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EXPRESSING AND EXECUTING SEMANTIC
QUERIES WITHIN A RELATIONAL
DATABASE

The present application 1s a continuation of and claims
priority of U.S. patent application Ser. No. 12/705,983, filed
Feb. 16, 2010, the content of which 1s hereby incorporated by
reference 1n its entirety.

BACKGROUND

Data can be stored 1n a way that represents relationships
between factual entities 1n a graph. Data stored 1n this form 1s
sometimes referred to as resource description framework data
(or RDF data). RDF data 1s often referred to as a graph that
includes a set of triples, wherein each triple includes a subject,
a predicate, and an object. This type of triple can be thought of
as a directed-arc diagram 1n which each triple 1s represented
as a node-arc-node link. Each triple represents a statement of
a relationship between the things denoted by the nodes 1n that
link. The subject and object are represented by the nodes and
the predicate 1s represented by the directed link. Links are
sometimes referred to as edges. These edges or links are
labeled and links with different labels have different mean-
ings. The directionality of the link 1s also significant, 1n that 1t
always points toward the object. Two exemplary 1tems that
can be represented by a graph of triples are:

“Mau 1s located 1n the Pacific Ocean™; and

“Maui 1s an 1sland”.

The triple representing the first fact includes “Mau1” and
“Pacific Ocean” as nodes and a link labeled “location” point-
ing from Maui to Pacific Ocean.

A rule 1s a system by which a new triple can be inferred
based on existing triples. With reference to the examples
given above, a rule might be “if some object 1s located 1n the
Pacific Ocean and that object 1s an 1sland, 1t can be inferred
that the object 1s a “Pacific 1sland”.

Semantic reasoning systems allow a user to execute logical
queries against a graph of triples 1n order to discover new
information. For example, some semantic reasoning engines
are implemented using the Prolog language, which 1s a gen-
eral purpose logic programming language associated with
artificial intelligence and computational linguistics, or the
Datalog language, which 1s a query and rule language for
deductive data stores that syntactically 1s a subset of Prolog.
These two are only exemplary languages which may be
implemented 1n a semantic reasoning engine, and others are
used as well.

In systems where semantic queries (that 1s, queries that are
dependent for their execution upon the execution of semantic
reasoning or which require the calling and application of
semantic rules) are executed, a semantic reasoning engine 1s
often deployed between a user that provides a query, and a
relational data store. The relational data store contains the
facts and relationships either 1in the form of triples, as dis-
cussed above, or 1n a form from which such triples can be
inferred. These types of systems use the semantic reasoning
engine to encode and execute rules and provide a query lan-
guage that can be used by a user to access data that 1s either
stored 1n the form of triples or stored 1n a form from which the
triples can be inferred.

However, such systems sufler from a number of draw-
backs. The semantic reasoning engines are not easily exten-
sible or scaleable. In addition, while parsing the input query
and executing numerous queries against the relational data
store, the semantic reasoning engines often materialize large
datasets which take up a great deal of memory. Similarly,
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2

while the semantic reasoning engine 1s generating the desired
results, it must perform its own memory and caching man-
agement.

The discussion above 1s merely provided for general back-
ground information and 1s not intended to be used as an aid 1n
determining the scope of the claimed subject matter.

SUMMARY

In order to address at least some of these concerns, seman-
tic queries are expressed and executed, using semantic rules,
directly within a relational database. This eliminates or
reduces the need for a dedicated semantic reasoning engine.
Semantic rules can be expressed 1n terms of table valued
functions, and recursive semantic rules can be expressed by
defining a table valued function using a common table expres-
S101.

This Summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to
identify key features or essential features of the claimed sub-
ject matter, nor 1s 1t intended to be used as an aid 1n determin-
ing the scope of the claimed subject matter. The claimed
subject matter 1s not limited to implementations that solve any
or all disadvantages noted 1n the background.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system currently used to
execute semantic queries against a relational database.

FIG. 21s ablock diagram of one embodiment of a relational
database that expresses and executes semantic queries.

FIG. 3 1s a simplified 1llustration of a graph structure 1n the
form sets of triples.

