12 United States Patent

van Riel

US009286101B2

US 9,286,101 B2
Mar. 15, 2016

(10) Patent No.:
45) Date of Patent:

(54) FREE PAGE HINTING
(75) Inventor: Henri Han van Riel, Nashua, NH (US)
(73) Assignee: Red Hat, Inc., Raleigh, NC (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 982 days.
(21) Appl. No.: 13/193,550
(22) Filed: Jul. 28, 2011
(65) Prior Publication Data
US 2013/0031293 Al Jan. 31, 2013
(51) Int.CL
GO6IF 9/455 (2006.01)
GO6Il 12/10 (2006.01)
(52) U.S. CL
CPC GO6F 9/45545 (2013.01); GO6F 12/10
(2013.01); GO6F 2009/45583 (2013.01)
(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0016904 Al* 1/2007 Adlung GO6F 9/5016

718/1
2009/0307447 Al* 12/2009 Jacobsetal. 711/162
2010/0070678 Al* 3/2010 Zhangetal. 711/6

OTHER PUBLICATIONS

Riel, Rik van. “Re: [patch: 0/6] Guest page hinting”. Posted Mar 27,
2009. <https://Ikml.org/lkml/2009/3/27/503> and <https://lIkml.org/

[Start |

.

'

lkml/2009/3/27/503> 1n thread <https://lkml.org/lkml/2009/3/27/

223> %

Corbet. “Guest page hinting”. Posted Sep. 6, 2006. <http://lwn.net/
Articles/198380/>. Comment posted by rvdhey on Sep. 14, 2006.*
Schwidefsky, Martin. “Guest page hinting: cover page.” Published
Sep. 1, 2006. <http://lwn.net/Articles/198384/>.*

Waldspurger, C.A., “Memory Resource Management in VMware
ESX Server,” Proceedings of the 5" Symposium on Operating Sys-

tems Design and Implementation, Boston, Massachusetts, Dec. 9-11,
2002, 15 pages.
Scwidefsky, M. et al., “Collaborative Memory Management In

Hosted Linux Environments,” (IBM), Linux Symposium, Ottawa,

Canada, Jul. 19-22, 2006, 16 pages.

Van Riel, R., “KVM Performance Optimizations Internals,” 7he Red
Har Summit, Boston, Massachusetts, May 5, 2011, 25 pages.
Corbet, J., “Linux Filesystem, Storage, and Memory Management
Summit, Day 2, 201 1 Linux Filesystem, Storage and Memory Man-
agement Summit, San Francisco, California, Apr. 5, 2011, 9 pages.

“The Role of Memory in VMware ESX Server 3—Information
Guide,” VMware, Inc. Sep. 26, 2006, 11 pages.

Schwidefsky, M., “Linux Kernel Archive: [patch 0/6] [ric] guestpage
hinting version 5” (May 11, 2007), downloaded on Jul. 28, 2011 from
http://lkml.indiana.edu/hypermail/linux/kernel/0705.1/210 1html, 2

pages.
(Continued)

Primary Examiner — Charles Rones
Assistant Examiner — Hewy Li
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A processing device executing an operating system such as a
guest operating system generates a bitmap wherein bits of the
bitmap represent statuses of memory pages that are available
to the operating system. The processing device frees a
memory page. The processing device then sets a bit 1n the
bitmap to indicate that the memory page 1s unused after the
memory page 1s ireed.

18 Claims, 9 Drawing Sheets

600

Generate Bitmap By Guest, Where Each Bit Corresponds To
A Different Memory Page 602

l

For Each Free Memory Page, Set Bit Associated With That
Memory Page In Bitmap 805

v

Determine That Memory Page Is To Be Allocated 608

'

Touch Memory Page 810

'

Allocate Memory Page 812

i

Clear Bit Associated With Memory Page In Bitmap §15

'

[Finish)

US 9,286,101 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Schwidefsky, M., “Linux Kernel Archive: [patch 1/6] Guest page
hinting: core + volatile page cache,” (Jun. 28, 2007), downloaded on
Jul. 28, 2011 from http://comments.gmane.org/gmane.comp.emula-
tors.kvm.devel/4314, 1 page.

Schwidefsky, M., “Linux Kernel Archive: [patch 2/6] Guest page
hinting,” (May 11, 2007), downloaded on Jul. 28, 2011 from http://
Ikml.indiana.edu/hypermail/linux/kernel/0705.1/2100html, 8 pages.
Schwidefsky, M., “Linux Kernel Archive: [patch 3/6] Guest page
hinting: mlocked pages,” (May 11, 2007), downloaded on Jul. 28,
2011 from http://lkml.indiana.edu/hypermail/linux/kernel/0705.1/
2102html, 3 pages.

Schwidefsky, M., “Linux Kernel Archive: [patch 4/6] Guest page
hinting: writable page table entries,” (May 11, 2007), downloaded on

Jul. 28, 2011 from http://lkml.indiana.edu/hypermail/linux/kernel/
0705.1/2104html, 7 pages.

Schwidefsky, M., “Linux Kernel Archive: [patch 5/6] Guest page
hinting: minor fault optimization,” (May 11, 2007), downloaded on
Jul. 28, 2011 from http://lkml.indiana.edu/hypermail/linux/kernel/
0705.1/2103html, 5 pages.

Schwidefsky, M., “Linux Kernel Archive: [patch 6/6] Guest page
hinting: s390 support,” (May 11, 2007), downloaded on Jul. 28, 2011
from http://lIkml.indiana.edu/hypermail/linux/kernel/0705.1/
2105html, 14 pages.

* cited by examiner

U.S. Patent Mar. 15, 2016

Sheet 1 0of 9

US 9,286,101 B2

VM(s) 115

Guest OS 140

Guest Memory
Manager 144

Viemory
Bitmap 146

I

Hypervisor 130

Host OS 11

Host Memory Manager 132

N

NS

Host Hardware 105

Processing

Device(s) 122

Memory 124

Secondary
Storage 128

Host Machine 100

External
Storage
159

V/

FIG. 1

U.S. Patent Mar. 15, 2016 Sheet 2 of 9 US 9,286,101 B2

Bitmap Management Bitmap Management Bitmap Management
Module 230A Module 230B Module 230C
Guest Memory Manager Guest Memory Manager Guest Memory Manager
200A 200B 200C
Memory Bitmap Memory Bitmap Memory Bitmap
220A 220B 2200

Vlemory Page
Analyzing Module 240

Host Memory Manager 210

FIG. 2

U.S. Patent Mar. 15, 2016 Sheet 3 of 9 US 9,286,101 B2

' Start '\\]

. /

Select Memory Page That Has Been Assigned To Guest For
Eviction By Host 305

Access Bitmap Maintained By Guest To Determine State of
Bit In Bitmap Associated With Memory Page 308

Determine Whether Content of Memory Page Is To Be
Preserved 310

Preserve YES

Memory Page Content?
319

NO Remove Content of

Memory Page From
Main Memory &
Store Content In

Secondary Storage

329

Unmap Memory Page From
Guest 320

Status
of Memory Page Unchanged?

