US009271267B2
12 United States Patent (10) Patent No.: US 9,271,267 B2
Marlan et al. 45) Date of Patent: Feb. 23, 2016
(54) DETECTION AND CONTROL OF RESOURCE (56) References Cited
CONGESTION BY A NUMBER OF .. PATENT DOCUMENTS
PROCESSORS -
4,516,200 A 5/1985 Thompson
(75) Inventors: Gregory Marlan, San Jose, CA (US); 4,893,248 A 1/1990 Pitts et al.
Kenneth Yeager, Sunnyvale, CA (US); 5,930,820 A 7/1999 Lynch
Mahdi Seddighnezhad, San Carlos, CA 233%3?32 él) 12; éggg Eagshlﬂtehlet al. e
_ : 427, ughesetal.
(32)’ David X. Zhang, San Jose, CA 6,816,954 B2 11/2004 Solomon
(US) 6,898,751 B2 52005 Aikawa etal
_ 8,185,703 B2 5/2012 Marlan et al.
(73) Assignee: Silicon Graphics International Corp., 2002/0004842 Al 1/2002 Ghose et al.
Milpitas, CA (US) 2002/0009067 Al 1/2002 Sachs et al.
2002/0040421 A 4/2002 Muta
(*) Notice: Subject to any disclaimer, the term of this 20020150048 AL 10/2002 " Ha et al
: : 2004/0165538 Al 82004 Swami
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 718 days. OIHER PUBLICATIONS

(21) Appl No - 13/478.051 MARILAN, Appeal Brief, U.S. Appl. No. 10/631,988, Mar. 14, 2011,
: . .

24 pgs.
(22) Filed: May 22, 2012 %?;RLQAN, Notice of Allowance, U.S. Appl. No. 10/631,988, Jan. 23,
, 9 pgs.
(65) Prior Publication Data (Continued)
US 2012/0272002 Al Oct. 25, 2012 Primary Examiner — Charles Rones

Assistant Examiner — Ryan Dare

(74) Attorney, Agent, or Firm — Lewis Roca Rothgerber
Related U.S. Application Data Christie T.IP

(63) Continuation of application No. 10/631,988, filed on (57) ABRSTRACT

Jul. 31, 2003, now Pat. No. 8,185,703. _ _
In an embodiment, a system includes a resource. The system

(51) Int.Cl. also 1ncludes a first processor having a load/store functional
GO6F 12/02 (2006.01) unit. The load/store functional unit 1s to attempt to access the
HO4W 72/04 (2009.01) resource based on access requests. The first processor
GO6F 9/38 (2006.01) includes a congestion detection logic to detect congestion of

(52) U.S.CL access of the resource based on a con:s,ecutive number of
CPC HO4W 72/0406 (2013.01); GO6F 9/3824 negative acknowledgements received in response to the

(2013.01) access requests prior to receipt of a positive acknowledgment

(58) Field of Classification Search in response to one of the access requests within a first time

CPC e, HO4W 772/0406 period.
See application file for complete search history. 16 Claims, 21 Drawing Sheets
LOADISTORE
FUNCTIONAL UNIT
218
ACKS 302
) ACCESS
REQUESTS
310
Ngggs L

DISABLE
RETRY 307

CONGESTION
DETECTION
L.OGIC

CONGESTION
CONTROL

LOGIC

CONGESTION 284
DETECTED
306

US 9,271,267 B2

Page 2
(56) References Cited MARILAN, Office Action, U.S. Appl. No. 10/631,988, Mar. 19,2010,
23 pgs.
OTHER PUBLICATIONS MARILAN, Office Action, U.S. Appl. No. 10/631,988, Mar. 23, 2007,
19 pgs.

PéARLAN, Office Action, U.S. Appl. No. 10/631,988, Feb. 6, 2008, MARIL AN, Office Action, U.S. Appl. No. 10/631,988, Jul. 24, 2009,
pgs. 23
] pgs.

MARLAN, Office Action, U.S. Appl. No. 10/631,988, Oct. 7, 2008, _
MARILAN, Office Action, U.S. Appl. No. 10/631,988, Oct. 28, 2005,

18 pgs.

MARLAN, Office Action, U.S. Appl. No. 10/631,988, Jun. 8, 2011, 22 pgs.

5 pgs. Song, Enhancement of IEEE 802.11 Distributed Coordination Func-
MARLAN, Office Action, U.S. Appl. No. 10/631,988, Nov. 12,2010, tion with Exponential Increase Exponential Decrease Rackott Algo-
24 pgs. rithm, Apr. 25, 2003, 4 pgs.

MARLAN, Office Action, U.S. Appl. No. 10/631,988, Apr. 18, 2006,
25 pgs. * cited by examiner

US 9,271,267 B2

Sheet 1 of 21

Feb. 23, 2016

U.S. Patent

o_‘,/

AHONWZN
N8O}

J3TIOHLNOD

ginH

HM0SSIDONd 000 HOSS3I004d
o%01
|

o0 | 000 | 30w
NZOT D20t

00O

Q00

d4TIOHLNOD
dnH

HOSSIOONd 000 HOSSID0OHd
ay0l L _ >0l
AHOVD O00 JHOVD
8201 veol

US 9,271,267 B2

Sheet 2 of 21

NPOL-VYPOi
Sd0SS300dd

Feb. 23, 2016

U.S. Patent

¢ Did

]

05z 3114 ¥318193
T o o

A TARNOE LS
350ddlNd
V04dS

-

8¢¢ V10T LNJdWJHI1dd

|_[[1YNOILONN

OO0

9tZ 1INN

i< LINN
TVYNOILONNA

clé LINN

TYNOILLONNA

¢S5¢ SOJd
350ddNd
NIO

gLd 1INM
TYNOLLONNA

J40LS/GVOT

9c¢ 019071 HOLVJSIA

952 IHOVD 10dLINOO
NOILSIONOD | NOILSIONOD

P8¢ OIO0]

08¢
21907
NOILSFONQO

80¢C
J3INAIAHOS
NOILONYLSNI

¢8¢C OID0T
NOILD4130

H

bQOC
5500040

¢0¢ d344Ng NOILONYLSNI

04¢ LINN
S0V NI

ASONSN
FI-I1||

I —

/

U.S. Patent Feb. 23, 2016 Sheet 3 of 21 US 9,271,267 B2

LOAD/STORE
FUNCTIONAL UNIT

218

ACKS 302
ACCESS

REQUESTS

i310

286

)

| —

NACKS
304 l

N~ |

DISABLE
RETRY 307

CONGESTION
DETECTION

CONGESTION
CONTROL

LOGIC

CONGESTION 284

FIG. 3

306

U.S. Patent Feb. 23, 2016 Sheet 4 of 21 US 9,271,267 B2

Number of
Negative
Acknowledgements 40
Rising .
Falling
402 Edge 410 Edge 412
Capacity 408
Time of
Access
Request

U.S. Patent

NACKS/ACKS

ACKs
508

NACKSs
506

502)

Feb. 23, 2016

ard Set of
Consecutive
NACKSs 516

Sheet 5 of 21

4

4th Set of
Consecutive
NACKSs H18

US 9,271,267 B2

500

Time of
Access

504 Request

US 9,271,267 B2

Sheet 6 of 21

Feb. 23, 2016

U.S. Patent

9 Ol

90¢ d310413d
NOILS3ONOD

00T
NOSIHVdNOD

ddLNNOD MOVN

909

Q1OHS3IYHL

14025
SHOVN

U.S. Patent Feb. 23, 2016 Sheet 7 of 21 US 9,271,267 B2

(st)

700 y
_ Y 702
I TRANSMIT AN ACCESS
REQUEST TO A
RESOURCE
04
ACK TYPE OF NACK

l T RESPONSE? |

712 N :

RESET NACK INCREMENT NACK
COUNTER fl COUNTER
: |
L 706)
- |
CONSECUTIVE N
NACKS EXCEED A =
THRESHOLD?
08
YES
710
| CONTROL ACCESS TO
THE RESOURCE

US 9,271,267 B2

Sheet 8 of 21

Feb. 23, 2016

U.S. Patent

3 Old

90t d41.03.134
NOILSIONOD

OlO0T

NOSIHVdNOD

MOV
340439)

SMOVN
SNOIATHd

J31NNOD MOVN

¢08

Q10HS3IHH.L

08

OO0
o0

401%
SHOVN

c0¢€
SHOV

U.S. Patent

Feb. 23, 2016

ACK

COPY VALUE OF
NACK COUNTER TO
PREVIOUS NACK

l VALUE

RESET NACK
COUNTER

Sheet 9 of 21 US 9,271,267 B2
(START)
l 902
TRANSMIT AN ACCESS
REQUEST TO A
RESOURCE
|
|
l
TYPE OF NACK
RESPONSE?
4
| INCREMENT NACK
f COUNTER
908
PREVIOUS NACKS -

CURRENT NACKS EXCEED

A THRESHOLD?

CO

NTROL ACCESS TO
THE RESOURCE

J

FIG. 9

al0l
A 10HSdHH.L
NOV

US 9,271,267 B2

0L Dld [o~

NOSIHVYJNOD HILNNOD MOV 208
SHOVY
|

e

& i

-~

= |

— " e .

e

'

5 - '

- ANO0T

2 HO

8001

6 spliinkis————.

= 90¢ 3.L.0313Q Z001

o NOILSIONOD

~

= NOSIMVdNOD H¥ILNNOD XOVN

2 MOVN vOg
SHOVYN

810}

GT0HSHaHL
MOVN

U.S. Patent

L

U.S. Patent Feb. 23, 2016 Sheet 11 of 21 US 9,271,267 B2

&«

1100

TRANSMIT AN ACCESS 1102
REQUESTTOA |~
l RESOURGCE
1104
ACK TYPE OF NACK 1

S —

h 4

1112

INCREMENT ACK J
COUNTER

1114

NUMBER OF
ACKS EXCEED AN ACK
TRESHOLD?

RESPONSE?
h 4

1106 | INCREMENT NACK
COUNTER

1108

NUMBER OF
NACKS EXCEED A
THRESHOLD? NQ

|
I h A
RESET NACK 116 —— 1110
COUNTER AND ACK CONTROL ACCESS TO _/
COUNTER + THE RESOURCE
|]
4

F1G. 11

US 9,271,267 B2

Sheet 12 of 21

Feb. 23, 2016

U.S. Patent

¢l Ol

90€ d34104.L40
NOILSHONOD

Il

NOSIHVdWOD
AOVN

¢0cl
QTOHSIYHHL
ADVN

d4LNNOD MOVN

¢0t
SHOV

4013
SMOVN

U.S. Patent Feb. 23, 2016 Sheet 13 of 21 US 9,271,267 B2

X
1300 4
k TRANSMIT AN ACCESS 1302
REQUEST TO A L
RESOURCE

1304
ACK NACK
I RESPONSE? o l
o 1306 |
DECREMENT NACK 1308 INCREMENT NACK
COUNTER ~— 1 COUNTER

CURRENT VALUE
OF NACK COUNTER EXCEED A
THRESHOLD?

1312

(] CONTROL ACCESS TO
THE RESOUF@’E

1314 '

_,; RESET NACK COUNTER

(sror

US 9,271,267 B2

Sheet 14 of 21

Feb. 23, 2016

U.S. Patent

7l 'Ol

90¢€ d3103134

NOILSIONOD

e AR

«

ad
U1OHSTIYHL
ADVN

d3aX3TdILNN

D100
NOSIQVdNOD

|

Ol
| c0¢
SHOV
|
20907 H0 B
| f |
MOANIM
i ONIDVHAAY . b0
SHOVN

1297,

J3LNNOD HMOWN

14013
SHOVYN

U.S. Patent Feb. 23, 2016 Sheet 15 of 21 US 9,271,267 B2

CSTART)
[
o

4 _
1500
TRANSMIT AN ACCESS
L REQUESTTO A 1502
RESQURCE |
1504
IACK TYPE OF NACK :
l RESPONSE? 1
SHIFT IN LOGICAL | INCREMENT NACK
LOW INTO THE COUNTER
AVERAGING 1510 1506
WINDOW SHIFT
REGISTER I—‘L

SHIFT IN A LOGICAL
1508 HIGH INTO THE
AVERAGING WINDOW
SHIFT REGISTER

1514
1512
DECREMENT NACK /
COUNTER BASED ON WINDOW
SLICE OF AVERAGING WINDOW SHIFT R R ACK
REGISTER? YES _’]

CURRENT VALUE OF
NACK COUNTER EXCEED A
THRESHOLD?

