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(57) ABSTRACT

Method and system for channel-invariant robust audio hash-
ing 1s provided with a robust hash extraction step where a
robust hash 1s extracted from audio content dividing the audio
content in frames; applying a transformation procedure on the
frames to compute, for each frame, transformed coetlicients;
applying a normalization procedure on the transformed coet-
ficients to obtain normalized coeflicients, where the normal-
1ization procedure computes the product of the sign of each
coellicient of the transformed coellicients by an amplitude-
scaling-invariant function of any combination of the trans-
formed coellicients; applying a quantization procedure on the
normalized coellicients to obtain the robust hash of the audio
content; and a comparison step where the robust hash 1is
compared with reference hashes to find a match.
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METHOD AND SYSTEM FOR ROBUST
AUDIO HASHING

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application 1s a 371 of PCT/EP2011/002756 filed on
Jun. 6, 2011, the contents which are incorporated herein by
reference.

FIELD OF THE INVENTION

The present invention relates to the field of audio process-
ing, specifically to the field of robust audio hashing, also
known as content-based audio identification, perceptual
audio hashing or audio fingerprinting.

BACKGROUND OF THE INVENTION

Identification of multimedia contents, and audio contents
in particular, 1s a field that attracts a lot of attention because 1t
1s an enabling technology for many applications, ranging
from copyright enforcement or searching in multimedia data-
bases to metadata linking, audio and video synchronization,
and the provision of many other added value services. Many
of such applications rely on the comparison of an audio con-
tent captured by a microphone to a database of reference
audio contents. Some of these applications are exemplified
below.

Peters et al disclose 1n U.S. patent application Ser. No.
10/749,979 a method and apparatus for identifying ambient
audio captured from a microphone and presenting to the user
content associated with such identified audio. Similar meth-
ods are described i1n International Patent App. No. PCT/
US2006/045551 (assigned to Google) for identiiying ambi-
ent audio corresponding to a media broadcast, presenting
personalized information to the user 1n response to the i1den-
tified audio, and a number of other interactive applications.

U.S. patent application Ser. No. 09/734,949 (assigned to
Shazam) describes a method and system for interacting with
users, upon a user-provided sample related to his/her envi-
ronment that 1s delivered to an interactive service in order to
trigger events, with such sample including (but not limited to)
a microphone capture.

U.S. patent application Ser. No. 11/866,814 (assigned to
Shazam) describes a method for identifying a content cap-
tured from a data stream, which can be audio broadcast from
a broadcast source such as a radio or TV station. The
described method could be used for identitying a song within
a radio broadcast.

Wang et al describe 1n U.S. patent application Ser. No.
10/831,945 a method for performing transactions, such as
music purchases, upon the identification of a captured sound
using, among others, a robust audio hashing method.

The use ol robust hashing 1s also considered by R. Reisman
in U.S. patent application Ser. No. 10/434,032 for interactive
TV applications. Lu et al. consider in U.S. patent application
Ser. No. 11/595,117 the use of robust audio hashes for per-
forming audience measurements of broadcast programs.

Many techniques for performing audio identification exist.
When one has the certainty that the audio to be 1dentified and
the reference audio exist in bit-by-bit exact copies, traditional
cryptographic hashing techniques can be used to efficiently
perform searches. However, 11 the audio copies difier a single
bit, this approach fails. Other techniques for audio 1dentifica-
tionrely on attached meta-data, but they are not robust against
format conversion, manual removal of the meta-data, D/A/D
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2

conversion, etc. When the audio can be slightly or severely
distorted, other techniques which are sufficiently robust to
such distortions must be used. Those techniques include
watermarking and robust audio hashing. Watermarking-
based techniques assume that the content to be i1dentified
conveys a certain code (watermark) that has been a priori
embedded. However, watermark embedding 1s not always
teasible, either for scalability reasons or other technological
shortcomings. Moreover, 1 an unwatermarked copy of a
given audio content 1s found, the watermark detector cannot
extract any 1dentification information from it. In contrast,
robust audio hashing techniques do not need any kind of
information embedding 1n the audio contents, thus rendering
them more universal. Robust audio hashing techniques ana-
lyze the audio content 1n order to extract a robust descriptor,
usually known as robust hash or fingerprint, that can be com-
pared with other descriptors stored 1n databases.

Many robust audio hashing techniques exist. A review of
the most popular existing algorithms can be found in the
article by Cano et al. entitled “A review of audio fingerprint-
ing”’, Journal of VLSI Signal Processing 41, 271-284, 2005.
Some of the existing techniques are intended to identily com-
plete songs or audio sequences, or even CDs or playlists.
Other techniques are aimed to i1dentily a song or an audio
sequence using only a small fragment of 1t. Usually, the latter
can be adapted to perform i1dentification 1n streaming mode,
1.€. capturing successive fragments from an audio stream and
performing comparison with databases where the reference
contents are not necessarily synchronized with those that
have been captured. This 1s the most common operating mode
for performing identification of broadcast audio and micro-
phone-captured audio, in general.

Most methods for performing robust audio hashing divide
the audio stream 1n contiguous blocks of short duration, usu-
ally with a significant degree of overlapping. For each of these
blocks, a number of different operations are applied 1n order
to extract distinctive features in such a way that they are
robust to a given set of distortions. These operations include,
on one hand, the application of signal transforms such as the
Fast Fourier Transform (FFT), Modulated Complex Lapped
Transtform (MCLT), Discrete Wavelet Transform, Discrete
Cosine Transform (DCT), Haar Transform or Walsh-Had-
amard Transform, and others. Another processing which 1s
common to most robust audio hashing methods 1s the sepa-
ration of the transformed audio signals in sub-bands, emulat-
ing properties of the human auditory system, in order to
extract perceptually meaningful parameters. A number of
features can be extracted from the processed audio signals,
namely Mel-Frequency Cepstrum Coetlicients (MFCC),
Spectral Flatness Measure (SFM), Spectral Correlation Func-
tion (SCF), the energy of the Fourier coellicients, the spectral
centroids, the zero-crossing rate, etc. On the other hand, fur-
ther common operations include frequency-time filtering to
climinate spurious channel effects and to increase decorrela-
tion, and the use of dimensionality reduction techmques such
as Principal Components Analysis (PCA), Independent Com-
ponent Analysis (ICA), or the DCT.

A well known method for robust audio hashing that fits 1n
the general description given above 1s described 1n the Euro-
pean patent No. 1362485 (assigned to Philips). The steps of
this method can be summarized as follows: partitioning the
audio signal in fixed-length overlapping windowed segments,
computing the spectrogram coetlicients of the audio signal
using a 32-band filterbank 1n logarithmic frequency scale,
performing a 2D filtering of the spectrogram coelficients, and
quantizing the resulting coefficients with a binary quantizer
according to its sign. Thus, the robust hash 1s composed of a
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binary sequence of Os and 1s. The comparison of two robust
hashes takes place by computing their Hamming distance. I
such distance 1s below a certain threshold, then the two robust
hashes are assumed to represent the same audio signal. This
method provides reasonably good performance under mild
distortions, but 1n general 1t 1s severely degraded under real-
world working conditions. A significant number of subse-
quent works have added further processing or modified cer-
tain parts of the method 1n order to 1improve 1ts robustness
against different types of distortions.

The method described 1n EP1362485 1s modified 1n the
international patent application PCT/IB03/03638 (assigned
to Philips) 1n order to gain resilience against changes in the
reproduction speed of audio signals. In order to deal with the
misalignments in the temporal and frequency domain caused
by speed changes, the method 1introduces an additional step 1in
the method described 1n EP1362485. This step consists in
computing the temporal autocorrelation of the output coetli-
cients of the filterbank, whose number of bands 1s also
increased from 32 to 512. The autocorrelation coetficients can
be optionally low-pass filtered 1n order to increase the robust-
ness.

The article by Son et al. entitled “Sub-fingerprint Masking,
for a Robust Audio Fingerprinting System 1n a Real-noise
Environment for Portable Consumer Devices”, published 1n
IEEE Transactions on Consumer Electronics, vol. 56, No. 1,
February 2010, proposes an improvement over JP1362485
consistent on computing a mask for the robust hash, based on
the estimation of the fundamental frequency components of
the audio signal that generates the reference robust hash. This
mask, which 1s itended to improve the robustness of the
method disclosed 1n EP1362485 against noise, has the same
length as the robust hash, and can take the values O or 1 in each
position. For comparing two robust hashes, first they are
clement-by-element multiplied by the mask, and then their
Hamming distance 1s compared as in EP13624835. Park et al.
also pursue 1improved robustness against noise in the article
“Frequency-temporal filtering for a robust audio fingerprint-
ing scheme 1n real-noise environments™, published 1n ETRI
Journal, Vol. 28, No. 4, 2006. In such article the authors study
the use of several linear filters for replacing the 2D filter used
in EP1362485, keeping unaltered the remaining components.

Another well-known robust audio hashing method 1s
described in the European patent No. 1307833 (assigned to
Shazam). The disclosed method computes a series of “land-
marks” or salient points (e.g. spectrogram peaks ) of the audio
recording, and 1t computes a robust hash for each landmark.
In order to decrease the probability of false alarm, the land-
marks are linked to other landmarks 1n their vicinity. Hence,
cach audio recording is characterized by a list of pairs [land-
mark, robust hash]. The method for comparison of audio
signals consists of two steps. The first step compares the
robust hashes of each landmark found 1n the query and refer-
ence audio, and for each match 1t stores a pair of correspond-
ing time locations. The second step represents the pairs of
time locations 1n a scatter plot, and a match between the two
audio signals 1s declared 1f such scatter plot can be well
approximated by a unit-slope line. U.S. Pat. No. 7,627,477
(assigned to Shazam) improves the method described 1n
EP1307833, especially in what regards resistance against
speed changes and elliciency 1n matching audio samples.

