12 United States Patent
Manglik et al.

US009292343B2

(10) Patent No.: US 9,292,343 B2
45) Date of Patent: Mar. 22, 2016

(54) METHOD AND SYSTEM FOR PERFORMING
DEPLOYMENT MANAGEMENT

(75) Inventors: Gaurav Manglik, Mountain View, CA
(US); Vijay Nichinbatl Sriram,
Bangalore (IN); Shamik Ganguly,
Bangalore (IN); Rohit Sah, New Delhi

(IN); Sourav Mukherjee, South San
Francisco, CA (US)

(73) Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 686 days.

(21) Appl. No.: 12/827,856
(22) Filed: Jun. 30, 2010

(65) Prior Publication Data
US 2012/0005646 Al Jan. 5, 2012

(51) Imt. CL.
GO6F 9/44 (2006.01)
GO6F 9/48 (2006.01)
GO6F 9/445 (2006.01)
(52) U.S. CL
CPC ..o, GO6F 9/4856 (2013.01); GO6F 8/60
(2013.01)
(58) Field of Classification Search
USPC 717/170-174, 120; 709/208, 220,
709/221-224;°707/756, 4, 102; 718/102;
3770/230

............ HO4L 67/10,67/34; GO6F 8/60, 8/65,

GO6F 9/4856

See application file for complete search history.

(56)

7,752,214

7,996,814

8,290,756
2003/0131084
2003/0233431
2005/0125438
2005/0283759
2006/0080417
2006/0080656
2006/0215556
2007/0033276
2008/0052760
2008/0215558
2010/0162226
2010/0175060
2011/0138391

References Cited

U.S. PATENT DOCUMENTS

B2* 7/2010 Pizzornietal. 707/756
Bl* 82011 Qureshietal. 717/120
Bl* 10/2012 Feeseretal. 717/173
Al* 7/2003 Pizzomietal. 709/223
Al* 12/2003 Reddyetal. 709/221
Al* 6/2005 Krshnaswamyetal. 707/102
Al* 12/2005 Peteanuetal. 717/120
Al* 4/2006 Boutboul etal. 709/220
Al* 4/2006 Cainetal.ccovvvennin. 717/174
Al* 9/2006 Wuetal.covvvninl. 370/230
Al* 2/2007 Brockhoffetal. 709/224
Al* 2/2008 McRaeetal. ..coooovvvvivnnnn, 726/2
Al* 9/2008 Marinellietal. 707/4
Al* 6/2010 Borissovetal. 717/173
Al* 7/2010 Boykmmetal. ... 717/173
Al* 6/2011 Choetal.covvvvnennnin. 718/102

* cited by examiner

Primary Examiner — Tuan Vu
(74) Attorney, Agent, or Firm — Vista IP Law Group, LLP

(57)

ABSTRACT

A system, method, computer program product are shown for

automatically

performing deployment activities that can

handle deployments for any-sized organization, even for
deployments at the enterprise level. According to some
approaches, modeling 1s performed to generate amodel of the
components in the computing environment. Dependency
graphs can be generated for the deployment, and used to then
automatically perform the deployment.

Build Model 302

!

Construct dependency tree 304

!

ldentify paths from root nodes
to leaf nodes 306

None Paths from root to leaf?

308

l

Deploy as standalone 309

30 Claims, 20 Drawing Sheets

Two or more

Deploy in single downtime
window 310

l

Deploy for root node 312

v

Deploy for next level 314

v

Continue until deployment
finished for leaf nodes 316

US 9,292,343 B2

POLL
aq vel
Jal] aseqgele(
<>
- em———— S N [O
g |
I~
-
y—
-5 el 191] IoAIOS
m A Peor uoneolddy
N

- T W Y A . N
\ o
~
N 590 q90 oo
e)) E901| dd
. PA0L J91] UOljedl
m uoneoiddy uoinesljddy uoneolddy uoneolddy L oV

L 9.nbI1

U.S. Patent

US 9,292,343 B2

Sheet 2 of 20

Mar. 22, 2016

U.S. Patent

OlLc¢ 9d

wON 0000

90¢
uoneolddy

Otz Abojodoj|

2¢¢ ydeis
Aduspuada(

0Zc¢ I°SPON

8l ¢ eled
JuswAojda

91¢ 2INPON

JuswAojdaq

| Z Jabeuey juswAojda(

Z 91nbi14

vece

00¢

91 € SOpPOU Je9)| J0} paysiuly

JUBWAO|daP [I3UN 8nuUIUON

US 9,292,343 B2

0L € MOPUIM

L€ [9A8] 1XdU Jo) Aojda swiumop ajBuis Ui Aojdaq

3uQ
50E Buolepue)s se Aojda

Z | € @pou 100. 10} Aojda(

~

- ,_, 80¢€

« 9J0W JO OM | ¢4e3| 0} JO0J WOl syjed SUON
>

e

9

< 00€ SOpOU Jed| 0]

~ Sapou 1004 woJ) syyed Ajnuapi
R

2 1

-

m OE 99J) Aouspuadap 19nJ1SU0)

¢0€ 1°PPON Pling

U.S. Patent

US 9,292,343 B2

Sheet 4 of 20

Mar. 22, 2016

U.S. Patent

suoinedsijdde o3} Aouapuadap weasjsumo-
saseqelep 0} Aduapuadap weasjsdn-
sdiysuoine|ay

auojepuels | dn yoeq buiig :¢ doig
suondaosxs unJ uay)

Buliapio | ‘salouapuadap Aojdeq :z deis

JuswAojdaq ou Jj umop buug :| doig
Z uondoadox3 L uondadx3y suoneJado

dis-

SJOd-

oNnjeA ‘OWeN-
saluadoud

Z0v |IPPON J19A18S uoljesljddy

¥ 9.nb1

80V

90V

140)7

US 9,292,343 B2

Aoll e0ll
POLL J0LL <le ad
qaq dd
—
gl
I
-
z 3301 Pgo | 280 =80}
m QY QY SY SV
7
&
y—
—
gl
o
gl
- PO0OL 2001
m uoneoiddy uoneo|ddy

205
G 9.1nb14

U.S. Patent

U.S. Patent Mar. 22, 2016 Sheet 6 of 20 US 9,292,343 B2

AS
108a

Figure 6A

Dependency

108a
DB
110a

)
<C

US 9,292,343 B2

009 dN JaAIag uonedl|ddy buug

709 JOAISS uoledl|ddy ydled

i

Sheet 7 of 20

¢09
uMOo(] J9AJIBS uoledl|ddy bullg

Mar. 22, 2016

g9 9.nbi

U.S. Patent

US 9,292,343 B2

—

)

Col

-

m ago!
S SV
=

7

\=

Y

—

&

2-..,.

