US009292265B2
12 United States Patent (10) Patent No.: US 9,292,265 B2
Grover et al. 45) Date of Patent: Mar. 22, 2016
(54) METHOD FOR CONVERGENCE ANALYSIS GOGF 8/45 (2013.01); GOGF 8/456 (2013.01);
BASED ON THREAD VARIANCE ANALYSIS GO6F 9/3836 (2013.01); GOGF 9/3851

(2013.01); GOGF 9/3885 (2013.01)

(75) Inventors: Vinod Grover, Mercer Island, WA (US); (58) Field of Classification Search

Yunsup Lee, Fremont, CA (US); None |
Xiangyun Kong, Union City, CA (US); See application file for complete search history.

Gautam Chakrabarti, Sunnyvale, CA

(US); Ronny M. Krashinsky, San (56) References Cited
Francisco, CA (US) U.S. PATENT DOCUMENTS
(73) Assignee: NVIDIA Corporation, Santa Clara, CA 2004/0128660 Al* 7/2004 Nairetal.cooevrn.... 717/156
(US) 2009/0259997 Al1* 10/2009 Groveretal. 717/136
2011/0154300 Al1* 6/2011 Raoetal. 717/133
(*) Notice: Subject. to any disclaimer,,. the term of this * cited by examiner
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 86 days. Primary Examiner — Qing Wu
Assistant Examiner — Wynuel Aquino
(21) Appl. No.: 13/467,765 (74) Attorney, Agent, or Firm — Artegis Law Group, LLP
(22) Filed: May 9, 2012 (57) ABSTRACT
(65) Prior Publication Data Basic blocks within a thread program are characterized for
convergence based on variance analysis or corresponding
US 2013/0305021 Al Nov. 14,2013 instructions. Each basic block 1s marked as divergent based
on transitive control dependence on a block that 1s either
(51) Int. Cl. | divergent or comprising a variant branch condition. Conver-
Goor 9/312 (2006-O:~) gent basic blocks that are defined by invariant instructions are
Goot 9745 (2006-O:~) advantageously identified as candidates for scalarization by a
GOol 9/36 (2006.01) thread program compiler.
(52) U.S. CL
CPC GO6F 8/41 (2013.01); GO6F 8/443 (2013.01); 20 Claims, 7 Drawing Sheets

— — /’-400

Optimistically Mark Every Basic
Block as Convergent

410

I T

Optimistically Mark Every
Instruction as Thread Invariant
412

!

Initialize a Work List of
Instructions
414

420 - . .
Mark Selected Instructions as

Thread Variant
422

A !
Add Any Variant Data Flow Successor

Instructions to The Work List
490 424

Conditional
Instruction?

430

Propagate Divergence and Add Any
Variant Instructions to The Work List

432

U.S. Patent Mar. 22, 2016 Sheet 1 of 7 US 9,292,265 B2

Computer
System

100
v

System Memory
104

Communication
Path

I o

Memory) Parallel Processing
< > Bridge < » Subsystem

105 112

CPU
102

I— — Display
Communication Device

Path 110

106 /\- J /

Input Devices
108

System Disk (< > /O Bridge

114 107
- K

Y

Add-In Card - -
120 < > Switch <) Add-In Card

116 121

A

Network
Adapter
118

Figure 1

U.S. Patent Mar. 22, 2016 Sheet 2 of 7 US 9,292,265 B2

s 200

NG

©

Figure 2A

U.S. Patent Mar. 22, 2016 Sheet 3 of 7 US 9,292,265 B2

Figure 2B

U.S. Patent Mar. 22, 2016 Sheet 4 of 7 US 9,292,265 B2

Figure 2C

U.S. Patent Mar. 22, 2016 Sheet 5 of 7 US 9,292,265 B2

CO R

Figure 2D

U.S. Patent Mar. 22, 2016 Sheet 6 of 7 US 9,292,265 B2

300
y

01 worklist < R
02 for bb < blocks(kernel) do

03 Conv(bb) <« True

04 for instr & instructions(bb) do

05 Invariant(instr) < True

06 if instr reads thread id then

07 worklist <« worklist U instr

08 end if

09 If Instr is an atomic instruction then

10 worklist < worklist U instr

11 end If

12 end for

13 end for

14 /]

15 while worklist } do

16 instr « POP (worklist)