In some recent research articles, such as the article by
Cotton and FEllis “Audio ﬁngerprmtmg to 1dentily multiple
videos of an event” mn IEEE International Conference on
Acoustics, Speech and Signal Processing, 2010, and Umapa-
thy et al. “Audlo Signal Processing Using Time-Frequency
Approaches: Coding, Classification, Fingerprinting, and
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4

Watermarking”’, in EURASIP Journal on Advances 1in Signal
Processing, 2010, the proposed robust audio hashing methods
decompose the audio signal 1n over-complete Gabor dictio-
naries 1n order to create a sparse representation of the audio
signal.

The methods described in the patents and articles refer-
enced above do not explicitly consider solutions to mitigate
the distortions caused by multipath audio propagation and
equalization, which are typical in microphone-captured audio
identification, and which impair very seriously the identifi-
cation performance 1f they are not taken into account. This
kind of distortions has been considered 1n the design of other
methods, which are reviewed below.

The international patent PCT/ES02/00312 (assigned to
Universitat Pompeu-Fabra) discloses a robust audio hashing
method for songs identification in broadcast audio, which
regards the channel from the loudspeakers to the microphone
as a convolutive channel. The method described i PCT/
ES02/00312 transforms the spectral coelflicients extracted
from the audio signal to the logarithmic domain, with the aim
of transforming the et

ect of the channel 1n an additive one. It
then applies a hlgh-pass linear filter in the temporal axi1s to the
transformed coellicients, with the aim of removing the slow
variations which are assumed to be caused by the convolutive
channel. The descriptors extracted for composing the robust
hash also include the energy vanations as well as first and
second order derivatives of the spectral coelficients. An
important difference between this method and the methods

referenced above 1s that, instead of quantizing the descriptors,
the method described 1n PCT/ES02/00312 represents the

descriptors by means of Hidden Markov Models (HMM).
The HMMs are obtained by means of a training phase per-
formed over a songs database. The comparison of robust
hashes 1s done by means of the Viterb1 algorithm. One of the
drawbacks of this method is the fact that the log transform
applied for removing the convolutive distortion transforms
the additive noise 1n a non-linear fashion. This causes the
identification performance to be rapidly degraded as the noise
level of the audio capture 1s increased.

Other methods try to overcome the distortions caused by
microphone capture resorting to techniques originally devel-
oped by the computer vision community, such as machine-
learning. In the article “Computer vision for music 1dentifi-
cation”, published 1 Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Vol. 1, July 2005, Ke et
al. generalize the method disclosed 1n EP1362485. Ke et al.
extract from the music files a sequence of spectral sub-band
energies that are arranged 1n a spectrogram; which 1s regarded
as a digital image. The pairwise Adaboost technique 1is
applied on a set of Viola-Jones features (simple 2D filters, that
generalize the filter used in EP1362485) 1n order to learn the
local descriptors and thresholds that best identity the musical
fragments. The generated robust hash 1s a binary string, as 1n
EP1362485, but the method for comparing robust hashes 1s
much more complex, computing a likelithood measure
according to an occlusion model estimated by means of the
Expectation Maximization (EM) algorithm. Both the selected
Viola-Jones features and the parameters of the EM model are
computed in a training phase that requires pairs of clean and
distorted audio signals. The resulting performance 1s highly
dependent on the training phase, and also presumably on the
mismatch between the training and capturing conditions. Fur-
thermore, the complexity of the comparison method makes 1t
not advisable for real time applications.

In the article “Boosted binary audio fingerprint based on
spectral subband moments™, published 1n IEEE International
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Conterence on Acoustics, Speech and Signal Processing, vol.
1, pp. 241-244, April 2007, Kim and Yoo follow the same
principles of the method proposed by Ke et al. Kim and Yoo
also resort to the Adaboost technique, but using normalized
spectral sub-band moments 1instead of spectral sub-band ener-
gies.

U.S. patent App. No. 60/823,881 (assigned to Google) also
discloses a method for robust audio hashing based on tech-
niques commonly used 1n the field of computer vision,
mspired by the insights provided by Ke et al. However,
instead of applying Adaboost this method applies 2D wavelet
analysis on the audio spectrogram, which 1s regarded as a
digital image. The wavelet transform of the spectrogram 1s
computed, and only a limited number of meaningful coetti-
cients 1s kept. The coellicients of the computed wavelets are
quantized according to their sign, and the Min-Hash tech-
nique 1s applied in order to reduce the dimensionality of the
final robust hash. The comparison of robust hashes takes
place by means of the Locality-Sensitive-Hashing technique
in order for the comparison to be efficient 1n large databases,
and dynamic-time warping in order to increase robustness
against temporal misalignments.

Other methods try to increase the robustness against ire-
quency distortions by applying some normalization to the
spectral coellicients. The paper by Sukittanon and Atlas,
“Modulation frequency features for audio fingerprinting”,
presented 1n IEEE International Coniference of Acoustics,
Speech and Signal Processing, May 2002, 1s based on modu-
lation frequency analysis 1in order to characterize the time-
varying behavior of the audio signal. A given audio signal 1s
first decomposed 1n a set of frequency sub-bands, and the
modulation frequency of each sub-band 1s estimated by
means of a wavelet analysis at different time scales. At this
point, the robust hash of an audio signal consists in a set
modulation frequency features at different time scales in each
sub-band. Finally, for each frequency sub-band, the modula-
tion frequency features are normalized by scaling them uni-
formly by the sum of all the modulation frequency values
computed for a gven audio fragment. This approach has
several drawbacks. On one hand, 1t assumes that the distortion
1s constant throughout the duration of the whole audio frag-
ment. Thus, vanations 1n the equalization or volume that
occur 1n the middle of the analyzed fragment will negatively
impact its performance. On the other hand, 1n order to per-
form the normalization it 1s necessary to wait until a whole
audio fragment 1s recerved and its features extracted. These,
drawbacks make the method not advisable for real-time or
streaming applications.

U.S. Pat. No. 7,328,153 (assigned to Gracenote) describes
a method for robust audio hashing that decomposes win-
dowed segments of the audio signals in a set of spectral bands.
A time-frequency matrix 1s constructed wherein each element
1s computed from a set of audio features 1n each of the spectral
bands. The used audio features are either DCT coetlicients or
wavelet coellicients for a set of wavelet scales. The normal-
ization approach 1s very similar to that in the method
described by Sukittanon and Atlas: 1n order to improve the
robustness against frequency equalization, the elements of
the time-frequency matrix are normalized 1n each band by the
mean power value 1 such band. The same normalization
approach 1s described 1 U.S. patent application Ser. No.
10/931,635.

In order to further improve the robustness against distor-
tions, many robust audio hashing methods apply in their final
steps a quantizer to the extracted features. Quantized features
are also beneficial for simplitying hardware implementations
and reducing memory requirements. Usually, these quantiz-
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ers are simple binary scalar quantizers although vector quan-
tizers, (Gaussian Mixture Models and Hidden Markov Models
are also described 1n the previous art.

In general, and 1n particular when scalar quantizers are
used, the quantizers are not optimally designed 1n order to
maximize the identification performance of the robust hash-
ing methods. Furthermore, for computational reasons, scalar
quantizers are usually preferred since vector quantization 1s
highly time-consuming, especially when the quantizer 1s non-
structured. The use of multilevel quantizers (i.e. with more
than two quantization cells) 1s desirable for increasing the
discriminability of the robust hash. However, multilevel
quantization 1s particularly sensitive to distortions such as
frequency equalization, multipath propagation and volume
changes, which occur 1n scenarios of microphone-captured
audio i1dentification. Hence, multilevel quantizers cannot be
applied in such scenarios unless the hashing method 1s robust
by construction to those distortions. A few works describe
scalar quantization methods adapted to the input signal.

U.S. patent application Ser. No. 10/994,498 (assigned to
Microsoit) describes a robust audio hashing method that per-
forms computation of first order statistics of MCLT-trans-
formed audio segments, performs an intermediate quantiza-
tion step using an adaptive N-level quantizer that 1s obtained
from the histogram of the signals, and finally quantizes the
result using an error correcting decoder, which 1s a form of
vector quantizer. In addition, 1t considers a randomization for
the quantizer depending on a secret key.

Allamanche et al. describe 1n U.S. patent application Ser.
No. 10/931,635 a method that also uses a scalar quantizer
adapted to the mnput signal. In one embodiment, the quanti-
zation step 1s a function of the magnitude of the input values:
it 1s larger for large values and smaller for small values. In
another embodiment, the quantization steps are set in order to
keep the quantization error within a predefined range of val-
ues. In yet another embodiment, the quantization step 1s larger
for values of the mput signal occurring with small relative
frequency, and smaller for values of the input signal occurring
with higher frequency.

The main drawback of the methods described mn U.S.
patent application Ser. No. 10/931,635 and U.S. patent appli-
cation Ser. No. 10/994,498 1s that the optimized quantizer 1s
always dependent on the mput signal, making it suitable only
for coping with mild distortions. Any moderate or severe
distortion will likely cause the quantized features to be sig-
nificantly different for the test audio and the reference audio,
thus increasing the probability of missing correct audio
matches.

As 1t has been explained, the existing robust audio hashing
methods still present numerous deficiencies that make them
not suitable for real time identification of streaming audio
captured with microphones. In this scenario, a robust audio
hashing scheme must fulfill several requirements:

Computational efficiency 1n the robust hash generation. In
many cases, the task of computing the robust audio
hashes must be carried out in electronic devices per-
forming a number of different simultaneous tasks and
with small computational power (e.g. a user laptop, a
mobile device or an embedded device). Hence, keeping
a small computational complexity in the robust hash
computation 1s of high interest.

Computational efficiency 1n the robust hash comparison. In
some cases, the robust hash comparison must be run on
big databases, thus demanding for efficient search and
match algorithms. A significant number of methods ful-
filling this characteristic exist. However, there 1s another
related scenario which 1s not well addressed in the prior
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art: a large number of users concurrently performing
queries to a server, where the size of the reference data-
base 1s not necessarily large. This 1s the case, for
instance, robust-hash-based audience measurement for
broadcast transmissions, or 1n robust-hash-based inter-
active services, where both the number of users and the
amount of queries per second to the server can be very
high. In this case, the emphasis 1n efficiency must be put
in the comparison method rather than in the search
method. Therefore, this latter scenario places the
requirement that the robust hash comparison must be as
simple as possible, 1n order to minimize the number of

comparison operations.