FIG. 4 1s a flow diagram 1llustrating one embodiment of the
overall operation of the system shown in FIG. 3.

FIG. 5 1s a flow diagram 1illustrating another embodiment
of the operation of the system shown 1n FIG. 3.

FIG. 6 1s a block diagram 1llustrating one exemplary oper-
ating environment in which the system of FIG. 2 can be
deployed.

DETAILED DESCRIPTION

Prior to discussing the present invention in more detail 1t 1s
helpiul to consider the overall operation of a system that can,
in one exemplary embodiment, be used to execute semantic
queries against a relational database. FIG. 1 1s a block dia-
gram ol a system 100 that can be used to execute semantic
queries against data 1n a relational database. System 100
includes semantic reasoning engine 102, and relational data-
base 104. Semantic reasoning engine 102 has access to a
query optimizer 106 that i1s either located within semantic
reasoning engine 102, or external to semantic reasoning
engine 102 (as indicated by number 108). Semantic reasoning
engine 102 utilizes logic rules 110 for converting a semantic
query 112 into a set of relational database queries 114 that are
executed against relational database 104. FIG. 1 also shows
that relational database 104 includes relational data store 116,
that 1tself includes the facts and relationships between them,
often stored in tables, as well as functions 118 and core query
processing component 120 that 1s used to actually execute the
query against the relational data store 116.

In operation, semantic reasoning engine 102 first recerves
a semantic query 112 from a user. Semantic reasoning engine
102 loads logic rules 110 that it uses for performing semantic
reasoning. Rules 110 are often first order logic rules such as
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those used 1n the Prolog programming language. Once engine
102 is finished loading rules 110, semantic query 112 1s
optimized to allow 1t to be more efliciently executed against
the relational database 104. Basically, the optimization
includes breaking the query into multiple blocks to 1solate
sections ol the query that require semantic reasoning. In
doing this, semantic reasoming engine 102 translates the
query 1nto an abstract syntax tree and strips out syntactic
information that 1s not required. The syntax tree 1s converted
to a language integrated query link syntax tree and passed to
query optimizer 106 (or 108). The query optimizer 106 (or
108) 1dentifies sections within the semantic query as being
tully grounded and requiring no semantic reasoning. These
sections undergo a sequence ol re-write operations to become
direct relational database queries 114. Once the queries have
been transformed in this way, they are loaded 1nto semantic
reasoning engine 102 as goals 122. Through a series of rela-
tional database queries 114 executed against relational data-
base 104, semantic reasoning engine 102 attempts to find
results 126 that can then be returned to the user that submatted
the semantic query 112.

It can be seen from system 100 that semantic reasoning,
engine 102 executes a significant volume of activity, with
respect to memory usage and processing overhead, and it can
casily be seen that semantic reasoning engine 102 may be
required to make a large number of round trip queries to
relational database 104, for even a fairly simple semantic
query. In addition, some current semantic reasoning engines
102 use memorization techniques that cause 1t to retain deep
copies of all temporary results, potentially starving the core
query processing component 120 1n relational database 104
of available memory.

FI1G. 2 1s a block diagram of one illustrative embodiment of
a relational database 150 that expresses and executes seman-
tic queries 152 internally, using the technology already avail-
able 1n relational database 150, without requiring (or at least
reducing the activity performed by) a dedicated semantic
reasoning engine (such as engine 102 shown 1n FIG. 1). FIG.
2 shows that semantic queries 152 can be defined using table
valued functions 154 (which may include common table
expressions 156), as well as scalar valued functions 158. The
semantic queries 152 are built on top of the core query pro-
cessing component 160, which actually executes the queries
against relational data store 162.

Before discussing the operation of relational database 150
in more detail, one exemplary representation of data triples
that include a subject, predicate and object 1s shown 1n FIG. 3.
Of course, other structures could be used as well. FIG. 3
shows triples that illustrate the ancestral relationships and
ancestral birthplaces of individuals contained therein. FIG. 3
shows that one triple, for instance, 1s formed of the nodes John
200 and Jim 202 connected by the relationship parent link
204. In that triple, John 1s the subject node 200 and Jim 1s the
object node 202, while the relationship parent link 204 1s the
predicate. FIG. 3 also shows that the node John 200 1s
included 1n a birthplace triple wherein the John node 200 1s
the subject, Seattle node 206 1s the object, and birthplace link
208 1s the predicate.