-. I

CONTROL ACCESS TO

=5 OFIG. 15

k RESET NACK COUNTER AND
| AVERAGING WINDOW SHIFT
REGISTER l

‘

(" sror)

1520

491 'Ol 091 'Ol
ofelo bl lile ofelolofolo]t

US 9,271,267 B2

—_ POvL ILNNOD POyl ¥ILNNOD

& MOANIM DNIDVHIAY MOANIM ONIDVHIAY

o

~

&

&

=

s 9,

&

A

~ POYL Y3LNNOD PPl YILNNOD

o MOGANIM ONIDVYIAY MOANIM ONIDVHIAY

| . |
S a9l 9i4 VOl 9Ol
"?

e

POvl H3LNNOD vOv1L 431INNOD
MOGANIM ONIDVHIAY MOGANIM ONIOVHIAY

U.S. Patent

US 9,271,267 B2

Sheet 17 of 21

Feb. 23, 2016

U.S. Patent

vYOrl d31NNOD
MOGNIM ONIOVHIAY

HIL 'Ol
aaaanann

POVl d3.LNNOD
MOUONIM ONIDVHIAY

991 'Ol
23000000

POPlL H3LINNOD
MOUNIM DNIDVHIAY

'
an
™~ OV
N= OY37
Sk -
v— 1WA
I~ —
| 80¢ D907 HO [«—
N AMLTH |
S = 18V HILNAOD
U | o907 Z>>OD —_—
NOSIHYIWOD JTOAD
AR
e
-
f LS
&
% LNNOWY AY13d
D .
L 14PN
=
7
AY13A LINI
&
= ZVZT
-
¢ e 9eL) ze. 1
. ONIGNId QIOHSIMHL
m NHO1S /w MOV = MOV
. A
e\ |, - _ 90€
< INIHOYIN S LYLS INIHOVIA ILV.LS | a3193130
NOILSIDONOD
LOE AMLIY S S ————
VR \ 0241 FdAL
57T pe/1l NID3E 2071 NOLLYAEIO
8€/1 ITOAD NHOLS
AY1IY AIvVA

U.S. Patent

U.S. Patent Feb. 23, 2016 Sheet 19 of 21 US 9,271,267 B2

1800
RECEIVE AN INDICATION
_ THAT CONGESTION 1S 1802
DETECTED |

ES CURRENT NO
l CONGESTION? _l
EXPONENTIALLY 1849 DISABLE RETRY
INCREASE VALUE -
OF DELAY 1805
1808 LOAD INITIAL VALUE]
FOR DELAY OF RETRY |
\A
INITIATE COUNT
(ST0P—>‘_ [T powN OF DELAY

FIG. 18A

U.S. Patent Feb. 23, 2016 Sheet 20 of 21 US 9,271,267 B2

(" smrr)

RECEIVE INDICATION
k THAT THE NUMBER OF 1832
ACKS EQUAL A T
THRESHOLD

YES CURRENT NO
CONGESTION?

L —

EXPONENTIALLY 1838
DECREASE VALUE
OF DELAY

A, i

_ (. sTo)

U.S. Patent Feb. 23, 2016 Sheet 21 of 21 US 9,271,267 B2

1852 _

VALUE OF DELAY

1856

ENABLE RETRY

FIG. 18C

US 9,271,267 B2

1

DETECTION AND CONTROL OF RESOURCE
CONGESTION BY A NUMBER OF
PROCESSORS

RELATED APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 10/631,988, filed Jul. 31, 2003, now U.S. Pat. No. 8,185,
703 which 1s hereby incorporated by reference 1n 1ts entirety.

TECHNICAL FIELD

This invention relates generally to electronic data process-
ing and more particularly, to detection and control of resource
congestion by a number of processors.

BACKGROUND

Multiprocessor computer systems have long been valued
for the high performance they offer by utilizing multiple
processors that are not individually capable of the same high
level of performance as the multiprocessor system. In such
multiprocessor systems, tasks are divided among more than
one processor, such that each processor does a part of the
computation of the system. Therefore, more than one task can
be carried out at a time with each task or thread running on a
separate processor, or a single task can be broken up into
pieces that can be assigned to each processor. Multiprocessor
systems 1ncorporate many methods of dividing tasks among
their processors, but all benefit from the ability to do compu-
tations on more than one processor simultaneously.

Traditionally, multiprocessor systems were large main-
frame or supercomputers with several processors mounted 1n
the same physical unit. Modern multiprocessor systems
include arrays of interconnected computers or workstations
that divide large tasks among themselves 1n much the same
way as the processors of traditional mainframe systems, and
achieve similarly impressive results. Many multiprocessor
computer systems have a combination of theses attributes,
such as a group of multiprocessor systems that are intercon-
nected.

With multiple processors and multiple computational pro-
cesses within a multiprocessor system, a mechanism 1s
needed for allowing processors to share access to data and
share the results of their computations. Centralized memory
systems use a single central bank of memory that all proces-
sors can access, such that all processors can access the central
memory at roughly the same speed. Still other systems have
distributed or independent memory for individual processors
or groups of processors and provide faster access to memory
that 1s local to each processor or group of processors, but
access to data from other processors takes somewhat longer
than in shared memory systems.

The memory, whether centralized or distributed, can fur-
ther be shared or multiple address type memory. Shared
address memory systems allow multiple processors to access
the same memory, whether distributed or centralized, to com-
municate with other processors via data stored in the shared
memory. Multiple address memory incorporates separate
memory for each processor or group of processors, and does
not allow access to this local memory to other processors.
Such multiple address or local memory systems must rely on
messages to share data between processors. Cache memory
can be utilized in any of these memory configurations to
attempt to provide faster access to data each processor 1s
likely to need and to reduce requests for the same commonly
used data from multiple processors on the system bus.

10

15

20

25

30

35

40

45

50

55

60

65

2

Cache 1n a multiple address system simply caches data
from the local memory, but cache 1n a shared address system
typically caches memory from any of the shared memory
locations, whether local or remote from the processor
requesting the data. The cache associated with each processor
or group of processors 1n a distributed shared memory system
likely maintains copies of data from memory local to a num-
ber of other processor nodes. Information about each block of
memory 1s kept in a directory, which keeps track of data such
as which caches have copies of the block, whether the cache
1s dirty, and other related data. The directory 1s used to main-
tain cache coherency, or to ensure that the system can deter-
mine whether the data in each cache 1s valid. The directory 1s
also used to keep track of which caches hold data that 1s to be
written, and facilitates granting exclusive write access to one
processor or I/O device. Alter write access has been granted
and a memory location 1s updated, the cached copies are
marked as dirty.

As described, multiple processors may attempt to access
the same data from a same memory. Therefore, such systems
use a request/acknowledgment protocol. In particular, 1f a
processor 1s to access data from a shared memory, the pro-
cessor submits an access request. If the data 1s accessible, the
memory controller responds with an acknowledgment (ACK)
along with the data. Conversely, 1f the data 1s not accessible,
the memory controller responds with a negative acknowl-
edgement (NACK). However, such a protocol may introduce
congestion into the system.

To 1llustrate, multiple processors may attempt to access a
same cache line 1 a cache memory. Therefore, the access
request by one processor 1s granted, while the access requests
by the other processors are denied. Typically, these other
processors continue to request access to such data until the
access 1s granted. Accordingly, system resources become
congested with the multiple retry requests for access to data,

which includes multiple access requests and NACKS in
response to such requests.

SUMMARY

Apparatus, systems and methods for detection and control
of resource congestion by a number of processors are
described. In an embodiment, processors 1n a multi-processor
system transmit requests for lines of data 1n different memo-
ries and detect congestion of access to such lines of data based
on the type of responses (negative acknowledgments
(NACKSs) or positive acknowledgements (ACKs)). In one
embodiment, hardware that 1s internal to the processors
detects such congestion after receipt of a repeated number of
NACKSs 1n response to requests for a line of data. In an
embodiment, hardware that 1s internal to the processors regu-
lates access to congested lines of data. In one embodiment,
such hardware increases the time between retries for access to
congested lines of data as the number of NACKSs increase. A
system that incorporates embodiments of the invention may
include a large number of processors that are attempting to
access a same line of data based on such requests. Accord-
ingly, embodiments of the invention preclude the overloading
of the mterconnects (that couple the multi-processor system
together) with repeated requests and responses thereto to a
line of data that 1s congested.

In one embodiment, a system 1ncludes a cache memory to
store data. The system also includes a first processor to
attempt to access the data from the cache memory based on
access requests. The first processor includes a congestion
detection logic to detect congestion of access to the data based

US 9,271,267 B2

3

on receipt of a consecutive number of negative acknowledge-
ments 1n response to the access requests.

In an embodiment, a system includes a resource. The sys-
tem also includes a first processor having a load/store func-
tional unit. The load/store functional unit 1s to attempt to
access the resource based on access requests. The first pro-
cessor includes a congestion detection logic to detect conges-
tion of access of the resource based on a consecutive number
ol negative acknowledgements received 1n response to the
access requests prior to receipt of a positive acknowledgment
in response to one of the access requests within a first time
period.

In one embodiment, a system 1ncludes a cache memory to
include a number of cache lines for storage of data. The
system also 1ncludes at least two processors, wherein a first
processor of the at least two processors 1s to attempt to access
the data 1n one of the number of cache lines based on access
requests. The first processor includes a congestion detection
logic to detect congestion of access of a first cache line of the
number of cache lines based on aratio of anumber of negative
acknowledgments to a number of positive acknowledgments
received 1n response to the access requests.

In one embodiment, an apparatus includes a load/store unit
that includes a retry logic that 1s to retry access to a resource
alter receipt of a negative acknowledgement for an attempt to
access the resource by the load/store unit. The apparatus also
includes a congestion detection logic to output a signal that
indicates that the resource 1s congested based on receipt of a
consecutive number of negative acknowledgments 1n
response to access requests to the resource.

In one embodiment, a processor includes a functional unit
to attempt to access data from memory coupled to the pro-
cessor based on an access request. The functional unit 1s to
retry attempts to access of the data based on other access
requests after receipt of a negative acknowledgement in
response to the attempt to access the data. The processor also
includes a congestion detection logic to detect congestion of
access of the data based on receipt of a consecutive number of
negative acknowledgments that exceed a threshold prior to
access of the data. The processor also includes a congestion
control logic to disable the functional unit from the attempts
to access the data for a time period after congestion 1s
detected.

In an embodiment, a processor includes a functional unit to
attempt to access a cache line 1n a cache memory coupled to
the processor based on an access request. The functional unit
1s to retry attempts to access the cache line based on additional
access requests alter receipt of a negative acknowledgement
in response to the attempt to access the data. The processor
also 1includes a congestion detection logic to detect conges-
tion of access of the cache line based on an average number of
negative acknowledgments recerved that exceed a threshold
prior to access of the data. The processor also includes a
congestion control logic to disable the functional unit from
attempts to access the cache line for a time period aiter con-
gestion 1s detected.

In one embodiment, a system 1ncludes a cache memory to
store data. The system also includes a first processor to
attempt to access the data from the cache memory based on
access requests. The first processor includes a congestion
detection logic to detect congestion of access to the data based
on receipt of a consecutive number of negative acknowledge-
ments 1n response to the access requests.

In an embodiment, a system includes a resource. The sys-
tem also includes a first processor having a load/store func-
tional unit. The load/store functional unit 1s to attempt to
access the resource based on access requests. The first pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

cessor includes a congestion detection logic to detect conges-
tion of access of the resource based on a consecutive number
ol negative acknowledgements received 1n response to the
access requests prior to receipt of a positive acknowledgment
in response to one of the access requests within a first time
period.