YES 330

Remap Memory
Page To Guest

339 Discard Content of Memory
Page 340

)

Free Memory Page 345

FIG. 3

U.S. Patent Mar. 15, 2016 Sheet 4 of 9 US 9,286,101 B2

~

400
[x Start j «

Receive Page Fault For Memory Page That Has Been
Swapped Out To Seconadary Storage By Host 405

Access Bitmap Maintained By Guest To Determine State of
Bit In Bitmap Associated With Memory Page 408

Determine Whether Content of Memory Page Is To Be
Preserved 410

Preserve NO
Memory Page Content?
420
YES

Y

Access Secondary Storage To Retrieve Discard Content of

Content and Write Content To Memory Memory Page From

Page In Main Memory 425 Secondary Storage 430

Y

Assign New Memory
Page To Guest 435

~ Finish |

FIG. 4

U.S. Patent Mar. 15, 2016 Sheet 5 of 9 US 9,286,101 B2

[Start) /500

Determine That One Or More Memory Pages Are Needed By
Host 505

Scan Bitmaps of Guests To ldentify Free Memory Pages 508

Evict One Or More Free Memory Pages From Guests 510

~ Finish |

FIG. 5

U.S. Patent Mar. 15, 2016 Sheet 6 of 9 US 9,286,101 B2

(Start j

Generate Bitmap By Guest, Where Each Bit Corresponds To
A Different Memory Page 602

For Each Free Memory Page, Set Bit Associated With That
Memory Page In Bitmap 605

Determine That Memory Page Is To Be Allocated 608

Touch Memory Page 610

Allocate Memory Page 612

Clear Bit Associated With Memory Page In Bitmap 615

_ Finish |

FIG. 6A

U.S. Patent Mar. 15, 2016 Sheet 7 of 9 US 9,286,101 B2

. Start

Generate Bitmap By Guest, Where Each Bit Corresponds To
A Different Memory Page 655

For Each Free Memory Page, Set Bit Associated With That
Memory Page In Bitmap 660

Free Memory Page By Guest 665

Set Bit Associated With Memory Page In Bitmap 670

~ Finish

FIG. 6B

U.S. Patent Mar. 15, 2016 Sheet 8 of 9 US 9,286,101 B2

- 700

. Start

Generate Bitmap By Guest, Where Each Memory Page Is
Associated With Two Bits of Bitmap 705

For Each Free Memory Page, Set First Bit Associated With
That Memory Page In Bitmap 710

5

Allocate Memory Page By Guest /1

Set Second Bit Associated With Memory Page In Bitmap 720

Clear First Bit And Second Bit After Process To Which
Memory Page Is Allocated Uses Memory Page 722

Free Memory Page By Guest 725

Set First Bit Associated With Memory Page In Bitmap 730

~ Finish |

FIG. 7

U.S. Patent Mar. 15, 2016 Sheet 9 of 9 US 9,286,101 B2

300
810 4
VIDEQ DISPLAY UNIT
808
804 812
854
ALPHA-NUMERIC
INPUT DEVICE
Memory 680
Manager{s)
614
CURSOR CONTROL
806 DEVICE
/)
)
STATIC MEMORY -
SECONDARY MEMORY
COMPUTER-READABLE
899 MEDIUM

NETWORK
INTERFACE DEVICE

Memory
Manager(s)

820

SIGNAL
GENERATION

DEVICE

US 9,286,101 B2

1
FREE PAGE HINTING

TECHNICAL FIELD

Embodiments of the present invention relate to memory >
management and, more specifically, to the management of

over-committed memory shared by multiple processes and/or
virtual machines.

BACKGROUND 10

Virtualization allows multiplexing of an underlying host
machine between different virtual machines. The host
machine allocates a certain amount of 1ts resources to each of
the virtual machines. Each virtual machine 1s then able to use
the allocated resources to execute applications, including
operating systems (referred to as guest operating systems). A
soltware layer that provides the virtualization 1s commonly
referred to as a hypervisor (also known as a virtual machine ,,
monitor (VMM)). The hypervisor emulates the underlying
hardware of the host computer, making the use of the virtual
machine transparent to the guest operating system and the
user of the computer.

A host machine can accommodate more virtual machines 25
than the size of 1ts physical memory allows. Using virtual
memory techniques, the host machine can give each virtual
machine the impression that it has a contiguous address
space, while 1n fact the memory used by the virtual machine
may be physically fragmented and even overflow to disk 30
storage. When the host machine needs to free up memory, it
selects memory pages that have been assigned to virtual
machines, and pages out the contents of those memory pages
to secondary storage. When the virtual machines attempt to
access those memory pages, the host machine then pages in 35
the contents of the memory page by reading the contents that
have been stored in the secondary storage and writing those
contents back to memory. Paging out and paging in memory
pages requires input/output (I/0) operations, which can cause
significant delay for the virtual machine. 40

International Business Machines (IBM®) has developed a
processor architecture (called System z machine architecture)
that includes hardware support for special Extract and Set
Storage Attributes (ESSA) instructions between the host
machine and virtual machines regarding the state of memory 45
pages assigned to those virtual machines. Using the ESSA
instructions, IBM’s system z machines improve the perfor-
mance of memory management by identifying memory pages
whose contents do not need to be preserved, thereby elimi-
nating disk I/Os during memory eviction. However, IBM’s 350
system z machines rely on hardware support for this func-
tionality. There 1s no similar hardware or software support for
such memory management optimization in other processor
architectures, such as x86 processor architectures.

15

55
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, and can be more fully understood
with reference to the following detailed description when 60
considered in connection with the figures 1n which:

FI1G. 1 1s a block diagram that 1llustrates an embodiment of
a computer system that hosts one or more virtual machines.

FIG. 2 1s a block diagram showing information exchange
between a host memory manager and multiple guest memory 65
managers, in accordance with one embodiment of present
ivention.

2

FIG. 3 1s a flow diagram 1llustrating one embodiment of a
method for performing memory eviction.

FIG. 4 15 a flow diagram 1llustrating one embodiment of a
method for handling a page fault.

FIG. 5 15 a flow diagram 1llustrating one embodiment of a
method for identifying memory pages that are candidates for
eviction.

FIG. 6A 1s a flow diagram illustrating one embodiment of
a method for maintaining a memory bitmap.

FIG. 6B 1s a flow diagram 1llustrating another embodiment
of a method for maintaining a memory bitmap.

FIG. 7 1s a flow diagram illustrating yet another embodi-
ment of a method for maintaining a memory bitmap.