It a client desires to obtain information from the data struc-
ture 1n FI1G. 3, the client will submuit a query for that informa-
tion. I, 1n executing the query, a semantic rule must be called,
then the query 1s a semantic query.

In order to execute a semantic query against the data struc-
ture 1llustrated 1in FIG. 3, relational database 150 will be
discussed with respect to an example of both a recursive
semantic rule and a non-recursive semantic rule. Implement-
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4

ing semantic transitivity 1s also described. Transitivity, in one
type of semantic programming language, can be defined as
follows:

Rule 1: Ancestor (A,C):-Parent (A,B), Ancestor (B,C)

Rule 2: Ancestor (A,B):-Parent (A,B)

The lett side of each rule 1s the name of the rule (or the
head) and the right side 1s how the rule i1s fulfilled (or the
body). Intuitively, Rule 2 means that a person A has the
ancestor B 1f 1t 1s known that the person A has a parent B. In
other words, 11 B 1s the parent of A, then B 1s also an ancestor
of A. Therefore, wherever a parent relationship exists, an
ancestor relationship also exists.

Intuitively, Rule 1 can be understood to mean that the
person A has an ancestor C 11 i1t 1s known that A has a parent
B and B has an ancestor C.

It can be seen that in Rule 1, the function “Ancestor” 1s
mentioned on both sides of the rule (1n both the head and the
body). Therefore, Rule 1 1s a recursive rule, while Rule 2 1s a
base rule or non-recursive rule. With this understanding, 1t
should be noted that a semantic query that references a predi-
cate may be a non-recursive query or a recursive query. For
instance, 1f the predicate referenced by the semantic query
requires calling a recursive rule (or 1s backed by a recursive
rule) such as Rule 1, then the semantic query may properly be
called a recursive semantic query, because 1t 1s backed by a
recursive rule.

In some systems, queries requiring applications of these
types of rules (Rules 1 and 2) are implemented by a dedicated
semantic reasoning engine. Such a system 1s described above
with respect to engine 102 shown 1n FIG. 1.

However, in order to obtain the increased performance of
using the relational database technology, semantic queries

can be directly expressed and executed as semantic queries
152 (1in FI1G. 2) entirely within relational database 150, using
semantic rules, such as Rules 1 and 2. In one embodiment, the
rules are represented by creating a table valued function with
the following definition:

TABL.

CREATE FUNCTION
[Ancestor(@Sub](@Sub nvarchar(11))
RETURNS TABLE AS RETURN
WITH
[Edges]([Sub], [Obj]) AS (
SELECT [Sub], [Ob]
FROM [Parent]( )

L]
[

);
[Paths]([Sub], [Obj], [Length]) AS (

SELECT [Edge].[Sub],
EEdgﬂ]-[Obj];
FROM [Edges| AS [Edge]
WHERE [Edge].[Sub] = @Sub
UNION ALL
SELECT [Path].[Sub],
[Edge].[Oby],
[Length] + 1
FROM [Paths] AS [Path]
JOIN [Edges] AS [Edge]
ON [Path].[Obj] = [Edge].[Sub]
WHERE [Length] <100
)
SELECT [Sub] as [Sub],
[Obj] as [Obj]
FROM [Paths]