17 Invariant(instr) < False

18 for s € DataF lowSucc(instr) do

19 If Invariant(s) == True then

20 worklist <« worklist U s

21 end if

22 end for

23 iIf instr i1s a conditional branch instruction then
24 for bb & IlteratedControlDependenceSucc(instr) do
25 If Conv(bb) = True then

26 Conv(bb) « False

27 for 1 € instructions(bb) do
28 worklist « worklist U |
29 end for

30 end if

31 end for

32 end if

33 end while

Figure 3

U.S. Patent Mar. 22, 2016 Sheet 7 of 7 US 9,292,265 B2

L 400

Optimistically Mark Every Basic
Block as Convergent
410

Optimistically Mark Every

Instruction as Thread Invariant
412

Inttialize a Work List of
Instructions
414

Yes ' No

420 .
Mark Selected Instructions as

Thread Variant
422

Add Any Variant Data Flow Successor
Instructions to The Work List
424

Done
490

" Conditional No

Instruction?

Yes

430
Propagate Divergence and Add Any

Variant Instructions to The Work List
432

Figure 4

US 9,292,265 B2

1

METHOD FOR CONVERGENCE ANALYSIS
BASED ON THREAD VARIANCE ANALYSIS

GOVERNMENT RIGHTS IN THIS INVENTION

This 1invention was made with U.S. government support
under contract number No. HR0011-10-9-0008 awarded by
DARPA. The U.S. government has certain rights in this inven-
tion.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to compiler systems and,
more specifically, to a method for convergence analysis based
on thread variance analysis.

2. Description of the Related Art

Certain computer systems include a parallel processing
subsystem that may be configured to concurrently execute
plural program threads that are instantiated from a common
program. Such systems are referred to in the art as having
single instruction multiple thread (SIMT) parallelism. CUDA
1s a programming model known 1n the art that implements
SIMT execution on parallel processing subsystems. An appli-
cation program written for CUDA may include sequential C
language programming statements, and calls to a specialized
application programming interface (API) used for configur-
ing and managing parallel execution of program threads. A
tfunction within a CUDA application that 1s destined for con-
current execution on a parallel processing subsystem 1is
referred to as a “thread program™ of “kernel.” An instance of
a thread program 1s referred to as a thread, and a set of
concurrently executing threads are organized as a thread
block. A set of thread blocks may further be organized into a
orid. Each thread is identified by an instance of an implicitly
defined set of index variables configured to store thread 1den-
tity information for the thread. Each thread may access their
instance of the index variables and act independently with
respect to other threads based on the thread 1dentity informa-
tion residing 1n the index variables.

One consequence of acting independently 1s that one set of
threads may execute one branch of a conditional statement,
while another set of threads executes a different branch of the
same conditional statement. In such a scenario, the two dif-
ferent sets of threads execute divergent paths that need to
converge at some point later during execution. Synchroniza-
tion barrier operations in divergent portions of the thread
program may lead to incorrect behavior, including deadlock.
Conventional techniques for compiling thread programs are
not able to detect divergent execution scenarios that may lead
to 1ncorrect execution behavior. Instead, conventional com-
pilers depend on explicit source code directives and an
assumption that a thread program design 1s correct by con-
struction, an assumption that 1s sometimes not true. For
example, a synchronization barrier may be executed 1n one
branch of a conditional statement, but not 1n a different
branch, preventing the synchronization barrier from ever
unblocking and a related thread block from ever converging
and completing. In scenarios where a divergence error such as
this 1s present 1n the thread program design, the thread pro-
gram may compile without error, but then function incor-
rectly at runtime.

In scenarios where a thread program design provides for
correct operation, certain sections of the thread program may
execute 1dentically over an arbitrary number of threads. Such
sections of the thread program are referred to as thread invari-
ant, and produce identical results over an arbitranly large

10

15

20

25

30

35

40

45

50

55

60

65

2

thread block or number of thread blocks because each thread
performs an 1dentical sequence of computations on an 1den-
tical set of mputs. Conventional compilers are not able to
detect which sections of a thread program are thread invari-
ant, and are therefore required to schedule all portions of the
thread program to execute in parallel, leading to inefficient
utilization of resources within the parallel processing sub-
system.