In one embodiment, a system 1ncludes a cache memory to

include a number of cache lines for storage of data. The
system also includes at least two processors, wherein a first
processor of the at least two processors 1s to attempt to access
the data in one of the number of cache lines based on access
requests. The first processor includes a congestion detection
logic to detect congestion of access of a first cache line of the
number of cache lines based on aratio of anumber of negative
acknowledgments to a number of positive acknowledgments
received 1n response to the access requests.
In an embodiment, a method includes transmitting access
requests, by a first processor, to access data in a memory. The
method also 1includes receiving a positive acknowledgement
or a negative acknowledgment from a second processor that 1s
associated with the memory based on one of the number of
access requests. The method includes detecting congestion of
the data based on receipt, by the first processor, of a consecu-
tive number of negative acknowledgements that exceed a first
threshold, prior to receipt, by the first processor, of a positive
acknowledgment.

In one embodiment, a method includes accessing, by at
least one processor, a resource based on an access request.
The method also mcludes receiving a positive acknowledge-
ment 1f the resource 1s accessible. Additionally, the method
includes receirving a negative acknowledgement 1if the
resource 1s not accessible. The method includes retrying
accessing, by the at least one processor, of the resource based
on a number of access requests. The method 1includes detect-
ing that a consecutive number of negative acknowledgements
exceeds a first threshold within a time period, prior to receiv-
ing a positive acknowledgments.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention may be best understood by
referring to the following description and accompanying
drawings which 1llustrate such embodiments. The numbering
scheme for the Figures included herein are such that the
leading number for a given reference number 1n a Figure 1s
associated with the number of the Figure. For example, a
system 100 can be located in FIG. 1. However, reference
numbers are the same for those elements that are the same
across different Figures. In the drawings:

FIG. 1 1illustrates a system for detection and control of
resource congestion by a number of processors, according to
one embodiment of the invention.

FIG. 2 1llustrates a more detailed block diagram of a pro-
cessor, according to one embodiment of the invention.

FIG. 3 1llustrates the mput/output communications of a
load/store functional unit and a congestion logic, according to
one embodiment of the invention.

FIG. 4 illustrates a one dimensional network congestion
model based on the number of NACKSs, according to one
embodiment of the invention.

FIG. 5 illustrates a one dimensional network congestion
model based on the number of NACKs and ACKs, according
to another embodiment of the invention.

FIG. 6 illustrates a congestion detection logic for detecting
congestion based on whether a consecutive number of nega-

US 9,271,267 B2

S

tive acknowledgements received in response to access
requests exceeds a threshold, according to one embodiment

ol the invention.

FI1G. 7 illustrates a flow diagram for detecting congestion
based on a consecutive number of NACKSs received in
response to access requests, according to one embodiment of
the 1nvention.

FIG. 8 illustrates a congestion detection logic for detecting,
congestion based on whether a number of consecutive nega-
tive acknowledgements received in response to access
requests exceed a threshold within a time period, according to
one embodiment of the invention.

FIG. 9 illustrates a tlow diagram for detecting congestion
based on a number of consecutive negative acknowledge-
ments recerved 1n response to access requests within a time
period, according to one embodiment of the invention.

FI1G. 10 1llustrates a congestion detection logic for detect-
ing congestion based on whether the ratio of the number of
negative acknowledgements to the number of positive
acknowledgments received in response to access requests
exceeds a threshold, according to one embodiment of the
invention.

FIG. 11 illustrates a flow diagram for detecting congestion
based on a ratio of the number of negative acknowledgements
to the number of positive acknowledgments receirved in
response to access requests, according to one embodiment of
the 1nvention.

FI1G. 12 1llustrates a congestion detection logic for detect-
ing congestion based on whether an average number of nega-
tive acknowledgements received in response to access
requests exceeds a threshold, according to one embodiment
of the mvention.

FI1G. 13 1llustrates a flow diagram for detecting congestion
based on an average number of negative acknowledgements
received 1n response to access requests, according to one
embodiment of the invention.

FIG. 14 illustrates a congestion detection logic for detect-
ing congestion based on a moving average of the number of
negative acknowledgements recerved 1n response to access
requests, according to one embodiment of the invention.

FI1G. 15 1llustrates a flow diagram for detecting congestion
based on a moving average of the number of negative
acknowledgements received in response to access requests,
according to one embodiment of the invention.

FIGS. 16 A-161 1llustrate the value an averaging window
shift register (as an eight-bit shift register) over time, accord-
ing to one embodiment of the invention.

FI1G. 17 1llustrates a congestion control logic for control-
ling access to a resource based on an exponential back off
delay operation, according to one embodiment of the mven-
tion.

FIGS. 18A-18C 1illustrate flow diagrams for controlling
congestion of accesses to a resource based on an exponential
back off delay, according to one embodiment of the mnvention.

DETAILED DESCRIPTION

Methods, apparatuses and systems for detection and con-
trol of resource congestion by a number of processors are
described. In the following description, numerous specific
details such as logic implementations, opcodes, means to
specily operands, resource partitioning/sharing/duplication
implementations, types and interrelationships of system com-
ponents, and logic partitioming/integration choices are set
torth 1n order to provide a more thorough understanding of the
present mvention. It will be appreciated, however, by one
skilled 1n the art that embodiments of the invention may be

5

10

15

20

25

30

35

40

45

50

55

60

65

6

practiced without such specific details. In other instances,
control structures, gate level circuits and full software mstruc-

tion sequences have not been shown 1n detail 1n order not to
obscure the embodiments of the invention. Those of ordinary
skill 1n the art, with the included descriptions will be able to
implement appropriate functionality without undue experi-
mentation.

References in the specification to “one embodiment™, “an
embodiment”, “an example embodiment™, etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic 1s described 1n connection
with an embodiment, 1t 1s submitted that 1t 1s within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Embodiments of the invention include features, methods or
processes embodied within machine-executable nstructions
provided by a machine-readable medium. A machine-read-
able medium includes any mechanism which provides (i.e.,
stores and/or transmits) information in a form accessible by a
machine (e.g., a computer, a network device, a personal digi-
tal assistant, manufacturing tool, any device with a set of one
Or more processors, etc.). In an exemplary embodiment, a
machine-readable medium includes volatile and/or non-vola-
tile media (e.g., read only memory (ROM), random access
memory (RAM), magnetic disk storage media, optical stor-
age media, flash memory devices, etc.), as well as electrical,
optical, acoustical or other form of propagated signals (e.g.,
carrier waves, infrared signals, digital signals, etc.)).

Such 1nstructions are utilized to cause a general or special
purpose processor, programmed with the istructions, to per-
form methods or processes of the embodiments of the mven-
tion. Alternatively, the features or operations of embodiments
of the invention are performed by specific hardware compo-
nents which contain hard-wired logic for performing the
operations, or by any combination of programmed data pro-
cessing components and specific hardware components.
Embodiments of the invention include software, data pro-
cessing hardware, data processing system-implemented
methods, and wvarious processing operations, Iurther
described herein.

A number of figures show block diagrams of systems and
apparatus for detection and control of resource congestion by
a number of processors, 1n accordance with embodiments of
the mvention. A number of figures show tlow diagrams 1llus-
trating operations for detection and control of resource con-
gestion by a number of processors. The operations of the flow
diagrams will be described with references to the systems/
apparatus shown in the block diagrams. However, it should be
understood that the operations of the flow diagrams could be
performed by embodiments of systems and apparatus other
than those discussed with reference to the block diagrams,
and embodiments discussed with reference to the systems/
apparatus could perform operations different than those dis-
cussed with reference to the tlow diagrams.

- B 4 4

System Description

FIG. 1 1illustrates a system for detection and control of
resource congestion by a number of processors, according to
one embodiment of the invention. In particular, FIG. 1 1llus-
trates a system 100 that includes a number of cache memories

102A-102N, a number of processors 104 A-104N, a number

US 9,271,267 B2

7

of hub controllers 106 A-106N, a number of memories 108 A-
108N. Each one of the processors 104 A-104N are associated
with and coupled to one of the cache memories 102A-102N.
The processor 104 A 1s associated with and coupled to the
cache memory 104 A; the processor 104B 1s associated with
and coupled to the cache memory 102B; the processor 104C
1s associated with and coupled to the cache memory 102C; the
processor 104N 1s associated with and coupled to the cache
memory 102N. The hub controller 106A 1s coupled to the
processors 104A-104B. The hub controller 106N 1s couple

to the processors 104C-104N. The hub controller 106A 1s
coupled to the memory 108A. The hub controller 106N 1s
coupled to the memory 108N. The cache memories 102A-
102N 1nclude a number of cache lines for storage of blocks of

data therein. The hub controllers 106 A-106N are coupled

together.

The processors 104 A-104N may be different types of gen-
cral purpose application processors. The processors 104 A -
104N may execute different types of instructions. In one
embodiment, the cache memories 102A-102N may be differ-
ent types of cache 1n a unified or a split cache configuration.
For example, in a split cache configuration, the cache memory
102 may be an instruction cache or a data cache. In an
embodiment, the cache memory may be different levels of
cache (e.g., L1, L2, etc.) in a multi-level cache configuration.
In one embodiment, the cache memory 102 may be a
directed-mapped cache or an n-way set-associative cache.
While the memories 108 A-108N may be of any suitable type
of memory, 1n an embodiment, the memories IOSA-108N are
different types of Random Access Memory (RAM) (e.g.,
Synchronous RAM (SRAM), Synchronous Dynamic RAM
(SDRAM), Dynamic RAM (DRAM), Double Data Rate
(DDR)-SDRAM, etc.) of varying size.

Any of the number of processors 104A-104N may access
data from cache lines in any of the cache memories 102A-
102N through the hub controllers 106 A-106IN. The hub con-
trollers 106 A-106N 1ncludes a directory that stores 1dentifi-
cations of which data 1s stored in the different cache lines of
the different cache memories 102A-102N and the state of
these cache lines. For example, in one embodiment, a same
data may be stored in different cache lines in different cache
memories 102A-102N. Therefore, the state of such cache
lines 1s ““shared.” If the data 1n a cache line 1s to be updated, the
state of this cache line within the directory 1s changed to an
“exclusive” state. Accordingly, 11 a shared cache line 1s to be
updated by 1ts associated processor 104, the processors 104
associated with the other cache memories 102 that have
shared copies of this cache line 1invalidate their cache lines,
thereby leaving one valid copy of the cache line.

Therefore, 11 the processor 104N needs to access data from
a cache line in the cache 102A, the processors 104N transmits
a request for this cache line to the hub controller 106N. The
hub controller 106N performs a lookup 1n its directory to
determine which of the caches 102A-102N have this cache
line stored and the state of such cache lines. Upon determin-
ing that the data 1s stored 1n the cache memory 102 A, the hub
controller 106N forwards the request to the hub controller
106A. The hub controller 106 A forwards the access request
tor the data 1in the cache memory 102 A to the processor 104 A.
If the cache line 1s accessible (not being written to or read
from), the processor 104A returns an acknowledgment
(ACK) along with the data 1n the cache line. If the cache line
1s not accessible, the processor 104A returns a negative
acknowledgement (NACK). The hub controller 106 A then
returns the ACK (and the data) or NACK back to the processor
102N.

10

15

20

25

30

35

40

45

50

55

60

65

8

In an embodiment, congestion may occur with regard to
access of one of the cache lines 1n the cache memories 102 A -

102N by a multiple number of the processors 104 A-104N.

For example, 11 a multiple number of the processors 104 A -
104N are attempting to read a same cache line in the cache
102A, only one of these accessing processors 104 1s able to
access the cache line. Such processor receives a positive
acknowledgement (ACK) and accesses the cache line. The
other processors attempting to access this cache line receive a
negative acknowledgement (NACK) and are unable to access
this cache line. Such processors may attempt to retry access-
ing this cache line. As further described below, 1n an embodi-
ment, the number of processors 104A-104N may include
logic for detection and control of congestion with regard to
accessing resources, such as a cache line.