The first two lines of the code in Table 1 simply name the
function Ancestor(@Sub and indicate that a subject will be
provided to the function. The next section of the code defines
the edges and paths in the tree of triples (such as that shown in
FIG. 3) that are going to be examined and returned from the
function.
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Assume, for the sake of example, that the user wishes to
have the function of Table 1 return a list of ancestors for a
subject “John”. Then, the subject “John™ will be mput when
the function 1s called, and the function will climb the graph
structure (such as that shown on the left side of FIG. 3) to
identify all ancestors of “John”. It can be seen from Table 1
that the table valued function 154 uses a common table
expression 156. Common table expressions atlord a mecha-
nism by which temporary tabling can be done by a server
within the relational database 1350 itself. This allows a set of
bindings to exist within the relational database 150, without
requiring the materialization of the bindings as objects in the
memory of a process that 1s running within an external rea-
soning engine, such as engine 102. Using common table
expressions 156 1n this way can help to avoid roundtrip pro-
cessing steps between the external semantic reasoning engine
102 and the relational database 150 for recursive functions.
Similarly, 1t should be noted that the ability of a common table
expression to temporarily materialize dataneed not be used 1n
a system 1n which all rules are stored on a server instance for
relational database 150, instead of being appended to a query.

There are a number of 1items of interest in the table valued
tfunction 154 (which uses a common table expression 156) 1n
Table 1. First, 1t can be seen 1n line 20 of Table 1 that the
common table expression 156 set out therein will climb up the
tree structure or graph structure shown in FIG. 3. This 1s
because line 20 restricts the function so that whatever 1s the
object of the path (which 1s the current path that has just been
discovered while climbing up the tree) 1s the subject of the
edge (which 1s the new edge that 1s to be discovered next).
Similarly, line 13 of the table valued function 154 in Table 1
requires that the subject mnput by the user 1s the same as that
found on the bottom of the graph from which the climbing
operation starts. That 1s, the subject of the function 1s bound to
the value “John” and the function 1s stmply trying to bind the
object. This means that the function will climb from subjectto
object, upwards, across a string of predicates, 1n the structure
shown in FIG. 3.

As the function climbs, for example, from the John node
200 to the Jim node 202 across predicate 204, newly discov-
ered edges are added to the path, and the next edge 1s exam-
ined. In each 1teration, the object of the current path 1s linked
upward to the subject of a new edge.

It should also be noted that 1n line 7 of Table 1 the call for
a new edge 1s actually a call to a table valued function.

Once the table value function 1s defined then the function
simply performs the same logical operations as shown 1n
Rules 1 and 2. This 1s illustrated in the “Select” and “From™
portions 1n the last three lines of Table 1.

It can be seen that Table 1 defines the form of the “Ances-
tor” table valued function 154 where the subject 1s bound at
the time the rule 1s to be executed. For all bindings to be
implemented, four separate table valued functions 154 are
used. Those values correspond to only the subject being
bound, as 1n Table 1; only the object being bound; both the
subject and the object being bound; and both the subject and
object being unbound.

Another example may be helpiul. Table valued functions
154 can be used, as discussed above, to also encode non-
recursive rules. One semantic rule that looks for the birthplace
of all ancestors 1s written as follows:

Rule 3: AncestralBirthplace (Person,Place):-Ancestor (Per-
son,Anc), Birthplace (Anc,Place)

The rule of FIG. 3 can be mtuitively understood to mean
that a given person has an ancestral birthplace of “Place” 1f it
1s known that the given person has an ancestor of “Anc” and
the ancestor “Anc” has a birthplace of “Place”. It can be seen
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6

that, since the left and right side of Rule 3 do not share the
same function, Rule 3 1s a non-recursive rule. Rule 3 can be

represented as a table valued function 154 within semantic
queries 152 of FIG. 2, as follows:

TABL.

CREATE FUNCTION
[AncestralBirthplace@Sub](@Sub nvarchar(11))
RETURNS TABLE AS RETURN
SELECT t0.Sub as [Sub],
t1.0bj as [Obj]

(L]
-

FROM
[Ancestor(@Sub] (@Sub) as tO
CROSS APPLY [Birthplace@Sub](t0.Oby) as tl

As with the function defined in Table 1, the first two lines of
the function defined 1n Table 2 name the function and indicate
that the function will be given the subject of a relationship.
The next four lines indicate that the edges will have subjects
and objects, and the “FROM?” clause calls the “Ancestor”
function defined by Table 1 and provides, along with 1t, the
subject input to the AncestralBirthplace function defined 1n
Table 2.