As the foregoing illustrates, what 1s needed 1n the art 1s a
technique for more efliciently managing execution diver-
gence 1n thread programs.

SUMMARY OF THE INVENTION

One embodiment of the present invention sets forth a com-
puter-implemented method for characterizing a thread pro-
gram, the method comprising optimistically marking each
basic block associated with the thread program as being con-

vergent, optimistically marking a set of instructions associ-
ated with each basic block as being invariant, mitializing a
work list to include 1nstructions that are known to be variant
from the set of instructions, selecting an instruction from the
work list, marking the selected 1nstruction as variant, adding
data-tflow and control-dependent successor instructions to the
work list based on the selected instruction, and propagating
the variant and divergence attributes. The variant attribute 1s
propagated to instructions and divergence attribute 1s propa-
gated to basic-blocks.

Other embodiments of the present invention include, with-
out limitation, a computer-readable storage medium includ-
ing 1nstructions that, when executed by a processing unit,
cause the processing unit to perform the techniques described
herein as well as a computing device that includes a process-
ing umt configured to perform the techniques described
herein.

One advantage of the disclosed techmique 1s that a thread
program compiler 1s able to automatically detect thread
invariant basic blocks within a thread program and implement
scalarization optimizations when compiling the thread pro-
gram.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner 1n which the above recited features of
the invention can be understood 1n detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to embodiments, some of which are
illustrated in the appended drawings. It 1s to be noted, how-
ever, that the appended drawings illustrate only typical
embodiments of this invention and are therefore not to be
considered limiting of 1ts scope, for the mvention may admat
to other equally effective embodiments.

FIG. 1 1s a block diagram 1llustrating a computer system
configured to implement one or more aspects of the present
imnvention;

FIG. 2A 1llustrates an exemplary control flow graph for a
thread program, according to one embodiment of the present
imnvention;

FIG. 2B illustrates an exemplary control dependence graph
for the thread program, according to one embodiment of the
present invention;

FIG. 2C 1illustrates the control dependence graph with
propagated divergence information for the thread program,
according to one embodiment of the present invention;

FIG. 2D illustrates the control flow graph for the thread
program with propagated divergence information for the
thread program, according to one embodiment of the present
invention;

US 9,292,265 B2

3

FIG. 3 sets forth a pseudo-code implementation for com-
puting variance and divergence information, according to one
embodiment of the present invention; and

FIG. 4 sets forth a tlowchart of method steps for computing,

variance and divergence information, according to one
embodiment of the present invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding of the
invention. However, it will be apparent to one of skill in the art
that the invention may be practiced without one or more of
these specific details. In other instances, well-known features
have not been described 1n order to avoid obscuring the inven-
tion.

System Overview

FIG. 1 1s a block diagram 1illustrating a computer system
100 configured to implement one or more aspects of the
present mvention. Computer system 100 includes a central
processing unit (CPU) 102 and a system memory 104 con-
figured to communicate via an iterconnection path that may
include a memory bridge 105. Memory bridge 105, which
may be, e.g., a Northbridge chip, 1s connected via a bus or
other communication path 106 (e.g., a HyperTransport link)
to an I/O (input/output) bridge 107. I/O bridge 107, which
may be, e.g., a Southbridge chip, receives user input from one
or more user input devices 108 (e.g., keyboard, mouse) and
forwards the mput to CPU 102 via communication path 106
and memory bridge 105. A parallel processing subsystem 112
1s coupled to memory bridge 105 via a bus or other commu-
nication path 113 (e.g., a PCI Express, Accelerated Graphics
Port, or HyperTransport link); in one embodiment parallel
processing subsystem 112 1s a graphics subsystem that deliv-
ers pixels to a display device 110 (e.g., a conventional CRT or
LCD based monitor). A graphics driver 103 may be config-
ured to send graphics primitives over communication path
113 for parallel processing subsystem 112 to generate pixel
data for display on display device 110. A system disk 114 1s
also connected to I/O bnidge 107. A switch 116 provides
connections between I/O bridge 107 and other components
such as a network adapter 118 and various add-in cards 120
and 121. Other components (not explicitly shown), including
USB or other port connections, CD drives, DVD drives, film
recording devices, and the like, may also be connected to I/O
bridge 107. Communication paths interconnecting the vari-
ous components 1n FIG. 1 may be implemented using any
suitable protocols, such as PCI (Peripheral Component Inter-
connect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu-
nication protocol(s), and connections between different
devices may use different protocols as 1s known 1n the art.

