre-execution of the execut-

US 9,298,455 Bl

11

able content component includes allowing execution of
executable content prior to recerving the entire requested
content that includes the executable content component.

The cached executable content component may have been
identified by analyzing previous requests and responses to the
same requested content. In some embodiments, the content
has been previously received and the executable component
had been marked 1n the previously received content as cache-
able and pre-executable. In some embodiments, determining
that the subset of the requested content has been cached
includes determining whether any component of the
requested content 1dentified by an identifier included in the
request has been cached 1n a cache of an edge server (e.g.,
whether cached i intermediary server 302 of FIG. 3) and 1s
valid (e.g., Time-to-live (T'TL) has not expired for the cached
content component). In some embodiments, 1t 1s determined
whether a cached component of the requested component has
been 1dentified as pre-executable. For example, 1n the event
the executable content subset 1s cached but not marked as
pre-executable, the cached executable content subset may be
provided but not executed until the cached executable content
subset has been confirmed as valid. In some embodiments, the
cached subset 1s 1dentified as executable 11 the cached subset
includes code/script content. For example, executable content
includes executable code/script content such as JavaScript,
Java, ActionScript, .Net, etc.

In some embodiments, the subset of the requested content
has been cached for either committed pre-execution or pro-
visional pre-execution. For example, the cached content sub-
set 1s 1denftified as pre-executable in a committed state
because the content component has been confirmed (e.g., by
a developer) as pre-executable without ever needing to be
invalidated due to change 1n requested dynamic content. In
another example, the cached content subset 1s 1dentified as
only provisionally pre-executable because the cached content
subset has been automatically identified by a proxy server and
the cached content subset may be invalidated due to a change
in the requested dynamic content. In some embodiments, 1n
the event the subset of the requested content has been cached
for commiutted pre-execution, the subset 1s allowed to execute
by a client without the ability to invalidate the pre-execution.
For example, the subset 1s allowed to execute within the main
browser context environment (€.g., in a main thread environ-
ment and not 1n a protected/sandboxed environment). In some
embodiments, 1n the event the subset of the requested content
has been cached for only provisional pre-execution, the sub-
set 1s allowed to execute by a client in a separate protected
environment that may be separately 1invalidated in the event
the subset had changed to update of the requested dynamic
content. For example, the subset 1s allowed to execute within
a separate browser context environment (e.g., in a protected
sandboxed environment of a separate thread and not 1n a main
thread).

At 508, the cached subset of the requested content that has
been 1dentified for pre-execution 1s provided. One or more
cached subsets may be provided. In some embodiments, the
provided subset includes the component provided 1n 408 of
FIG. 4. In some embodiments, providing the cached subset
includes providing the cached portion as a response to the
request for the requested content. For example, a client that
made the request for the requested content recerves the
cached executable subset and starts executing the cached
executable subset before the cached executable subset has
been verified as being valid. In some embodiments, provided
the cached subset 1s executable content that 1s known to be
validly pre-executable without the need to invalidate the pre-
execution (e.g., executable content component that has been

10

15

20

25

30

35

40

45

50

55

60

65

12

explicitly marked by a developer/content provider as pre-
executable, executable content component identified to be not
requiring invalidation, etc.).

In some embodiments, providing the cached subset
includes providing webpage content that includes an injected
nanovisor (e.g., fast-delivery webpage that includes the nano-
visor). The provided webpage content may include the
cached subset to be pre-executed and/or the webpage content
may relference the cached subset to be subsequently
requested/recetved. In some embodiments, the nanovisor
manages the pre-execution. For example, the nanovisor
istructs a web browser to execute the cached subset 1n a
protected sandboxed environment (e.g., mstructs a web
browser to execute the cached executable subset using a sepa-
rate new worker thread of a hidden browser tab). By separat-
ing allowing the cached executable content to execute 1n a
separate environment as compared to using a main thread of
the browser environment handling the requested content, the
separate protected environment may be easily discarded with-
out the need to reload/refresh the entire requested webpage
content environment 1n the event the provisional execution
needs to be invalidated. In some embodiments, the nanovisor
coordinates which executable content component/subset 1s to
be executed in which environment. For example, the execut-
able content component that 1s identified for commaitted pre-
execution 1s allowed by the nanovisor to execute within the
main thread/environment of the web browser while the
executable content component that 1s 1dentified for provi-
s1onal pre-execution 1s instructed by the nanovisor to execute
within a protected/sandboxed thread/environment of the web
browser. In some embodiments, the cached executable con-
tent component that has been not 1dentified for pre-execution
1s provided to be cached by a client without pre-execution.
For example, the nanovisor places the cached executable
content component 1n a browser cache without allowing a
web browser to pre-execute the cached executable content
component prior to recerving an instruction that the browser
cached executable content component 1s valid for execution.