R eg0!
o uoneolddy
>

U.S. Patent

Aduapuadaq

V. @inbi4

qO Ll
dd

US 9,292,343 B2

Sheet 9 of 20

Mar. 22, 2016

U.S. Patent

21/ dn uoneolddy bung

0L/ dn J8A18S uoiedljddy buug

90/ JeAJ8S uoleal|ddy yoled

14074
UMO(] JoAIaS uonedlddy bulg

720/ Umo(uoiedijddy buug

g/ 9inbi4

qO Ll
dd

US 9,292,343 B2

—

g

A—

-

= gg801

2 Y Aduapuadag

=

75

\&

y—

&

R

a €901 2O0|
w uoneolddy uonesijddy

D/ @inbi4

U.S. Patent

US 9,292,343 B2

Sheet 11 of 20

Mar. 22, 2016

U.S. Patent

2¢/ dn uoneolddy bulg

0¢/ dn J8AI8g uonedljddy buug

8¢/ uonediddy yojed

9¢Z/ JanI8S uoledljddy ydled

i

1£4)
uMo(] JaAI9S uoledl|ddy bulg

27/ UMO(] uoiedljddy buug

d. @inbi4

US 9,292,343 B2

Q011
dd

—
&
Coje
&
S 2801 9801
m...w) H> - o e
=
7
\=
y—
—
)
o
N 2901 4901 2901 4901
- uoneolddy uoneolddy uoneolddy uoneonddy
>

V8 @inbi4

U.S. Patent

18 dn q9o0| uonealddy buug

218 dn 2901 uoneolddy buug

US 9,292,343 B2

018 dN J8AI8S uoijedljddy bulg

—
|
m 808 JoAIaS uonedl|ddy yojed
o
3
7
908

UMO(] JoAIaS uonedlddy bulg
-
—
|
o 708
m UMO(] 290 | uoneal|ddy Buug

|

208
umoQ q9Q| uonealddy bung

g8 9.nbi

U.S. Patent

US 9,292,343 B2

POLL
dd
—
g
=
<
— P8O | 9801 P8O1I
: oy Kouapuadaq v v ylled
=
7 p,
\&
=
gl
P
N P90
= uopeo|ddy
>

6 91nbi14

U.S. Patent

US 9,292,343 B2

Sheet 15 of 20

Mar. 22, 2016

U.S. Patent

°801
SY

POLL

dd
Aduapuadaq e P80}
A 7 SV — SV

POOL
uoneonddy

0l @inbi4

US 9,292,343 B2

POLL
ad
—
—
-
m 9801 P8O | . 3 9801 PO |
z QY Qv JUapuUaGaC Qv Qv
7
&
=
1 Jle
> PO0I P90 19iEd
m uoned||ddy uoneoiddy

Vil @inbi4

U.S. Patent

US 9,292,343 B2

Sheet 17 of 20

Mar. 22, 2016

U.S. Patent

¢l adn
POO | JOAIBS uonedl|ddy buug

%

OLLl
980 | JOAISS uonedl|ddy yoied

8011 UmoQ

980 | JonJag uoneolddy buug

9011 dn
980 | JaAIag uonedl|ddy buug

0Ll
P8O | JeAI8S uonedl|ddy yoled

¢O0l] umo(Q
PO | JoAIeg uonedlddy bulg

dll @inbi

US 9,292,343 B2

Sheet 18 of 20

Mar. 22, 2016

U.S. Patent

POLL
dd
9801 P8O 9801 PRO|
N, Qv Aoduapuadag Sy QY

PO0L
uoneolddy

uoneoljddy

Ol ainbig

US 9,292,343 B2

Sheet 19 of 20

Mar. 22, 2016

U.S. Patent

7€ 11 dn uoneoljddy buug

cell dn
PO0 | JoAIeg uonedlddy bulg

0cll dn
980 | JOAIBS uoljedi|ddy buug

8¢ll lle Yoled

9C | UMO(
980 | JOAIBS uoljedi|ddy buug

vC Ll UMOQ
PO | JOAIBS uoledl|ddy bulg

2211 umoQ uoneolddy bulg

dilL ainbi4

US 9,292,343 B2

Sheet 20 of 20

Mar. 22, 2016

U.S. Patent

v
dd
AUl
SUONBIIUNWWO))
CIvC
Py cetd
J0RJIdIU] [0vT J0BJIdU]
SUOIJBIIUNWIWIO)) ($)10SS2201] (1:1q|
907 Sy
01+ 60vC 01T
901Ad(] NOY AIOWRIN
J3v101S UIeJA

A K |

|9 4

00v1

e
J21AJ(]

induy

Lvc
Arrdsi(q

US 9,292,343 B2

1

METHOD AND SYSTEM FOR PERFORMING
DEPLOYMENT MANAGEMENT

FIELD

The invention relates to the field of deployment manage-
ment.

BACKGROUND AND SUMMARY

In the computing field, the term “deployment” refers to the
act of implementing software and computing resources into a
computing environment. Examples of deployment activities
include provisioning, patching, and configuration/reconfigu-
ration. Provisioning refers to the distribution of software and
resources 1nto the computing environment, and 1s often used
to 1n the context of an istallation of fresh software on an
enterprise hardware inirastructure. Patching refers to the act
of updating or modifying the software and resources, and 1s
often used 1n the context of the periodic activity of deploying
fixes for problems/bugs that are reported after the main
release of soitware. Configuration and reconfiguration refer
to the acts of implementing or changing the properties or
variables for the software, resources, or computing environ-
ment.

Conventionally, deployment 1s a task that requires signifi-
cant human intervention to ensure that deployment activities
are properly and optimally orchestrated for a given software/
architectural environment. The software/architectural envi-
ronment 1s often referred to as the software “stack™ or “topol-
ogy”. It 1s often required that such operations are performed
while strictly adhering to the guidelines established by the
vendors of the software and other architectural components.

One possible approach to implement deployment activities
1s to manually perform each and every step of the deployment.
In this approach, highly skilled I'T personnel would receive
documentation that describe the deployment activities, and
would manually follow the documentation to take every
action that 1s needed across all of the components 1n the
topology to perform the deployment.