The CROSS APPLY operator, 1n one embodiment, can be
used to specity that the results of one table valued function are
to serve as the input to another. Therefore, the CROSS APPLY
function shown 1n Table 2 indicates that the outputs of the
Ancestor Tunction serve as the mputs to a Birthplace function
which, 1n the embodiment shown 1n Table 2, 1s simply a table

of birthplaces wrapped 1n a table valued function. The func-
tion simply 1dentifies where an individual 1s born. Again, 1t
should be noted that the subject of the “Birthplace” function
1s not the subject that was passed 1n to the AncestralBirthplace
function defined 1n Table 2, but 1s 1nstead the object of the
“Ancestor” function called 1n the “FROM?” clause. Edges that
identify the birthplaces are identified as t1. In order to query
the function defined in Table 2, the following can be used:

TABL

L1

3

SELECT t0.0b;
FROM
[AncestralBirthplace@Sub](*Joe Smith’) as tO

This query returns all valid binds for “place” provided that
the subject can be bound to the value “Joe Smith™.

It should be noted that the relational database 1350 of FIG.
2 can operate 1n a number of different modes. For instance,
relational database 150 can wait to receive a semantic query
175 from a user 177 and, at query time, build the necessary
semantic rules in semantic queries 152, using either table
valued functions 154 (along with common table expressions
156) or scalar valued functions 158. The semantic queries 152
can then be executed by core query processing component
160 against the relational data store 162 by calling the seman-
tic rules just built. Alternatively, the semantic rules support-
ing semantic queries 152 can be written, and stored, ahead of
time, and then simply referenced for execution of semantic
query 175. Additionally, relational database 150 can operate
in a combination of those two nodes, 1n which some queries
are predefined and stored for later use at query time, and 1n
which other queries are defined, represented, and executed as
semantic queries 152, at query time. In any case, relational
database 150 returns the query results 179 to user 177.

FIG. 4 15 a flow diagram 1llustrating a mode of operation of
relational database 150 when the expressions (the semantic
rules) for the semantic queries 152 are generated at query
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time. In that mode, relational database 150 first receives a
query 175, and this 1s indicated by block 300. Relational
database 150 then determines whether the query 175 15 a
semantic query, requiring semantic query definition. This can
be done using a database sever (not shown) within database
150, using core query processing component 160, or another
component within database 150. This 1s 1indicated by block
302. If not, the query 1s simply passed to the core query
processing component 160, which executes a query plan to
return results for the query, as indicated by blocks 304 and
306 1n FIG. 4.

However, i, at block 302, it 1s determined that the query
175 1s a semantic query (requiring calling of a semantic rule),
then relational database 150 determines whether the query
can be expressed directly within relational database 150, as
indicated by block 308. In one embodiment, all semantic
queries can be expressed and executed within relational data-
base 150. These can include all classes of semantic queries
(for mstance, non-recursive queries that require calling of
non-recursive semantic rules, linear recursive queries that
require calling of linear recursive rules or require calling rules
in a linear recursive way and bifurcating recursive queries that
require calling of bifurcating recursive rules). It should also
be noted, again, that a semantic query that references a predi-
cate that requires execution of a recursive rule can, 1tself, be
called a recursive query. In another embodiment, however,
only a subset of classes of the semantic queries are expressed
and executed within relational database 150. For instance, it
may be beneficial, 1n one embodiment, to only provide for the
expression and execution of non-recursive queries and linear
recursive queries.

Even expressing and executing this subset of semantic
queries directly within relational database 150 provides a
significant increase i performance. In that embodiment, 1T a
biturcating recursive query is recerved, then 1t can be pro-
cessed using an external or dedicated semantic reasoning
engine as discussed above with respect semantic reasoning
engine 102 in FIG. 1. Therefore, at block 308, relational
database 150 determines whether the query 1735 can be
expressed directly within the relational database 150. If not,
the query 175 1s provided to a semantic processing engine for
processing, as indicated by block 310.