In one embodiment, the parallel processing subsystem 112
incorporates circuitry optimized for graphics and video pro-
cessing, including, for example, video output circuitry, and
constitutes a graphics processing unit (GPU). In another
embodiment, the parallel processing subsystem 112 may be
integrated with one or more other system elements, such as
the memory bridge 105, CPU 102, and I/O bridge 107 to form
a system on chip (SoC).

It will be appreciated that the system shown herein 1s
illustrative and that variations and modifications are possible.
The connection topology, including the number and arrange-
ment of bridges, the number of CPUs 102, and the number of
parallel processing subsystems 112, may be modified as

10

15

20

25

30

35

40

45

50

55

60

65

4

desired. For instance, in some embodiments, system memory
104 1s connected to CPU 102 directly rather than through a
bridge, and other devices communicate with system memory
104 via memory bridge 105 and CPU 102. In other alternative
topologies, parallel processing subsystem 112 1s connected to
I/O bridge 107 or directly to CPU 102, rather than to memory
bridge 105. In still other embodiments, I/O bridge 107 and
memory bridge 105 might be integrated into a single chip.
Certain embodiments may include two or more CPUs 102 and
two or more parallel processing systems 112. The particular
components shown herein are optional; for instance, any
number of add-in cards or peripheral devices might be sup-
ported. In some embodiments, switch 116 1s eliminated, and
network adapter 118 and add-in cards 120, 121 connect
directly to I/O bridge 107.

In one embodiment, a thread program i1s compiled for
execution by parallel processing subsystem 112 by a thread
program compiler. The thread program compiler translates a
source representation of the thread program into a compiled
representation of the thread program. For example, the source
representation may comprise original source code, such as
source code written by a developer, and the compiled repre-
sentation may comprise an intermediate code easily trans-
lated for execution by parallel processing subsystem 112. The
compiled representation may also comprise an executable
thread program suitable for direct execution by parallel pro-
cessing subsystem 112. The thread program compiler may be
implemented within a driver module for the parallel process-
ing subsystem that compiles the executable thread program,
or as an application level module that generates either the
intermediate code or executable thread program.

In addition to generating the compiled representation of the
thread program, the thread program compiler also performs
convergence analysis and divergence management, described
below 1n greater detail. Convergence analysis allows the
thread program compiler to statically determine when threads
within a thread block are known to be non-divergent. Such
analysis 1s significant for both program correctness and per-
formance. In particular, the thread program compiler can use
uniform (or “scalar’) operations for thread-invariant values
when threads are known to be convergent. Uniform opera-
tions may 1include uniform loads, scalar register accesses, and
scalar mstructions. Convergence analysis may enable scalar-
ization to factor out uniform work from single instruction
multiple thread (SIMT) threads. The uniform work may then
be advantageously assigned to shared scalar resources to
improve utilization efficiency of resources within parallel
processing subsystem 112. Persons skilled i the art wall
recognize that convergence analysis techniques described
herein are broadly applicable to many different multi-
threaded system architectures, including any processor sys-
tem that provides or models multi-threaded execution 1n com-
bination with scalar resources.

One goal of embodiments of the present invention 1s to find
program points in a thread program where all threads of a
thread block could be converged. In this setting, a program
point 1s considered convergent 11 and only 1f a thread-block
barrier placed at the program point will never fail. A barrier
will never fail if either all threads 1n the thread block will
arrive at the barrier or 1 none of the threads 1n the thread block
will arrive at the barrier. One way of interpreting thread
convergence 1s that all or none of the threads within the thread
block will be collected at the barrier, which represents a
convergence point. In one embodiment, different types of
barriers may be placed according to thread organization. For
example 1n the CUDA (tm) runtime from NVIDA (tm),

a_syncthreads() call would be used to as a barrier to synchro-

US 9,292,265 B2

S

nize across a cooperative thread array (CTA), whereas a syn-
cwarp construct would be used to synchronize across a warp.
A first step 1n analyzing thread program convergence 1s to
represent execution tlow within the thread program as a con-
trol flow graph and a control dependence graph, illustrated in
FIGS. 2A-2B, below.