Unfortunately, the manual approach is just not feasible
when considered 1n the context of a large modern organiza-
tion. For example, at the level of an enterprise, manually
performed deployment activities would be excessively costly
and time-consuming due to the extensive quantity of the items
often being deployed as well as the complexities of the envi-
ronments 1n which the deployment needs to take place. This 1s
particularly problematic for the typical I'T department at the
data center of a large-scale corporation which handles the
needs of a very large number of applications and users spread
across many types of computing architectures and topologies.
Attempting to perform deployment 1n a manual manner in this
type of environment would be a very error-prone, time-con-
suming, and difficult task.

Another possible approach is the template or procedure-
based approach for deployment, 1n which templates and/or
procedures are distributed by vendors to accomplish the
deployment activities. In this approach, the template/proce-
dure corresponds to a particular deployment scenario or use-
case, and has the requisite scripts, programs, and associated
files to perform the deployment for that particular deploy-
ment scenario. The customer would fill in certain fields in the
template that are specific to the customer, such as IP addresses
and machine 1dentifiers, which allows the scripts, programs,
and files to be used to correctly implement deployment in the
customer’s environment. The drawback, however, with this
template-based approach 1s that 1t 1s highly specific to the

10

15

20

25

30

35

40

45

50

55

60

65

2

particular deployment scenario or use-case to which 1t 1s
directed. When the customer environment 1s different from
the expected deployment scenario or use-case, then the tem-
plate may no longer be usetul, or 1t may require the customer
to perform many highly manual activities to customize the
materials so that they are useful 1n the customer environment.

Therefore, there 1s a need for an improved approach to
implement deployment, particularly for enterprise deploy-
ments, which addresses the drawbacks associated with the
prior solutions.

Embodiments of the present invention provide an approach
for automatically performing deployment activities that can
handle deployments for any-sized organization, even for
deployments at the enterprise level. According to some
embodiments, modeling 1s performed to generate a model of
the components 1n the computing environment. Dependency
graphs can be generated for the deployment, and used to then
automatically perform the deployment.

Further details of aspects, objects, and advantages of the
invention are described below in the detailed description,
drawings, and claims. Both the foregoing general description
and the following detailed description are exemplary and
explanatory, and are not intended to be limiting as to the scope
of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates an example topology.

FIG. 2 illustrates an example system for performing
deployment.

FIG. 3 shows a flow of an approach for performing deploy-
ment.

FIGS. 4-5 show example models.

FI1G. 6 A-B, TA-D, 8A-B, 9, 10, and 11A-D show 1llustra-

tive examples of deployment for different components 1n a
topology.

FIG. 12 depicts a computerized system on which a method
for re-using digital assertions 1n a mixed signal context can be
implemented.

DETAILED DESCRIPTION

The present invention 1s directed to an improved approach
for performing deployment activities. The 1nvention
addresses the 1ssue of deployment for a variety of configura-
tions, and 1s a generic method as opposed to the solutions
which work only for well-defined software configurations.
The mventive approach 1s “intelligent” as 1t accomplishes
such activities with minimal or no human interference.
According to some embodiments, the invention establishes
dependencies in the topology and also determines any sofit-
ware version relationships. The approach 1s optimal as 1t
performs such activities 1n a best-practice fashion as estab-
lished by an enterprise, and ensures that software applications
are stopped for zero or minimal possible time during such
tasks.

Examples of deployment activities implemented by the
invention include provisioning, patching, and configuration/
reconfiguration. For the purposes of illustration, some
embodiments may be described in conjunction with specific
deployment activities, such as patchung. It 1s noted, however,
that the described mvention may be applicable to any type of
deployment, and 1s not to be limited to the specific examples
shown unless claimed as such.

Embodiments of the mmvention are immplemented with
orchestration of the deployment activities such that vendor
and supplier best-practices are adhered to, where the end-

US 9,292,343 B2

3

result of the configuration 1s a supported configuration for
cach of the components that are a part of the topology. In
addition, the orchestration ensures that the deployment 1s
performed 1n the correct order in consideration of dependen-
cies between components 1n the topology. The orchestration
also ensures that co-requisite/pre-requisite and post-requisite
changes are factored in. Finally, embodiments of the mven-
tion can optimize to minimize the overall downtime of appli-
cations, or of particular software processes should be mini-
mized.

These are activities for which 1t 1s that just not feasible to be
performed manually for most organizations, using conven-
tional technologies. Further, given the complexity of modern
enterprise software stacks, any manual orchestration would
not produce an optimal result. The embodiments of the
present invention provide an automated approach that signifi-
cantly reduces the costs of performing deployment, reduces
errors, and can handle any type of topology and 1s not limited
to particular well-defined software topologies.

Embodiments of the imnvention provide features to under-
stand the software dependencies, and to orchestrate the
deployment tasks in the correct order. This type of orchestra-
tion to i1dentity dependencies i1s very difficult to perform
manually. Moreover, this orchestration becomes even more
difficult 11 one has to ensure high-availability, e.g., where
execution of these operations should be such that the software
processes are not required to be shut down, or are brought
down for the minimum time possible.

To explain, consider the example topology shown 1n FIG.
1, which includes components at three different tiers. A first
tier 120 1s at the application level, a second tier 122 is at the
application server level, and a third tier 124 1s at the database
level. The application tier 120 1s illustrated shown to 1include
applications 106a, 1065, 106c, and 106d. The application
server tier 122 includes application servers 108a, 1085, 108c¢,
1084, and 108e. The database tier 124 includes database
servers 110a, 1105, 110¢, and 1104.

Components at each tier interact with components at other
tiers 1n a manner that causes certain dependencies to exist. In
this example, application 1064 1s downstream of, and depen-
dent on, application server 1085 being available. Application
server 1085, 1n turn, 1s downstream of and 1s dependent upon
database 1106 being available. Therefore, this 1s an example
of a situation i which a first software process (e.g., for
application 108a) depends on a second software process (e.g.,
tfor the application server 1085), and 11 the second process for
the application server 1085 1s to be patched, then patching this
second process may requires stopping all dependencies such
as the first process for the application 106a. This chain of
dependencies exist as well for the other components shown 1n
FIG. 1.

Even within a single node 1n the topology, the deployment
activities can be fairly complex. For example, there may need
to be a certain order to deployment steps, e.g., relating to
configurations, patching, running scripts to bring the node up
or down, downloading contents, etc. When these activities are
considered in the context of an extensive topology having
many different nodes, and where the nodes themselves have
dependency inter-relationships, the complexities can be over-
whelming.