High robustness to microphone-capture channels. When
capturing streaming audio with microphones, the audio
1s subject to distortions like echo addition (due to mul-
tipath propagation of the audio), equalization and ambi-
ent noise. Moreover, the capturing device, for instance a
microphone embedded 1n an electronic device, such as a
cell phone or a laptop, introduces more additive noise
and possibly nonlinear distortions. Hence, the expected

Signal to Noise Ratio (SNR) 1n this kind of applications
1s very low (usually in the order of 0 dBs or even
smaller). One of the main difficulties 1s to find a robust
hashing method which 1s highly robust to multipath and
equalization and whose performance does not dramati-
cally degrade for low SNRs. As 1t has been seen, none of
the existing robust hashing methods are able to com-
pletely fulfill this requirement.

Reliability. Reliability 1s measured 1n terms of probability
of false positive (P~») and miss-detection (P,,). Prp
measures the probability that a sample audio content 1s
incorrectly identified, 1.e. 1t 1s matched with another
audio content which 1s not related to the sample audio. If
P .~ 1s high, then the robust audio hashing scheme 1s said
to be not sulliciently discriminative. P, ., measures the
probability that the robust hash extracted from a sample
audio content does not find any correspondence in the
database of reference robust hashes, even when such
correspondence exists. When P, 1s high, the robust
audio hashing scheme 1s said to be not suificiently
robust. While 1t 1s desirable to keep P, as low as pos-
sible, the cost of false positives 1s in general much higher
than that of miss-detections. Thus, for most applications
it 1s preferable to keep the probability of false alarm very
low, being acceptable to have a moderately high prob-
ability of miss-detection.

DESCRIPTION OF THE INVENTION

The present invention describes a method for performing
identification of audio based on a robust hashing. The core of
the present invention 1s a normalization method that makes
the features extracted from the audio signals approximately
invariant to the distortions caused by microphone-capture
channels. The invention 1s applicable to numerous audio 1den-
tification scenarios, but 1t 1s particularly suited to identifica-
tion of microphone-captured or linearly filtered streaming
audio signals 1n real time, for applications such as audience
measurement or providing interactivity to users.

The present invention overcomes the problems 1dentified
in the review of the related art for fast and reliable 1dentifica-
tion of captured streaming audio in real time, providing a high
degree of robustness to the distortions caused by the micro-
phone-capture channel. The present mnvention extracts from
the audio signals a sequence of feature vectors which 1s highly
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8

robust, by construction, against multipath audio propagation,
frequency equalization and extremely low signal to noise
ratios.

The present invention comprises a method for computing,
robust hashes from audio signals, and a method for compar-
ing robust hashes. The method for robust hash computation 1s
composed of three main blocks: transform, normalization,
and quantization. The transform block encompasses a wide
variety of signal transforms and dimensionality reduction
techniques. The normalization 1s specially designed to cope
with the distortions of the microphone-capture channel,
whereas the quantization 1s aimed at providing a high degree
ol discriminability and compactness to the robust hash. The
method for robust hash comparison 1s very simple yet effec-
tive.

The main advantages of the method disclosed herein are
the following:

The computation of the robust hash 1s very simple, allow-
ing for lightweight implementations 1n devices with lim-
ited resources.

The features extracted from the audio signals can be nor-
malized on the fly, without the need to wait for large
audio fragments. Thus, the method 1s suited to streaming
audio 1dentification and real time applications.

The method can accommodate temporal variations 1n the
channel distortion, making it very suitable to streaming,
audio 1dentification.

The robust hashes are very compact, and the comparison
method 1s very simple, allowing for server-client archi-
tectures 1n large scale scenarios.

High identification performance: the robust hashes are
both highly discriminative and highly robust, even for
short lengths.

In accordance with one aspect of the present mvention
there 1s provided a method for audio content identification
based on robust audio hashing, comprising:

a robust hash extraction step wherein a robust hash 1s
extracted from audio content, said step comprising 1n turn:

dividing the audio content 1n at least one frame, preferably
in a plurality T of overlapping frames;

applying a transformation procedure on said at least one
frame to compute, for each frame, at least one trans-
formed coeflicient;

applying a normalization procedure on the at least one
transformed coellicient to obtain at least one normalized
coellicient, wherein said normalization procedure com-
prises computing the product of the sign of each coetii-
cient of said at least one transformed coetlicient by an
amplitude-scaling-invariant function of any combina-
tion of said at least one transformed coetficient;

applying a quantization procedure on said at least one
normalized coelficient to obtain the robust hash of the
audio content; and

a comparison step wherein the robust hash 1s compared
with at least one reference hash to find a match;

In a preferred embodiment the method further comprises a
preprocessing step wherein the audio content 1s firstly pro-
cessed to provide a preprocessed audio content 1n a format
suitable for the robust hash extraction step. The preprocessing
step may include any of the following operations:

conversion to Pulse Code Modulation (PCM) format;

conversion to a single channel 1n case of multichannel
audio:

conversion of the sampling rate.

The robust hash extraction step preferably comprises a
windowing procedure to convert the at least one frame into at
least one windowed frame for the transformation procedure.
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In yet another preferred embodiment the robust hash
extraction step further comprises a postprocessing procedure
to convert the at least one normalized coelficient into at least
one postprocessed coellicient for the quantization procedure.
The postprocessing procedure may include at least one of the
tollowing operations:

filtering out other distortions;

smoothing the variations in the at least one normalized

coefficient:

reducing the dimensionality of the at least one normalized

coellicient.

The normalization procedure 1s preferably applied on at
least one transformed coeflicient arranged 1n a matrix of size
EXT to obtain a matrix of normalized coellicients of size
F'xT', with F'=F, T'<T, whose elements Y (1', t') are computed
according to the following rule:

sien(X(f', M) % H(X )

Y(f', 1) =5 D ,

where X(1', M(t")) are the elements of the matrix of trans-
formed coefficients, Xe 1s the fth row of the matrix of trans-
tormed coetficients, M( ) 1s a function that maps indices from
1, ..., T}t {1,..., T}, and both H( ) and G( ) are
homogeneous functions of the same order.

Functions H( ) and G( ) may be obtained from linear com-
binations of homogeneous functions. Functions H( ) and G{( )
may be such that the sets of elements of X, used in the
numerator and denominator are disjoint, or such that the sets
of elements of X -used in the numerator and denominator are

disjoint and correlative. In a preferred embodiment homoge-
neous functions H( ) and G( ) are such that:

H(X j’) = (7( A2 ")): G(X j’) :G(‘ZFM(: ')) )
with

Ko g, = (X M@ XOME)+1), . . X(F k)],

Xoswrn = (XKD, - X(OM(2)-2), ... X(f,M(t)-1],
where Kk, is the maximum of {M(t")-L,,1}, k , is the minimum
of {IM(th+L, -1,T}, M(th)>1, and L >1, LL_>0.
Preferably, M(t")=t'+1 and H(X, ,,,)=abs(X{,t'+1)),
resulting 1n the following normalization rule:

;o XL T+
Y(f', 1) = GX oy

In a preferred embodiment, G( ) 1s chosen such that

1
G(X ) =L P x@Dx|X(f', )P +

1
aQ)x|X(f, =D +...+alL)X|X({(f', 7 =L+ D>,

where L =L, a=[a(1,,a(2),...,a(lL)] 1s a weighting vector and
p 1s a positive real number.

In yet another preferred embodiment the normalization
procedure may be applied on the at least one transformed
coellicient arranged 1n a matrix of size FxT to obtain a matrix
of normalized coeflicients of size F'xT', with F'sT'=T, whose
clements Y(1', t') are computed according to the following
rule:
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ien(X (M (f"), 7)) X H(X,
vy < B (é(;,)))x X0)

where X(M(1), t') are the elements of the matrix of trans-
formed coelficients, X . 1s the t'th column of the matrix of
transformed coellicients, M( ) 1s a function that maps indices
from {1, ..., F'}to{l,...,F}, and both H( ) and G( ) are
homogeneous functions of the same order.

For performing the normalization a buffer may be used to
store a matrix of past transformed coellicients of audio con-
tents previously processed.

The transformation procedure may comprise a spectral
subband decomposition of each frame. The transformation
procedure preferably comprises a linear transformation to
reduce the number of the transformed coetlicients. The trans-
formation procedure may further comprise dividing the spec-
trum 1n at least one spectral band and computing each trans-
formed coellicient as the energy of the corresponding frame
in the corresponding spectral band.

In the quantization procedure at least one multilevel quan-
tizer obtained by a tramning method may be employed. The
training method for obtaining the at least one multilevel quan-
tizer preferably comprises:

computing partition, obtaining (Q disjoint quantization
intervals by maximizing a predefined cost function which
depend on the statistics of a plurality of normalized coetli-
cients computed from a training set of training audio frag-
ments; and

computing symbols, associating one symbol to each inter-
val computed.

In the training method for obtaining the at least one multi-
level quantizer the coellicients computed from a training set
are preferably arranged 1 a matrix and one quantizer 1s opti-
mized for each row of said matrix.

The symbols may be computed according to any of the
following ways:

computing the centroid that minimizes the average distor-

tion for each quantization interval;

assigning to each partition interval a fixed value according

to a Pulse Amplitude Modulation of Q levels.

In a preferred embodiment the cost function 1s the empiri-
cal entropy of the quantized coetlicients, computed according
to the following formula:

Enr(?jf) = —Z (Nir/Llog(Ni g /L),

0
=1
where N, -1s the number ot coetlicients of the tth row of the
matrix of postprocessed coellicients assigned to the 1th inter-
val of the partition, and L _ 1s the length of each row.