FIG. 8 illustrates a diagrammatic representation of a
machine 1n the exemplary form of a computer system.

DETAILED DESCRIPTION

Described herein 1s a method and system for optimizing
memory management 1n a shared memory environment. In
one embodiment, a host machine hosts multiple virtual
machines, each of which may include a guest operating sys-
tem. The guest operating system generates a bitmap. Bits of
the bitmap represent statuses ol memory pages that have been
made available to the guest operating system by the host
operating system. When a memory page becomes unused, the
guest operating system Ifrees the memory page. The guest
operating system then sets a bit 1n the bitmap to indicate that
the memory page 1s unused after the memory page 1s freed.
The host may then select memory pages of the guest operating
system for eviction based on the statuses of those memory
pages as represented 1n the bitmap. This can reduce an amount
of time that 1s used to perform the eviction from about 3-10
milliseconds (the time to perform a disk access) to about
10-350 nano seconds (the time to perform a memory access) or
a few thousand processor cycles. The embodiments of the
present invention improve the efficiency of memory manage-
ment 1 a virtualized environment, while ensuring that the
data inside of memory pages that are 1n use remains stable and
preserved.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled 1n the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown 1n block diagram form, rather than in detail, 1n
order to avoid obscuring the present invention.

FIG. 1 1s a block diagram that illustrates an embodiment of
a computer system (referred to herein as a host machine 100)
that hosts one or more virtual machines (VMs) 115. The host
machine 100 may be a rackmount server, a workstation, a
desktop computer, a notebook computer, a tablet computer, a
mobile phone, a palm-sized computing device, a personal
digital assistant (PDA), etc. In one embodiment, the host
machine 100 1s a computing device implemented with x86
hardware. The host machine 100 includes host hardware 105,
which may include one or more processing devices 122,
memory 124, secondary storage 128, and other hardware
components (e.g., I/O devices). The memory 124 may include
volatile memory devices (e.g., random access memory
(RAM)), non-volatile memory devices (e.g., flash memory),
and/or other types of memory devices. The secondary storage
128 may include mass storage devices, such as magnetic or
optical storage based disks, tapes or hard drives. The host
hardware 105 may also be coupled to external storage 155 via
a direct connection or a local network. The host machine 100
may be a single machine or multiple host machines arranged
in a cluster.

US 9,286,101 B2

3

The host machine 100 includes a hypervisor 130 (also
known as a virtual machine monitor (VMM)). In one embodi-
ment (as shown) hypervisor 130 1s a component of a host
operating system 110. Alternatively, the hypervisor 130 may
run on top of a host OS 110, or may run directly on host
hardware 105 without the use of a host OS 110.

The hypervisor 130 manages system resources, including
access to memory 124, I/O devices and secondary storage
128. The hypervisor 130, though typically implemented 1n
soltware, may emulate and export a bare machine interface
(host hardware 105) to higher level software. Such higher
level software may comprise a standard or real-time operating
system (OS), may be a highly stripped down operating envi-
ronment with limited operating system functionality, may not
include traditional OS facilities, etc. The hypervisor 130 pre-
sents to other software (1.e., “guest” soitware) the abstraction
of one or more virtual machines (VMs) 115, which may
provide the same or different abstractions to various guest
soltware (e.g., guest operating system, guest applications,
etc.).

The host machine 100 hosts any number of wvirtual
machines (VM) 115 (e.g., a single VM, one hundred VMs,
etc.). A virtual machine 115 1s a combination of guest sofit-
ware that uses an underlying emulation of the host machine
100 (e.g., as provided by hypervisor 130). The guest software
may include a guest operating system 140, guest applications,
guest device drivers, etc. Virtual machines 115 can be, for
example, hardware emulation, full virtualization, para-virtu-
alization, and operating system-level virtualization virtual
machines. The virtual machines 115 may have the same or
different guest operating systems 140, such as Microsoft®
Windows®, Linux®, Solaris®, etc.

Each guest OS 140 includes a guest memory manager 144
(also known as a memory allocator). The guest memory man-
ager 144 allocates memory to processes, applications, etc.
running within the VM 115 on which the guest OS 140 runs.
The guest memory manager 144 allocates memory using
memory pages, which are contiguous blocks of wvirtual
memory (e.g., a 4K-byte block of memory). These memory
pages may be allocated to the VM 115 by a host memory
manager 132 (described below). In one embodiment, the
guest memory manager 144 and the host memory manager
132 are kernel level processes.

The guest memory manager 144 maintains a memory bit-
map 146 that indicates a state of each memory page that has
been allocated to the VM 115. Each VM 1135 may have a
separate bitmap maintained by a guest memory manager 144
running in that VM. In one embodiment, each memory page
allocated to a VM 1s represented by a single bit in the memory
bitmap 146. Alternatively, each memory page may be repre-
sented by multiple bits in the bitmap 146.

In one embodiment, 1n which each memory page 1s repre-
sented as a single bit, a set bit (1) indicates that an associated
memory page 1s free (not allocated) and an unset bit (O)
indicates that the associated memory page 1s 1 use (allo-
cated). Alternatively, a set bit may indicate that a memory
page 1s allocated, and an unset bit may indicate that the
memory page 1s free. If a memory page 1s iree, then the
content of that memory page does not need to be preserved
(e.g., when the memory page 1s swapped out or swapped in).
If a memory page 1s allocated (1n use), then the content of the
memory page should be preserved. In one embodiment, the
guest maintains the memory bitmap 146. However, 1n one
embodiment 1t 1s the host (or the hypervisor 130) that per-
forms actions based on the bitmap 146, either preserving or
discarding a memory page’s contents based on the state of a
bit 1n the bitmap 146.

10

15

20

25

30

35

40

45

50

55

60

65

4

Each time a state of amemory page changes, guest memory
manager 144 updates the memory bitmap 146 to show the
updated state. For example, when a memory page 1s allocated,
the guest memory manager 144 may clear a bit associated
with that memory page. Similarly, when the memory page 1s
freed, the guest memory manager 144 may set the bit associ-
ated with the memory page. The bit may be set/cleared before
the memory page 1s Ireed/allocated, concurrent to the
memory page being freed/allocated, or after the memory page
1s Ireed/allocated. In one embodiment, the bit for a memory
page 1s not immediately updated after the memory page 1s
allocated. Instead, the bit may remain set (indicating that the
contents of the memory page do not need to be preserved)
until the process/application to which the memory page 1s
assigned actually uses the memory page. Once the process/
application attempts to write to the memory page, then the bit
for that memory page 1n the memory bitmap 220 may be
freed.