As 1s evident, the complexity and inter-dependency of soft-
ware components ensures that conventional approaches
which are manual 1n nature are not suificient to accomplish
enterprise-wide patching and provisioning. Embodiments of
the imnvention provide an approach for automatically 1dentify-
ing these dependencies and to perform deployment for a
variety of configurations. Some embodiments can greatly

10

15

20

25

30

35

40

45

50

55

60

65

4

reduce the complexities of managing large configurations by
managing the entire topology as one entity.

FIG. 2 1llustrates a system 200 for implementing deploy-
ment management according to some embodiments of the
ivention. System 200 may include one or more users at one
or more user stations 224 that operate the system 200 to
manage deployment for a topology 240 of components, such
as application software 206 and software that runs on an
applications server and/or database 210. However, deploy-
ment management may be performed for any type of compo-
nent or service 1n any type ol topology according to embodi-
ments of the invention.

User station 224 comprises any type ol computing station
that may be used to access, operate, or interface with a
deployment manager 214, whether directly or remotely over
a network. Examples of such user stations 224 include work-
stations, personal computers, or remote computing terminals.
User station 224 comprises a display device, such as a display
monitor, for displaying processing results or data to users at
the user station 224. User station 224 also comprises input
devices for a user to provide operational control over the
activities of some or all of system 200.

Deployment manager 214 provides management for some
or all of the deployment services utilized in system 200
against a topology 240 of components. The deployment man-
ager 214 comprises one or more deployment modules 216 to
perform activities of deploying deployment data 218 to a
topology 240 of components, such as the application 206,
application server 208 and/or database 210. The deployment
data comprises data corresponding to information needed to
perform deployment activities to a topology 240 of compo-
nents. Such deployment data 216 comprises, for example,
soltware to be provisioned, 1mages to be patched to an appli-
cation, and/or configuration data or settings.

According to some embodiments, the deployment man-
ager accesses one or more models 220 of the components 1n
the topology 240 to perform deployment activities. The mod-
els 220 comprise a representation of the components 1n the
topology 240 that captures the dependencies and relation-
ships of the different members of the topology 240. The
models 220 also capture an inventory, metadata, and deploy-
ment information for the components in the topology 240.

According to some embodiments, model 220 can include,
or be represented as, a graph of dependencies 222 for the
soltware 1n topology 240. The graph of dependencies 222
identifies the dependent relationships between the software
components in the topology 240, where analysis of the graph
can be performed to determine the dependent order of deploy-
ment for the topology 240.

FIG. 5 shows an example dependency graph 502 for the
components of the topology shown 1n FIG. 1. Dependency
graph 502 shows that application server 108a 1s downstream
of, and dependent upon, the availability of database 110a. The
dependency graph 502 also shows that application 106a 1s
downstream of, and dependent on, application server 1085
being available. Application server 1085, 1n turn, 1s down-
stream of and 1s dependent upon database 11056 being avail-
able. Applications 1065 and 106¢ are both dependent upon a
single application server 108¢, which in turn 1s dependent
upon database 110c. Application 1064 1s dependent upon two
application servers 1084 and 108¢, which are both dependent
upon the same database 1104d.

The models 220 also include metadata and deployment
information for the components in topology 240. FIG. 4
shows an illustrative example of amodel 402 that may be used
to represent an application server according to some embodi-
ments of the mvention. Model 402 includes a first portion 404

US 9,292,343 B2

S

to hold general metadata about the application server, such as
for example, name-value pair information, port numbers, and
other relevant 1dentifiers.

Model 402 also 1includes a section 406 to hold deployment
operation information for the application server. Such
deployment operation information 1dentifies the deployment
procedures that pertain to the component in question. In the
present example, the illustrative deployment procedure set
forth 1n model 402 for an application server 1s a three step
process to first bring down the application server, then per-
form the deployment procedure (such as a patch), and finally
to bring up the application server. One or more scripts, pro-
cedures, or utilities may be i1dentified to perform these
actions. The operation steps could be customized for the
different deployment activities of provisioning, patching, or
reconfiguration. Those of ordinary skill 1n the art will recog-
nize that this illustrative example provides a very simple
series of steps for the deployment; of course an actual imple-
mentation of the mvention may 1nvolve much more complex
deployment procedures and steps depending upon the type of
component being modeled.

Exceptions and optimizations to the deployment proce-
dures may also be set forth 1n model 402. These exceptions
and optimizations provide additional handling actions that
can be taken to improve the performance of the deployment or
to handle special situations relating to the deployment. For
example, a possible exception 1s to establish that the compo-
nent will be deployed 1n a standalone mode 1if there are no
dependencies, to avoid taking incurring dependency-related
overhead or take actions that otherwise may be taken 11 there
are dependencies upon the component. For instance, 1f there
are dependencies, then the deployment manager may need to
bring down a whole chain of dependent components before
patching the one 1tem of software that 1s at 1ssue. 11 there are
no dependencies, then the patch may be performed 1n a stan-
dalone mode where only the software being patched is
brought down. Another possible exception may relate to
ordering exceptions with regard to components 1n the topol-
ogy. Other and additional exceptions and procedures may be
employed within embodiments of the invention.

The models can be constructed to address any post or pre
deployment activities that need to occur to the components.
For example, 1t 1s possible that pre-deployment or post-de-
ployment configurations must occur as part of the deploy-
ment activities. Such activities can be expressed as part of the
deployment procedures in section 406 of the model 402. The
model 402 can also take into account any concurrent activities
that must occur for the deployment.

Model 402 may also include a portion 408 to 1dentily the
relationships for the component being modeled. For example,
an application server may have a downstream dependency
relationship to applications and an upstream dependency
relationship to databases.

While the above illustrate example of a model 402 1s
directed to an application server, it 1s noted that a similar
model may be implemented for any component 1n the topol-
ogy. The model can be implemented as a generic model for
certain types of components, €.g., with a generic model for the
application, application server, and database. Alternatively,
the model can be customized for individual components in the
topology.

The current solution enables the user to deploy all software
in a topology using the models, where the deployment 1s
orchestrated so that the downtime can be reduced by a con-
siderable amount. The present approach takes the list of
deployment 1tems and components being patched, e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

6

patches and the software targets being patched, and then
determines out the best path based on the dependency graph.