In some embodiments, the nanovisor may be used to selec-
tively suppress or prevent certain effects that are caused by the
cached content component being sent 1n advance. In one
embodiment, the content component 1s placed 1n an 1frame.
The <iframe> tag specifies an inline frame which 1s used to
embed another document within the current HIML docu-
ment. Attributes of the 1frame may be set in such a way that
some of the functions or features are disabled; for example, an
attribute may be set to turn off visibility. When web browser
102 renders this 1frame with visibility attribute set to OFF,
content embedded within the 1frame 1s merely loaded 1nto the
local cache. Rendering of the content of the 1frame can be
enabled again by deleting the i1frame or setting the visibility
attribute to ON.

In some embodiments, the cached subset of the requested
content 1s provided for pre-execution 1n an optimized order.
For example, the order of components of a webpage/web
content to be loaded and/or executed 1s reorganized 1n an
optimized order. Obtaining resources and/or executing
executable content 1n a specified order of the original code of
the webpage/web content may not be optimal for rendering
the webpage/web content as soon as possible and/or correctly.
For example, the provided cached subset may need to be
executed 1n a certain reordered order with respect to other
content components to function correctly as imtended in the
requested content. In some embodiments, the ordering in
which components should be obtained/executed 1s reordered
and optimized based at least in part on one or more of the
following: an order of resources requested/executed for the

US 9,298,455 Bl

13

webpage, an observed order of components placed in a DOM,
s1zes ol the components, a maximum number of possible
concurrent connections, a parameter/setting of the browser
being utilized, a type of browser being utilized, visual impor-
tance of the components, utilization frequencies of the com-
ponents, and other properties/information about the compo-
nents. The reordering may be facilitated by a nanovisor and/or
intermediary server 302 that reorders code, components, and/
or execution process ol the web content to achieve the desired
ordering.

At 510, the requested content 1s recerved from the origin
content server. For example, the content requested 1n 504 1s
recetved. In some embodiments, the received content 1s the
content recerved 1n 410 of FIG. 4.

At 312, 1t 1s determined whether the pre-execution 1s to be
abandoned/invalidated. In some embodiments, it 1s deter-
mined whether a change, if any, 1n the requested content may
require the pre-execution to be invalidated/abandoned. For
example, the received requested content 1s compared with a
version of the requested content included 1n the cached con-
tent subset. In some embodiments, the recetved content in 510
1s compared with the cached content subset provided 1n 508 to
determine whether the cached content subset has changed.
For example, the cached content subset has changed 11 the
corresponding content of the cached content subset 1n the
received requested content includes different content, does
not exist, and/or 1s 1n a different location within the received
requested content. In some embodiments, 1t 1s determined
that the cached content subset has changed if any content of
the newly recerved requested content has changed from a
version of the cached content from which the cached content
subset was cached.

In some embodiments, 1f the cached content subset has
changed since a previous version of the cached content sub-
set, the pre-execution 1s to be abandoned and 1f the cached
content subset has not changed, the pre-execution 1s to be
validated. In some embodiments, even though the cached
content subset and/or the requested content has changed from
a previous version of the cached content subset, the change 1s
determined to not invalidate the pre-execution and the pre-
execution 1s not to be abandoned. In some embodiments,
steps 512-516 are optional. For example, only known to be
valid pre-executions (e.g., committed pre-execution) are per-
formed. In some embodiments, 11 the cached content subset
was provided for browser caching but not pre-execution and
it has been determined that the cached content subset has not
changed 1n the recerved requested content, the cached content
subset 1s 1nstructed to be executed. In some embodiments, the
result of the determination 312 1s utilized to determine
whether to cache, pre-execute, provisionally pre-execute,
and/or committed pre-execute the content subset 1n response
to future requests for the requested content.