FIG. 2 illustrates a more detailed block diagram of a pro-
cessor, according to one embodiment of the mvention. In
particular, FIG. 2 illustrates a more detailed block diagram of
one of the processors 104A-104N. As shown, memory inter-
face unit 270 1s coupled to cache 256, register file 250 (that
includes general purpose registers 252 and special purpose
registers 254) and instruction butler 202, such that memory
interface unit 270 can retrieve macro mstructions and associ-
ated operands and store such data into nstruction butier 202
and cache 256, general purpose registers 252 and/or special
purpose registers 254. Additionally, cache 256 and register
file 250 are coupled to decoder 204, functional units 212-218
and retirement logic 228. The processor 104 also includes a
congestion logic 280 that includes a congestion detection
logic 282 and a congestion control logic 284.

As further described below, operations for the congestion
detection and congestion control include a number of config-
urable values. In one embodiment, the special purpose regis-
ters 254 include a number of registers for storage of such
configuration data. For example, such configuration data may
store a value for an 1nitial delay for a time period for control-
ling the congestion. The configuration data may also include
different thresholds (such as NACK and ACK thresholds),
Boolean values for different shift operations, eftc.

Decoder 204 1s coupled to instruction butier 202, such that
decoder 204 retrieves the mstructions from nstruction buifer
202. Decoder 204 can receive these mstructions and decode
cach of them to determine the given instruction and also to
generate a number of structions 1n an internal instruction
set. For example, in one embodiment, the instructions
received by decoder 204 are termed macro nstructions, while
the instructions that are generated by decoder 204 are termed
micro nstructions (or micro-operations). Decoder 204 1s also
coupled to instruction scheduler 208, such that instruction
scheduler 208 can receive these micro-operations for sched-
uled execution by functional units 212-218.

Instruction scheduler 208 1s coupled to dispatch logic 226,
such that the mstruction scheduler 208 transmits the instruc-
tions to be executed by functional units 212-218. Dispatch
logic 226 1s coupled to functional units 212-216 and a load/
store functional unit 218 such that dispatch logic 226 trans-
mits the 1nstructions to functional units 212-218 for execu-
tion.

Functional units 212-218 can be one of a number of differ-
ent execution units, including, but not limited to, an integer
arithmetic logic unit (ALU), a floating-point unit, memory
load/store unit, etc. Functional units 212-218 are also coupled
to retirement logic 228, such that functional units 212-218
execute the instructions and transmit the results to retirement
logic 228. Retirement logic 228 can transmit these results to
memory that can be internal or external to processor 104, such

US 9,271,267 B2

9

as registers within register file 250 or cache 256, one of the
caches 105A-105N, the memory 112, etc.

The load/store functional unit 218 loads data into the pro-
cessor 102 from an external memory (e.g., one of the cache
memories 102) and stores data 1into an external memory from
the processor 104 based on execution of load and store
instructions, respectively. As shown, the load/store functional
unit 218 1ncludes a retry logic 286.

During operation, if the load/store functional unit 218
attempts to access a resource (such as a cache line 1n one of the
cache memories 102) and recerves a NACK, the retry logic
286 attempts to again access the resource. Accordingly, the
retry logic 286 attempts to access the resource until an ACK
1s received. In other words, the retry logic 286 causes the
re-execution of the load or store instruction by the load/store
functional unit 218 when a NACK 1s recerved.

In an embodiment, the congestion control logic 284 trans-
mits a command to the retry logic 286 to stop attempting the
access (through a disable retry signal 307, which 1s described
in more detail below). After a given time period, the conges-
tion control logic 284 may also 1ssue a different command
(through the disable retry signal 307) to the retry logic 286 to
allow the retry logic 286 to attempt to access the resource.
One embodiment of the input/output communications of the
congestion logic 280 and the retry logic 286 1s now described
in conjunction with FIG. 3.

FIG. 3 illustrates the input/output communications of a
load/store functional unit and a congestion logic, according to
one embodiment of the ivention. FIG. 3 illustrates one
embodiment of the input/output communications of the load/
store functional unit 218 (that includes the retry logic 286),
the congestion detection logic 282 and the congestion control
logic 284. The load/store functional unit 218 transmaits a {irst
access request 310 to access a resource (such as a cache line
within one of the cache memories 102). IT the resource cannot
be accessed, the retry logic 286 attempts to continue to access
this resource. The retry logic 286 and the congestion detec-
tion logic 282 are coupled to receive ACKS 302 and the
NACKS 304 1n response the access requests 310.

If the congestion detection logic 282 determines that there
1s congestion with regard to accessing a resource, the conges-
tion detection logic 282 outputs a congestion detected signal
306, which 1s mputted into the congestion control logic 284.
The congestion detection logic 282 determines whether con-
gestion 1s occurring with regard to the resource attempting to
be accessed by on the ACKS and NACK received. The con-
gestion detection logic 282 may make this determination
based on a number of different logic and operations.

A number of different embodiments of the congestion
detection logic 282 are described in more detail below 1n
conjunction with FIGS. 6, 8, 10, 12 and 14. In one embodi-
ment, one or more of the congestion detection logic 282
illustrated 1n FIGS. 6, 8, 10, 12 and 14 are within the conges-
tion detection logic 282. Accordingly, one or more of such
logic may be used to determine if congestion 1s detected. In
one embodiment, the different types of logic used within the
congestion detection logic 282 1s dependent on the system
configuration, the applications being executed therein, etc.
For example, the logic selected for detection may be different
for the system 100 having two processors 1n comparison to
the system 100 having 50 processors. Moreover, the logic
selected for detection may be different for the system 100
executing applications that include a relatively large amount
of loads and stores 1n comparison to the system 100 executing
applications that include a relatively small amount of loads
and stores. In one embodiment, the type of detection opera-
tion(s) used by the congestion detection logic 282 are config-

10

15

20

25

30

35

40

45

50

55

60

65

10

urable. In an embodiment, a value within a register within the
special purpose registers 254 1s set, which indicates the type

of detection operation(s).

The congestion control logic 284 outputs a value through
the disable retry signal 307 that 1s inputted to the retry logic
286. As further described below, depending on such value, the
retry logic 286 may or may not be precluded from outputting
an access request 310 for accessing a given resource.

FIG. 4 illustrates a one dimensional network congestion
model based on the number of NACKSs, according to one
embodiment of the invention. As shown, FIG. 4 1llustrates a
graph of the number of NACKSs received in response to access
requests to a resource in reference to the time of the access
requests, according to one embodiment of the invention. A
y-axis 402 of a graph 400 represents the number of NACKSs
received 1n response to an attempt to access a resource (€.g.,
one of the cache lines in one of the cache memories 102). An
x-axis 404 of the graph 400 represents the time of access
requests. A capacity line 408 represents the amount of capac-
ity of the resource such that there 1s congestion with regard to
accessing the resource beyond such point.

A rising edge 410 represents a rapid increase in the number
of NACKs received back from the resource, because the
capacity to process the access requests has been exceeded. A
falling edge 412 represents a rapid decrease 1n the number of
NACKSs received back from the resource. A network conges-
tion storm begins at the rising edge 410 when a number of the
processors 104A-104N attempt to access a shared resource.
As shown, when the number of accesses 1s greater than the
capacity of the system 100, the number of NACKSs increases.
In turn, the memory latency would be longer with increasing
number of NACKs, and the longer memory latency in turn
would saturate buffers within the processors 104 (not shown)
more quickly and thereby generate more NACKs. Such feed-
back may cause the rising edge 410 to be much steeper.

FIG. 5 illustrates a one dimensional network congestion
model based on the number of NACKSs and ACKs, according
to another embodiment of the invention. As shown, FIG. 5§
illustrates a graph 500 of the receipt of ACKs and NACKSs 1n
response to access requests i reference to the time of the
access requests, according to one embodiment of the mven-
tion.

A y-axis 502 of the graph 500 represents the NACKSs and
ACKSs recetved 1n response to an attempt to access a resource
(e.g., one of the cache lines 1n one of the cache memories
105). An x-axis 504 of the graph 500 represents the time of
access requests. The NACKSs line 506 represents the NACKSs
received from the resource. The ACKs line 508 represents the
ACKs received from the resource. As shown, the NACKs line
506 includes a number of sets of consecutive NACK s (1includ-
ing a third set of consecutive NACKs 516 and a fourth set of
consecutive NACKs 518). A time point 510, a time point 512
and a time point 514 are different points 1n time for access
requests. Diflerent embodiments for apparatus and opera-
tions for detection of the rising edge 419 are described in
more detail below 1n conjunction with FIGS. 6-15.

Congestion Detection Description

FIGS. 6, 8, 10, 12 and 14 1illustrate different embodiments
for the detection of memory congestion/contention 1n a multi-
processor system. In particular, FIGS. 6, 8, 10, 12 and 14
illustrate different apparatus for detecting the rising edge 410,
according to different embodiments of the invention. FIGS. 7,
9,11, 13 and 15 illustrate different operations for detecting
the rising edge 410, according to different embodiments of
the invention. The operations of FIGS. 6, 8,10, 12 and 14 are

US 9,271,267 B2

11

described with reference to attempt to access a cache line
from one of the cache memories 102. However, embodiments
of the mvention may be used to access a number of other
different resources (c.g., the memory 108, a secondary stor-
age device, etc.).

A first embodiment of the congestion detection logic 282 1s
now described that detects congestion based on the consecu-
tive number of NACKs received in response to an access
request to a resource. Such an embodiment allows for accu-
rate detection for a worst storm of congestion with regard to
the number of NACKSs recerved.

In particular, FIG. 6 illustrates a congestion detection logic
for detecting congestion based on whether a consecutive
number of negative acknowledgements recetved in response
to access requests exceeds a threshold, according to one
embodiment of the invention. The congestion detection logic
282 1ncludes an OR logic 610, a NACK counter 612 and a
comparison logic 614. An ACKs signal 302 and the conges-
tion detected signal 306 are coupled as mnputs mto the OR
logic 610. An output of the OR logic 610 1s coupled to the
reset mput of the NACK counter 612. The NACKSs signal 304
1s coupled to a data input of the NACK counter 612. An output
of the NACK counter 612 1s coupled as a first input of the
comparison logic 614. A threshold signal 606 1s coupled as a
second mnput 1into the comparison logic 614. The output of the
comparison logic 614 1s the congestion threshold signal 306.

The operations of the congestion detection logic 282 1llus-
trated 1n FIG. 6 will now be described with reference to FIG.
7. F1G. 7 illustrates a flow diagram for detecting congestion
based on a consecutive number of NACKs recetved in
response to access requests, according to one embodiment of
the 1nvention.

In block 702 of the flow diagram 700, an access request 1s
transmitted to a resource. With reference to FIG. 3, the load/
store functional unit 218 transmits an access request to one of
the cache lines within one of the cache memories 102. As
described above, the access request may be routed through a
local hub controller 106 coupled to the requesting processor
104 to a remote hub controller 106. The remote hub controller
106 forwards the request to the processor 104 associated with
the cache memory 102 that includes the cache line that 1s
being requested. Control continues at block 704.

In block 704, a determination 1s made of the type of
response recerved 1n response to the access request. With
reference to the embodiment 1llustrated 1n FIG. 3, the con-
gestion detection logic 282 and the retry logic 286 receive the
response to the access request. The congestion detection logic
282 determines the type of response recerved 1n response to
the access request. In particular, the congestion detection
logic 282 determines whether the response 1s an ACK or a
NACK based on whether the response 1s recerved on the
ACKs signal 302 or the NACKSs signal 304. Upon determin-
ing that the type of response 1s an ACK, control continues at
block 712, which 1s described 1n more detail below.

In block 706, upon determining that the type of response 1s
a NACK, the NACK counter 1s incremented. With reference
to the embodiment illustrated 1n FIG. 6, the NACK counter
612 1s incremented 1n response to receiving a NACK on the
NACKSs signal 304. Control continues at block 708.