FIG. 2 A illustrates an exemplary control tlow graph (CFG)
200 for a thread program, according to one embodiment of the
present invention. CFG 200 1llustrates each possible execu-
tion path within a thread program. CFG 200 1s organized as a
set of basic blocks (BBs), which are populated with instruc-
tions comprising the thread program. As shown, CFG 200
includes BBs N1 through N7. Fach BB starts with a label
instruction, and 1s terminated by a control transfer instruction.
A control transfer instruction can specily an unconditional
branch to a label of a basic block, or a conditional control
transier instruction with three operands: condition, label true,
and label false. When the condition 1s true then execution
branches to label true, otherwise execution branches to label
false. For a given thread program, a CFG may be constructed
using BBs to represent each available execution path, where
cach BB has one or two successors. For example in CFG 200,
N1 has one successor, while N2' has two successors.

FI1G. 2B 1llustrates an exemplary control dependence graph
(CDG) 202 for the thread program, according to one embodi-
ment of the present invention. As shown CDG 202 comprises
BBs corresponding to N1 through N7 from CFG 200. Control
dependence 1s defined as follows. ITf X and'Y are BB nodes 1n
a CFQG,Y 1s control dependent on X (written X<Y) 11 and only
if (1) there exists a directed path P from X to 'Y with any Z 1n
P (excluding X and Y) post-dominated by Y, and (2) X 1s not
post-dominated by Y. As 1s well known, a node Z 1s post-
dominated by node Y 1f all exit paths within the graph from
node Z must go through node'Y.

An 1nstruction 1s thread invariant 1f and only 1f the value
produced by the mstruction 1s independent of which thread 1s
executing the instruction. An instruction 1s thread variant 1f
the instruction 1s not thread invariant. Thread variance may
originate from access to a thread identifier variable or from
atomic instructions that may result in different results for
different threads executing an atomic instruction, or access to
a volatile memory, or any statement that reads from an exter-
nal channel. Different thread languages may have their own
particular cases of thread variant instructions. In this
example, the conditional terminating BB N4' 1s assumed
thread variant and corresponding control dependencies are
shown as dashed lines.

As described 1n formula 1, below, a basic block 1s conver-
gent 11 and only 1f it 1s transitively control dependent on
convergent blocks with an associated branch condition that 1s
thread mvariant, written T inv(block), with an assumption
that every block 1s always convergent:

Vb b<x:convergent(h)A Tinv(h)= convergent(x) (1)

Alternatively, a basic block 1s divergent 1f 1t 1s transitively
control dependent on a divergent block or 1s transitively con-
trol dependent on a block with a variant branch condition,

written T variant(block). This 1s described below in formula
2:

15 b<x:divergent(h)V Ivariant(h) = divergent(x) (2)

Embodiments of the present invention exploit the charac-
terization of divergence expressed 1n formula 2 after mitially
assuming, optimistically, that all blocks are convergent. This
approach fits well with optimistic variance analysis for per-
forming a combined variance and convergence analysis.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2C illustrates CDG 204 with propagated divergence
information for the thread program, according to one embodi-
ment of the present invention. CDG 204 1s dertved from CDG
202 and annotated to reflect divergence information. Again,
BB N4'1s thread variant, indicated by dashed lines. Divergent
nodes are determined by propagating variant control depen-
dencies, and marked with a hash pattern. In this example, BBs
N4 and N4' are divergent. However BB N5 i1s convergent
because BB N5 is control independent of N4' in CDG 202,
which means all divergent threads must pass through N5 and
may hence be collected by an appropriate barrier.

FIG. 2D 1llustrates CFG 206 for the thread program with
propagated divergence information for the thread program,
according to one embodiment of the present mvention. As
shown, only BBs N4 and N4' are divergent, as determined 1n
CDG 204 of FIG. 2, while the remaining BBs are convergent.

FIG. 3 sets forth a pseudo-code implementation 300 for
computing variance and divergence information, according to
one embodiment of the present invention. Implementation
300 assumes that a thread program to be analyzed has been
parsed to a set of BBs for the thread program (kernel).
Furthermore, each BB includes a set of corresponding
instructions. A given BB 1s indicated as “bb” 1n the pseudo-
code. A given 1nstruction 1s indicated as “instr’ 1n the pseudo-
code. A control data graph and a control tlow graph of the
thread program are also generated. Any technically feasible
technique may be implemented to parse the thread program
and to generate corresponding graphs without departing the
scope and spirit of embodiments of the present invention.