If at 512 it 1s determined that the pre-execution 1s to be
abandoned, at 514 an 1nstruction 1s provided to abandon the
pre-execution. One or more pre-executions may be aban-
doned. In some embodiments, abandoning the pre-execution
includes not committing and/or undoing changes made by the
pre-execution. In some embodiments, the providing the
instruction includes requesting a web browser to reload/re-
fresh the requested content request. For example, the entire
webpage requested by the web browser 1n 502 1s requested to
be reloaded. In some embodiments, providing the abandon-
ment nstruction includes providing the instruction to the
nanovisor that 1s managing the pre-execution. In some
embodiments, the providing the 1nstruction mcludes provid-
ing the nstruction to only abandon the provisional execution
of the pre-executed content portion. For example, when the

10

15

20

25

30

35

40

45

50

55

60

65

14

instruction 1s recetved by a client/web browser/nanovisor, a
worker thread and/or protected sandboxed environment of a
provisional execution of the pre-execution 1s discarded.

In some embodiments, rather than abandoning the entire
pre-execution, a difference between a cached version of the
executable content component and the updated version of the
executable content component 1n the recerved requested con-
tent 1s determined to determine corrective instructions (e.g.,
code/script, etc.) that can be provided to correct the cached
version of the executable content component. The corrective
instructions may be provided to the client for execution (e.g.,
and process proceeds to 516) instead of abandoning the pre-
execution or mstructing the client to reload the entire
requested content. In some embodiments, 11 1t 1s determined
that the cost of processing and/or determining the corrective
instructions outweighs the cost of abandoning the entire pre-
execution and/or having the client refresh/reload the entire
requested content, the pre-execution 1s abandoned and/or the
entire requested content 1s mstructed to be reloaded instead.
For example, intermediary server 302 may further determine
whether there are any side-effects or errors associated with
the extraneous or incorrect content as compared to the
requested content recerved from server 106 of FIG. 3. Based
on different criteria, mtermediary server 302 may make a
determination as to whether further actions should be taken to
undo or correct any effects caused by the extraneous content.
The criteria considered may include the time and computa-
tion resources required to correct the effects, the degree of
severity of the errors or side-eifects, the extent to which the
side-effects and errors are perceivable by the end-users, and
the like. In one embodiment, 1t the side-etfect or errors are
determined to be objectionable to the end-users, web browser
102 may be directed to refresh or reload the webpage again.

If at 512 it 1s determined that the pre-execution 1s to be
validated, at 516 an 1nstruction 1s provided to validate the
pre-execution. One or more pre-executions may be validated.
In some embodiments, the providing the validation instruc-
tion includes allowing a web browser to continue execution
by not sending a content refresh/reload request. In some
embodiments, providing the validation instruction includes
providing the instruction to the nanovisor that 1s managing the
pre-execution. In some embodiments, when the validation
instruction 1s recerved by a client/web browser/nanovisor, a
result of a worker thread and/or sandboxed environment of a
provisional execution of the pre-execution 1s added/merged
with the environment of the main environment/thread. For
example, rendering results/environments (e.g., including
variables and execution states/environments) are merged. In
some embodiments, when the wvalidation instruction 1s
received, results of the pre-execution are committed.

At 518, remaining components of the requested content not
already provided and/or abandoned/invalidated are 1dentified
and provided. For example, any portions of the content
received 1 510 but not provided in 508 and/or abandoned/
invalidated 1n 514 are 1dentified and provided for execution/
rendering. In some embodiments, steps 412 and 414 of FIG.
4 are included 1n 518.

FIG. 6 1s a flowchart illustrating an embodiment of a pro-
cess for correlating responses to requests for content. In some
embodiments, the process of FIG. 6 1s implemented on inter-
mediary server 302 of FIG. 3.