In block 708, a determination 1s made of whether a con-
secutive number of NACKSs have exceeded a threshold. With
reference to the embodiment 1llustrated 1n FIG. 6, the NACK
counter 612 counts the consecutive number of NACKS
received back from the resource through the NACKSs signal
304. The NACK counter 612 outputs the current value of the
number of NACKs to the comparison logic 614. The com-
parison logic 614 compares the current value of the number of

10

15

20

25

30

35

40

45

50

55

60

65

12

NACKS to a threshold received from the threshold signal 606.
The threshold from the threshold signal 606 1s a configurable

value that may vary based on the configuration of the system
100. For example, 11 the system 100 includes ten processors
instead of three, the threshold may be smaller. Upon deter-
mining that the consecutive number of NACKs has not
exceeded the threshold, the operations of the flow diagram
700 continue at block 702, wherein another access request 1s
made by the retry logic 286 (in the load/store functional unit
218).

In block 710, upon determining that the consecutive num-
ber of NACKSs has exceeded the threshold, access to the
resource 1s controlled. With reference to the embodiment
illustrated in FIG. 6, the comparison logic 614 generates the
congestion detected signal 306. With reference to the embodi-
ment 1llustrated 1n FI1G. 3, the congestion detection logic 282
outputs an indication on the congestion detected signal 306 to
the congestion control logic 284 that indicates that there 1s
congestion with reference to access of this resource. As
described 1n more detail below, the congestion control logic
284 precludes the retry logic 286 from retrying the accessing
of theresource from a given period of time. Control continues
at block 712.

In block 712, the NACK counter 1s reset. With reference to
the embodiment 1llustrated 1n FIG. 6, the OR logic 610 out-
puts a logical high to the reset input of the NACK counter 612
i’ either congestion 1s detected (on the congestion detected
signal 306) or 11 an ACK 1s received on the ACKS si1gnal 302.
Accordingly, a consecutive count of the number of NACKS 1s
reset 11 either an ACK 1s received or congestion 1s detected.
The operations of the flow diagram 700 are complete.

Another embodiment of the congestion detection logic 282
1s now described. Such an embodiment detects congestion
based on the consecutive number of NACKs recerved in
response to an access request to a resource within a given time
period. Returning to FIG. 4, this embodiment of the conges-
tion detection logic 282 detects the change (the rising edge
410) of the consecutive number of NACKs. In such an
embodiment, there 1s congestion 11 the consecutive number of
NACKSs detected exceeds a threshold.

FIG. 8 1llustrates a congestion detection logic for detecting
congestion based on whether a number of consecutive nega-
tive acknowledgements received 1n response 1o access
requests exceed a threshold within a time period, according to
one embodiment of the invention. In particular, FIG. 8 1llus-

trates one embodiment of the congestion detection logic 282.
The congestion detection logic 282 includes a OR logic 806,
a NACK counter 812, a previous NACKs (before ACK)
memory 804 and a comparison logic 814.

The ACKs signal 302 and the congestion detected signal
306 are coupled as inputs 1into the OR logic 806. An output of
the OR logic 806 1s coupled as the reset mput of the NACK
counter 812. The NACKSs signal 304 1s coupled as a data input
into the NACK counter 812. An output of the NACK counter
812 1s coupled as a first input of the comparison logic 814 and
1s coupled as an input into the previous NACKs (before ACK)
memory 804. A threshold signal 802 1s coupled as a second
input into the comparison logic 814. The comparison logic
814 also retrieves a previous NACK value from the previous
NACKSs (before ACK) memory 804. The output of the com-
parison logic 814 1s the congestion threshold signal 306.

The operations of the congestion detection logic 282 1llus-
trated 1n FIG. 8 will now be described with reference to FIG.
9. In particular, FIG. 9 illustrates a flow diagram for detecting
congestion based on a number of consecutive negative

US 9,271,267 B2

13

acknowledgements recetved in response to access requests
within a time period, according to one embodiment of the
invention.

In block 902 of the flow diagram 900, an access request 1s
transmitted to a resource. With reference to FIG. 3, the load/
store functional unit 218 transmits an access request to one of
the cache lines within one of the cache memories 105. Control
continues at block 906.

In block 906, a determination 1s made of the type of
response received in response to the access request. With
reference to the embodiment illustrated in FIG. 8, the con-
gestion detection logic 282 and the retry logic 286 receive the
response to the access request. The congestion detection logic
282 determines the type of response recerved 1n response to
the access request. In particular, the congestion detection
logic 282 determines whether the response 1s an ACK or a
NACK based on whether the response 1s recerved on the
ACKs signal 302 or the NACKSs signal 304. Upon determin-
ing that the type of response 1s an ACK, control continues at
block 914, which 1s described 1n more detail below.

In block 908, upon determining that the type of response 1s
a NACK, the NACK counter 1s incremented. With reference
to FIG. 8, the NACK counter 812 1s incremented after a
NACK 1s received on the NACKSs signal 304. Control contin-
ues at block 910.

In block 910, a determination 1s made of whether the dif-
terence between the previous number of consecutive NACKSs
and the current number of consecutive NACKs exceeds a
threshold. With reference to FIG. 8, the previous NACKSs
(before ACK) memory 804 stores the value of the number of
consecutive NACKS recerved prior to the receipt of an ACK.
Theretore, after an ACK 1s received, the value 1n the NACK
counter 812 1s stored in the previous NACKs (before ACK)
memory 804. For example, the retry logic 286 may have
retried five times before receiving an ACK from a resource.
Theretore, the number of consecutive NACKs would be five,
which 1s stored in the previous NACKs (before ACK)
memory 804. The comparison logic 814 determines whether

the difference between the value stored in the previous
NACKSs (before ACK) memory 804 and the current value of

the NACK counter 812 exceeds the threshold 802. Accord-
ingly, the comparison logic 814 compares the change of the
consecutive number of NACKSs between an ACK.

Referring back to FIG. 5, the embodiment of the conges-
tion detection logic 282 shown in FIG. 6 1s compared to the
embodiment of the congestion detection logic 282 shown 1n
FIG. 8. Assume that the threshold 606 for the embodiment
shown 1 FIG. 6 1s such that the congestion 1s not detected
until the time point 514. With regard to the embodiment
shown 1n FIG. 8, the third set of consecutive NACKs 516
(shown 1n FIG. 5) includes four consecutive NACKs; while a
fourth set of consecutive NACKs 518 includes nine consecu-
tive NACKSs. The congestion 1s considered detected once the
difference between the two sets of consecutive NACKSs
exceeds a threshold. Assuming that the threshold 1s two,
congestion 1s detected at time point 512 (1.e., alter six con-
secuttve NACKS 1n the fourth set 518).

Accordingly 1n this example, the congestion 1s detected at
an earlier point with the embodiment of FIG. 8 1n comparison
to when the congestion 1s detected with the embodiment of
FIG. 6. Therefore, as described above, different embodiments
of the congestion detection logic 282 using different thresh-
olds are used based on the system configuration and the
applications executing on such systems. Returning to the flow
diagram 900 of FIG. 9, upon determining that the difference
between the previous number of consecutive NACKSs and the
current number of consecutive NACKs does not exceed a

5

10

15

20

25

30

35

40

45

50

55

60

65

14

threshold, control continues at block 902, where another
access request 1s made for the resource by the retry logic 286
(1n the load/store umt functional unit 218).

In block 912, upon determining that the difference between
the previous number of consecutive NACKSs and the current
number of consecutive NACKs does exceed a threshold,
access to the resource 1s controlled. With reference to the
embodiment 1llustrated 1n FIG. 8, the comparison logic 814
generates the congestion detected signal 306. With reference
to the embodiment illustrated 1n F1G. 3, the congestion detec-
tion logic 282 outputs an indication on the congestion
detected signal 306 to the congestion control logic 284 that
indicates that there 1s congestion with reference to access of
this resource. As described 1n more detail below, the conges-
tion control logic 284 precludes the retry logic 286 ifrom
retrying the accessing of the resource for a given period of
time. Control continues at block 914.

In block 914, the value of the NACK counter 1s copied as
the previous NACK value. With reference to FIG. 8, after the
OR logic 806 outputs a logical high value 1nto the reset input
of the NACK counter 812, the NACK counter 812 copies 1ts
value 1nto the previous NACKs (before ACK) memory 804.
Accordingly, if an ACK 1s recerved through the ACKs signal
302 or congestion 1s detected (congestion detected signal 306
1s a logical high value), the OR logic 806 outputs a logical
high value that causes the NACK counter 812 to copy its value
into the previous NACKSs (before ACK) memory 804. Control
continues at block 916.

In block 916, the NACK counter 1s reset. With reference to
FIG. 8, after the OR logic 806 outputs alogical high value into
the reset input of the NACK counter 812, the NACK counter
812 is reset. Accordingly, if an ACK 1s received through the
ACKs signal 302 or congestion 1s detected (congestion
detected signal 306 is a logical high value), the OR logic 806
outputs a logical high value that causes the NACK counter
812 to reset. The operations of the tlow diagram 900 are
complete.

An embodiment of the congestion detection logic 282 1s
now described that incorporates the number of ACKs, in
addition to the number of NACKS, received 1n response to
access requests to a resource. Accordingly, the number of
NACKSs may be counted without the restriction of being con-
secutive.

In particular, FIG. 10 illustrates a congestion detection
logic for detecting congestion based on whether the ratio of
the number of negative acknowledgements to the number of
positive acknowledgments received 1n response to access
requests exceeds a threshold, according to one embodiment
of the mvention. FIG. 10 1llustrates one embodiment of the
congestion detection logic 282. The congestion detection
logic 282 includes an OR logic 1002, a NACK counter 1012,
a NACK comparison logic 1008, an ACK counter 1014 and an
ACK comparison logic 1006.

The congestion detected logic signal 306 and the output
from the ACK comparison logic 1006 are coupled as inputs
into the OR logic 1002. The output of the OR logic 1002 is
coupled to the reset input of the NACK counter 1012 and 1s
coupled to the reset mput of the ACK counter 1014. The
NACKSs signal 304 1s coupled as a data input 1into the NACK
counter 1012. The ACKs signal 302 1s coupled as a data input
into the ACK counter 1014. The output of the NACK counter
1012 1s coupled as a first input mto the NACK comparison
logic 1008. A NACK threshold signal 1018 i1s coupled as a
second mput into the NACK comparison logic 1008. The
output of the ACK counter 1014 1s coupled as a first input into
the ACK comparison logic 1006. An ACK threshold signal

1016 1s coupled as a second 1nput mto the ACK comparison

US 9,271,267 B2

15

logic 1006. The output of the NACK comparison logic 1008
1s the congestion threshold signal 306.

The operations of the congestion detection logic 282 illus-
trated 1n FIG. 10 are now be described with reference to FIG.
11. FIG. 11 1llustrates a flow diagram for detecting congestion
based on a ratio of the number ol negative acknowledgements
to the number of positive acknowledgments recerved in
response to access requests, according to one embodiment of
the 1nvention.

In block 1102 of the tlow diagram 1100, an access request
1s transmitted to a resource. With reference to FIG. 3, the
load/store functional unit 218 transmits an access request to
one of the cache lines within one of the cache memories 105.
Control continues at block 1104.

In block 1104, a determination 1s made of the type of
response recerved 1n response to the access request. With
reference to the embodiment 1llustrated 1n FIG. 3, the con-
gestion detection logic 282 determines the type of response
received 1n response to the access request, Upon determining,
that the type of response 1s an ACK, control continues at block
1112, which 1s described 1n more detail below.

In block 1106, upon determining that the type of response
1s a NACK, the NACK counter 1s incremented. With reference
to FIG. 10, the NACK counter 1012 1s incremented when a
NACK 1s received on the NACKSs signal 304. Control contin-
ues at block 1108.