However, 11, at block 308, it 1s determined that the query
can be expressed and executed directly within relational data-
base 150, then relational database 150 defines a table valued
function 154, representing the semantic query 175, within the
relational database 150. Again, this can be performed by a
server within relational database 150, by core query process-
ing component 160, or otherwise. The table valued function
154 may include a common table expression 156 and will be
a semantic rule 1n semantic query expression 152 that repre-
sents semantic query 173. Defining the table valued function
154 1n this way 1s indicated by block 312 1n FIG. 4.

Once the semantic query 1s expressed (such as using a table
valued tunction 154 to define a semantic rule) directly within
relational database 150, that table valued function 154 1s then
called within relational database 150. This 1s indicated by
block 314 1n FIG. 4. Core query processing component 160
executes the called table valued function 154 against the
relational data store 162 using a query plan that accounts for
any semantic dependencies expressed in the query. This 1s
indicated by block 304. The query results 179 are returned to
the user 177 for use 1n one of a variety of different consuming,
contexts 1n which the user 177 resides.

FIG. 5 1s a flow diagram 1illustrating the operation of the
relational database 150 shown in FIG. 2 1in another mode, 1n
which at least some of the semantic queries 152 are already
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expressed and stored within relational database 150, prior to
query time. In that embodiment, at some point prior to receiv-
ing a query, relational database 150 defines semantic rule as
table valued functions representing various semantic queries
152 within relational database 150. Those query expressions
are stored as semantic queries 152 within relational database
150 for later use. This 1s indicated by block 320 in FIG. 5.

Then, at query time, relational database 150 recerves
semantic query 175. This 1s indicated by block 322.

Relational database 150 then determines whether semantic
rules 1n a semantic query 152 already exist, which express the
semantic query 175. This 1s indicated by block 324 1n FIG. 5
and can be done by a server within relational database 150, by
core query processing component 160, or using another com-
ponent. If not, then a table valued function 154 or other
function 1s created for the newly recerved query, within the
relational database 150. This 1s indicated by block 326.

If the semantic query 152 has already been created and
stored, prior to query time, or after 1t 1s created at query time,
then core query processing component 160 calls the semantic
rule representing the query and executes a query plan
accounting for the semantic dependencies in the query. This 1s
indicated by blocks 328 and 330 in FIG. 2. Relational data-
base 150 then returns the query results 179, to the user. This
1s indicated by block 332 in FI1G. 5. By expressing and execut-
ing semantic queries directly within relational database 150,
performance 1ncreases can be realized.

FIG. 6 1s one embodiment of a computing environment 1n
which the invention can be used. With reference to FIG. 6, an
exemplary system for implementing some embodiments
includes a general-purpose computing device 1n the form of a
computer 610. Components of computer 610 may include,
but are not limited to, a processing unit 620, a system memory
630, and a system bus 621 that couples various system com-
ponents including the system memory to the processing unit
620. The system bus 621 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus.

Computer 610 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 610 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented 1n any method or technology for storage
ol mformation such as computer readable mstructions, data
structures, program modules or other data. Computer storage
media includes, but 1s not limited to, RAM, ROM, FEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired mnformation and which can be accessed by
computer 610. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
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set or changed 1n such a manner as to encode information 1n
the signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
RF, infrared and other wireless media. Combinations of any
of the above should also be included within the scope of
computer readable media.

The system memory 630 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 631 and random access memory
(RAM) 632. A basic input/output system 633 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 610, such as during start-
up, 1s typically stored in ROM 631. RAM 632 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing umt 620. By way of example, and not limitation, FIG. 6
illustrates operating system 634, application programs 635,
other program modules 636, and program data 637. The sys-
tems discussed above 1n FIGS. 2-5 can be stored in other
program modules 636 or elsewhere, including being stored
remotely. Similarly, computer 610 can be used to implement
relational database 150, with one or more of the storage
components being used as the relational data store and pro-
cessing unit 620 being used as the core query processing
component.