In one embodiment, the guest memory manager 144
touches the memory page (accesses at least one byte of physi-
cal memory mapped to the memory page) before allocating
the memory page. Touching the memory page may trigger a
page fault if the memory page has been swapped out (also
referred to as paged out) to secondary storage 128 by a host
memory manager 132. A page fault 1s raised when a program
or a process (e.g., a program or process running in a virtual
machine) attempts to access a memory page that 1s mapped in
an address space of a process or operating system, but 1s not
resident 1n physical memory. Paging out (or swapping out) a
memory page 1s the act of copying the contents of a memory
page to secondary storage 128 and removing those contents
from physical memory that was mapped to the memory page.
Paging 1n (or swapping in) amemory page 1s the act of writing
the contents of a memory page from secondary storage to
physical memory and mapping that physical memory to a
process’s or operating system’s address space.

In one embodiment, the host OS 110 includes a host
memory manager 132 that manages virtual memory used by
the virtual machines 115. The host memory manager 132 may
also be a component of the hypervisor 130. Host memory
manager 132 allocates memory to each VM 115. This may
include over-committing the actual available physical
memory 124. For example, the host machine 100 may include
8 GB of RAM. However, the host memory manager 132 may
allocate 2 GB of RAM to five different VMs 1135.

In one embodiment, host memory manager 132 performs
de-duplication of memory pages. Host memory manager 132
may scan memory pages and compare the contents of difier-
ent memory pages. If two memory pages are found to have the
same contents, then the contents of the duplicate memory
page may be discarded.

To enable over-commitment of memory 124, host memory
manager 132 may create a swap space in secondary storage
128 and/or external storage 155. When physical memory 1s
needed by a VM 115 or by the host OS 110, the host memory
manager 132 selects memory pages that have been allocated
to another VM 115 and swaps out those memory pages into
the swap space (stores the content of the memory pages in the
swap space). When the VM 1135 attempts to access a memory
page that has been swapped out, a page fault 1s generated. In
response to the page fault, host memory manager 132 may
perform an I/O operation to read the contents of the memory
page Irom the swap space, and may write the contents to a
physical memory page. The VM 113 can then complete the
access to the memory page.

In some 1nstances, the memory page contents that are to be
swapped out to the swap space are unused by the VM 115. In

US 9,286,101 B2

S

such mstances, the I/O operations that would be performed to
write the contents of the memory page to secondary storage
128 and the I/O operations that would be performed to later
read the contents from the secondary storage 128 are unnec-
essary. Accordingly, 1n one embodiment, host memory man-
ager 132 accesses a memory bitmap 146 maintained by guest
memory manager 144 when a memory page 1s to be paged out
(swapped out). If the bit 1n the memory bitmap 146 corre-
sponding to the memory page 1s set, then the host memory
manager 132 may discard the contents of the memory page
rather than storing those contents i1n the swap space. This
prevents one or more unnecessary 1/0 operations and addi-
tionally saves swap space.

In one embodiment, host memory manager 132 accesses
the memory bitmap 146 maintained by guest memory man-
ager 144 when a memory page 1s to be swapped 1n. The guest
memory manager 144 may have freed the memory page after
the memory page was swapped out. In such instances, swap-
ping 1n the memory page would be a wasted effort, as the
guest memory manager 144 would immediately discard the
swapped 1n contents. At swap-in time, 1 the bit associated
with the memory page that 1s to be swapped 1n 1s set, then
instead of swapping in the memory page, a new memory page
1s allocated. The contents of the memory page that were
swapped out may be discarded.

In an example, a guest (e.g., a guest OS 140, a VM 115, a
guest application, etc.) may have a memory page that has not
been accessed 1n a while, and which has been swapped out by
the host memory manager 132. When the guest needs the
memory for something new, 1t may recycle the memory page.
This would entail freeing the memory page, setting a bitin the
bitmap corresponding to the memory page, and then allocat-
ing the memory page to another process/application. This
means that there 1s a period of time 1n which the content of the
memory page that 1s stored in the swap space can be discarded
(because the old content of the memory page will no longer be
used). In one embodiment, before the guest memory manager
144 allocates the freed memory page, the guest memory
manager 144 touches the memory page, which causes a page
fault. Touching the memory page may be a part of the memory
allocation process performed by the guest memory manager
144. At this time, the host memory manager 132 sees that the
memory page has been freed by the guest, and discards the
contents of the memory page and allocates a new memory
page (e.g., allocates new memory that doesn’t have any 1nfor-
mation 1n 1t) to the guest. Therefore, an unnecessary disk 1/0O
operation 1s prevented, saving time and resources.

In one embodiment, the host memory manager 132 takes
steps to avoid race conditions (in which the result of an
operation 1s unexpectedly and critically dependent on a
sequence or timing of other events). It may be desirable for
the host memory manager 132 to ensure that, before discard-
ing the contents ol a memory page, that memory page 1s still
unused (e.g., that a process has not started using the memory
page after the host memory manager 132 decided that 1t was
safe to discard the contents of the memory page but before the
host memory manager 132 actually did discard the memory
page). Accordingly, 1n one embodiment, the host memory
manager 132 checks the memory bitmap twice before the
contents of a memory page are discarded. This ensures that
the contents of presumably unused memory pages can be
discarded without suffering from a simultaneous re-alloca-
tion of the memory pages.

The host memory manager 132 first checks the memory
bitmap to make an 1nitial determination that the memory page
1s free. If the memory page 1s free, the host memory manager
132 unmaps the memory page (causes the memory page to no

10

15

20

25

30

35

40

45

50

55

60

65

6

longer be associated with (mapped to) physical memory).
After unmapping the memory page, the host memory man-
ager 132 again checks the bitmap to ensure that the memory
page 1s still free. If the bit associated with the memory page
was cleared before the memory page was unmapped, this may
indicate that new contents that should be preserved may have
been written to the memory page (and thus are stored in the
physical memory that was previously mapped to that memory
page). Accordingly, if the bit 1s not set on the second check of
the memory page, then the host memory manager 132 maps
the memory page back to the physical memory 1t was previ-
ously mapped to. If the unused bit 1s still set, then the host
memory manager 132 discards the contents of the memory
page (e.g., maps the physical memory previously mapped to
the memory page to a new memory page without first saving
the contents of the physical memory).

In one embodiment, each memory page allocated to a VM
1s represented by two bits 1n the memory bitmap 146, 150.
The bits associated with a memory page may have the states
00, 01, 10 or 11. In one embodiment, a 00 indicates that a
memory page 1s assigned (stable), a 01 indicates that a
memory page 1s Iree, a 11 indicates that a memory page
should be made stable on swap-1n or left stable 11 already 1n
memory and a 10 indicates that a page should be made stable
on swap-in or lett stable if already in memory. However, other
conventions may be used.