At 602, content requests and responses are monitored. In
some embodiments, momitoring the requests and the
responses includes recerving the requests for requested con-
tent and recerving corresponding responses that include the
requested content. For example, intermediary server 302 of
FIG. 3 momitors requests from one or more clients and cor-

US 9,298,455 Bl

15

responding responses to the same content. In some embodi-
ments, monitoring content requests and responses icludes
receiving a request for content from a requestor, requesting,
the requested content from an origin content provider, rece1v-
ing the requested content from the content origin provider,
and providing the received requested content to the requestor.
In some embodiments, monitoring the requests and the
responses includes 1dentifying which dynamic content was
requested and analyzing responsive content received from a
content origin server. In some embodiments, monitoring the
requests and the responses includes performing analysis per-
formed 1n 412 of FIG. 4 and/or 512 of FIG. 5. In some
embodiments, all content requests and corresponding
received responses that are handled by an intermediary server
(e.g., edge server ol a CDN) are monitored. In some embodi-
ments, only a selected subset of content requests and corre-
sponding responses recerved that are handled by an interme-
diary server are monitored. In some embodiments, only
requests and responses for dynamic content are monitored to
determine the ability to cache and/or pre-execute one or more
portions of the dynamic content.

At 604, 1t 1s determined that one or more content portions
of requested content received 1n one or more of the responses
to requests for content located at the same content location are
correlated. In some embodiments, determining that the one or
more content portions are correlated includes identifying one
or more content portions that do not change across one or
more responses. For example, although dynamic content 1s
not cacheable 1n 1ts entirety, portions of requested dynamic
content that do not change 1n content from one response to the
nextresponse are identified. In some embodiments, determin-
ing that one or more content portions ol one or more
responses are correlated includes 1dentifying one or more
same/similar content portions that are located at a same rela-
tive location across one or more responses. For example,
although 1ncluded data of a content portion has not changed.,
by changing the location of the content portion within the
content, the effect of the content portion on the entire content
may be altered. This may mean that although included data of
a content portion has not changed across responses, the con-
tent portion 1s not correlated across the response because the
location of the content portion relative to other content por-
tions within a requested content may differ.

In some embodiments, correlating the one or more content
portions of one or more of the responses includes correlating
only responses for one or more selected requestors. For
example, although certain content portions of responses to
requests for the content may vary across various users/re-
questors, the certain content portions may be correlated (e.g.,
same) across responsive content for requests from the same
user/requestor and/or from a group of similar users/request-
ors. In some embodiments, correlation across a single
requestor, a group of similar requestors (e.g., requestors asso-
ciated with similar/same geographical location, network
location, organization, edge server, user attribute, etc.) and/or
all requestors 1s tracked for the same content (e.g., content
identified by same URI). For example, different content por-
tions of the same content may be correlated for a single
requestor as compared to a group of similar requestors or all
requests for the same content.

In some embodiments, correlating the one or more content
portions of one or more of the responses includes identifying,
one or more content portions that are correlated to be pre-
executable. For example, specific types of executable content
portions are known/eligible to be pre-executable and corre-
lated content portions that include pre-executable content are
identified. In another example, a content portion 1s only 1den-

10

15

20

25

30

35

40

45

50

55

60

65

16

tified as pre-executable in the event the content portion
includes executable content and included data has not
changed across a select group of responses to the requests for
the same content.

In some embodiments, correlating the one or more content
portions of one or more of the responses includes identifying
a predicted probability for each of the one or more content
portions will remain valid (e.g., will not change) 1n a response
for a future request. For example, a probability that the con-
tent portion can be cached and provided for 1n response to a
subsequent request for browser caching, use and/or pre-ex-
ecution without invalidating the content portion because the
content portion has changed since being cached 1s 1dentified.
In some embodiments, an observed statistic (e.g., percentage)
that a specific content portion of a requested content has
changed within a period of time and/or number of requests for
the requested content 1s determined.

Based on the predicted probability and/or the observed
statistic, a correlated content portion may be i1dentified as
cacheable, provisionally pre-executable, and/or validly pre-
executable. For example, in the event an indicator of the
predicted probability and/or the observed statistic 1s within a
first range (e.g., above a caching threshold but below a valid
threshold), the content portion 1s 1dentified as cacheable and
provisionally pre-executable, and 1n the event the indicator 1s
within a second range (e.g., above the valid threshold), the
content portion 1s 1dentified as cacheable and committed pre-
executable. In some embodiments, a committed pre-execut-
able content portion 1s allowed to pre-execute within a main
browser context environment (€.g., 1n a main thread environ-
ment and not in a protected sandboxed environment of a
worker thread) while a provisionally pre-executable content
portion 1s to be executed by a client in a separate protected
environment with the ability to mvalidate the pre-execution.
In some embodiments, determining whether a correlated con-
tent portion 1s cacheable or pre-executable includes determin-
ing whether the content portion is executable without affect-
ing processing and/or results of other content portions.