In line 1, a work list 1s imtialized to empty. A first for-loop
spanmng line 2 through line 13 visits each bb associated with
the set of BBs. In line 3, each bb 1s optimistically marked as
converged. A second for-loop spans lines 4 through 12. The
second for-loop visits each instruction within a current bb. In
line 5, each instruction 1s optimistically marked as invariant.
If, 1n line 6, the instruction reads a thread identifier, then the
instruction 1s added to the work list. In one embodiment, only
unique instances of the instruction are added to the work list.
For example, if on instance of the instruction 1s already
present within the work list, then adding the mstruction does
not add a second 1nstance of the mstruction to the work list.
Reading a thread identifier may potentially lead to variant
execution, so the instruction 1s added to the work list for
turther evaluation. If, 1n line 9, the instruction performs an
atomic instruction, then the instruction 1s added to the work
list. Performing an atomic instruction may result 1in variant
execution, so the instruction 1s added to the work list for
turther evaluation.

A while-loop spanning lines 15 to 33 visits each instruction
within the work list until the work list 1s empty. In line 16 an
instruction 1s popped from the work list and marked as variant
(not invariant) 1 line 17. A third for-loop spans lines 18
through 22. The third for-loop visits each data-tlow successor
instruction to the popped instruction, as given by the control
flow graph. If, 1n line 19, a visited successor instruction 1s
invariant, then the successor instruction 1s added to the work
list. If, 1n line 23 the popped istruction 1s a conditional
branch instruction then a fourth for-loop, spanning lines 25
through 31 1s executed. The fourth for-loop visits each bb
associated with each control dependence successor to the
popped instruction. If a visited bb 1s marked as converged,
then the bb 1s marked as false instead. Furthermore, 1f the
visited bb 1s marked as true, then a fifth for-loop spanming
lines 27 through 29 1s executed to add each 1nstruction asso-
ciated with the bb to the work list.

The while-loop continues to execute and visit entries
within the work list until the work list 1s empty. Upon comple-

US 9,292,265 B2

7

tion of the while loop, each BB within the thread program 1s
marked as being convergent or divergent and each instruction
may be marked as being variant or invariant.

FIG. 4 sets forth a flowchart of method 400 for computing,
variance and divergence information, according to one
embodiment of the present invention. Although the method
steps are describe in conjunction with the systems of FIGS.
1-2, persons skilled 1n the art will understand that any system
configured to perform the method steps, 1n any order, 1s within
the scope of the present invention.

Method 400 assumes that a thread program to be analyzed
has been parsed into a set of BBs for the thread program
(kernel). A control data graph and a control flow graph of the
thread program are also generated. Any technically feasible
technique may be implemented to parse the thread program
and to generate corresponding graphs without departing the
scope and spirit of embodiments of the present invention.

The method begins 1n step 410, where every BB 1s marked
as convergent. In step 412, every nstruction 1s marked as
thread invariant. In step 414, a work list of mstructions 1s
mitialized to include known variant instructions. In one
embodiment, the work list 1s 1nitialized to include, without
limitation, those instructions that read thread identification
information or perform atomics actions. Persons skilled in the
art will recognize that steps 410 through 414 are implemented
in pseudo-code lines 1 through 13 of FIG. 3.

If, 1n step 420, the work list 1s not empty, then the method
proceeds to step 422, where an instruction 1s selected and
marked as vanant. Step 422 1s implemented in pseudo-code
lines 16 and 17. In step 424, successor instructions to the
selected instruction are added to the work list. This step 1s
implemented 1n pseudo-code lines 18 through 22.

If, 1n step 430, the selected instruction 1s a conditional
instruction, then the method proceeds to step 432, where
divergence 1s propagated to each BB having a control depen-
dence on the selected instruction. Steps 430 and 432 are
implemented in pseudo-code lines 23 through 32. Having
completed step 432, the method proceeds back to step 420.

Returning to step 420, if the work list 1s empty, then the
method terminates 1n step 490.

Returning to step 430, 1f the selected instruction 1s not a
conditional instruction, then the method proceeds to step 420.