A similarity measure, preferably the normalized correla-
tion, may be employed in the comparison step between the
robust hash and the at least one reference hash. The compari-
son step preferably comprises, for each reference hash:

extracting from the corresponding reference hash at least

one sub-hash with the same length I as the length of the
robust hash;

converting the robust hash and each of said at least one

sub-hash 1nto the corresponding reconstruction symbols
given by the quantizer;

computing a similarity measure according to the normal-

1zed correlation between the robust hash and each of said
at least one sub-hash according to the following rule:
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J
Z o (0) X (i)
=1

(' =
normy (A, ) X normyp (4,)

where h_ represents the query hash of length I, h, a reter-
ence sub-hash of the same length J, and where

3| =

Jg !
norny (7) = Z i | .
i=1 .

comparing a function of said at least one similarity mea-

sure against a predefined threshold;

deciding, based on said comparison, whether the robust

hash and the reference hash represent the same audio
content.

In accordance with a further aspect of the present invention
there 1s provided a robust hash’ extraction method for audio
content identification, wherein a robust hash 1s extracted from
audio content, the robust hash extraction method comprising:

dividing the audio content 1n at least one frame;

applying a transformation procedure on said at least one

frame to compute, for each frame, at least one trans-
formed coefficient;
applying a normalization procedure on the at least one
transformed coellicient to obtain at least one normalized
coellicient, wherein said normalization procedure com-
prises computing the product of the sign of each coetii-
cient of said at least one transformed coellicient by an
amplitude-scaling-invariant function of any combina-
tion of said at least one transtformed coefficient;

applying a quantization procedure on said at least one
normalized coellicient to obtain the robust hash of the
audio content.
Another aspect of the present invention 1s to provide a
method for deciding whether two robust hashes computed
according to the previous robust hash extraction method rep-
resent the same audio content. Said method comprises:
extracting from the longest hash at least one sub-hash with
the same length I as the length of the shortest hash;

converting the shortest hash and each of said at least one
sub-hash 1nto the corresponding reconstruction symbols
given by the quantizer;

computing a similarity measure according to the normal-

1zed correlation between the shortest hash and each of
said at least one sub-hash according to the following
rule:

J
D gDy x ()
=1

 normy(#,) X normy (4,)’

where h_ represents the query hash ot length J, h, a reference
sub-hash of the same length J, and where

-] =

J 3
normys () = Z | .
i=1 .
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comparing a function (preferably the maximum) of said at
least one similarity measure against a predefined thresh-

old;

deciding, based on said comparison, whether the two
robust hashes represent the same audio content.

In accordance with yet another aspect of the present inven-
tion there 1s provided a system for audio content identification
based on robust audio hashing, comprising:

a robust hash extraction module for extracting a robust hash
from audio content, said module comprising processing
means configured for:

dividing the audio content 1n at least one frame;

applying a transformation procedure on said at least one
frame to compute, for each frame, at least one trans-
formed coefficient;

applying a normalization procedure on the at least one
transformed coellicient to obtain at least one normal-
1zed coellicient, wherein said normalization proce-
dure comprises computing the product of the sign of
cach coelficient of said at least one transformed coet-
ficient by an amplitude-scaling-invariant function of
any combination of said at least one transformed coet-
ficient;

applying a quantization procedure on said at least one
normalized coeflicient to obtain the robust hash of the
audio content.

a comparison module for comparing the robust hash with at
least one reference hash to find a match.

Another aspect of the present mvention 1s a robust hash
extraction system for audio content 1dentification, aimed to
extract a robust hash from audio content. The robust hash
extraction system comprises processing means configured
for:

dividing the audio content 1n at least one frame;

applying a transformation procedure on said at least one

frame to compute, for each frame, at least one trans-
formed coeflicient;

applying a normalization procedure on the at least one
transformed coellicient to obtain at least one normalized
coellicient, wherein said normalization procedure com-
prises computing the product of the sign of each coetii-
cient of said at least one transformed coellicient by an
amplitude-scaling-invariant function of any combina-
tion of said at least one transformed coefficient;

applying a quantization procedure on said at least one
normalized coetficient to obtain the robust hash of the
audio content.

A yet another aspect of the present invention 1s a system for
deciding whether two robust hashes computed by the previ-
ous robust hash extraction system represent the same audio
content. Said system comprises processing means configured
for:

extracting from the longest hash at least one sub-hash with
the same length J as the length of the shortest hash;

converting the shortest hash and each of said at least one
sub-hash 1nto the corresponding reconstruction symbols
given by the quantizer;

computing a similarity measure according to the normal-
1zed correlation between the shortest hash and each of
said at least one sub-hash according to the following
rule:



US 9,286,909 B2

13

J
Z o (0) X (i)
=1

(' =
normy (A, ) X normyp (4,)

where h_ represents the query hash ot length J, h, a reference
sub-hash of the same length J, and where
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o
3| =

J
normy (k) = Z h(i)?
i=1

15
comparing a function of said at least one similarity mea-

sure against a predefined threshold;
deciding, based on said comparison, whether the two

robust hashes represent the same audio content.

20
BRIEF DESCRIPTION OF THE DRAWINGS

A series of drawings which aid in better understanding the
invention and which are expressly related with an embodi-
ment of said invention, presented as a non-limiting example 25
thereol, are very briefly described below.

FI1G. 1 depicts a schematic block diagram of a robust hash-
ing system according to the present invention.

FIG. 2 1s a block diagram representing the method for
computing a robust hash from a sample audio content. 30
FI1G. 3 1llustrates the method for comparing a robust hash
extracted from a fragment ol an audio content against a

selected hash contained 1n a database.

FIG. 4 1s a block diagram representing the normalization
method. 35
FIG. 5 illustrates the properties of the normalization used

in the present invention.

FIG. 6 1s a block diagram 1llustrating the method for train-
ing the quantizer.

FI1G. 7 shows the Receiver Operating Characteristic (ROC) 40
for the preferred embodiment.

FI1G. 8 shows P, and P, for the preferred embodiment.

FIG. 9 1s a block diagram 1llustrating the embodiment of
the invention for identifying audio 1n streaming mode.

FI1G. 10 shows plots of the probability of correct operatlon 45
and the different probabilities of error when using the.
embodiment of the invention for identifying audio 1n stream-
ing mode.

DESCRIPTION OF A PREFERRED 50
EMBODIMENT OF THE INVENTION

FI1G. 1 depicts the general block diagram of an audio i1den-
tification system based on robust audio hashing according to
the present invention. The audio content 102 can be origi- 55
nated from any source: 1t can be a fragment extracted from an
audio file retrieved from any storage system, a microphone
capture from a broadcast transmission (radio or TV, for
instance), etc. The audio content 102 1s preprocessed by a
preprocessing module 104 in order to provide a preprocessed 60
audio content 106 1n a format that can be fed to the robust hash
extraction module 108. The operations performed by the pre-
processing module 104 include the following: conversion to
Pulse Code Modulation (PCM) format; conversion to a single
channel 1n case of multichannel audio, and conversion of the 65
sampling rate 11 necessary. The robust hash extraction module
108 analyzes the preprocessed audio content 106 to extract
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the robust hash 110, which 1s a vector of distinctive features
that are used by the comparison module 114 to find possible
matches. The comparison module 114 compares the robust
hash 110 with the reference hashes stored 1n a hashes database
112 to find possible matches.

In a first embodiment, the invention performs 1dentification
of a given audio content by extracting from such audio con-
tent a feature vector which can be compared against other
reference robust hashes stored 1n a given database. In order to
perform such identification, the audio content 1s processed
according to the method shown in FIG. 2. The preprocessed
audio content 106 is first divided in overlapping frames {fr,},
with 1=t<T, of size N samples {s, }. with 1=n<N. The degree
of overlapping must be significant, in order to make the hash
robust to temporal misalignments. The total number of
frames, T, will depend on the length of the preprocessed audio
content 106 and the degree of overlapping. As 1s common 1n
audio processing, each frame 1s multiplied by a predefined
window—windowing procedure 202 (e.g. Hamming, Han-
ning, Blackman, etc.)—, in order to reduce the effects of
framing 1n the frequency domain.

In the next step, the windowed frames 204 undergo a trans-
formation procedure 206 that transforms such frames into a
matrix of transformed coetlicients 208 of size FxT. More
specifically, a vector of F transformed coelficients 1s com-
puted for each frame and they are arranged as column vectors.
Hence, the column of the matrix of transformed coellicients
208 with index t, with 1=t<'T, contains all transformed coetl-
ficients for the frame with the same temporal index. Similarly,
the row with index 1, with 1=i<F, contains the temporal evo-
lution of the transformed coefficient with the same index {.
The computation of the elements X(1,t) of the matrix of trans-
formed coellicients 208 shall be explained below. Optionally,
the matrix of transformed coellicients 208 may be stored as a
whole or 1n part 1n a buifer 210. The usetulness of such buiier
210 shall be 1illustrated below during the description of
another embodiment of the present invention.

The elements of the matrix of transformed coellicients 208
undergo a normalization procedure 212 which 1s key to
ensure the good performance of the present invention. The
normalization considered in this mvention 1s aimed at creat-
ing a matrix of normalized coetficients 214 of size F'xT",
where F'sF, T'<T, with elements Y(1',t'), more robust to the
distortions caused by microphone-capture channels. The
most important distortion in microphone-capture channels
comes from the multipath propagation of the audio, which
introduces echoes, thus producing severe distortions in the
captured audio.

In addition, the matrix of normalized coefficients 214 1s
input to a postprocessing procedure 216 that could be aimed,
for mstance, at filtering out other distortions, smoothing the
variations 1n the matrix of normalized coefficients 214, or
reducing its dimensionality using Principal Component
Analysis (PCA), Independent Component Analysis (ICA),
the Discrete Cosine Transform (DCT), etc. The resulting
postprocessed coellicients are arranged 1n a matrix of post-
processed coellicients 218, although possibly of a smaller
s1ze than the matrix of normalized coetlicients 214.