At 606, correlated content portions are cached. In some
embodiments, the content portions are cached at a cache
storage of a proxy server (e.g., server 302 of FI1G. 3). In some
embodiments, a cached content portion 1s 1dentified 1n the
cache storage as being only correlated to requests by a spe-
cific user(s)/requestor(s), a specific group(s) ol users/request-
ors, and/or all requestors. For example, a content portion may
be only correlated to a specific user(s)/requestor(s), a specific
group(s) ol users/requestors, or all requestors. In some
embodiments, a cached content portion 1s i1dentified in the
cache storage as being pre-executable. In some embodiments,
a pre-executable cached content portion 1s identified 1n the
cache storage as being either provisionally pre-executable or
committed/validly pre-executable. In some embodiments,
caching the correlated content portions includes configuring a
time-to-live (TTL) validity time of each content portion. In
some embodiments, the TTL 1s dynamically determined
based on the predicted probability and/or the observed statis-
tic determined 1n 604. For example, a highly correlated con-
tent portion 1s given a longer TTL while a less correlated
content portion 1s given a shorter TTL.

At 608, a recerved request for the content 1s determined to
be correlated with the cached content component of the con-
tent. In some embodiments, the request 1s the request recerved
in 402 and the correlation determination 1s made 1n 406 of
FIG. 4. In some embodiments, the request i1s the request
received 1n 502 and the correlation determination 1s made in
506 of FIG. 5. In some embodiments, determining that the
request 1s determined to be correlated with a cached content

US 9,298,455 Bl

17

component includes 1dentifying a user and/or requestor that
requested the content and 1dentifying eligible correlated con-
tent components for the specific user/requestor.

At 610, the cached version of the correlated content com-
ponent 1s provided. In some embodiments, the provided
cached component 1s the component provided 1n 408 of FIG.
4 and/or 508 of FIG. 5. In some embodiments, providing the
correlated content component includes allowing the recipient
of the correlated content component to pre-execute the con-
tent component. In some embodiments, providing the corre-
lated content component includes 1nstructing the recipient of
the correlated content component to provisionally pre-ex-
ecute or committed pre-execute the content component.

FIG. 7 1s a flowchart 1llustrating an embodiment of a pro-
cess for translating tagged executable content. In some
embodiments, the process of FIG. 7 1s implemented on inter-
mediary server 302 of FIG. 3.

At 702, identifications of content portions of a requested
content that have been identified as cacheable and/or pre-
executable are recerved. In some embodiments, the 1dentifi-
cations are included as tags within the requested content. For
example, a developer and/or content provider has specifically
identified one or more sections of provided dynamic content
as cacheable and/or pre-executable (e.g., 1dentified as provi-
sionally pre-executable (sandbox pre-execution) or validly
pre-executable (pre-execution without sandbox)). Rather
than relying on inferred analysis of which content compo-
nents of a dynamic content are cacheable/pre-executable
(e.g., using the analysis performed 1n 406 of FIG. 4, 506 of
FIG. §, and/or 604 of FIG. 6) that may be incorrect, the
received 1dentification definitively 1dentifies specific content
portions as imtended. In some embodiments, the requested
content 1s the content requested 1n 402 of FIG. 4, 502 of FIG.
5, and/or 602 of FIG. 6. In some embodiments, the 1dentifi-
cations of content portions identify a preferred execution
ordering of the content portions. For example, desired pre-
execution ordering of the content portions 1s 1dentified by the
identifications.