While a memory page 1s iree, it may have a state o1 01. In
one embodiment, when the memory page 1s allocated, a guest
clears the first bit and sets the second bit, transitioming from a
state of 01 to a state of 10. When the page 1s later freed, the
guest clears the second bit and again sets the first bit, transi-
tioning from a state of 10 to a state o1 01. In such an embodi-
ment, the host may discard contents of memory pages for
which the first bit 1s set (e.g., 01). Additionally, the host may
preserve the contents ol memory pages for which the first bit
is clear (e.g., 10 or 00). For example, 11 a swap-1n happens on
a page with the second bit set (e.g., 10), the host knows that 1t
can discard the contents of the memory page that have been
swapped out to secondary storage. Instead of swapping in the
stored contents of the memory page, the host may assign a
fresh memory page. The host may then clear the second biut,
causing the state of the bits associated with the memory page
to transition from 10 to 00. If a memory page for which the
first bit 1s clear 1s selected for swap-out, then the host may
swap out the contents to secondary storage. If a memory page
1s selected for swap-out for which the first bit 1s set, the
contents of the page may be discarded. Note that in this
embodiment, the host memory manager can see that the
memory page has been reused or will be reused based on the
memory bitmap 146. Accordingly, in one embodiment, the
guest memory manager 144 does not touch the memory page
at memory allocation time.

In another embodiment, when the memory page 1s allo-
cated, the guest sets the second bit, causing the state of the bits
representing that memory page to transition from 01 to 11.
When a page fault 1s generated (e.g., when a new process/
application that was assigned the memory page attempts to
use the memory page), the host memory manager 132 checks
the memory bitmap to determine a state of the memory page.
IT the state of the memory page 1s 01, then the host memory
manager 132 may discard the contents of the memory page
and assign a new memory page. I the state of the memory
page1s 11 or 00, then the host memory manager 132 preserves
content of the memory page. 11 the state of the bits 1s 11, then
the host additionally clears both bits associated with that
memory page, transitioning the bits from 11 to 00.

US 9,286,101 B2

7

In one embodiment, 1n which two bits are used per memory
page 1n the memory bitmap 146, the host memory manager
132 may make modifications to the memory bitmap 146. For
example, the host memory manager 132 may scan the
memory bitmap 146 to identify a memory page that can be
discarded and/or a memory page that can be evicted. On
finding such a memory page, the host memory manager 132
may make the identified memory page stable, and modify the
memory bitmap 146 to reflect this. Additionally, the host
memory manager 132 may receive a page fault for a memory
page that was previously evicted (e.g., swapped out to sec-
ondary storage 128). If the contents of the memory page do
not need to be preserved, then the host memory manager 132
may allocate a new memory page and make the new memory
page stable by modifying (e.g., clearing) a corresponding bit
or bits in the memory bitmap 146. To avoid race conditions,
host memory manager 132 may perform a lock on the
memory page and/or the memory bitmap 146. In one embodi-
ment, host memory manager 132 uses compare and exchange
instructions to avoid race conditions.

FIG. 2 1s a block diagram showing information exchange
between a host memory manager 210 and multiple guest
memory managers 200A-200C, i accordance with one
embodiment of present invention. As described with refer-
ence to FIG. 1, each guest memory manager 200A-200C runs
within a virtual machine. Guest memory managers 200A-
200C can communicate the state of memory pages allocated
to the VM on which they run by maintaining memory bitmaps
220A-220C. This communication of memory page status
information between a guest and host can reduce or eliminate
unnecessary swap operations, and thus optimize system per-
formance.

Note that though three guest memory managers 200A-
200C are shown, host memory manager 210 may communi-
cate with any number of guest memory managers 200A-200C
via memory bitmaps 220A-220C. In one embodiment, guest
memory managers 200A-200C include bitmap management
modules 230A-230C that maintain the memory bitmaps
220A-220C. This may include generating and registering the
memory bitmaps, and setting and clearing bits of the memory
bitmaps as memory pages are allocated and/or freed.

In one embodiment, bitmap management modules 230A -
230C generate the memory bitmaps 220 1n designated loca-
tions such as a designated memory locations or designated
registers. In one embodiment, bitmap management modules
230A-230C register the memory bitmaps 220A-220C using
system calls. The designated memory locations or designated
registers may be known to and/or accessible by both a guest
memory manager 200A-200C and the host memory manager
210. Therefore, host memory manager 210 may access the
memory bitmaps 220A-220C before performing memory
operations such as allocating memory, freeing memory,
swapping out memory, swapping in memory, etc. However,
the host memory manager 210 may refrain from checking the
memory bitmaps 220A-220C until memory 1s to be freed.
Therefore, any additional overhead of managing memory
pages will be reduced to simply setting a bit when a memory
page 1s Ireed and clearing the bit when the memory page 1s
allocated.

In one embodiment, host memory manager 210 includes a
memory page analyzing module 240. Memory page analyz-
ing module 240 may be responsible for checking the memory
bitmaps 220A-220C. Memory page analyzing module 240
may additionally recommend particular memory pages of one
or more VMs for memory operations (e.g., for eviction) based
on one or more memory bitmaps 220A-220C. When host
memory manager 210 determines that memory needs to be

10

15

20

25

30

35

40

45

50

55

60

65

8

freed, memory page analyzing module 240 may scan the
memory bitmaps 220A-220C to determine which VMs to
revoke memory from and which particular memory pages to
reclaim from those VMs (which memory pages to evict).
Additionally, or 1n the alternative, the memory page analyz-
ing module 240 may scan through page frames to identily
pages to evict. I the host memory manager 210 needs to free
up swap space, memory page analyzing module 240 may
search for swapped out memory pages that have been freed.
This may involve scanning the swap space to identily
swapped out memory pages and checking the statuses of the
swapped out memory pages in the memory bitmaps 220.

When memory pages are to be evicted, memory page ana-
lyzing module 240 1dentifies whether contents of the memory
pages need to be preserved based on the memory bitmaps
220A-220C. If the contents are to be preserved, then host
memory manager 210 swaps out the memory pages to a swap
space. IT the contents of the memory pages are not to be
preserved, host memory manager 210 sumply discards the
contents of the memory pages. Similarly, when memory
pages are to be swapped 1, memory page analyzing module
240 reviews an appropriate bitmap to determine whether the
contents of the swapped out memory page can be discarded.
If the contents cannot be discarded, the host memory manager
210 swaps 1n the memory page. I the contents can be dis-
carded, the host memory manager 210 allocates a new
memory page and removes the contents from the swap space.

FIG. 3 1s a flow diagram 1llustrating one embodiment of a
method 300 for performing memory eviction. The method
300 may be performed by a computer system that may com-
prise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), soltware (e.g., instructions run
on a processing device to perform hardware simulation), or a
combination thereof. In one embodiment, the method 300 1s
performed by the host memory manager 132 of FIG. 1.