Finally, the postprocessed coetlicients 218 undergo a quan-
tization procedure 220. The objective of the quantization 1s
two-fold: to make the hash more compact and to increase the
robustness against noise. For the reasons explained before,
the quantizer 1s preferred to be scalar, 1.e. 1t quantizes each
coellicient independently of the others. Contrary to most
quantizers used 1n existing robust hashing methods, the quan-
tizer used in this invention 1s not necessarily binary. Indeed,
the best performance of the present mvention 1s obtained
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using a multilevel quantizer, which makes the hash more
discriminative. As explained before, one condition for the
cifectiveness ol such multilevel quantizer 1s that its mput
must be (at least approximately) invariant to distortions
caused by multipath propagation. Hence, the normalization
212 1skey to guaranteeing the good performance of the mven-
tion.

The normalization procedure 212 1s applied on the trans-
tformed coefficients 208 to obtain a matrix of normalized
coellicients 214, which 1n general 1s of size F'xT". The nor-
malization 212 comprises computing the product of the sign
ol each coellicient of said matrix of transformed coelfficients
208 by an amplitude-scaling-invariant function of any com-
bination of said matrix of transformed coeflicients (208).

In a preferred embodiment, the normalization 212 pro-
duces a matrix of normalized coeflicients 214 of size F'xT",
with F'=F,T'<'T, whose elements are computed according to
the following rule:

sign(X (f', M(Z )X H(X ;) (1)

s GX7)

where X, 1s the f'th row of the matrix of transtormed coetti-
cients 208, M( ) is a function that maps indices from {1, . . .,
T'}to {1, ... T}, ie. it deals with changes on frame indices
due to the possible reduction in the number of frames, and
both H( ) and G( ) are homogeneous functions of the same
order. A homogeneous function of order n 1s a function which,
for any positive number p, tulfills the following relation:

G(pXp)=p" G(Xp). (2)

The objective of the normalization 1s to make the coetfi-
cients Y (1',t') invariant to scaling. This invariance property
greatly improves the robustness to distortions such as multi-
path audio propagation and frequency equalization. Accord-
ing to equation (1), the normalization of the element X(1,t)
only uses elements of the same row 1 of the matrix of trans-
formed coeflicients 208. However, this embodiment should
not be taken as limiting, because 1n a more general setting the
normalization 212 could use any element of the whole matrix
208, as will be explained below.

There exist numerous embodiments of the normalization
that are suited to the purposes sought. In any case, the func-
tions H( ) and G( ) must be appropriately chosen so that the
normalization is effective. One possible choice 1s to make the
sets of elements of X -used 1n the numerator and denominator
disjoint. There exist multiple combinations of elements that
tulfill this condition. Just one of them 1s given by the follow-
ing choice:

H(X j’) = @fﬂ(t ')) , G(X f) - G(‘Zﬂﬂ(r ')) 5

(3)
with

X paon = (X M) X M(1)+1), . . . X(F k)], (4)

Xeawn =X k), o X(OM(E)-2), .. X(F,M(2)-1], (5)

where k, is the maximum of {M(t")-L,,1}, k , is the minimum
of {M(th+L ~1,T}, M(th>1, and L>1, L >0. With this
choice, at most L, elements of X ,are used in the numerator of
(1), and at most L, elements of X , are used in the denominator.
Furthermore, not only the sets of coellicients used in the
numerator and denominator are disjoint, but they are correla-
tive. Another fundamental advantage of the normalization
using these sets of coelficients 1s that 1t adapts dynamically to
temporal variations in the microphone-capture channel, since
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the normalization only takes into account the coelficients in a
sliding window of length L +L .
FIG. 4 shows a block diagram of the normalization accord-

ing to this embodiment, where the mapping function has been
fixed to M(t")=t'+1. A buffer of past coellicients 404 stores the
L, elements of the jth row 402 of matrix of transformed
coellicients 208 from X(1',t'+1-L,) to X({',t"), and they are
input to the G( ) function 410. Similarly, a buifer of future
coellicients 406 stores the L elements from X(1',t'+1) to
X[, t'+L ) and they are input to the H( ) tunction 412. The
output of the H( ) function 1s multiplied by the sign of the
current coetlicient X(1',t'+1) computed 1n 408. The resulting
number 1s finally divided by the output of the G( ) function
412, yielding the normalized coetlicient Y(1',t').

[fthe tunctions H( ) and G( ) are appropriately chosen, as L,
and Lu are increased the variation of the coellicients Y(1'.t')
can be made smoother, thus increasing the robustness to
noise, which 1s another objective pursued by the present
invention. The drawback of increasing L, and L, 1s that the
time to get adapted to the changes 1n the channel increases as
well. Hence, a tradeoll between adaptation time and robust-
ness to noise exists. The optimal values of [,and L., depend on
the expected SNR and the vaniation speed of the microphone-
capture channel.

A specific case of the normalization, equation (1), that 1s

particularly useful for streaming applications 1s obtained by
fixing H(X, , ,,,)=abs(X(f',t'+1)), yielding

X(f',t+1)
G(—}if’,r"ﬂ) |

6
Y(f',r) = ©

with L =L. Hence, the normalization makes the coelficient
Y({',t") dependent on at most L past audio frames. Here, the
denominator G(X5 .., ;) can be regarded as a sort of normal-
1zation factor. As L 1s increased, the normalization factor
varies more smoothly, increasing as well the time to get
adapted to the changes i the channel. The embodiment of
equation (6) 1s particularly suited to real time applications,
since 1t can be easily performed on the ly as the frames of the
audio fragment are processed, without the need of waiting for
the processing of the whole fragment or future frames.

One particular family of order-1 homogeneous functions
which 1s approprate for practical embodiments 1s the family
of weighted p-norms, which 1s exemplified here for G(

Xf‘;r#l):

1 (7)
G(X o)=L P xX(@)X|X(f, )7 +

1
aQD)X|X(f',r =P +...+alL)X|X(f', 7 =L+ 1”7,

where a=[a(1), a(2), a(LL)] 1s the weighting vector, and p can
take any positive value (not necessarily an integer). The
parameter p can be tuned to optimize the robustness of the
robust hashing system. The weighting vector can be used to
weight the coefficients of the vector X, according for
instance to a given reliability metric, such as their amplitude
(coetlicients with smaller amplitude could have less weight in
the normalization, because they are deemed unreliable).
Another use of the weighting vector 1s to implement an online
forgetting factor. For instance, if a=[y, v>, v°, . . ., v"], with
lvI<1, then the weight of the coellicients 1n the normalization
window decays exponentially as they get farther in time. The
forgetting factor can be used to increase the length of the
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normalization window without slowing too much the adap-
tation to changes in the microphone-capture channel.

In yet another embodiment, the functions H( ) and G( ) are
obtained from linear combinations ol homogeneous func-
tions. An example made up of the combination of weighted
p-norms 1s shown here for the G( ) function:

G(X)=w xG (X )Fwox Go(X ), (8)

where

“or 9)
G (X, ) =L Pt x(ay(DX|X(f, 1= D" +

I
ayQ)X|X(f, 1=t + .. +a (D)X|X(f, 1 - L)PL)rL,

1 (10)
Go(X ) =L P2 X(a()X|X(f, 1= D" +

!
a ()X X(f, 1 =212 + ...+ ax(L)X|X(f, 1 - L)|P2)P2,

where w, and w, are weighting factors. In this case, the
clements of the weighting vectors a, and a, only take values O
or 1,1insuch awaythata,+a,=[1, 1, ..., 1]. This 1s equivalent
to partitioning the coefficients of X, 1n two disjoint sets,
according to the indices of a, and a, which are set to 1. If
P, <p-, then the coetlicients indexed by a, have less influence
in the normalization. This feature 1s usetul for reducing the
negative impact of unreliable coellicients, such as those with
small amplitudes. The optimal values for the parameters w,
W,, D;, D5, 4; and a, can be sought by means of standard
optimization techniques.

All the embodiments of the normalization 212 that have
been described above stick to the equation (1), 1.e. the nor-
malization takes place along the rows of the matrix of trans-
formed coellicients 208. In yet another embodiment, the nor-
malization 1s performed columnwise to yield a matrix of
normalized coelficients of size F'xT", with F'<F, T'32 T. Simi-
larly to equation (1), the normalized elements are computed
as:

ign(X (M (f), ) x H(X,/
Y(f’,f):“gﬂ( ( (é(;{f)))x ( ),

where X, 1s the t'th column of the matrix of transformed
coellicients 208, M( ) 1s function that maps indices from
11,...,F}to{l,...,F} ie. it deals with changes on
transiformed coetlicient indices due to the possible reduction
in the number of transformed coellicients per frame, and both
H( ) and G( ) are homogeneous functions of the same order.
One case where the application of this normalization is par-
ticularly useful 1s when the audio content can be subject to
volume changes. In the limiting case of T=1 (1.e. the whole
audio content 1s taken as a frame) the resulting matrix of
transformed coelficients 208 1s a F-dimensional column vec-
tor, and this normalization can render the normalized coetli-
cients invariant to volume changes.

There are numerous embodiments of the transtorm 206
that can take advantage of the properties of the normalization
described above. In one exemplary embodiment, each trans-
formed coellicient 1s regarded as a DF'T coellicient. The trans-
form 206 simply computes the Discrete Fourier Transform
(DEFT) of size M , for each windowed frame 204. For a set of
DFT indices 1n a predefined range from 1, to 1,, their squared
modulus 1s computed. The result 1s then stored in each ele-
ment X(1,t) of the matrix of transformed coellicients 208,
which can be seen 1n this case as a time-frequency matrix.
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Therefore, X(f,t)=Iv(f,t)I*, with v(f,t) the DFT coefficient of
the frame t at the frequency index 1. It X(1,t) 1s one coellicient
of the time-frequency matrix obtained from a reference audio

content, and X*(1,t) 1s the coellicient obtained from the same
content distorted by multipath audio propagation, then it

holds that

X*(f1)=CxX(f1), 12t<T (11)

where C,1s a constant given by the squared amplitude of the
multipath channel at the frequency with index I. The approxi-
mation 1n (11) stems from the fact that the transtform 206
works with frames of the audio content, which makes the
linear convolution caused by multipath propagation to be not
perfectly translated into a purely multiplicative effect. There-
fore, as a result of the normalization 212, 1t comes clear that
the output Y(1',t') 214, obtained according to the formula (1),
1s approximately invariant to distortions caused by multipath
audio propagation, since both functions H( ), in the numera-
tor, and G( ), in the denominator, are homogeneous of the
same order and therefore C, 1s nearly cancelled for each
frequency index 1. In FIG. 5, a scatter plot 52 of X(1,t) vs.
X*(1,1) 1s shown for a given DFT index. This embodiment 1s
not the most advantageous, because performing the normal-
ization 1n all DFT channels 1s costly due to the fact that the
s1ze of the matrix of transformed coelficients 208 will be very
large, 1n general. Hence, 1t 1s preferable to perform the nor-
malization 1n a reduced number of transformed coellicients.