In some embodiments, the identifications are custom tags
that extend or do not conform to standard tags encoding the
requested content. For example, the identifiers are added to
standard tags to extend HTML and/or other programming/
scripting language tags to encode the 1dentification. In one
example, the identifier “provisionally pre-execute” 1s added
to traditional tag “<script>" to form tag “<provisionally pre-
execute script” (e.g., </provisionally pre-execute script” ends
provisional pre-execution). In another example, the 1dentifi-
ers are added as standalone tags that does not conform to
standard tags encodings (e.g., tags “<provisionally pre-ex-
ecute>" and “</provisionally pre-execute>" are added).
Because these custom identifier tags may not conform to
HTML or other protocol/language understood by a client/
web browser, the custom 1dentifier tags may need to be trans-
lated and/or removed from the requested content before being
cached and/or provided to a client. In some embodiments, the
identification may identity pre-executable content as either
provisionally pre-executable or committed/validly pre-ex-
ecutable.

At 704, the identifications of the content portions of the
requested content are translated. For example, content tagged
using custom/non-standard tags that identify the ability to be
cached/pre-executed are translated to conventional tags able
to be processed by a client (e.g., conforms to standardized
tags ol a markup/programming/scripting language under-
stood by a standard web browser). In some embodiments,
translating the i1dentification includes removing the 1dentifi-
cations from the requested content. For example, a portion of

10

15

20

25

30

35

40

45

50

55

60

65

18

a tag or an entire tag may be removed. In some embodiments,
translating the identification includes replacing/modifying
the 1dentification to a corresponding tag of a standardized
markup/programming/scripting language.

At 706, content portions with the translated identifications
are utilized. In some embodiments, utilizing the content por-
tions with the translated identifications includes providing the
content portions to a client 1n response to a request for the
requested content. For example, the content portions with the
translated identifications are provided in 602 of FIG. 6, 414 of
FIG. 4, and/or 518 of FIG. 5. In some embodiments, utilizing
the content portions with the translated identifications
includes caching the content portions that have been 1denti-
fied by the 1dentifiers as cacheable. For example, the content
portions with the translated 1dentifications are the correlated
content portions cached i 606 of FIG. 6. The cached trans-
lated content component may be 1dentified within the cache
and/or 1n a separate data structure as being 1dentified as cache-
able, pre-executable, provisionally pre-executable, commiut-
ted pre-executable, etc. In some embodiments, utilizing the
content portions with the translated i1dentifications 1ncludes
providing one or more of the content portions for pre-execu-
tion. For example, the translated content portions that have
been 1dentified pre-executable are cached and provided for
pre-execution in response to a subsequent request for the
requested content (e.g., provided 1n 408 of FI1G. 4,508 of FIG.
5, 610 of FIG. 6, etc.). In some embodiments, the translated
content portions are provided for pre-execution 1n an order at
least 1n part specified/determined by the received 1dentifica-
tions.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention 1s not limited to the details provided. There are

many alternative ways of implementing the mvention. The
disclosed embodiments are illustrative and not restrictive.

What 1s claimed 1s:
1. A system for expediting content delivery, comprising:
a communication interface configured to receive a request
for content from a requestor; and
a processor coupled with the communication interface and
configured to:
identily a cached component of the requested content
that includes at least some cached executable content;
identify that the cached component includes the at least
some executable content that 1s to be programmati-
cally executed by the requestor;
provide the cached component of the requested content
to the requestor for provisional execution prior to
verilying that the cached component of the requested
content 1s still valid, wherein provisionally executing
the cached component by the requestor includes pre-
serving an ability to abandon a result of the program-
matic provisional execution of the at least some
executable content and provisionally executing the
cached component by the requestor includes execut-
ing the cached component 1n a protected execution
environment that 1s separate from a main execution
environment;
determine whether a change, 11 any, in the content of the
requested content may invalidate the provisional
execution; and
in the event 1t 1s determined that the change in the
requested content may invalidate the provisional
execution, mstruct the requestor to abandon the pro-
visional execution that has been already started by the
requestor, wherein the requestor abandons the result

US 9,298,455 Bl

19

ol the provisional execution in response to the instruc-
tion to abandon the provisional execution.

2. The system of claim 1, wherein provisionally executing
the cached component includes executing the cached compo-
nent in the protected execution environment of a worker
thread that 1s separate from the main execution environment
of a main thread that would otherwise execute the cached
component for a normal non-provisional execution.

3. The system of claim 1, wherein the communication
interface 1s further configured to send a responsive request for
the requested content to a content provider 1n response to the
received request and receive the requested content from the

content provider.
4. The system of claim 3, wherein the recerved requested

content has been dynamically generated by the content pro-
vider 1n response to the responsive request for the requested
content.