Method 400 characterizes each BB within a thread pro-
gram as being either convergent or divergent and each instruc-
tion within the BB as being either variant or invariant. With
this characterization information available, the thread pro-
gram compiler 1s able to automatically 1dentily scalarization
opportunities within a thread program, as well as 1dentily
areas that may be functionally problematic due to thread
divergence.

In one embodiment, the thread program compiler imple-
ments method 400 to identity a BB that 1s convergent and
comprised of mvariant istructions. The 1dentified BB 1s a
candidate for scalarization. The thread program compiler
then generates scalarized instructions for the BB for scalar
execution as part of an overall task of compiling an associated
thread program. Scalar execution may be scheduled on a
dedicated scalar execution unit within parallel processing
subsystem 112, a thread unit within parallel processing sub-
system 112, a central processing unit, or any other technically
teasible processing unit. In one embodiment, certain diver-
gent BBs comprising a barrier operation may be reported by
the thread compiler as being a potential source of erroneous
function. In certain embodiments, a system on a chip (SoC)
implements a CPU and a parallel (SIMD or SIMT) co-pro-
cessor architecture. In such embodiments, scalarized basic
blocks from the thread program are compiled to execute on

10

15

20

25

30

35

40

45

50

55

60

65

8

the CPU, while other basic blocks are configured to execute
on the parallel co-processor. Such an architecture may advan-
tageously utilize different processing resources more eifi-
ciently by assigning scalar tasks to the CPU and parallel tasks
to the parallel co-processor.

In sum, a technique for characterizing each basic block
within a thread program as being either convergent or diver-
gent 1s disclosed. The technique involves generating a work
list of instructions known to be variant from instructions
associated with each basic block. Instructions from the work
list are then sequentially assessed. An instruction from the
work list 1s selected and marked as variant, along with suc-
cessor nstructions to the selected instruction. If the mstruc-
tion 1s a conditional branch, then each associated basic block
1s marked as divergent. Each instruction associated with a
divergent basic block 1s added to the work list. The work list
may shrink and grow during execution, but once the work list
1s empty, each basic block 1s marked as being either conver-
gent or divergent. Convergent basic blocks comprised of
invariant istructions are candidates for scalarization.

One advantage of the disclosed techmique 1s that a thread
program compiler 1s able to automatically detect thread
invariant basic blocks within a thread program and implement
scalarization optimizations when compiling the thread pro-
gram. A second advantage of the disclosed technique 1s that
the thread compiler 1s able to detect potential design errors
within the thread program and report the potential design
errors to a developer for more efficient development.

While the foregoing 1s directed to embodiments of the
invention, other and further embodiments of the invention
may be devised without departing from the basic scope
thereol. For example, aspects of the present invention may be
implemented in hardware or software or 1n a combination of
hardware and soitware. One embodiment of the invention
may be implemented as a program product for use with a
computer system. The program(s) of the program product
define functions of the embodiments (including the methods
described herein) and can be contained on a variety of com-
puter-readable storage media. Illustrative computer-readable
storage media include, but are not limited to: (1) non-writable
storage media (e.g., read-only memory devices within a com-
puter such as CD-ROM disks readable by a CD-ROM drive,
flash memory, ROM chips or any type of solid-state non-
volatile semiconductor memory) on which information 1s
permanently stored; and (11) writable storage media (e.g.,
floppy disks within a diskette drive or hard-disk drive or any
type of solid-state random-access semiconductor memory)
on which alterable information 1s stored. Such computer-
readable storage media, when carrying computer-readable
instructions that direct the functions of the present invention,
are embodiments of the invention.

In view of the foregoing, the scope of the invention 1s
determined by the claims that follow.

What 1s claimed 1s:

1. A computer-implemented method for characterizing a
thread program, the method comprising:

marking each basic block associated with the thread pro-

gram as being convergent, wherein each basic block
includes a plurality of instructions and starts with a label
istruction and 1s terminated by a control transfer
instruction;

marking a set of instructions associated with each basic

block as being invariant;

imitializing a work list that includes instructions that are

known to be variant relative to the set of instructions:
selecting a first instruction from the work list;

marking the first instruction as variant;

US 9,292,265 B2

9

adding successor structions to the work list based on the

first instruction; and

propagating a divergence attribute to i1dentity associated

basic blocks as divergent, and to identily instructions
within the associated basic blocks as variant.