In block 1108, a determination 1s made of whether the
number of NACKSs received have exceeded a threshold. With
reference to the embodiment illustrated in FI1G. 10, the NACK
counter 1012 counts the number of NACKSs received back
from the resource through the NACKSs signal 304. The NACK
counter 1012 outputs the current value of the number of
NACKSs to the NACK comparison logic 1008. The NACK

comparison logic 1008 compares the current value of the
number of NACKSs to a threshold received from the NACK

threshold signal 1018. The threshold from the NACK thresh-
old signal 1018 1s a configurable value that may vary based on
the configuration of the system 100. Upon determining that
the number of NACKSs has not exceeded the threshold, the
operations of the flow diagram 1100 continue at block 1102,
wherein another access request 1s made by the retry logic 286
(in the load/store functional unit 218).

In block 1110, upon determiming that the number of
NACKSs has exceeded the threshold, access to the resource 1s
controlled. With reference to the embodiment illustrated 1n
FIG. 10, the NACK comparison logic 1008 generates the
congestion detected signal 306. With reference to the embodi-
ment 1llustrated 1n FI1G. 3, the congestion detection logic 282
outputs an indication on the congestion detected signal 306 to
the congestion control logic 284 that indicates that there 1s
congestion with reference to access of this resource. As
described in more detail below, the congestion control logic
284 precludes the retry logic 286 from retrying the accessing
ol the resource from a given period of time. Control continues
at block 1116, which 1s described in more detail below.

In block 1112, upon determining that the type of response
1s an ACK, the ACK counter 1s incremented. With reference to
FI1G. 10, the ACK counter 1014 1s incremented when an ACK
1s received on the ACKS signal 302. Control continues at
block 1114.

In block 1114, a determination 1s made of whether the
number of ACKS received has exceeded a threshold. With
reference to the embodiment 1llustrated 1in FIG. 10, the ACK
counter 1014 counts the number of ACKs recerved back from
the resource through the ACKs signal 302. The ACK counter
1014 outputs the current value of the number of ACKs to the
ACK comparison logic 1006. The ACK comparison logic

10

15

20

25

30

35

40

45

50

55

60

65

16

1006 compares the current value of the number of ACKs to a
threshold recetved from the ACK threshold signal 1016. The

threshold from the ACK threshold signal 1016 1s a config-

urable value that may vary based on the configuration of the
system 100. Upon determining that the number of ACKs has
not exceeded the threshold, the operations of the flow diagram
1100 continue at block 1102, wherein another access request
1s made by the retry logic 286 (1n the load/store functional unit
218). Upon determining that the number of ACKs has
exceeded the threshold, control continues at block 1116.

In block 1116, the NACK counter and the ACK counter are

reset. With reference to the embodiment illustrated in FIG.

10, the OR logic 1002 outputs a logical high to the NACK
counter 1012 and the ACK counter 1014 11 either congestion
1s detected (on the congestion detected signal 306) or 1if the
number of ACKs recerved exceed a threshold. The operations
of the flow diagram 1100 are complete. Therefore, the
embodiment of the congestion detection logic 282 1llustrated
in FIG. 10 accounts for the number of ACKs 1n the determi-
nation of whether access to the resource 1s congested.

An embodiment of the congestion detection logic 282 is
now described that uses the average number of NACKSs 1n the
determination of whether access to the resource 1s congested.
Accordingly, such an embodiment does not require that the
number of NACKs be consecutive 1n order for there to be
congestion with regard to the resource being accessed.

In particular, FIG. 12 illustrates a congestion detection
logic for detecting congestion based on whether an average
number of negative acknowledgements received 1n response
to access requests exceeds a threshold, according to one
embodiment of the invention. In particular, FIG. 12 illustrates
one embodiment of the congestion detection logic 282. The
congestion detection logic 282 includes a NACK counter
1212 and a NACK comparison logic 1208.

The congestion detected signal 306 1s coupled to the reset
input of the NACK counter 1212. The NACKSs signal 304 1s
coupled to a first data input of the NACK counter 1212. The
ACKs signal 302 1s coupled to a second data mput of the
NACK counter 1212. The output of the NACK counter 1212
1s coupled to a first input of the NACK comparison logic
1208. A NACK threshold signal 1202 1s coupled to a second
input of the NACK comparison logic 1208. The output of the
NACK comparison logic 1208 1s the congestion detected
signal 306.

The operations of the embodiment of the congestion detec-
tion logic 282 illustrated in FIG. 12 are now described in
reference to the tlow diagram 1300 of FIG. 13. FIG. 13
illustrates a flow diagram for detecting congestion based on
an average number of negative acknowledgements recerved
1in response to access requests, according to one embodiment
of the mvention.

In block 1302 of the flow diagram 1300, an access request
1s transmitted to a resource. With reference to FIG. 3, the
load/store functional unit 218 transmits an access request to
one of the cache lines within one of the cache memories 105.
Control continues at block 1304.

In block 1304, a determination 1s made of the type of
response received in response to the access request. With
reference to the embodiment 1llustrated 1in FIG. 3, the con-
gestion detection logic 282 determines the type of response
received 1n response to the access request.

In block 1306, upon determining that the type of response
1s an ACK, the ACK counter 1s decremented. With reference
to FIG. 12, the ACK counter 1212 is decremented when an
ACK 1sreceived on the ACKs signal 302. Control continues at
block 1310, which 1s described 1n more detail below.

US 9,271,267 B2

17

In block 1308, upon determining that the type of response
1s a NACK, the NACK counter 1s incremented. With reference
to FIG. 12, the NACK counter 1212 1s incremented when a
NACK 1s recetved on the NACKSs signal 304. Control contin-
ues at block 1310.

In block 1310, a determination 1s made of whether the
current value of the NACK counter has exceeded a threshold.
With reference to the embodiment illustrated in FIG. 12, the
NACK counter 1212 outputs the current value of the number
of NACKSs to the NACK comparison logic 1208. The NACK
comparison logic 1208 compares the current value of the
number of NACKSs to a threshold recerved from the NACK
threshold signal 1202. Upon determining that the current
value of the NACK counter has not exceeded the threshold,
the operations of the flow diagram 1300 continue at block
1302, wherein another access request 1s made by the retry
logic 286 (in the load/store functional unit 218).

In block 1312, upon determining that the current value of
the NACK counter has exceeded the threshold, access to the
resource 1s controlled. With reference to the embodiment
illustrated 1 FIG. 12, the NACK comparison logic 1208
generates the congestion detected signal 306. With reference
to the embodiment 1llustrated 1n F1G. 3, the congestion detec-
tion logic 282 outputs an indication on the congestion
detected signal 306 to the congestion control logic 284 that
indicates that there 1s congestion with reference to access of
this resource. As described in more detail below, the conges-
tion control logic 284 precludes the retry logic 286 from
retrying the accessing of the resource from a given period of
time. Control continues at block 1314.

In block 1314, the NACK counter 1s reset. With reference
to the embodiment illustrated 1n FIG. 12, if the congested
detected signal 306 indicates congestion, such indication also
causes the NACK counter 1212 to reset. The operations of the
flow diagram 1300 are complete.

An embodiment of the congestion detection logic 282 1s
now described that uses a moving (shifting) average number
of NACKs 1n the determination of whether access to the
resource 1s congested. Such an embodiment accounts for how
the number of accesses to a resource (such as a cache
memory) varies during the execution of an application by the
processors 104A-104N. For example, for a typical applica-
tion, 1mtially the instructions of the application include a
number of loads for loading data into the processor 104 for
execution. Subsequently, the mstructions of a typical appli-
cation have a relatively smaller number of loads, as a number
of the mstructions are to operate on the data that 1s loaded into
the processor 104. Moreover, subsequent instructions of such
an application have an increased number of stores for output-
ting the results of the prior operations. Accordingly, the
embodiment of the congestion detection logic 282 1llustrated
in FIG. 14 uses a window of the number of NACKSs that shifts
over time during the operations.

FIG. 14 illustrates a congestion detection logic for detect-
ing congestion based on a moving average of the number of
negative acknowledgements recerved 1n response to access
requests, according to one embodiment of the invention. FIG.
14 illustrates one embodiment of the congestion detection
logic 282. The congestion detection logic 282 includes a
NACK counter 1408, a NACK comparison logic 1410, an OR
logic 1402, an averaging window shift register 1404 and a
multiplexer 1406.

The NACKSs signal 304 1s coupled to a first input of the OR
logic 1402, to a data input mnto the averaging window shiit
register 1404 and to a first data input of the NACK counter
1408. The ACKs signal 302 1s coupled to a second input of the
OR logic 1402. The output of the OR logic 1402 1s coupled to

10

15

20

25

30

35

40

45

50

55

60

65

18

a shiit input of the averaging window shift register 1404. The
congestion detected signal 306 1s coupled to a reset input of
the averaging window shift register 1404 and to a reset input
of the NACK counter 1408. A first output 1424 of the aver-
aging window shift register 1404 1s coupled to a first input of
the multiplexer 1406. A second output 1426 of the averaging
window shift register 1404 1s coupled to a second input of the
multiplexer 1406. A third output 1428 of the averaging win-
dow shift register 1404 1s coupled to a third mput of the
multiplexer 1406. A window slice signal 1422 1s coupled to a
control input of the multiplexer 1406. An output of the mul-
tiplexer 1406 1s coupled to a second data input of the NACK
counter 1408. The output of the NACK counter 1408 1is
coupled to a first input of the NACK comparison logic 1410.
A NACK threshold signal 1420 1s coupled as a second input
of the NACK comparison logic 1410. The output of the
NACK comparison logic 1410 1s the congestion detected
signal 306.

The operations of the embodiment of the congestion detec-
tion logic 282 1illustrated in FIG. 14 are now described in
reference to the tlow diagram 1500 of FIG. 15. FIG. 15
illustrates a flow diagram for detecting congestion based on a
moving average ol the number of negative acknowledge-
ments recerved 1n response to access requests, according to
one embodiment of the invention.

In block 1502 of the flow diagram 1500, an access request
1s transmitted to a resource. With reference to FIG. 3, the
load/store functional unit 218 transmits an access request to
one of the cache lines within one of the cache memories 105.
Control continues at block 1504.

In block 1504, a determination 1s made of the type of
response received in response to the access request. With
reference to the embodiment 1llustrated 1in FIG. 3, the con-
gestion detection logic 282 determines the type of response
received 1n response to the access request.

In block 1506, upon determining that the type of response
1s an NACK, the NACK counter 1s incremented. With refer-
ence to FIG. 14, the NACK counter 1408 1s incremented when
a NACK 1s recerved on the NACK signal 304. Control con-
tinues at block 1508.

In block 1508, a logical high value 1s shifted into the
averaging window shift register. With reference to FIG. 14,
after a response (either ACK or NACK) 1s recerved, the OR
logic 1404 outputs a logical high value into the shift input of
the averaging window shift register 1404. In response, the
averaging window shift register 1404 shifts in the current
value on the NACKSs signal 304. Therefore, 1f a response 1s a
NACK, the averaging window shift register 1404 shifts in a
logical high. If a response 1s an ACK, the averaging window
shift register 1404 shiits 1n a logical low (the operation 1n
block 1510).

To 1llustrate, FIGS. 16 A-161 1llustrate the value an averag-
ing window shift register (as an eight-bit shift register) over
time, according to one embodiment of the invention. FIG.
16A 1llustrates the averaging window shift register 1404 after
a reset, wherein 1ts value 1s initialized to zero. FIG. 16B
illustrates the averaging window shift register 1404 after a

logical high 1s shifted therein based on a response that 1s a
NACK. FIG. 16C 1llustrates the averaging window shift reg-

ister 1404 after a second logical high 1s shifted therein based
on a second response that 1s a NACK. FIG. 16D 1llustrates the
averaging window shift register 1404 after a logical low 1s
shifted therein based on a third response that 1s an ACK. FIG.
16F illustrates the averaging window shift register 1404 after
alogical high 1s shifted therein based on a fourth response that
1s a NACK. FIG. 16F illustrates the averaging window shift
register 1404 after a logical low 1s shufted therein based on a

US 9,271,267 B2

19

fifth response that 1s an ACK. FIG. 16G 1illustrates the aver-
aging window shift register 1404 after a logical high 1s shifted
therein based on a sixth response that 1s a NACK. FIG. 16H

illustrates the averaging window shift register 1404 after a
logical high 1s shifted therein based on a seventh response that
1s a NACK. FIG. 161 illustrates the averaging window shiit
register 1404 after a logical high 1s shifted therein based on a
cighth response that 1s a NACK. Returning to the flow dia-

gram 1500 of FIG. 15, control continues at block 1512, which

1s described 1n more detail below.
In block 1510, upon determining that the type of response
1s an ACK, a logical low value is shifted into the averaging

window shift register. With reference to FIG. 14, (as
described above) after a response (either ACK or NACK) 1s

received, the OR logic 1404 outputs a logical high value into
the shift input of the averaging window shift register 1404. In
response, the averaging window shift register 1404 shifts in
the current value on the NACKSs signal 304. Therefore, 1f a
response 1s an ACK, the averaging window shiit register 1404
shifts 1 a logical low. Control continues at block 1512.