FIG. 3 shows a flowchart of a process for performing
deployments according to some embodiments of the mven-
tion. At 302, one or more models are constructed for the
topology and/or topology components. The model(s) com-
prise dependency information and deployment metadata for
the topology components. Examples of such models are 1llus-
trated 1n FIGS. 4 and 5. Topology models can be constructed
in any suitable manner, ¢.g., by using agent based discovery.
The models should include novel metadata, e.g., as repre-
sented by the operational metadata shown 1n 406 of FIG. 4

At 304, the process builds a dependency tree of the speci-
fied targets. The dependency tree 1s based at least in part on
the type of the target(s) being deployed to. The dependency
tree comprises root and/or leal nodes corresponding to the
components 1n the dependency graph which are afiected by
the deployment. For example, as shown 1n FIG. 5, one pos-
sible root node 1s database 1106 and 1ts corresponding leaf
node 1s application 106a. The dependency tree can be used to
identify the dependency relationships between the various
components that should be operated upon for the deployment.
The dependency tree 1s analyzed, at 306, to determine the
paths from root nodes to leal nodes 1n the tree, and a deter-
mination 1s made at 308 of the number of such paths. The
general 1dea 1s that the deployment activities can be optimized
based upon the exact portion of the topology atiected by the
deployment, as well as the dependency relationships for those
nodes 1n the affected portion of the topology. The optimiza-
tions can be made to reduce the downtime of components in
the topology and to increase the availability of software and
systems 10 users.

For example, consider the situation when both an applica-
tion and 1ts associated database need to be patched. It 1s likely
that each component will need to be brought down to perform
the patching activities for that component. In addition,
because there 1s a dependency relationship between these two
components, then both may need to be brought down when
only one of these 1s being patched, e.g., both the application
and the database need to be brought down when the database
1s being patched. As a result, to minimize downtime, the
invention could patch both the application and the database 1n
a single downtime session by piggybacking the application
patch to the time when the database patch 1s occurring. This
reduces the downtime that may occur if the patching activities
occur 1n two different sessions.

Therelore, the present approach will look at the targets of
the deployment activities, as well as their interrelationships.
If any target has only a single node, then 1t 1s a single node tree
and does not have any paths between root and leat nodes, and
therefore this means that the target 1s an independent target
which can be patched/deployed to at 309 without any depen-
dency 1ssues as standalone software.

If there 1s only one path from root node to the leat node,
then at 310, all the software targets can be patched/deployed
to 1n single downtime window. In this case, the downtime for
the root node will be the sum of patching for each of the child
nodes. This situation can also be handled by performing the
deployment separately for both nodes, which is less optimal
in some situations since 1t will mvolve two separate down-
times.

If there are two or more paths from a root node to the leat
node, then the process will, at 312, first patch/deploy to the
rootnode. Next, at 314, the process will patch the second level
nodes ensuring that at least one path 1s available from root
node to leal node. This continued from 316 back to 314 until

US 9,292,343 B2

7

the leat nodes are all patched. The downtime of the root node
in this situation will be the time required for patching that
node.

To 1illustrate this process, consider the following generic
configuration that can be extended to a variety of cases, for the
purpose ol understanding this method. A use case 1s the
patching of an application Human Resource Management
System (HRMS). The application runs on an Application
Server, which uses a Database. These software components
require an operating system. Also they may reside on a single
machine or on different machines. Moreover they can be
distributed across multiple distributed machines (e.g., using
the Real Application Clustering (RAC) technology available
from Oracle Corporation of Redwood Shores, Calit.). In this
scenario, deployment for the complete topology should be
orchestrated to ensure a least downtime period for the appli-
cation when patching to the whole set.

Consider 1f the application HRMS 1s being deployed on
two Application Servers (Al and A2) and these are running,
using two Database Servers (D1 and D2), with all of these
running on two Hosts (H1 and H2). Assume that a depen-
dency tree 1s constructed having the following dependency
relationship:

Application depends on Application Server

Application Server depends on Database, where the Appli-

cation Server uses the Database for the correct function-
ing of the applications

The Database and Application Server depends on the Host.

Here, the HRMS 1s the root node and the H1/H2 are the leat
nodes. There are several possible paths from root node to the
leaf node:

HRMS->A1->D1->H1

HRMS->A1->D2->H2

HRMS->A2->D2->H2

HRMS->A2->2->H1

The above paths can be used to ensure the application
HRMS 1s down only for the time required to patch only this
application. In this case, the following actions are performed:
a. First patch the HRMS application
b. Next patch A1, D1 and H1
c. Then patch A2, D2 and H2

With the above actions, the application HRMS will be
down only during step (a) and will be available while the other
supporting soit wares are being patched. The above use case
only considers patching one node. Moreover the patching
algorithm assumes that patching requires shutting down soft-
ware, replacing bits, and restarting the software. However the
graph algorithm can be extended to handle a variety of test
cases such as 1) patching multiple software components
(equivalent to nodes 1n a dependency graph) 2) patches 1n (1)
above may be co-/pre-/post-requisite patches 3) other deploy-
ment activities such as provisioning and cloning can be inter-
spersed with patching 4) multiple applications may be run-
ning on a farm of application server 5) operating system
patching and provisioning can be part of the enterprise
deployment operations.

As additional 1llustrative examples, consider 11 1t 1s desired
to patch the software on the application server tier 122 shown
in FIG. 1, which includes application servers 108a, 1085,
108c, 1084, and 108e. Recall that FIG. 5 shows an example
dependency graph that has been modeled for the topography
of FIG. 1.

Consider first the actions for patching to the software on
application server 108a. FIG. 6 A shows the dependency tree
that 1s constructed from the dependency graph of FIG. S when
it 1s desired to patch to application server 108a. In this
example, there the dependency tree shows only a node for the

10

15

20

25

30

35

40

45

50

55

60

65

8

application server 108a. This 1s because there are no other
nodes that are dependent upon the application server node
108a, and therefore the dependency tree will not include any
other nodes. As such, as shown 1n FIG. 6B, the patching of
application server 108a can be handled as 1f application
server 108a 1s a standalone node. Therefore, only the one
application server 108a 1s brought down at 602 (with no other
nodes needing to be brought down at this time). At 604, the
software at application server 108a 1s patched, and once the
patching 1s complete, then application server 108a can be
brought back up at 606.

Consider now the actions for patching to the software on
application server 1085. FIG. 7A shows the dependency tree
that 1s constructed from the dependency graph of FI1G. S when
it 1s desired to patch to application server 1085. Here, the
dependency tree includes two nodes, with the application
server 1085 at the root node and the application 1064 at the
leatnode. In this situation, this dependency tree clearly shows
that there 1s at least one other node that 1s dependent upon
application server 1085, since application 1064 1s dependent
upon the application server 1085. What this means 1s that
since application 1064 1s dependent upon application server
1085, additional orchestration must be performed to ensure
proper ordering of actions when performing the patching/
deployment.