2. The method of claim 1, wherein initializing comprises:

visiting each basic block associated with the thread pro-

gram;

for each basic block, visiting each instruction associated

with the basic block;

determining that the instruction is variant; and

adding the mstruction to the work list.

3. The method of claim 2, wherein an instruction that 1s
variant accesses a thread identification register.

4. The method of claim 2, wherein an instruction that 1s
variant performs an atomic operation.

5. The method of claim 1, wherein propagating comprises:

determining that the first instruction 1s a conditional branch

instruction;

marking as divergent a set of basic blocks having a control

dependence on the selected mstruction; and

adding each instruction associated with the set of basic

blocks to the work list.

6. The method of claim 1, wherein selecting an instruction
comprises popping the instruction from the work list.

7. The method of claim 1, wherein adding an 1nstruction
comprises pushing a unique instance of the instruction onto
the work list.

8. The method of claim 1, further comprising determining,
that a first basic block 1s a candidate for scalarization based on
the first basic block being convergent.

9. The method of claim 8, further comprising generating,
scalarized code for the first basic block for scalar execution.

10. A non-transitory computer-readable storage medium
including 1nstructions that, when executed by a processing
unit, cause the processing unit to characterize a thread pro-
gram, by performing the steps of:

marking each basic block associated with the thread pro-

gram as being convergent, wherein each basic block
includes a plurality of instructions and starts with a label
istruction and 1s terminated by a control transfer
instruction;

marking a set of istructions associated with each basic

block as being invariant;

iitializing a work list that includes instructions that are

known to be variant relative to the set of instructions:
selecting a first instruction from the work list;

marking the first instruction as variant;

adding successor structions to the work list based on the

first instruction; and

propagating a divergence attribute to identify associated

basic blocks as divergent, and to i1dentily instructions
within the associated basic blocks as variant.

11. The non-transitory computer-readable storage medium
of claim 10, wherein 1nitializing comprises:

visiting each basic block associated with the thread pro-

gram;

for each basic block, visiting each instruction associated

with the basic block;

10

15

20

25

30

35

40

45

50

55

10

determiming that the instruction 1s variant; and

adding the 1nstruction to the work list.

12. The non-transitory computer-readable storage medium
of claim 11, wherein an instruction that 1s variant accesses a
thread 1dentification register.

13. The non-transitory computer-readable storage medium
of claim 11, wherein an instruction that 1s variant performs an
atomic operation.

14. The non-transitory computer-readable storage medium
of claim 10, wherein propagating comprises:

determining that the first instruction 1s a conditional branch

instruction;

marking as divergent a set of basic blocks having a control

dependence on the selected instruction; and

adding each instruction associated with the set of basic

blocks to the work list.

15. The non-transitory computer-readable storage medium
of claim 10, wherein selecting an instruction comprises pop-
ping the mstruction from the work list.

16. The non-transitory computer-readable storage medium
of claim 10, wherein adding an instruction comprises pushing
a unique 1nstance of the istruction onto the work list.

17. The non-transitory computer-readable storage medium
of claim 10, further comprising determining that a first basic
block 1s a candidate for scalarization based on the first basic
block being convergent and including only invariant mnstruc-
tions.

18. The non-transitory computer-readable storage medium
of claim 17, further comprising scheduling the first basic
block for scalar execution.

19. A computing device, comprising:

a mass storage system configured to store at least a thread

program,

a processing unit coupled to the mass storage system and

configured to:

mark each basic block associated with the thread pro-
gram as being convergent, wherein each basic block
includes a plurality of instructions and starts with a
label mstruction and 1s terminated by a control trans-
fer instruction;

mark a set of instructions associated with each basic
block as being invariant;

initialize a work list that includes instructions that are
known to be variant relative to the set of instructions:

select a first instruction from the work list;

mark the first instruction as variant:

add successor instructions to the work list based on the
first instruction; and

propagate a divergence attribute to 1dentily associated
basic blocks as divergent, and to identify 1nstructions
within the associated basic blocks as varant.

20. The computing device of claim 19, wherein the pro-
cessing unit 1s Turther configured to:

determine that a first basic block 1s a candidate for scalar-

ization based on the first basic block being convergent
and including only 1invariant instructions; and

schedule the first basic block for scalar execution within a

thread program executable.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