Referring to FIG. 3, at block 305 of method 300, a host
(e.g., ahost memory manager) selects a memory page that has
been allocated to a guest for eviction (e.g., to be swapped out).
At block 308, the host accesses a bitmap maintained by a
guest (e.g., by a guest memory manager) to determine a state
of a bit 1n the bitmap associated with the memory page.

At block 310, the host determines whether the content of
the memory page 1s to be preserved based on the bitmap. In
one embodiment, the content of the memory page 1s to be
preserved if the bit corresponding to the memory page 1s unset
(0), and the content of the memory page 1s not to be preserved
if the bit 1s set (1). At block 315, 11 the memory page content
1s to be preserved, the method continues to block 325. How-
ever, 11 the memory page content 1s not to be preserved, the
method proceeds to block 320.

At block 325, the host swaps out or pages out the memory
page (removes the content of the memory page from main
memory and stores the content 1n secondary storage). The
method then proceeds to block 345.

At block 320, the host unmaps the memory page from the
guest. At block 330, the host accesses the bitmap a second
time to determine whether the status of the memory page has
changed (e.g., whether the bit associated with the memory
page 1s still set). ITthe state of the memory page 1s unchanged,
the method continues to block 340 and the contents of the
memory page are discarded. If the status of the memory page
has changed, this indicates that the memory page was reallo-
cated (and potentially used) after the original check of the
bitmap, and before the memory page was unmapped. Accord-
ingly, if the status of the memory page has changed (e.g., bit
1s no longer set), the method proceeds to block 335 and the
memory page 1s remapped to the guest.

US 9,286,101 B2

9

At block 343, the host frees the memory page. The host
may then reassign the memory page to a new guest or to a
process of the host. The method then ends.

FI1G. 4 1s a flow diagram illustrating one embodiment of a
method 400 for handling a page fault. The method 400 may be
performed by a computer system that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (e.g., instructions run on a processing
device to perform hardware simulation), or a combination
thereol. In one embodiment, the method 400 1s performed by
the host memory manager 132 of FIG. 1.

Referring to FIG. 4, at block 405 of method 400, a host

receives a page lfault for a memory page that has been
swapped out to secondary storage. The page fault may be
raised by computer hardware in response to a currently run-
ning program in a guest that 1s trying to access a non-resident
page 1n its address space. At block 408, the host accesses a

bitmap maintained by the guest to determine a state of a bit in

the bitmap associated with the memory page.

At block 410, the host determines whether the content of
the memory page 1s to be preserved based on the bitmap. In
one embodiment, the content of the memory page i1s to be
preserved 1 the bit corresponding to the memory page 1s unset
(0), and the content of the memory page 1s not to be preserved
if the bit 1s set (1). At block 420, 1f the memory page content
1s to be preserved, the method continues to block 425. How-
ever, 11 the memory page content 1s not to be preserved, the
method proceeds to block 430.

Atblock 425, the host swaps 1n the memory page (accesses
the secondary storage to retrieve content and writes the con-
tent to a region of main memory and maps the main memory
region to the memory page).

At block 430, the host discards the content of the memory
page that was stored 1n swap space 1n the secondary storage.
At block 435, the host assigns a new memory page to the
guest. The method then ends.

FIG. 5 1s a flow diagram 1illustrating one embodiment of a
method 500 for identitying memory pages that are candidates
for eviction. The method 500 may be performed by a com-
puter system that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soit-
ware (e.g., instructions run on a processing device to perform
hardware simulation), or a combination thereof. In one
embodiment, the method 500 1s performed by the host
memory manager 132 of FIG. 1.

Referring to FIG. 5, at block 505 of method 500, a host
determines that one or more memory pages are needed. At
block 508, the host scans bitmaps of one or more guests to
identily free memory pages. In one embodiment, each guest
1s a guest operating system that runs within a virtual machine.
Each guest may maintain 1ts own memory bitmap that shows
the statuses of all memory pages assigned to that guest. At
block 510, the host evicts one or more of the 1dentified free
memory pages from a guest. The host may evict memory
pages from multiple guests, as necessary. The host may then
add the memory pages to a free page list. The host may later
reallocate the evicted memory pages to new processes (€.g., 1o
new guests). The method then ends.

FIG. 6 A 15 a tlow diagram illustrating one embodiment of
a method 600 for maintaining a memory bitmap. The method
600 may be performed by a computer system that may com-
prise¢ hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), soltware (e.g., instructions run
on a processing device to perform hardware simulation), or a
combination thereof. In one embodiment, the method 600 1s
performed by the guest memory manager 144 of FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

10

Reterring to FIG. 6A, at block 602 of method 600, a guest
generates a bitmap. Each bit in the bitmap may correspond to
a different memory page that has been allocated to the guest.
At block 605, for each free memory page, the guest sets a bit
in the bitmap associated with that memory page.

At block 608, the guest determines to allocate a memory
page to a process. At block 610, the guesttouches the memory
page. If the memory page was paged out, then this will cause
a page Tault, which will cause the memory page to be paged
back in (or the contents of the memory page to be discarded
and a new memory page to be allocated by a host) before the
memory page 1s allocated by the guest. At block 612, the guest
allocates the memory page (which may be a new memory
page if the memory page had been paged out and subse-
quently discarded).

At block 615, the guest clears a bit associated with the
memory page in the bitmap. This may indicate that the
memory page 1s no longer free. Blocks 608-615 of method
600 may repeat while the guest 1s active.

FIG. 6B 1s a flow diagram 1llustrating another embodiment
of a method 650 for maintaining a memory bitmap. The
method 650 may be performed by a computer system that
may comprise hardware (e.g., circuitry, dedicated logic, pro-
grammable logic, microcode, etc.), software (e.g., mstruc-
tions run on a processing device to perform hardware simu-
lation), or a combination thereof. In one embodiment, the

method 650 1s performed by the guest memory manager 144
of FIG. 1.

Referring to FIG. 6B, at block 655 of method 650, a guest
generates a bitmap. Each bit in the bitmap may correspond to
a different memory page that has been allocated to the guest.
At block 660, for each free memory page, the guest sets a bit
in the bitmap associated with that memory page.

Atblock 665, the guest Irees amemory page (e.g., when the
process to which the memory page was allocated stops using
the memory page). At block 670, the guest sets a bit associ-
ated with the memory page 1n the bitmap. Blocks 655-670 of
method 600 may repeat while the guest 1s active.

FIG. 7 1s a flow diagram 1llustrating another embodiment
of a method 700 for maintaining a memory bitmap. The
method 700 may be performed by a computer system that
may comprise hardware (e.g., circuitry, dedicated logic, pro-
grammable logic, microcode, etc.), software (e.g., mstruc-
tions run on a processing device to perform hardware simu-
lation), or a combination thereof. In one embodiment, the

method 700 1s performed by the guest memory manager 144
of FIG. 1.