FIG. 7B shows the process for performing a deployment in
this situation. Because of the dependency of the application
106a to application server 1085, this means that coordination
of both nodes must occur to handle the deployment to appli-
cation server 1085. Here, the leat node 1064 1s brought down
first at 702, followed at 704 by bringing down the application
server node 1085. At this point, with both nodes down, the
application server 1085 can be patched at 706. Once the
patching 1s complete, then application server 1085 can be
brought back up at 710, and then the application 1s brought up
at 712.

Consider 1f deployment needs to occur for both the appli-
cation 106a and the application server 1085. As can be seen
trom FI1G. 7C, the dependency tree for this situation 1s exactly
the same as the dependency tree of FIG. 7A when patching
just the single node 1085. Therefore, the potential downtime
for both patching scenarios 1s exactly the same. In this situa-
tion, rather than engaging in two separate procedures for the
deployments to the two nodes, the same downtime can be
used to perform the patching for both nodes. This optimiza-
tion therefore provides a way to accomplish required deploy-
ments within minimal downtime by using the dependency
tree to recognize that additional patching can be “piggy-
backed” onto existing patching downtimes.

FIG. 7D shows the process for performing a deployment in
this situation. Because of the multiple patching that needs to
occur, this means that multiple patching actions are per-
tormed. Here, as before, the leat node 1064 1s brought down
first at 722, followed at 724 by bringing down the application
server node 10856. At this point, with both nodes down, the
application server 1085 can be patched at 726, followed by
the patch of the application 1064 at 728. Once the patching of
the two nodes are complete, then application server 1085 can
be brought back up at 730, followed by bringing the applica-
tion back up at 732.

Consider now the actions for patching to the software on
application server 108c¢. FIG. 8 A shows the dependency tree
that 1s constructed from the dependency graph of FIG. S when
it 1s desired to patch to application server 108c. Here, the
dependency tree includes three nodes, with the application
server 108¢ at the root node and the applications 1065 and
106¢ at the leat nodes. In this situation, this dependency tree

US 9,292,343 B2

9

shows that there are two nodes node that are dependent upon
application server 108c¢, since applications 1065 and 106¢ are
dependent upon the application server 108¢. What this means
1s that since both applications 1065 and 106¢ are dependent
upon application server 108¢, additional orchestration must
be performed to ensure proper ordering of actions when per-
forming the patching/deployment.

FIG. 8B shows the process for performing a deployment in
this situation. Because of the dependency of both applications
1066 and 106¢ to application server 108¢, this means that
coordination of all three nodes must occur to handle the
deployment to application server 108c. Here, the leal node
1065 1s brought down first at 802 and the leaf node 106¢ 1s
brought down at 804. This 1s followed at 806 by bringing
down the application server node 108¢. At this point, with all
three nodes down, the application server 108¢ can be patched
at 808. Once the patching 1s complete, then application server
108¢ can be brought back up at 810. At this point, both
applications can be brought back up, with the application
106¢ brought up at 812 and application 1065 brought up at
814.

Consider now the actions for patching to the software on
application server 108d4. FIG. 9 shows the dependency tree
that 1s constructed from the dependency graph of FIG. S when
it 1s desired to patch to just the application server 108d. In this
example, there the dependency tree shows only one node for
the application server 1084. Even though there 1s an applica-
tion node 1064 that 1s dependent upon application server
1084, this application node 1064 1s also dependent upon
another application server 108e. So long as application server
nodes 1084 and 108¢ are not both brought down at the same
time, this means that application 1064 has a dependency path
that will not be blocked by the deployment to application
server 108d. As such, the dependency tree will only include a
single node for application server 1084

To minimize downtime, this means that only the single
node for the application server 1084 will be brought down for
the deployment, allowing application 1064 and application
server 108¢ to stay up through this deployment process. As
such, the patching of application server 1084 can be handled
as 11 application server 1084 1s a standalone node. Therelore,
the tlow of FIG. 6B can be re-used for this deployment pro-
cess, with only the one application server 1084 being brought
down at 602 with no other nodes needing to be brought down
at this time. At 604, the software at application server 1084 1s
patched, and once the patching 1s complete, then application
server 1084 can be brought back up at 606.

Consider now the actions for patching to the software on
application server 108e. FIG. 10 shows the dependency tree
that 1s constructed from the dependency graph of FIG. S when
it 1s desired to patch to just the application server 108e. In this
example, the dependency tree shows only one node for the
application server 108e. It 1s noted that this dependency tree
of FIG. 10 1s identical to the dependency tree of FIG. 9, with
the exception that single node 1n FIG. 10 1s 108¢ instead of
1084. However, like the previous situation described for FIG.
9, even though there 1s an application node 1064 that is
dependent upon application server 108e, this application
node 1064 1s also dependent upon another application server
1084, which means that so long as application server nodes
1084 and 108¢ are not both brought down at the same time,
then the application 1064 has a dependency path that will not
be blocked by the deployment to application server 108e. As
such, the dependency tree will only include a single node for
application server 108e. As before, to minimize downtime,
this means that only the single node for the application server
108¢ will be brought down for the deployment, allowing

10

15

20

25

30

35

40

45

50

55

60

65

10

application 1064 and application server 1084 to stay up
through this deployment process. As such, the patching of
application server 108e can be handled as 1T application server
108¢ 1s a standalone node, with the flow of FIG. 6B being
re-used for this deployment process with only the one appli-
cation server 108e being brought down at 602 with no other
nodes needing to be brought down at this time. At 604, the
soltware at application server 108e¢ 1s patched, and once the
patching 1s complete, then application server 108¢ can be
brought back up at 606.

Consider if the patching needs to occur for both application
servers 1084 and 108e¢. FIG. 11 A shows the dependency tree

that 1s constructed from the dependency graph of FIG. 5 when
it 1s desired to patch both application servers 1084 and 108e.
In this situation, the dependency tree shows the application
1064 along with both application server nodes 1084 and 108e.
Since both application server nodes 1084 and 108e are being
patched, and application 1064 1s dependent upon both appli-
cations servers, then additional orchestration must be per-
formed to ensure proper ordering of actions when performing
the patching/deployment.

FIG. 11B shows the process for performing a deployment
in this situation. Here, since there are multiple paths from the
root node to the leat node, this means that an optimization can
be made to maintain uptime for the application 1064. There-
fore, application 1064 does not need to be brought down.
Instead, each of the application servers 1084 and 108¢ can be
separately brought down and patched to maintain uptime for
the application 1064.