In another exemplary embodiment, the transform 206
divides the spectrum 1n a grven number M, of spectral bands,
possibly overlapped. Each transformed coelficient X(1.t) 1s
computed as the energy of the frame t in the corresponding
band 1, with 1<M,. Therefore, with this embodiment the
clements of the matrix of transformed coetlicients 208 are
given by

M4

X(f.0=) epi)xvld,

i=1

(12)

which 1n matrix notation can be more compactly written as
X(f,,t):ef:r v,, where:
v, 1s a vector with the DF'T coellicients of the audio frame
L,
e,1s a vector with all elements set to one for the indices that
correspond to the spectral band 1, and zero elsewhere.
This second embodiment can be seen as a sort of dimension-
ality reduction by means of a linear transformat 1on applied
over the first embodiment. This linear transformation 1is
defined by the projection matrix

(13)

Thus, a smaller matrix of transformed coeflicients 208 1s
constructed, wherein each element 1s now the sum of a given
subset of the elements of the matrix of transformed coelli-
cients constructed with the previous embodiment. In the lim-
iting case where M, =1, the resulting matrix of transformed
coelficients 208 1s a T-dimensional row vector, where each
clement 1s the energy of the corresponding frame.

After being distorted by a multipath channel, the coetli-
cients of the matrix of transformed coelficients 208 are mul-
tiplied by the corresponding gains of the channel in each
spectral band. In matrix notation, X(f,,t)-—-sefT Dv_ where D 1s a
diagonal matrix whose main diagonal 1s given by the squared
modulus of the DFT coelficients of the multipath channel. IT
the magnitude variation of the frequency response of the
multipath channel 1n the range of each spectral band 1s nottoo

E:[EI: =TI eMb]'
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abrupt, then the condition (11) holds and thus approximate
invariance to multipath distortion 1s ensured. If the frequency
response 1s abrupt, as 1s usually the case with multipath chan-
nels, then 1t 1s preferable to increase the length of the normal-
ization windows L, and L in order to improve the robustness >
against multipath. Using the normalization (6) and the defi-
nition (7) of the function G( ) forp=2 and a=[1,1, ..., 1], then
G(X,) 1s the power of the transformed coefficient with index
f (which 1 this case corresponds to the fth spectral band)
averaged 1n the past L frames. In matrix notation, this can be
written as

10

1 (14)
T 1 - T . T L 15
G(Xs,) = el ZZ vevEiles| = (efRep)?.

=1

If the audio content 1s distorted by a multipath channel,
then 20

25

The larger L, the more stable the values of the matrix R,
hence improving the performance of the system. In FIG. 5, a

scatter plot 54 of Y(1',t") vs. Y*(1',t") obtained with L=20 1s

shown for a given band 1 and the G function shown 1n (7). As
can be seen, the plotted values are all concentrated around the
unit-slope line, thus 1llustrating the quasi-invariance property

achieved by the normalization.

In another embodiment, the transform 206 applies a linear
transformation that generalizes the one described 1n the pre- 45
vious embodiment. This linear transformation considers an
arbitrary projection matrix E, which can be randomly gener-
ated or obtained by means of PCA, ICA or similar dimen-
sionality reduction procedures. In any case, this matrix 1s not
dependent on each particular input matrix of transformed 40
coellicients 208 but it 1s computed beforehand, for instance
during a training phase. The objective of this linear transtor-
mation 1s to perform dimensionality reduction in the matrix of
transformed coetlicients, which according to the previous
embodiments could be composed of the squared modulus of 45
DFT coelficients v, or spectral energy bands according to
equation (12). The latter choice 1s preferred 1n general
because the method, specially its training phase, becomes
computationally cheaper since the number of spectral bands
1s usually much smaller than the number of DFT coellicients. 50
The normalized coetlicients 214 hold similar properties to
those shown for the previous embodiments. In FIG. 5, the
scatter plot 56 shows Y(I',t'") vs. Y*(1',t") for a given band {
when G(X ) 1s set according to equation (7), =20, and the
projection matrix E 1s obtained by means of PCA. This 1llus- 55
trates again the quasi-invariance property achieved by the
normalization.

In yet another embodiment, the transform block 206 sim-
ply computes the DFT transform of the windowed audio
frames 204, and the rest of operations are deferred until the 60
postprocessing step 216. However, it 1s preferable to perform
the normalization 212 1n a matrix of transformed coellicients
as small as possible 1n order to save computations. Moreover,
performing dimensionality reduction prior to the normaliza-
tion has the positive effect of removing components that are 65
too sensitive to noise, thus improving the effectiveness of the
normalization and the performance of the whole system.

30

20

Other embodiments with different transforms 206 are pos-
sible. Another exemplary embodiment performs the same
operations as the embodiments described above, but replac-
ing the DFT by the Discrete Cosine Transform (DCT). The
corresponding scatter plot 58 1s shown i FIG. $ when G(X )
1s set according to equation (7), L=20, p=2, and the projection
matrix 1s given by the matrix shown in (13). The transform
can be also the Discrete Wavelet Transtform (DW'T). In this
case, each row of the matrix of transformed coetficients 208
would correspond to a different wavelet scale.

In another embodiment, the invention operates completely
in the temporal domain, taking advantage of Parseval’s theo-
rem. The energy per sub-band 1s computed by filtering the
windowed audio frames 204 with a filterbank wherein each
filter 1s a bandpass filter that accounts for a spectral sub-band.
The rest of operations of 206 are performed according to the
descriptions given above. This operation mode can be par-
ticularly useful for systems with limited computational
resources.

Any of the embodiments of 206 described above can apply
turther linear operations to the matrix of transtormed coetli-
cients 208, since 1n general this will not have any negative
impact in the normalization. An example of useful linear
operation 1s a high-pass linear filtering of the transformed
coellicients 1n order to remove low-Irequency variations
along the t axis of the matrix of transformed coefficients,
which are non-informative.

Regarding the quantization 220, the choice of the most
appropriate quantizer can be made according to different
requirements. The invention can be set up to work with vector
quantizers, but the embodiments described here consider only
scalar quantizers. One of the main reasons for this choice 1s
computational, as explained above. For a positive integer
(Q>1, a scalar Q-level quantizer 1s defined by a set of Q-1
thresholds that divide the real line 1 Q disjoint intervals
(a.k.a.cells), and by one symbol (a.k.a. reconstruction level or
centroid) associated to each quantization interval. The quan-
tizer assigns to each postprocessed coellicient an index q in
the alphabet {0, 1, ...,Q-1}, depending on the interval where
it 1s contained. The conversion of the index g to the corre-
sponding symbol S_ 1s necessary only for the comparison of
robust hashes, to be described below. Even if the quantizer
can be arbitrarily chosen, the present mnvention considers a
training method for constructing an optimized quantizer that
consists of the following steps, illustrated in FIG. 6.

First, a tramning set 602 consisting on a large number of
audio fragments, 1s compiled. These audio fragments do not
need to contain distorted samples, but they can be taken
entirely from reference (i.e. original) audio fragments. The
second step 604 applies the procedures 1llustrated in FIG. 2
(windowing 202, transform 206, normalization 212, postpro-
cessing 216), according to the description above, to each of
the audio fragments 1n the training set. Hence, for each audio
fragment a matrix of postprocessed coellicients 218 1is
obtained. The matrices computed for all training audio frag-
ments are concatenated along the t dimension 1n order to
create a unique matrix of postprocessed coetlicients 606 con-
taining information from all tfragments. Each row r,, with
1<f'<F', has length L.

For each row r.of the matrix of postprocessed coetlicients
606, a partition ® .of the real line in Q disjoint intervals 1s
computed 608 1n such a way that the partition maximizes a
predefined cost function. One appropriate cost function 1s the
empirical entropy of the quantized coellicients, which 1s com-
puted according to the following formula:
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9, (16)
Ent(Py) = —Z (N; s/ L)log(N; ¢/ L;),
i—1

where N, -1s the number of coefficients of the fth row of the
matrix of postprocessed coelficients 606 assigned to the 1th
interval of the partition ® » When (16) is maximum (i.e. it
approaches log(Q)), the output of the quantizer conveys as
much information as possible, thus maximizing the discrim-
inability of the robust hash. Therefore, a partition optimized
for each row of the concatenated matrix of postprocessed
coellicients 606 1s constructed. This partition consists of a
sequence of Q-1 thresholds 610 arranged 1n ascending order.
Obviously, the parameter QQ can be different for the quantizer
of each row.

Finally, for each of the partitions obtained 1n the previous
step 608, one symbol associated. to each interval 1s computed
612. Several methods for computing such symbols 614 can be
devised. The present mnvention considers, among others, the
centroid that minimizes the average distortion for each quan-
tization interval, which can be easily computed by computing,
the conditional mean of each quantization interval, according,
to the training set. Another method for computing the sym-
bols, which 1s obviously also within the scope of the present
invention, consists 1n assigning to each partition interval a
fixed value according to a Q-PAM (Pulse Amplitude Modu-
lation of Q levels). For instance, for Q=4 the symbols would
be{-c,,—c,,c,,c,} withc, and ¢, two real, positive numbers.