The computer 610 may also include other removable/non-
removable volatile/nonvolatile computer storage media. By
way of example only, FIG. 6 1llustrates a hard disk drive 641
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 631 that reads from or
writes to a removable, nonvolatile magnetic disk 652, and an
optical disk drive 6535 that reads from or writes to a remov-
able, nonvolatile optical disk 656 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 641 1s typically
connected to the system bus 621 through a non-removable
memory interface such as interface 640, and magnetic disk
drive 651 and optical disk drive 655 are typically connected to
the system bus 621 by a removable memory interface, such as
interface 650.

The drives and their associated computer storage media
discussed above and 1llustrated 1n FIG. 6, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 610. In FIG. 6, for
example, hard disk drive 641 1s 1llustrated as storing operating
system 644, application programs 645, other program mod-
ules 646, and program data 647. Note that these components
can either be the same as or different from operating system
634, application programs 635, other program modules 636,
and program data 637. Operating system 644, application
programs 643, other program modules 646, and program data
647 are given different numbers here to illustrate that, at a
mimmum, they are different copies.

A user may enter commands and information into the com-
puter 610 through input devices such as a keyboard 662, a
microphone 663, and a pointing device 661, such as a mouse,
trackball or touch pad. Other input devices (not shown) may
include a joystick, game pad, satellite dish, scanner, or the
like. These and other input devices are often connected to the
processing unit 620 through a user input interface 660 that 1s
coupled to the system bus, but may be connected by other
interface and bus structures, such as a parallel port, game port
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or a universal serial bus (USB). A monitor 691 or other type of
display device 1s also connected to the system bus 621 via an
interface, such as a video interface 690. In addition to the
monitor, computers may also include other peripheral output
devices such as speakers 697 and printer 696, which may be
connected through an output peripheral interface 695.

The computer 610 1s operated 1n a networked environment
using logical connections to one or more remote computers,
such as a remote computer 680. The remote computer 680
may be a personal computer, a hand-held device, a server, a
router, a network PC, a peer device or other common network
node, and typically includes many or all of the elements
described above relative to the computer 610. The logical
connections depicted 1n FIG. 6 include a local area network
(LAN) 671 and a wide areanetwork (WAN) 673, but may also
include other networks. Such networking environments are
commonplace 1n offices, enterprise-wide computer networks,
intranets and the Internet.

When used 1mn a LAN networking environment, the com-
puter 610 1s connected to the LAN 671 through a network
interface or adapter 670. When used in a WAN networking
environment, the computer 610 typically includes a modem
672 or other means for establishing communications over the
WAN 673, such as the Internet. The modem 672, which may
be internal or external, may be connected to the system bus
621 via the user mput interface 660, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 610, or portions thereot,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 6 illustrates remote
application programs 685 as residing on remote computer
680. It will be appreciated that the network connections
shown are exemplary and other means of establishing a com-
munications link between the computers may be used.

As mentioned above, relational database 150 can be imple-
mented using processing unit 620 and any of a variety of the
computer storage components discussed in FIG. 1. In addi-
tion, the server 1n relational database 150, and the core query
processing component 160 can be implemented by activating
processing unit 620, to perform as described above with
respect to FI1GS. 2-5.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed 1s:

1. A computer-implemented method of generating a
semantic query, comprising:

receving a query at a relational database having a process-
ing component and a relational data store;

identifying the query as a semantic query;

determiming whether the semantic query can be directly
expressed within the relational database without requir-
ing use of a semantic processing engine that 1s distinct
from the relational database;

11 the semantic query can be directly expressed within the
relational database, generating, by the relational data-
base, a table valued function representing the semantic
query and obtaining query results from the relational
database using the table valued function: and

11 the semantic query cannot be directly expressed within
the relational database, providing the semantic query,
that was received at the relational database, to the
semantic processing engine and receiving, at the rela-
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tional database from the semantic processing engine, a
processed semantic query for obtaining query results
from the relational database.

2. The computer-implemented method of claim 1 wherein
identifying the query as a semantic query comprises:

determining that the query depends, for 1ts application, on

application of a semantic rule.

3. The computer-implemented method of claim 2 wherein
generating a table valued function comprises:

generating the table valued function with a common table

expression to represent the semantic rule.