Referring to FIG. 7, at block 705 of method 700, a guest
generates a bitmap. Fach memory page that has been allo-
cated to the guest 1s associated with two bits 1n the bitmap. At
block 710, for each free memory page, the guest sets a first bit
in the bitmap associated with that memory page. At block
7135, the guest allocates a memory page (e.g., to a process or
application running on the guest). At block 720, the guest sets
a second bit associated with the memory page in the bitmap.
At block 722, the guest clears the first bit and the second bit
associated with the memory page atter a process to which the
memory page was allocated uses the memory page (e.g.,
attempts to write to the memory page).

At block 725, the guest later frees the memory page (e.g.,
when the process to which the memory page was allocated
stops using the memory page). At block 730, the guest sets the
first bit associated with the memory page in the bitmap.
Blocks 715-730 of method 700 may repeat while the guest 1s
active.

Note that embodiments of the present invention have been
described with reference to memory management for virtual

US 9,286,101 B2

11

machines. However, embodiments of the present invention
may additionally apply to traditional processes that include
garbage collection (e.g., a java virtual machine). In such
embodiments, a memory manager may maintain a memory
bitmap that identifies the state of all memory pages that have
been allocated to a particular process (e.g., to a java virtual
machine). Another memory manager may then use the state of
bits 1n the memory bitmap when determining memory pages
to evict, swap out, swap 1n, etc. In one embodiment, a hyper-
call 1s used to register the memory bitmap.

Note also that the above embodiments are described with
just two states: stable (allocated) and unused (iree). In these
embodiments, a volatile memory state (wherein a guest indi-
cates that 1t can tolerate the loss of memory page content,
though the memory page contains data that may be useful in
the future) and a potentially volatile memory state (wherein a
guest indicates that 1t can tolerate the loss of a memory page
as long as 1t has not been modified) may be wrapped into
either the stable state or the unused state. In one embodiment,
the volatile and potentially volatile memory pages are con-
sidered to be stable. In another embodiment, the volatile and
potentially volatile memory pages are considered to be free.
Alternatively, the volatile memory pages may be considered
to be free, and the potentially volatile memory pages are
considered to be stable.

Though the above embodiments have been described with
just two memory page states, embodiments of the present
invention may additionally apply to other memory page states
such as volatile or potentially volatile. In one embodiment, a
separate memory bitmap 1s maintained to identily memory
pages that are 1n the volatile memory page state. Therelore,
when a memory page 1s volatile, the guest memory manager
may set a bit corresponding to that memory page 1n a volatile
memory bitmap. When the memory page 1s unused, the guest
memory manager may iree the memory page 1n the volatile
memory bitmap and set a bit corresponding to that memory
page 1 an unused memory bitmap. If the memory page 1s
stable (allocated), then the bits corresponding to that memory
page in both the volatile memory bitmap and the unused
memory bitmap may be unset. A similar potential volatile
memory bitmap may also be maintained. Alternatively, a
single memory bitmap may include multiple bits for each
memory page. For example, 11 two bits are used, then a 00 may
indicate that a memory page 1s stable, a 10 may indicate that
the memory page is ifree, a 11 may indicate that the memory
page 1s volatile, and a 01 may indicate that the memory page
1s potential volatile. Memory bitmaps that identily volatile
and/or potential volatile memory page states may be main-
tained by a guest memory manager and used by a host
memory manager in the same manner as described above with
reference to memory bitmaps that only identify whether a
memory page 1s iree or allocated.

FIG. 8 illustrates a diagrammatic representation of a
machine 1n the exemplary form of a computer system 800
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. The computer system 800 may
correspond to hot machine 100 of FIG. 1. In embodiments of
the present invention, the machine may be connected (e.g.,
networked) to other machines mm a Local Area Network
(LAN), an itranet, an extranet, or the Internet. The machine
may operate in the capacity of a server or a client machine in
a client-server network environment, or as a peer machine 1n
a peer-to-peer (or distributed) network environment. The
machine may be a personal computer (PC), a tablet PC, a
set-top box (STB), a Personal Digital Assistant (PDA), a

cellular telephone, a web appliance, a server, a network

10

15

20

25

30

35

40

45

50

55

60

65

12

router, switch or bridge, or any machine capable of executing
a set of mstructions (sequential or otherwise) that specity
actions to be taken by that machine. Further, while only a
single machine 1s illustrated, the term “machine” shall also be
taken to include any collection of machines (e.g., computers)
that individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The exemplary computer system 800 includes a processing,
device 802, a main memory 804 (e.g., read-only memory

(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or Rambus

DRAM (RDRAM), etc.), a static memory 806 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
secondary memory 816 (e.g., a data storage device), which
communicate with each other via a bus 808.

The processing device 802 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device 802 may be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing,
(RISC) microprocessor, very long mnstruction word (VLIW)
microprocessor, processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. The processing device 802 may also be one or more
special-purpose processing devices such as an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), a digital signal processor (DSP), network pro-
cessor, or the like.

The computer system 800 may further include a network
interface device 822. The computer system 800 also may
include a video display unit 810 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 812 (e.g., a keyboard), a cursor control device 814
(e.g., a mouse), and a signal generation device 820 (e.g., a
speaker).

The secondary memory 816 may include a machine-read-
able storage medium (or more specifically a computer-read-
able storage medium) 824 on which 1s stored one or more sets
of nstructions 854 embodying any one or more of the meth-
odologies or functions described herein (e.g., memory man-
agers 880). In one embodiment, memory managers 880 cor-
respond to guest memory manager 144 and/or host memory
manager 132 of FIG. 1. The instructions 854 may also reside,
completely or at least partially, within the main memory 804
and/or within the processing device 802 during execution
thereol by the computer system 800; the main memory 804
and the processing device 802 also constituting machine-
readable storage media.

While the computer-readable storage medium 824 1s
shown 1n an exemplary embodiment to be a single medium,
the term “computer-readable storage medium” should be
taken to mclude a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of 1nstructions.
The term “computer-readable storage medium™ shall also be
taken to include any medium that 1s capable of storing or
encoding a set of structions for execution by the machine
that cause the machine to perform any one or more of the
methodologies of the present invention. The term “computer-
readable storage medium™ shall accordingly be taken to
include, but not be limited to, solid-state memories, and opti-
cal and magnetic media.

The computer system 800 may additionally include
memory management modules (not shown) for implementing
the functionalities of the memory managers 880. The mod-
ules, components and other features described herein (for

US 9,286,101 B2

13

example in relation to FIG. 1) can be implemented as discrete
hardware components or integrated in the functionality of
hardware components such as ASICS, FPGAs, DSPs or simi-
lar devices. In addition, the modules can be implemented as
firmware or functional circuitry within hardware devices.
Further, the modules can be implemented in any combination
of hardware devices and software components.