The method described above yields one quantizer opti-
mized for each row of the matrix of postprocessed coetli-
cients 218. The resulting set of quantizers can be non-uniform
and non-symmetric, depending on the properties of the coel-
ficients being quantized. The method described above gives
support, however, to more standard quantizers by simply
choosing appropriate cost functions. For instance, the parti-
tions can be restricted to be symmetric, in order to ease
hardware implementations. Also, for the sake of simplicity,
the rows of the matrix of postprocessed coellicients 606 can
be concatenated in order to obtain a single quantizer which
will be applied to all postprocessed coelficients.

In the absence of normalization 212, the use of a multilevel
quantizer would cause a huge performance loss because the
boundaries of the quantization intervals would not be adapted
to the distortions introduced by the, microphone-capture
channel. Thanks to the properties induced by the normaliza-
tion 212 1t 1s ensured that the quantization procedure 1s still
elfective even 1n this case. Another advantage of the present
invention 1s that by making the quantizer dependent on a
training set, and not on the particular audio content that 1s
being hashed, the robustness against severe distortions 1s
greatly increased.

After performing the quantization 220, the elements of the
quantized matrix of postprocessed coelficients are arranged
columnwise 1n a vector. The elements of the resulting vector,
which are the indices of the corresponding quantization inter-
vals, are finally converted to a binary representation for the
sake of compactness. The resulting vector constitutes the final
hash 110 of the audio content 102.

The objective of comparing two robust hashes 1s to decide
whether they represent the same audio content or not. The
comparison method 1s 1llustrated 1 FIG. 3. The database 112
contains reference hashes, stored as vectors, which were pre-
computed on the corresponding reference audio contents. The
method for computing these reference hashes 1s the same
described above and illustrated 1n FIG. 2. In general, the

10

15

20

25

30

35

40

45

50

55

60

65

22

reference hashes can be longer than the hash extracted from
the query audio content, which 1s usually a small audio frag-
ment. In what follows we assume that the temporal length of
the hash 110 extracted from the audio query 1s J, which 1s
smaller than that of the reference hashes. Once a reference
hash 302 1s selected 1n 112, the comparison method begins by
extracting 304 from 1t a shorter sub-hash 306 of length J. The
first element of the first sub-hash 1s indexed by a pointer 322,
which 1s 1initialized to the value 1. Then, the elements of the
reference hash 302 1n the positions from 1 to I are read in
order to compose the first reference sub-hash 306.

Unlike most comparison methods provided 1n the existing
art, which use Hamming distance to compare hashes, we use
the normalized correlation as an effective similarity measure.
It has been experimentally checked that 1n our application the
normalized correlation significantly improves the perfor-
mance offered by p-norm distances or the Hamming distance.
The normalized correlation measures the similarity between
two hashes as their angle cosine 1n J-dimensional space. Prior
to computing the normalized correlation, 1t 1s necessary to
convert 308 the binary elements of the sub-hash 306 and the
query hash 110 into, the real-valued symbols (i.e. the recon-
struction values) given by the quantizer. Once this conversion

has been done, the computation of the normalized correlation
can be performed. In what follows we denote the query hash
110 by h_, and the reterence sub-hash 306 by h,. The normal-
1zed correlation 310 computes the similarity measure 312,
which always lies in the range [-1, 1], according to the fol-
lowing rule:

J (17)
Z ho (i) X Iy (i)
=1

~ normp(h,) X normy(h,)

where

|

(18)

J \
normy (k) = Z Ode
i=1 y

The closer to 1, the greater the similarity between the two
hashes. Conversely, the closer to —1, the more different they
are.

The result of the normalized correlation 312 1s temporarily
stored 1n a buiter 316. Then, 1t 1s checked 314 whether the
reference hash 302 contains more sub-hashes to be compared.
IT 1t 1s the case, a new sub-hash 306 1s extracted again by
increasing the pointer 322 and taking a new vector of I ele-
ments of 302. The value of the pointer 322 1s increased 1n a
quantity such that the first element of the next sub-hash cor-
responds to the beginning of the next audio frame. Hence,
such quantity depends both on the duration of the frame and
the overlapping between frames. For each new sub-hash, a
normalized correlation value 312 1s computed and stored in
the buffer 316. Once there are no more sub-hashes to be
extracted from the reference hash 302, a function of the values
stored 1n the buifer 316 1s computed 318 and compared 320 to
a threshold. If the result of such function 1s larger than this
threshold, then 1t 1s decided that the compared hashes repre-
sent the same audio content. Otherwise, the compared hashes
are regarded to as ,belonging to different audio contents.
There are numerous choices for the function to be computed
on the normalized correlation values. One of them 1s the
maximum—as depicted 1n FIG. 3—, but other choices (mean
value, for mstance) would also be suitable. The appropniate
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value for the threshold 1s usually set according to empirical
observations, and 1t will be discussed below.

The method described above for comparison 1s based on an
exhaustive search. A person skilled in the art may realize that
such method based on computing the normalized correlation
can be coupled with more efficient methods for performing
searches on large databases, as described in the existing art, 1f
specific efficiency constraints must be met.

In a preferred embodiment, the mvention i1s configured
according to the following parameters, which have shown
very good performance in practical systems. First, the frag-
ment of the audio query 102 1s resampled to 11250 Hz. The
duration of an audio fragment for performing a query 1s set to
2 seconds. The overlapping between frames 1s set to 90%, 1n
order to cope with desynchronizations, and each frame {fr,},
with 1=t<T 1s windowed by a Hanming window. The length N
of each frame fr, 1s set to 4096 samples, resulting 1n 0.3641
seconds. In the transform procedure 206, cach frame is trans-
formed by means of a Fast Fourier Transtform FFT of size
4096. The FFT coelficients are grouped 1n 30 critical sub-
bands 1n the range [1;.1 ] (Hz). The values used for the cut
frequencies are 1,300, I =2000, motivated by two reasons:

1. Most of the energy of natural audio signals 1s concen-
trated 1n low frequencies, typically below 4 KHz, and the
non-linear distortions mtroduced by sound reproduction and
acquisition systems are stronger for high frequencies.

2. Very low frequencies are imperceptible for the humans
and usually contain spurious information. In the case of cap-
turing audio with built-in laptop microphones, frequency
components below 300 Hz typically contain a big amount of
fan noise.

The limits of each critical band are computed according the
well known Mel scale, which mimics the properties of the
Human Auditory System. For each of the 30 critical sub-
bands, the energy of the DFT coelficients 1s computed.
Hence, a matrix of transformed coefficients of size 30x44 1s
constructed, where 44 1s the number of frames T contained in
the audio content 102. Next, a linear band-pass filter 1s
applied to each row of the time-frequency matrix 1n order to
filter out spurious effects such as non-zero mean values and
high-frequency variations. A further processing applied to the
filtered matnx of transformed coeftficients 1s dimensionality
reduction using a modified PCA approach that consists on the
maximization of the Fourth Order moments of a traiming set
of original audio contents. The resulting matrix of trans-
formed coetlicients 208 computed from the 2 seconds frag-
ment 1s of size Fx44, with F<30. The dimensionality reduc-
tion allows to reduce F down to 12 yet keeping high audio
identification performance.

For the normalization 212 the function (6) 1s used, together
with the function G( ) as given by (7), resulting in a matrix of
normalized coeflicients of size Fx43, with F=30. As
explained above, the parameter p can take any real positive
value. It has been experimentally checked that the optimum
choice for p, in the sense of minimizing the error probabili-
ties, 1s 1n the range [1,2]. In particular, the preferred embodi-
ment uses the function with p=1.5. The weighting vector 1s
fixed as a=[1, 1, . .., 1]. It remains to set the value of the
parameter L, which 1s the length of the normalization win-
dow. As explained above, a tradeoll exists between robustness
to noise and adaptation time to channel vanations. If the
microphone-capture channel varies very fast, a possible solu-
tion for keeping a large L 1s to increase the audio sampling,
rate. Hence, the optimal value for L 1s application-dependent.
In the preferred embodiment L 1s set to 20. Therefore, the
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duration of the normalization window 1s 1.1 seconds, which
for typical applications of audio identification 1s sufficiently
small.

In the preferred embodiment, the postprocessing 216 1s set
to the 1dentity function, which in practice 1s equivalent to not
performing any postprocessing. The quantizer 220 uses 4
quantization levels, wherein the partition and the symbols are
obtained according to the methods described above (entropy
maximization and conditional mean centroids) applied on a
training set of audio signals.

FIG. 7 and FIG. 8 illustrate the performance of the pre-
ferred embodiment in a real scenario, where the audio i1den-
tification 1s done by capturing an audio fragment of two
seconds using the built-in microphone of a laptop computer at
2.5 meters from the audio source in a living-room. As
reflected in FIGS. 7 and 8, the performance has been tested in
two different cases: 1dentification of music fragments, and
identification of speech fragments. Even 11 the plots show a
severe performance degradation for music compared to
speech, the value of P 1s still lower than 0.2 for P, below
1072, and lower than 0.06 for P,.,, below 10 ~~.

FI1G. 9 depicts the general block diagram of an embodiment
that makes use of the present mnvention for performing audio
identification 1n streaming mode, 1n real time. One could use
the present embodiment, for instance, for performing con-
tinuous 1dentification of broadcast audio. This exemplary
embodiment uses a client-server architecture which 1s
explained below. All the parameters set in the preferred
embodiment described above are kept.

1. The client 901 receives an audio stream through some
capture device 902, which can be for instance a microphone
coupled to an A/D converter. The received audio samples are
consecutively stored 1n a builfer 904 of predetermined length
which equals the length of the audio query. When the butfer 1s
tull, the audio samples are read and processed 108 according
to the method 1llustrated 1n FIG. 2 1n order to compute the
corresponding robust hash.

2. Therobust hash, along with a threshold predefined by the
client, are submitted 906 to the server 911. The client 901 then
waits for an answer of the server 911. Upon reception of such
answer, 1t 1s displayed 908 by the client.