In block 1512, a determination 1s made of whether the
NACK counter 1s decremented based on the window slice of
the averaging window shift register. With reference to FIG.
14, the value of the window slice signal 1422 causes the
multiplexer 1406 to select one of the three inputs to be mnput-
ted into the NACK counter 1408. The first output 1424, the
second output 1426 and the third output 1428 are different
s1zes of the averaging window shiit register 1404. Accord-
ingly, the congestion detection logic 282 illustrated in F1G. 14
1s configurable to vary the size of the window of the responses
(ACKSs and NACKSs) to view in determining whether there 1s
congestion. Theretfore, the first output 1424 may be the largest
s1ize window; the second output 1426 may be the second
largest window; and the third output 1428 may be the smallest
size window. The first output 1424, therefore, takes into
account the largest number of responses in determining
whether there 1s congestion.

The first output 1424 selects a first bit of the averaging
window shiit register 1404. The second output 1426 selects a
second bit of the averaging window shift register 1404. The
third output 1428 selects a third bit of the averaging window
shift register 1404. Returning to FIG. 161, for example, third
output 1428 selects the rightmost bit (bit zero having a value
of one). The second output 1426 selects the second to the
rightmost bit (bit one having a value of one). The first output
1424 selects the third to the rightmost bit (bit two having a
value of zero). Accordingly, the values shifted into the aver-
aging window shiit register 1404 moves the window, while
the different bit selections of the averaging window shiit
register 1404 determines the size of the window of responses
used to determine whether there 1s congestion.

The value of the window slice signal 1422 causes the
multiplexer 1406 to select one of the three bits that are out-
putted from the averaging window shift register 1404. The
output from the multiplexer 1406 1s inputted 1nto a data input
the NACK counter 1408. The NACK counter 1408 decre-
ments 1ts current value of the number of NACKSs, 1f the mul-
tiplexer 1406 outputs a bit having a value of one. The NACK
counter 1408 does not decrement 1ts current value of the
number of NACKSs, 11 the multiplexer 1406 outputs a bit
having a value of zero. Upon determining that the NACK
counter 1s not decremented, control continues at block 1516,
which 1s described in more detail below.

In block 1514, upon determiming that the NACK counter 1s
decremented, the NACK counter 1s decremented. With refer-
ence to F1G. 14, the NACK counter 1408 1s decremented after

10

15

20

25

30

35

40

45

50

55

60

65

20

the multiplexer 1406 selects a value of one from the averaging
window shift register 1404. Control continues at block 1516.

In block 1516, a determination 1s made of whether the
current value of the NACK counter has exceeded a threshold.
With reference to the embodiment 1llustrated 1n FIG. 14, the
NACK counter 1408 outputs the current value of the number
of NACKSs to the NACK comparison logic 1410. The NACK
comparison logic 1410 compares the current value of the
number of NACKSs to a threshold recetved from the NACK
threshold signal 1420. Upon determining that the current
value of the NACK counter 1408 has not exceeded the thresh-
old, the operations of the flow diagram 1500 continue at block
1502, wherein another access request 1s made by the retry
logic 286 (in the load/store functional unit 218).

In block 1518, upon determining that the current value of
the NACK counter has exceeded the threshold, access to the
resource 1s controlled. With reference to the embodiment
illustrated 1 FIG. 14, the NACK comparison logic 1410
generates the congestion detected signal 306. With reference
to the embodiment illustrated 1n F1G. 3, the congestion detec-
tion logic 282 outputs an indication on the congestion
detected signal 306 to the congestion control logic 284 that
indicates that there 1s congestion with reference to access of
this resource. As described 1n more detail below, the conges-
tion control logic 284 precludes the retry logic 286 ifrom
retrying the accessing of the resource from a given period of
time. Control continues at block 1520.

In block 1520, the NACK counter and the averaging win-
dow shift register are reset. With reference to the embodiment
illustrated in FIG. 14, 11 the congested detected signal 306
indicates congestion (e.g., a logical high), such indication
also causes the NACK counter 1408 and the averaging win-
dow shift register 1404 to reset. The operations of the flow
diagram 1500 are complete.

Congestion Control Description

After the congestion has been detected, access of the
resource 1s controlled. While anumber of different operations
may be used to control the access, 1n one embodiment, the
congestion control logic 284 delays the 1ssuance of retry
requests by the retry logic 286. However, the length of delay
may aflect the performance of the system 100. Therefore, a
number of considerations may be taken into account when
determining the length of the delay. The detection may be a
false indication of congestion depending on the system con-
figuration, the application being executed and/or the types of
congestion detection logic used. If there 1s actual congestion
but if the delay 1s too small, the number of retries for access-
ing the resource may be too great. Also, 1f the detection 1s false
but iithe delay 1s too large, the performance of the system 100
may be adversely atfected. Moreover, 11 the congestion storm
1s detected at a late stage of congestion and the confidence of
detection 1s high, the delay may be too large. However, 11 the
congestion storm 1s detected at an earlier stage, but the detec-
tion 1s not definitive, the delay may be too small.

Additionally, collision control logic may be incorporated
into embodiments of the invention that controls the retry of
the access requests across the different processors. In one
embodiment, the collision control logic may include some
random delay such that all of the processors do not retry the
accessing of aresource at the same time. Returning to FI1G. 4,
assume that the congestion control logic 284 1s not provided
an indication of when the falling edge 412 is reached with
regard to congestion. Accordingly, 1f the congestion 1s 1n the
range of the falling edge 412, performance may be adversely
affected 11 the congestion control logic 284 does not retry at

US 9,271,267 B2

21

certain points of the congestion. In particular, the resource
may no longer be congested and could be accessed but the
congestion control logic 282 continues to preclude the retry-
ing of accessing the resource. However, the retry logic 286
may berequired to retry extra times to determine the degree of
congestion.

One embodiment for responding to memory congestion/
contention 1n a multi-processor system 1s now described. In
particular, one embodiment of congestion control logic 284
based on an exponential back off delay operation is now
described. In such an embodiment, the amount of delay
increases each time extra congestion 1s detected. Further, the
amount of delay decreases each time the processor 104
receives a given number of ACKs for the resource.

In particular, FIG. 17 illustrates a congestion control logic
for controlling access to a resource based on an exponential
back off delay operation, according to one embodiment of the
invention. FIG. 17 illustrates one embodiment of the conges-
tion control logic 284. The congestion control logic 284
includes a state machine 1702, a state machine 1704, an AND
logic 1706, an AND logic 1708, an OR logic 1710, an 1nitial
delay memory 1712, a delay amount 1714, a cycle down
counter 1716 and a comparison logic 1718.

An operation type signal 1730 1s coupled to a first input of
the state machine 1702. The operation type signal 1730 indi-
cates the type of congestion detection operation used (e.g.,
consecutive number of NACKSs, moving average of the num-
ber of NACKSs, etc.). In particular, the one to a number of
different types of congestion detection logic 282 may be
coupled to the congestion control logic 284. Additionally, one
to anumber o the congestion detection logic 282 may be used
to 1ndicate detection. The operation type signal 1730 1ndi-
cates which congestion detection operation 1s indicating con-
gestion on the congestion detected signal 306 being received.
Therefore, 11 two different congestion detection logics 282
are coupled to the congestion control logic 284, the state
machine 1702 may select whether to control congestion
based on which congestion detection logic 282 generated the
congestion detected signal 306.

The congestion detected signal 306 1s coupled to a second
input of the state machine 1702 and to a first input of the AND
logic 1706. The ACKs=ACK threshold signal 1732 1s coupled
to a third input of the state machine 1702 and to a first input of
the AND logic 1708. The state machine 1702 outputs a storm
begin signal 1734 and a storm pending signal 1736. The storm
begin signal 1734 1s coupled to a first input of the state
machine 1704 and to a power load 1nput of the delay amount
1714. The storm pending signal 1736 1s coupled to a second
input of the state machine 1704, to a second input of the AND
logic 1706 and to a second mnput of the AND logic 1708.

The output of the AND logic 1706 1s coupled to a left shift

input of the delay amount 1714, to a left shift input of the
cycle down counter 1716 and to a first input of the OR logic
1710. The output of the AND logic 1708 1s coupled to a right
shift input of the delay amount 1714, to a right shift input of
the cycle down counter 1716 and to a second input of the OR
logic 1710. The 1imitial delay memory 1712 1s coupled to be
inputted into the delay amount 1714. The output of the delay
amount 1714 1s coupled to an input of the cycle down counter
1716. The output of the OR logic 1710 1s coupled to a start
input of the cycle down counter 1716. The output of the cycle
down counter 1s coupled to a first input of the comparison
logic 1718. The comparison logic 1718 1s coupled to receive
a zero mput value. The output of the comparison logic 1718 1s
an enable retry signal 308 that 1s coupled to an input of the
state machine 1704.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

A valid retry cycle signal 1738 1s coupled to an input of the
state machine 1704. The output of the state machine 1704 1s
a disable retry signal 307. The valid retry cycle signal 1738 1s
an indicator of when a retry of a request made be made. For
example, 1n one embodiment, the processor 104 may be con-
figured to retry a request once every eight clock cycles. There-
fore, alter the enable retry signal 308 indicates that a request
may be retried, the state machine 1704 does not provide this
indication on the disable retry signal 307 to the retry logic 286
until the valid retry cycle signal 1738 indicates that a retry
may be made. The operations of the congestion control logic
284 shown 1n FIG. 17 are now described with reference to
flow diagrams 1800, 1830 and 1850 of FIGS. 18A, 18B and
18C, respectively.

FIGS. 18A-18C 1illustrate flow diagrams for controlling
congestion of accesses to a resource based on an exponential
back off delay, according to one embodiment of the invention.
FIGS. 18A-18C illustrate different independent operations
for controlling congestion of accesses to aresource. F1G. 18A
illustrates the flow diagram 1800 for the operations of the
congestion control logic 284 illustrated 1n FIG. 17 upon
receipt of an imndication that congestion is detected. FIG. 18B
illustrates the flow diagram 1830 for the operations of the
congestion control logic 284 1llustrated in FIG. 17 after the
number of ACKS equal a threshold. FIG. 18C 1llustrates the
flow diagram 1850 for the operations of the congestion con-
trol logic 284 illustrated in FIG. 17 after congestion 1s
detected. The operations of the flow diagram 1800 are now
described.

In block 1802, an indication that congestion 1s detected 1s
recetved. With reference to FIG. 17, the state machine 1702
receives such an indication on the congestion detected signal
306 (being recerved from the congestion detection logic 282).
The state machine 1702 varies the processing of this indica-
tion based on the current state of the congestion control logic
284. Control continues at block 1804.

In block 1804, a determination 1s made of whether there 1s
congestion currently. With reference to FIG. 17, the state
machine 1702 determines whether there 1s congestion cur-
rently. In particular, the state machine 1702 stores the current
state of the congestion control logic 284 (including whether
there 1s congestion currently). In particular, a determination 1s
made of whether other cache lines 1n the memory are con-
gested.