At 1102, application server 1084 1s brought down, while
keeping both application 1084 and application server 108¢
up. The down application server 1084 1s patched at 1104, and
once the patching is complete, then the application server
108d can be brought back up at 1106. At 1108, application
server 108¢ 1s brought down, while keeping both application
1084 and application server 1084 up. The down application
server 108e 1s patched at 1110, and once the patching 1s
complete, then the application server 108¢ can be brought
back up at 1112.

Consider 11 the patching needs to occur for the application
1064 as well as both application servers 1084 and 108e. F1G.
11C shows the dependency tree that 1s constructed from the
dependency graph of FIG. 5 when 1t 1s desired to patch both
application servers 1084 and 108e. In this situation, the
dependency tree shows the application 1064 along with both
application server nodes 1084 and 108e.

Here, 1t 1s not necessary to maintain the immediate uptime
for application 106d, since this node itsell needs to be
patched. Therefore, to minimize downtime, an optimization
can be taken to make sure that all three nodes are patched 1n
the same downtime window.

FIG. 11D shows the process for performing a deployment
in this situation. Here, the application 1064 1s brought down
first at 1122. The application server 1084 1s brought down at
1124 and the application server 108e 1s brought down at 1126.
With all nodes down, the application 1064 and application
servers 1084 and 108e¢ are all patched at 1128. Once the
patching 1s complete, then the application servers can be
brought back up, with application server 108e being brought
up at 1130 and application server 1084 being brought up at
1132. Once the application servers have been brought up,
then the application 1s brought up at 1134.

FIGS. 9-11D 1illustrate examples of situations 1 which
different optimizations may be taken depending upon the
specific needs of the deployment. If application 1064 does not
need to be brought down, then patching for each of the appli-

US 9,292,343 B2

11

cation servers 1084 or 108e can be separately handled to
avold bringing application 1064 down, as described above.

It 1s possible that even 1 both application servers 1084 and
108¢ need to be patched, but to minimize downtime of appli-
cation 1064, then the patching occurs 1 two different ses-
sions such that application 1064 never needs to be brought
down. This would involve the sequential implementations of
FIG. 9 and FI1G. 10 where the patching to application servers
1084 and 108¢ are handled in entirely different downtime
SESS101S.

However, the application 1064 may need to be brought
down, ¢.g., because this node 1tself must be patched. In this
situation, the system would take advantage of this required
downtime to patch all of the application 1064, application
server 1084, and application server 108e. By handling the
patching all at once, this limits the downtime to a single
downtime session for all three components.

Therefore, what has been described 1s an 1mproved
approach for performing deployment 1n an automated man-
ner. Prior to this invention, patching a set of software required
a significant amount of manual work in orchestrating the
process, with the distinct possibility that the required down-
time defined for the applications/services 1s high. In contrast,
embodiments of the present invention provide a universal
approach that can be used with minimal manual interactions
to perform deployment, and which can also minimize down-
time.

One advantage of some embodiments 1s that end to end
deployment can be automated and optimized for a variety of
software stacks and 1s not limited to particular well-known
use cases. In addition, enterprise deployment can be
addressed for a new stack without requiring development of a
new orchestration strategy catered for that configuration. The
approach of various embodiments automatically generates
the best possible policy for each configuration. Moreover,
embodiments can be used to manage many products as one
stack. This approach can be used to ensure minimum down-
time, minimum business interruptions, and high-availability.
In addition, all systems 1n the topology can be deployed under
best-practices from developers and vendors. The approach
also significantly reduces administration costs by reducing
human 1ntervention
System Architecture Overview

FIG. 12 1s a block diagram of an illustrative computing,
system 1400 suitable for implementing an embodiment of the
present invention. Computer system 1400 includes abus 1406
or other communication mechanism for communicating
information, which interconnects subsystems and devices,
such as processor 1407, system memory 1408 (e.g., RAM),
static storage device 1409 (e.g., ROM), disk drive 1410 (e.g.,
magnetic or optical), communication interface 1414 (e.g.,
modem or Ethernet card), display 1411 (e.g., CRT or LCD),
input device 1412 (e.g., keyboard), and cursor control.

According to one embodiment of the invention, computer
system 1400 performs specific operations by processor 1407
executing one or more sequences of one or more instructions
contained 1n system memory 1408. Such instructions may be
read 1nto system memory 1408 from another computer read-
able/usable medium, such as static storage device 1409 or
disk drive 1410. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with sofit-
ware mstructions to implement the invention. Thus, embodi-
ments ol the mmvention are not limited to any specific
combination of hardware circuitry and/or software. In one
embodiment, the term “logic” shall mean any combination of
software or hardware that 1s used to implement all or part of
the 1nvention.

10

15

20

25

30

35

40

45

50

55

60

65

12

The term “computer readable medium” or “computer
usable medium™ as used herein refers to any medium that
participates in providing instructions to processor 1407 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 1410. Volatile media includes
dynamic memory, such as system memory 1408.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
any other magnetic medium, CD-ROM, any other optical
medium, punch cards, paper tape, any other physical medium
with patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, or any other
medium from which a computer can read.

In an embodiment of the invention, execution oif the
sequences ol instructions to practice the invention 1s per-
formed by a single computer system 1400. According to other
embodiments of the invention, two or more computer systems
1400 coupled by communication link 1415 (e.g., LAN,
PTSN, or wireless network) may perform the sequence of
instructions required to practice the invention 1n coordination
with one another.

Computer system 1400 may transmit and receive mes-
sages, data, and instructions, including program, 1.e., appli-
cation code, through communication link 1415 and commu-
nication interface 1414. Receiwved program code may be
executed by processor 1407 as 1t 1s recerved, and/or stored 1n
disk drive 1410, or other non-volatile storage for later execus-
tion. Computer system 1400 may communicate through a
data interface 1433 to a database 1432 on an external storage
device 1431.

In the foregoing specification, the mmvention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing {from the
broader spirit and scope of the invention. For example, the
above-described process tlows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without affecting the scope or operation of the mven-
tion. The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than restrictive sense.