3. The server 1s configured to recerve multiple audio
streams 910 from multiple audio sources, hereinafter chan-
nels. Similarly to the client, the received samples of each
channel are consecutively stored in a buffer 912. However, the
length of the butifer 1in this case 1s not the same as the length of
the audio query. Instead, the butier 912 has a length which
equals the number of samples N of an audio frame. Further-
more, such buller is a circular buffer which 1s updated every
n, samples, where n, 1s the number of non-overlapping
samples.

4. Every time n, new samples of a given channel are
received, the server computes 108 the robust hash of the
channel samples stored in the corresponding buifer, which
form a complete frame. Each new hash 1s consecutively
stored 1 a buffer 914, which 1s implemented again as a
circular buffer. This buffer has a predetermined length, sig-
nificantly larger than that of the hash corresponding to the
query, 1n order to accommodate possible delays at the client
side and the delays caused by the transmission of the query
through data networks.

5. When a hash 1s received from the client, a comparison
114 (illustrated in FIG. 3) 1s performed between the received
hash (query hash 110) and each of the hashes stored in the
channel buifers 914. First, a pointer 916 1s set to 1 1 order to
select 918 the first channel. The result 920 of the comparison
(match/no match) 1s stored in a buifer 922. If there are more
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channels leit to be compared, the pointer 916 1s increased
accordingly and a new comparison 1s performed. Once the
received hash has been compared with all channels, the result
920—identitying the matching channel 1f there 1s amatch—is
sent 926 to the client, which finally displays 908 the result.

The client keeps on submitting new queries at regular inter-
vals (which equals the duration of the buifer 904 at the client)
and receiving the corresponding answers from the server.
Thus, the identity of the audio captured by the client 1s regu-
larly updated.

As summarized above, the client 901 1s only responsible
for extracting the robust hash from the captured audio,
whereas the server 911 1s responsible for extracting the
hashes of all the reference channels and performing the com-
parisons whenever 1t receives a query from the client. This
workload distribution has several advantages: firstly, the
computational cost on the client 1s very low, and secondly,
information that i1s transferred between client and server
allows for a very low transmission rate.

When used in streaming mode as described here, the
present invention can take full advantage of the normalization
operation 212 performed during the extraction of the hash
108. More specifically, the buller 210 can be used to store a
suificient number of past coelficients in order to have always
L. coellicients for performing the normalization. As shown
betfore 1n equations (4) and (5), when working 1n offline mode
(that 1s, with an 1solated audio query) the normalization can-
not always use L past coeltlicients because they may not be
available. Thanks to the use of the buifer 210 1t 1s ensured that
L past coelficients are always available, thus improving the
overall 1dentification performance. When the buifer 210 1s
used, the hash computed for a given audio fragment will be
dependent on a certain number of audio fragments that were
previously processed. This property makes the invention to be
highly robust against multipath propagation and noise effects
when the length L of the butfer i1s sufliciently large.

The buffer 210 at time t contains one vector (5) per row of
the matrix of transformed coelficients. For an efficient imple-
mentation, the bufter 210 1s a circular butfer where for each
new analyzed frame, the most recent element X(1,t) 1s added
and the oldest element X(1,t-L) 1s discarded. If the most
recent value of G(X ) 1s conveniently stored, then 1f G(X ) 1s
given by (7), 1ts value would be updated simply as follows:

] _— (1.{;)

Hence, for each new analyzed frame, the computation of
the normalization factor only requires two simple arithmetic
operations, regardless of the length of the butler L.

When operating 1n streaming mode, the client 901 receives
the results of the comparisons performed by the server 911. In
case of having more than one match, the client selects the
match with the highest normalized correlation value. Assum-
ing that the client 1s listening to one of the channels being
monitorized by the server, three types of events are possible:

1. The client may display an 1dentifier that corresponds to
the channel whose audio 1s being captured. We say that the
client 1s “locked” to the correct channel.

2. The client may display an 1dentifier that corresponds to
an incorrect channel. We say the client 1s “falsely locked”.

3. The client may not display any identifier because the
server has not found any match. We say the client 1s
“unlocked”. This happens when there 1s no match.
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When the client 1s listening to an audio channel which 1s
not any of the channels monitorized by the server, then the
client should be always unlocked. Otherwise, the client would
be falsely locked. When performing continuous identification
of broadcast audio, 1t 1s desirable to be correctly locked as
much time as possible. However, the event of being falsely
locked 1s highly undesirable, so 1n practice its probability
must be kept very small. FIG. 10 shows the probability of
occurrence of all possible events, empirically obtained, 1n
terms of the threshold used for declaring a match. The experi-
ment was conducted 1n a real environment where the captur-
ing device was the built-in microphone of a laptop computer.
As can be seen, the probability of being falsely locked 1s
negligible for thresholds above 0.3 while keeping the prob-
ability of being correctly locked very high (above 0.9). This
behavior has been found to be quite stable 1n experiments
with other laptops and microphones.

The invention claimed 1s:

1. A method for robust audio hashing, comprising a robust
hash extraction step wherein a robust hash 1s extracted from
audio content; the robust hash extraction step comprising:

dividing the audio content 1n at least one frame;

applying a transformation procedure on said at least one

frame to compute, for each frame, a plurality of trans-
formed coeflicients;

applying a normalization procedure on the transformed

coellicients to obtain a plurality of normalized coelli-
cients, wherein said normalization procedure comprises
computing the product of the sign of each coellicient of
said transformed coelficients by the quotient of two
homogeneous functions of any combination of said
transformed coefficients, wherein both homogeneous
functions are of the same order;

applying a quantization procedure on said normalized

coellicients to obtain the robust hash of the audio con-
tent.

2. The method according to claim 1, further comprising a
comparison step wherein the robust hash 1s compared with at
least one reference hash to find a match.

3. The method according to claim 2, wherein the compari-
son step comprises, for each reference hash:

extracting from the corresponding reference hash at least

one sub-hash with the same length I as the length of the
robust hash;

converting the robust hash and each of said at least one

sub-hash 1nto the corresponding reconstruction symbols
given by the quantizer;

computing a similarity measure according to the normal-

1zed correlation between the robust hash and each of said
at least one sub-hash according to the following rule:

J
Z ho (1) X B(i)
oo =l

~ normy(h,) X normy(4,)’

where h represents the robust hash of lengh I, h, a refer-
ence sub-hash of the same length J, and
where

| —

J \
norms(A) = Z h(iY* | ;
i=1 .




US 9,286,909 B2

27

comparing a function of said at least one similarity mea-

sure against a predefined threshold;

deciding, based on said comparison, whether the robust

hash and the reference hash represent the same audio
content.

4. The method according to claim 1, wherein the normal-
ization procedure 1s applied on the transformed coelficients
arranged 1n a matrix of size FxT to obtain a matrix of nor-
malized coeflicients of size F'xT', with F'=F, T'sT, whose
clements Y (1't") are computed according to the following rule:

sign(X (f’, M([’)))XH(Xf;)

s GUXy)

where X(1', M(1')) are the elements of the matrix of trans-
tormed coetlicients (208), X 1s the fth row of the matrix of
transformed coellicients, M( ) 1s a function that maps indices
from {1, ..., T'}to {1, ..., T}, and both H( ) and G( ) are
homogeneous functions of the same order.

5. The method according to claim 4, wherein homogeneous
tunctions H( ) and G( ) are such that:

H(X j’) = (7( Mt ")): G(X f') :G(‘Zf’,ﬂf(r ')) ’
with
X arcen= | XA, M(L)), X(P,M(t')-:-l), C X(fﬂlf.u)]!
X, ,M_(rg:[x(f:lfz): L, X(LM(T)-2), X(f,,M(t )—.1‘],} where
k,1s the maximum of {M(t")-L,,1}, k , is the minimum of
IM(t)+L -1, T}, M(t)>1, and L>1, L >0.
6. The method according to claim 5, wherein M(t")=t'+1
and H(X, ,,,)=abs(X(f,t'+1)), resulting in the following
normalization rule:

X(f',r'+1)
G(if",r"ﬂ).

Y(f. 1) =

7. The method according to claim 6, wherein

1
G(X s p,) =L P x(@D)X|X(f', ) +

1
aQ)x|X(f, =D +...+alL)x|X({(f', 7 =L+ D|P)P,

where L =L, a=[a(1,,a(2), ..., a(L)] 1s a weighting vector

and p 1s a positive real number.

8. The method according to claim 1, wherein the transior-
mation procedure comprises a spectral subband decomposi-
tion of each frame.

9. The method according to claim 1, wherein in the quan-
tization procedure at least one multilevel quantizer 1s
employed.
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10. The method according to claim 9, wherein the at least
one multilevel quantizer 1s obtained by a training method
comprising;

computing partition, obtaining (Q disjoint quantization

intervals by maximizing a predefined cost function
which depend on the statistics of a plurality of normal-
1zed coellicients computed from a training set of training
audio fragments; and

computing symbols, associating one symbol to each inter-

val computed.

11. The method according to claim 10, wherein the cost
function 1s the empirical entropy of the quantized coelli-
cients, computed according to the following formula:

)
Eni(Py) = —Z (N; 5/ Lc)log(N; ¢/ Le),
i—1

where N, .1s the number of coetlicients of the fth row of the
matrix of postprocessed coellicients assigned to the 1th inter-
val of the partition, and L 1s the length of each row.
12. A method for deciding whether two robust hashes com-
puted according to the method for robust audio hashing of
claiam 1 represent the same audio content, wheremn said
method comprises:
extracting from the longest hash at least one sub-hash with
the same length J as the length of the shortest hash;

converting the shortest hash and each of said at least one
sub-hash 1nto the corresponding reconstruction symbols
given by the quantizer;

computing a similarity measure according to the normal-

1zed correlation between the shortest hash and each of
said at least one sub-hash according to the following
rule:

J
Z ho (i) X I, (i)
=1

B normyp(A,) X normyp (A,) 5

where h represents the query hash of lengh J, h, areterence
sub-hash of the same length J, and where

Jg '
norny (A1) = Z h(i)* |
i=1 /

comparing a function of said at least one similarity mea-
sure against a predefined threshold;

deciding, based on said comparison, whether the two
robust hashes represent the same audio content.

% o *H % x
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