In block 1806, upon determining that there 1s not conges-
tion currently, the retry 1s disabled. With reference to FI1G. 17,
the state machine 1702 sets the storm begin signal 1734 and
the storm pending signal 1736 (indicative of a congestion
storm) to logical high values. The state machine 1704
receives these logical high values on the storm begin signal
1734 and the storm pending signal 1736. The logical high
value for the storm begin signal 1734 causes the state machine
1704 to output a logical high value on the disable retry signal
307, thereby indicating that retries are to be disabled. Return-
ing to FI1G. 3, this value on the disable retry signal 307 causes
the retry logic 286 to stop retrying of accessing the resource.
Control continues at block 1808.

In block 1808, the imitial value of delay of the retry 1s
loaded. With reference to FIG. 17, the delay amount 1714
receives the logical high value on the storm beginning signal
1734 on 1ts power load mput. In turn, the delay amount 1714
loads an 1mitial delay value from initial delay memory 1712.
This value (which may be configurable) 1s the initial amount
of delay before retries of access to the resource may resume.
Control continues at block 1810.

In block 1810, the count down of the delay 1s ini1tiated. With
reference to FI1G. 17 (as described in block 1810 above), the

US 9,271,267 B2

23

AND loglc 1706 outputs a logical high value after receipt of
a logical . ’ugl value from the storm pending signal 1736 and
a logical high value from the congestion detected signal 306.
The output of the AND logic 1706 1s inputted into an input of
the OR logic 1710. The output of the OR logic 1710 1s
inputted into the start imput of the cycle down counter 1716.
Theretore, the cycle down counter 1716 starts the count down
of the delay when there 1s congestion currently and additional
congestion 1s received. A more detailed description of this
count down operation 1s described 1n more detail below 1n
conjunction with the flow diagram 1850 of FIG. 18C.

In block 1812, upon determining that there 1s congestion
currently, the value of the delay i1s increased exponentially.
With reference to FIG. 17, 1f there 1s congestion currently, the
storm pending signal 1736 has a logical high value. The AND
logic 1706 recerves this logical high value and the logical high
value from the congestion detected signal 306, thereby caus-
ing the AND logic 1706 to output a logical high that 1s input-
ted 1nto the left shift input of the delay amount 1714 and the
lett shift input of the cycle down counter 1716. In an embodi-
ment, the delay amount 1714 and the cycle down counter
1716 left shift zeros into the least sigmificant bit of current
value of the delay. Accordingly, the amount of delay 1s expo-
nentially increased each time there 1s congestion currently
and additional congestion 1s detected.

The operations of the congestion control logic 284 after the
number of ACKS equal a threshold are now described in
reference to the flow diagram 1830 of FIG. 18B.

In block 1830, an indication 1s received on the signal 1732
that the number of ACKs recetved equals an ACK threshold.
With reference to FIG. 17, the state machine 1702 and the
AND logic 1732 recerves this indication on the signal 1732.
Such a signal indicates when the number of ACKs returned 1in

response to accessing a resource exceeds a given threshold.
Control continues at block 1834.

In block 1834, a determination 1s made of whether there 1s
congestion currently. With reference to FIG. 17 (as described
above), the state machine 1702 determines whether there 1s
congestion currently. In particular, the state machine 1702
stores the current state of the congestion control logic 284
(including whether there 1s congestion currently). Upon
determining there 1s no congestion currently, the operations
of the tlow diagram 1830 are complete.

In block 1838, upon determining that there 1s congestion
currently, the value of the delay ({or retry) 1s exponentially
decreased. With reference to FIG. 17, 11 there 1s congestion
currently, the storm pending signal 1736 has a logical high
value. The AND logic 1708 recerves this logical high value
and the logical high value from the signal 1732 (that indicates
that the number of ACKs received exceed a threshold),
tflereby causing the AND logic 1708 to output a logical high
that 1s inputted into the right shift input of the delay amount
1714 and the right shift input of the cycle down counter 1716.
In an embodiment, the delay amount 1714 and the cycle down
counter 1716 right shift zeros into the least significant bit of
current value of the delay. Accordingly, the amount of delay 1s
exponentially decreased each time there 1s congestion cur-
rently and the number of ACKs exceed a threshold. Control
continues at block 1840.

A more detailed description of this count down operation s
now described 1 more detail below 1n conjunction with the
flow diagram 18350 of FIG. 18C.

In block 1852, the value of the delay 1s decremented. With
reference to FI1G. 17, after the cycle down counter 1s nitiated
(as described above in FIGS. 18A and 18B), the cycle down
counter 1716 decrements the current value stored therein.
Control continues at block 1854.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

In block 1854, a determination 1s made of whether the
value of the delay equals zero. With reference to FIG. 17, the
comparison logic 1718 retrieves the current value of the delay
stored 1n the cycle down counter 1716. The comparison logic
1718 compares this value to zero. In one embodiment, the
cycle down counter 1716 1s partitioned 1nto a lower set of bits
and an upper set of bits to allow for random delay. In such an
embodiment, the lower set of bits start from a maximum value
and count down to zero and restarts at the maximum value.
For example, 1f the lower set of bits are the lower four bits, the
maximum value 1s 1111 and counts down to 0000. Once the
lower four bits are restarted at the maximum value, a carry
value 1s carried over to the upper set of bits. The upper set of
bits are loaded with a configurable value from one of the
special purpose registers. The upper set of bits counts down
from the loaded configurable value to zero and restarts at the
loaded configurable value. Accordingly, the comparisonlogic
1718 determines whether the value of the cycle down counter
1716 (including the lower set of bits and the upper set of bits)
equals zero. Upon determining that the current value of the
delay 1s not equal to zero, control continues at block 1852,
wherein the delay 1s again decremented.

In block 1856, upon determining that the current value of
the delay 1s equal to zero, the retry 1s enabled. With reference
to FIG. 17, the comparison logic 1718 outputs an indication
on the enable retry signal 308 that indicates that access to the
resource may be retried. The state machine 1704 recerves this
indication and outputs an indication on the disable retry sig-
nal 307 that 1s mputted into the retry logic 286, thereby
enabling the retry logic 286 to output access requests to the
resource.

Thus, methods, apparatuses and systems for detection and
control of resource congestion by a number of processors
have been described. Although the invention has been
described with reference to specific exemplary embodiments,
it will be evident that various modifications and changes may
be made to these embodiments without departing from the
broader spirit and scope of the invention. For example, while
described with regard to congestion for access to a cache line
in a cache memory, embodiments of the imnvention are not so
limited, as detection and control of congestion may be 1n
regard to other resources, such as secondary storage disks, a
network connection, printer, etc. Moreover, 1n an embodi-
ment, the multiple processors 1n the system may be config-
ured depending on the system configuration and the applica-
tion therein. For example, the types of memory detection and
congestion to execute 1n the processors may vary depending
on the number of processors in the system as well as the
number of accesses by the application that is executing
therein. Therefore, the specification and drawings are to be
regarded 1n an 1llustrative rather than a restrictive sense.

What 1s claimed 1s:

1. A system comprising:

a cache memory to store data;

a first processor configured to attempt to access data from

the cache memory based on access requests;

a second processor associated with the cache memory; and

a hub controller configured to receive the access requests

from the first processor, and to forward the access

requests to the second processor, wherein the second

processor 1s configured to:

determine whether the data 1n the cache memory 1is
accessible,

transmit a negative acknowledgment back to the first
processor through the hub controller when the data 1s
not accessible, wherein the number of negative
acknowledgements are counted within a time period,

US 9,271,267 B2

25

wherein the first processor delays attempting to
access the data for a time when an average number of
negative acknowledgments exceeds a threshold, and
transmit a positive acknowledgment back to the first pro-
cessor through the hub controller when the data 1s acces-

sible.

2. The system of claim 1, wherein:
the count of negative acknowledgements 1s reset after the
transmission of the positive acknowledgment;
the count of the negative acknowledgements 1s incre-
mented after the transmission of the negative acknowl-
edgement;
the first processor attempts to access the data based on
another access request to access the data when a negative
acknowledgment threshold has not been exceeded and
aiter the transmission of the negative acknowledgment
by the second processor; and
the first processor delays attempting to access the data for
a time when the negative acknowledgment threshold has
been exceeded.
3. The system of claim 1, further comprising;:
a shift register; and
a multiplexer, wherein:
the shift register includes a plurality of outputs, and at
least one mput,

the at least one imnput to the shift register 1s coupled to the
negative acknowledgments, and

the plurality of outputs from the shift register are inputs
to the multiplexer.
4. The system of claim 3, wherein:
a logical low 1s shifted ito the shift register after the
transmission of the positive acknowledgement,
a logical high 1s shifted into the shift register after the
transmission of the negative acknowledgment,
the multiplexer includes one or more control mnputs,
a state of the one or more control inputs selects which input
of the multiplexer will be output on an output from the
multiplexer,
the count of the negative acknowledgments 1s incremented
aiter the transmission of the negative acknowledgment,
the count of the negative acknowledgments 1s decremented
when the output of the multiplexer has a value of one,
the first processor attempts to access the data based on
another access request after the second processor trans-
mits the negative acknowledgment when a negative
acknowledgment threshold has not been exceeded, and
the first processor delays attempting to access the data for
a time when the negative acknowledgment threshold has
been exceeded.
5. The system of claim 4, further comprising;:
at least one state machine, wherein after the negative
acknowledgment threshold has been exceeded:
receives a congestion detected signal,
disables retry attempts to access the data by the first
processor, and

exponentially increases a delay value, wherein the delay
value causes the first processor to delay attempting to
access the data for the time corresponding to the delay
value.

6. The system of claim 5, wherein the at least one state

machine 1s coupled to a plurality of different sets of conges-
tion detection logic.

10

15

20

25

30

35

40

45

50

55

60

26

7. The system of claim 6, wherein the one of the different
sets of congestion detection logic detects an average number
of number of negative acknowledgments.
8. The system of claim 7, wherein the first processor delays
attempting to access the data for the time when the average
number of negative acknowledgments exceeds a threshold.
9. The system of claim 1, further comprising:
at least one state machine, wherein after the negative
acknowledgment threshold has been exceeded:
receives a congestion detected signal,
disables retry attempts to access the data by the first
processor, and
exponentially increases a delay value, wherein the delay
value causes the first processor to delay attempting to
access the data for a time corresponding to the delay
value.
10. The system of claim 1, further comprising a positive
acknowledgment counter, wherein the positive acknowledg-
ment counter 1s incremented after the transmission of the
positive acknowledgment.
11. The system of claim 10, wherein the count of the
negative acknowledgments 1s reset when the positive
acknowledgment counter reaches a threshold value.
12. A method comprising:
transmitting a request to access data from the cache
memory by a first processor to a second processor;

recerving a negative acknowledgment by the first processor
when the data 1s not accessible, wherein the number of
negative acknowledgements are counted within a time
period, and the first processor delays attempting to
access the data for a time when an average number of
negative acknowledgments exceeds a threshold; and

receving a positive acknowledgment by the first processor
when the data 1s accessible.

13. The method of claim 12, further comprising;:

resetting the count of negative acknowledgments after the

receiving the positive acknowledgment;

incrementing the count of negative acknowledgments after

receiving a negative acknowledgement;
transmitting another access request to access the data by
the first processor to the second processor after recerving
the negative acknowledgment when a negative acknowl-
edgment threshold has not been exceeded; and

delaying the transmission of subsequent access requests by
the first processor for the data until after a period of time
when the negative acknowledgment threshold has been
exceeded.

14. The method of claim 12, after the negative acknowl-
edgement threshold has been exceeded, further comprising:

recerving a congestion detected signal,

disabling retry attempts to access the data by the first pro-

cessor, and

exponentially increasing a delay value, wherein the delay

value causes the first processor to delay attempting to
access the data for the period of time corresponding to
the delay value.

15. The method of claim 12, further comprising increasing
a count ol positive acknowledgments when the positive
acknowledgment is received by the first processor.

16. The method of claim 15, further comprising:

resetting the count of the negative acknowledgments when

the positive acknowledgment count reaches a threshold
value.

	Front Page
	Drawings
	Specification
	Claims