4. The computer-implemented method of claim 3 and fur-
ther comprising:

processing the semantic query within the relational data-

base by calling the table valued function.

5. The computer-implemented method of claim 4 wherein
processing the semantic query comprises:

performing temporary tabling within the relational data-

base, using the common table expression, to generate
bindings within the relational database, without materi-
alizing the bindings 1n a memory external to the rela-
tional database.

6. The computer-implemented method of claim 2 wherein
generating the table valued function comprises:

defiming edges and paths 1n a data tree structure stored in

the relational database that correspond to values that are
examined and returned from the table valued function.

7. The computer-implemented method of claim 6 wherein
one of the paths include a first path that defines a current path
under consideration within the tree structure, the current path
starting at a subject node and ending at an object node.

8. The computer-implemented method of claim 7 wherein
the edges define new edges, not yet considered 1n the tree
structure 1n the relational database, each edge starting at a
subject node and ending at an object node.

9. The computer-implemented method of claim 8 wherein
generating a table valued function comprises:

generating the table valued function so an object node of

the first path comprises a subject node for a next edge to
be considered.

10. The computer-implemented method of claim 8 wherein
generating a table valued function comprises:

generating a plurality of different table valued functions to

accommodate different bindings of the subject nodes
and object nodes.

11. The computer-implemented method of claam 10
wherein generating a plurality of different table valued func-
tions comprises:

generating a first table valued function to represent the

semantic query and to define binding only subject nodes
to a given value.

12. The computer-implemented method of claim 11
wherein generating a plurality of different table valued func-
tions comprises:

generating a second table valued function to represent the

semantic query and to define binding only object nodes
to a given value.

13. The computer-implemented method of claiam 12
wherein generating a plurality of different table valued func-
t10ns cComprises:

generating a third table valued function to represent the

semantic query and to define binding both subject nodes
and object nodes to given values.
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14. The computer-implemented method of claam 13
wherein generating a plurality of different table valued func-
tions comprises:

generating a fourth table valued function to represent the

semantic query and to define binding neither subject
nodes nor object nodes to given values.

15. A computer-implemented method of processing a
semantic query, comprising:

receving a query at a relational database having a process-

ing component and a relational data store;

identifying the query as a semantic query;

determining whether the semantic query can be directly

expressed within the relational database without requir-
ing use of an external semantic processing engine, thatis
external to the relational database;

11 the semantic query can be directly expressed within the

relational database:

using the processing component of the relational data-
base to generate a table valued function with a com-
mon table expression representing the semantic query
within the relational database; and

processing the semantic query by performing temporary
tabling within the relational database, using the com-
mon table expression, to generate bindings within the
relational database, without materializing the bind-
ings in a memory external to the relational database;
and

11 the semantic query cannot be directly expressed within

the relational database, providing the semantic query,
that was received at the relational database, to the
semantic processing engine to facilitate execution of the
semantic query against the relational data store.

16. The computer-implemented method of claim 135
wherein 1dentifying the query as a semantic query comprises:

determining that the query depends, for its application on

application of semantic rule.

17. The computer-implemented method of claim 16
wherein generating a table valued function comprises:

generating the table valued function with the common table

expression to represent the semantic rule.

18. A computer-implemented method of retrieving data
from a relational database having a processing component
and a relational data store, comprising:

recerving a semantic query that depends, for its execution,

on application of at least one semantic rule;

expressing the semantic query within the relational data-

base, using the processing component within the rela-
tional database, wherein expressing the semantic query
further comprises generating, within the relational data-
base, a table valued function that defines a semantic rule
to be called in executing the semantic query;

executing the semantic query against the relational data

store, using the processing component within the rela-
tional database, wherein executing the semantic query
further comprises calling the table valued function; and
returning database results, using the processing compo-
nent, generated from execution of the semantic query.

19. The computer-implemented method of claam 18
wherein the semantic query comprises a bifurcating recursive
semantic query requiring application of a bifurcating recur-
stve semantic rule and wherein expressing comprises:

generating a table valued function that defines the bifurcat-

Ing recursive semantic rule.
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