5. The system of claim 3, wherein the determining whether
the change, 1f any, in the requested content may 1nvalidate the
provisional execution 1includes analyzing the received
requested content to determine whether a content component
corresponding to the cached component in the recerved
requested content has been modified.

6. The system of claim 3, wherein the determining whether
the change, 1f any, in the requested content may 1nvalidate the
provisional execution includes determining that the recerved
requested content 1s a modified version of a previous
requested content version corresponding to the cached con-
tent component.

7. The system of claim 3, wherein the processor 1s further
configured to analyze the received requested content to 1den-
tily any remaining components of the requested content that
has not been already provided from a cache of cached content
components in response to the request for content from the
requestor.

8. The system of claim 1, wherein sending the cached
component for provisional execution includes allowing a
recipient of the cached component to execute the cached
executable content of the cached component prior to verity-
ing that the cached component has not been updated.

9. The system of claim 1, wherein instructing the requestor
to abandon the provisional execution includes instructing the
requestor to reload the requested content.

10. The system of claim 1, wherein structing the
requestor to abandon the provisional execution includes
instructing the requestor to abandon a protected environment
that 1s provisionally executing the cached component.

11. The system of claim 1, wherein the processor 1s further
configured to, in the event it 1s determined that the requested
content has not changed, istruct the requestor to validate the
provisional execution.

12. The system of claim 11, wherein validating the provi-
sional execution includes committing changes made by the
provisional execution.

13. The system of claim 1, wherein the requestor 1s a web
browser.

14. The system of claim 1, wherein the cached component
1s a subset of the requested content.

15. The system of claim 1, wherein the requested content 1s
identified as dynamic content that should not be cached 1n
entirety.

16. The system of claim 1, wherein the system 1s an edge
server of a content delivery network.

5

10

15

20

25

30

35

40

45

50

55

60

20

17. The system of claim 1, wherein the requested content
includes a webpage.

18. The system of claim 1, wherein the cached executable
content of the cached component includes a JavaScript script.

19. A method for expediting content delivery, comprising:

recerving a request for content from a requestor at a server;

identifying a cached component of the requested content
that includes at least some cached executable content:

identifying that the cached component includes the at least
some executable content that 1s to be programmatically
executed by the requestor;

providing the cached component of the requested content

to the requestor for provisional execution prior to veri-
tying that the cached component of the requested con-
tent 1s still valid, wherein provisionally executing the
cached component by the requestor includes preserving,
an ability to abandon a result of the programmatic pro-
visional execution of the at least some executable con-
tent and provisionally executing the cached component
by the requestor includes executing the cached compo-
nent in a protected execution environment that 1s sepa-
rate from a main execution environment;

determining whether a change, 1f any, 1n the content of the

requested content may mvalidate the provisional execu-
tion; and
in the event 1t 1s determined that the change 1n the requested
content may invalidate the provisional execution,
istructing the requestor to abandon the provisional
execution that has been already started by the requestor,
wherein the requestor abandons the result of the provi-
sional execution in response to the mstruction to aban-
don the provisional execution.
20. A computer program product for expediting content
delivery, the computer program product being embodied 1n a
non-transitory computer readable storage medium and com-
prising computer mstructions for:
receving a request for content from a requestor;
identifying a cached component of the requested content
that includes at least some cached executable content:

identitying that the cached component includes the at least
some executable content that 1s to be programmatically
executed by the requestor;

providing the cached component of the requested content

to the requestor for provisional execution prior to veri-
tying that the cached component of the requested con-
tent 1s still valid, wherein provisionally executing the
cached component by the requestor includes preserving
an ability to abandon a result of the programmatic pro-
visional execution of the at least some executable con-
tent and provisionally executing the cached component
by the requestor includes executing the cached compo-
nent in a protected execution environment that 1s sepa-
rate from a main execution environment;

determining whether a change, 1f any, 1n the content of the

requested content may mvalidate the provisional execu-
tion; and

in the event it 1s determined that the change 1n the requested

content may 1invalidate the provisional execution,
instructing the requestor to abandon the provisional
execution that has been already started by the requestor,
wherein the requestor abandons the result of the provi-
stonal execution 1n response to the instruction to aban-
don the provisional execution.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