What 1s claimed 1s:
1. A computer implemented method for performing
deployment with a processor, comprising:

identifying a model corresponding to a topology, where the
model corresponds to an inventory of components in the
topology and dependency relationships for the compo-
nents;

using the model to 1dentity dependencies for a deployment,
wherein the 1dentified dependencies are based at least in
part upon a dependency tree having one or more root
nodes and one or more leal nodes:;

counting a number of paths from a root node to a leat node
in the dependency tree;

based at least 1n part on the 1dentified dependencies and the
number of paths counted, selecting a deployment proce-
dure from a plurality of deployment procedures,
wherein if the number of paths counted 1s two or more
paths, at least one of the deployment procedures com-
prises a deployment to a first node 1n a first path 1n a first
downtime window and a deployment to a second node 1n
a second path 1n a second downtime window, wherein
the first downtime window ends before the second
downtime window starts and at least one path from the

US 9,292,343 B2

13

rootnode to the leat node 1s available during deployment
to the first node and during deployment to the second
node; and

implementing the selected deployment procedure to per-

form the deployment 1n the topology.

2. The method of claim 1 1n which the model comprises a
dependency graph for the components.

3. The method of claim 1 1n which the model comprises
operational steps to perform the deployment.

4. The method of claim 3 1n which the operational steps
comprise optimizations based at least in part upon the exist-
ence of other components that are subject to the deployment.

5. The method of claim 4 in which the optimizations are
used to minimize downtime for the components.

6. The method of claim 1 1n which the model 1s generic to
a class of the components or 1s specific to an individual
component.

7. The method of claim 1 1n which one path from root node
to leat node 1s handled 1n a single downtime window.

8. The method of claim 1 1n which there are multiple paths
root node to leaf node, and where the components are patched
to ensure at least one path 1s available from the root node to
the leal node.

9. The method of claim 1 1n which the deployment com-
prises provisioning, patching, configuration, or reconfigura-
tion.

10. The method of claim 1 1n which the implementing the
selected deployment procedure comprises performing a first
action when the number of paths 1s a first value, performing a
second action when the number of paths 1s a second value, and
performing a third action when the number of paths 1s a third
value.

11. A computer program product embodied on a non-tran-
sitory computer usable medium, the computer usable
medium having stored thereon a sequence of instructions
which, when executed by a processor causes the processor to
execute a method for performing deployment with, the
method comprising:

identifying a model corresponding to a topology, where the

model corresponds to an inventory of components 1n the

topology and dependency relationships for the compo-
nents;

using the model to identily dependencies for a deployment,
wherein the 1dentified dependencies are based at least in
part upon a dependency tree having one or more root
nodes and one or more leaf nodes:

counting a number of paths from a root node to a leaf node
in the dependency tree;

based at least in part on the 1dentified dependencies and the
number of paths counted, selecting a deployment proce-
dure from a plurality of deployment procedures,
wherein 1f the number of paths counted 1s two or more
paths, at least one of the deployment procedures com-
prises a deployment to a first node 1n a first path 1n a first
downtime window and a deployment to a second node 1n
a second path 1n a second downtime window, wherein
the first downtime window ends before the second
downtime window starts and at least one path from the
rootnode to the leal node 1s available during deployment
to the first node and during deployment to the second
node; and

implementing the selected deployment procedure to per-
form the deployment 1n the topology.

12. The computer program product of claim 11 1n which the

model comprises a dependency graph for the components.

10

15

20

25

30

35

40

45

50

55

60

65

14

13. The computer program product of claim 11 in which the
model comprises operational steps to perform the deploy-
ment.

14. The computer program product of claim 13 in which the
operational steps comprise optimizations based at least in part
upon the existence of other components that are subject to the
deployment.

15. The computer program product of claim 14 1n which the
optimizations are used to minimize downtime for the compo-
nents.

16. The computer program product of claim 11 in which the
model 1s generic to a class of the components or 1s specific to
an individual component.

17. The computer program product of claim 11 1n which
one path from root node to leaf node 1s handled 1n a single
downtime window.

18. The computer program product of claim 11 1n which
there are multiple paths root node to leaf node, and where the
components are patched to ensure at least one path 1s available
from the root node to the leat node.

19. The computer program product of claim 11 in which the
deployment comprises provisioning, patching, configuration,
or reconfiguration.

20. The computer program product of claim 11 in which the
implementing comprises deploying as a standalone when the
number of paths 1s zero, deploying 1n a single downtime
window when the number of paths 1s one, and deploying
includes piggybacking when the number of paths 1s more than
one.

21. A computer-based system for performing deployment,
comprising:

a computer processor to execute a set of program code

instructions;
a memory to hold the program code instructions, 1n which
the program code instructions comprise program code
to:
identily a model corresponding to a topology, where the
model corresponds to an inventory of components 1n
the topology and dependency relationships for the
components,

use the model to i1dentily dependencies for a deploy-
ment, wherein the 1dentified dependencies are based
at least 1 part upon a dependency tree having one or
more root nodes and one or more leal nodes,

count a number of paths from a root node to a leaf node
in the dependency tree,

select a deployment procedure from a plurality of
deployment procedures based at least 1n part on the
identified dependencies and the number of paths
counted, wherein 11 the number of paths counted 1s
two or more paths, at least one of the deployment
procedures comprises a deployment to a first node 1n
a first path 1n a first downtime window and a deploy-
ment to a second node 1n a second path 1n a second
downtime window, wherein the first downtime win-
dow ends before the second downtime window starts
and at least one path from the root node to the leat
node 1s available during deployment to the first node
and during deployment to the second node, and

implement the deployment procedure to perform the
deployment in the topology.

22. The system of claim 21 in which the model comprises
a dependency graph for the components.

23. The system of claim 21 in which the model comprises
operational steps to perform the deployment.

US 9,292,343 B2

15

24. The system of claim 23 in which the operational steps
comprise optimizations based at least 1n part upon the exist-
ence of other components that are subject to the deployment.

25. The system of claim 24 in which the optimizations are
used to minimize downtime for the components.

26. The system of claim 21 1n which the model 1s generic to
a class of the components or 1s specific to an individual
component.

27. The system of claim 21 1n which one path from root
node to leaf node 1s handled 1n a single downtime window.

28. The system of claim 21 1n which there are multiple
paths root node to leafl node, and where the components are
patched to ensure at least one path 1s available from the root
node to the leaf node.

29. The system of claim 21 in which the deployment com-
prises provisioning, patching, configuration, or reconfigura-
tion.

30. The system of claim 21 in which the deployment pro-
cedure comprises a first action when the number of paths is a
first value, a second action when the number of paths 1s a
second value, and a third action when the number of paths 1s
a third value.

10

15

20

16

	Front Page
	Drawings
	Specification
	Claims