Some portions of the above described detailed descriptions
are presented 1n terms of algorithms and symbolic represen-
tations ol operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
clifectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though notnecessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons ol common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent {from the following discussion, it 1s appreciated that
throughout the description, discussions utilizing terms such
as “‘selecting”, “accessing”’, “determining’, “sending”,
“assigning”’, or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

Embodiments of the present invention also relate to an
apparatus for performing the operations herein. This appara-
tus may be specially constructed for the required purposes, or
it may comprise a general purpose computer system selec-
tively programmed by a computer program stored 1n the com-
puter system. Such a computer program may be stored 1n a
computer readable storage medium, such as, but not limited
to, any type of disk including tloppy disks, optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic disk storage media, optical storage
media, flash memory devices, other type of machine-acces-
sible storage media, or any type of media suitable for storing
clectronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth 1n the descrip-
tion above. In addition, the present invention 1s not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.

It 1s to be understood that the above description 1s intended
to be illustrative, and not restrictive. Many other embodi-

10

15

20

25

30

35

40

45

50

55

60

65

14

ments will be apparent to those of skill 1n the art upon reading
and understanding the above description. Although the
present invention has been described with reference to spe-
cific exemplary embodiments, 1t will be recognized that the
invention 1s not limited to the embodiments described, but can
be practiced with modification and alteration within the spirit
and scope of the appended claims. Accordingly, the specifi-
cation and drawings are to be regarded 1n an illustrative sense
rather than a restrictive sense. The scope of the mvention
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.
What 1s claimed 1s:
1. A method comprising:
generating, by a processing device executing a guest oper-
ating system, a bitmap representing a status of a memory
page designated by a hypervisor for use by the guest
operating system, wherein the bitmap indicates the
memory page 1s {reed by the guest operating system;

requesting, by the guest operating system, access to at least
one byte of physical memory associated with the
memory page prior to allocating the memory page,
wherein the content of the memory page 1s swapped out
to a secondary storage of the hypervisor;

1in response to requesting access, determining the hypervi-

sor discards the content while avoiding retrieval of the
content from the secondary storage;

allocating, by the guest operating system, the memory page

after the requesting access and 1n response to determin-
ing the content 1s discarded; and

updating, by the guest operating system, the bitmap to

indicate the memory page 1s used by the guest operating
system.

2. The method of claim 1, wherein updating the bitmap
COmprises:

clearing a bit 1n the bitmap corresponding to the one guest

operating system.

3. The method of claim 2, wherein requesting access to at
least one byte of physical memory triggers a page fault 1n
response to determining that the memory page has been
swapped out to secondary storage.

4. The method of claim 1, wherein the bitmap corresponds
to the guest operating system and comprises two bits associ-
ated with each memory page available to the guest operating
system.

5. The method of claim 4, further comprising:

setting a {irst bit and clearing a second bit in response to the

memory page being freed; and

setting the second bit and clearing the first bit in response to

the memory page being allocated to a process.

6. The method of claim 5, wherein the guest operating
system 1s allocated the available memory pages by the hyper-
visor, and wherein the hypervisor clears the second bit in
response to receiving a page fault for the memory page.

7. A non-transitory computer readable storage medium
comprising instructions that, when executed by a processing
device, cause the processing device to:

generate, by the processing device ol a guest operating,

system, a bitmap representing a status ol a memory page
designated by a hypervisor foruse by the guest operating
system, wherein the bitmap indicates the memory page
1s Treed by the guest operating system;

request, by the guest operating system, access to at least

one byte of physical memory associated with the
memory page prior to allocating the memory page,
wherein the content of the memory page 1s swapped out
to a secondary storage of the hypervisor;

US 9,286,101 B2

15

in response to the request, determine the hypervisor dis-
cards the content while avoiding retrieval of the content
from the secondary storage;

allocate, by the guest operating system, the memory page

alter the request and in response to determiming the
content was discarded; and

update, by the guest operating system, the bitmap to indi-

cate the memory page 1s used by the guest operating
system.

8. The non-transitory computer readable storage medium
of claim 7, wherein to update the bitmap comprises the pro-
cessing device to:

clear the bit 1n the memory page.

9. The non-transitory computer readable storage medium
of claim 8, wherein to request access to the at least one byte of
physical memory triggers a page fault 1n response to deter-
mimng that the memory page has been swapped out to sec-
ondary storage.

10. The non-transitory computer readable storage medium
of claim 7, wherein the bitmap corresponds to the guest
operating system and comprises two bits associated with each
memory page available to the guest operating system.

11. The non-transitory computer readable storage medium
of claim 10, wherein the processing device 1s further to:

set a first bit and clear a second bit in response to the

memory page being freed; and

set the second bit and clear the first bit in response to the

memory page being allocated to a process.

12. The non-transitory computer readable storage medium
of claim 11, wherein the guest operating system 1s allocated
the available memory pages by the hypervisor, and wherein
the hypervisor clears the second bit 1n response to recerving a
page fault for the memory page.

13. An apparatus comprising:

a memory; and

a processing device operatively coupled to the memory to:

generate, by the processing device of a guest operating
system, a bitmap representing a status of a memory
page designated by a hypervisor for use by the guest

10

15

20

25

30

35

16

operating system, wherein the bitmap indicates the
memory page 1s freed by the guest operating system;

request, by the guest operating system, access to at least
one byte ol physical memory associated with the
memory page prior to allocating the memory page,
wherein the content of the memory page 1s swapped
out to a secondary storage of the hypervisor;

in response to the request, determine the hypervisor
discards the content while avoiding retrieval of the
content from the secondary storage;

allocate, by the guest operating system, the memory
page alter the request and 1n response to determining,
the content was discarded; and

update, by the guest operating system, the bitmap to
indicate the memory page 1s used by the guest oper-
ating system.

14. The apparatus of claim 13, wherein to update the bit-
map the processing device 1s further to:

clear the bit in the memory page.

15. The apparatus of claim 14, wherein to request access to
the at least one byte of physical memory triggers a page fault
in response to determining that the memory page has been
swapped out to secondary storage.

16. The apparatus of claim 13, wherein the bitmap corre-
sponds to the guest operating system and comprises two bits
associated with each memory page available to the guest
operating system.

17. The apparatus of claim 16, wherein the processing
device 1s further to:

set a first bit and clear a second bit 1n response to the

memory page being freed; and

set the second bit and clear the first bit 1n response to the

memory page being allocated to a process.

18. The apparatus of claim 17, wherein the guest operating
system 1s allocated the available memory pages by the hyper-

visor, and wherein the hypervisor clears the second bit in
response to recerving a page fault for the memory page.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

