US009270994B2
12 United States Patent (10) Patent No.: US 9,270,994 B2
Fuldseth 45) Date of Patent: Feb. 23, 2016
(54) VIDEO ENCODER/DECODER, METHOD AND (56) References Cited
COMPUTER PROGRAM PRODUCT THAT
PROCESS TILES OF VIDEO DATA U.S. PATENT DOCUMENTS
: 6,263,023 Bl 7/2001 Ngai
(71) Applicant: CISCO TECHNOLOGY, INC., San 0100239504 Al 99010 F fjé
Jose, CA (US) _
(Continued)

(72) Inventor: Arild Fuldseth, Lysaker (NO)
FOREIGN PATENT DOCUMENTS

(73) Assignee: 858(;30 Technology, Inc., San Jose, CA P 5000744974 0/2000
*3) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

J Y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 369 days. Zhou et.al: “AHG4: Enable Parallel decoding with tiles™, 9. JCT-VC

Meeting; 100. MPEG Meeting; Apr. 27-Jul. 5, 2012; Geneva, (The

(21) Appl. No.: 13/839,850 Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/
WGI1 and ITU-T SG.16); URL: http://witp3.1tu.int/av-arch/jctvc-
(22) Filed: Mar. 15, 2013 site/, No. JCTVC-10118, Apr. 16, 2012, XP030111881.*
(Continued)
(65) Prior Publication Data

US 2014/0003525 Al Jan. 2, 2014
Primary Examiner — Dave Czekayj

Related U.S. Application Data Assistant Examiner — Tsion B Owens
(60) Provisional application No. 61/666,011, filed on Jun.
29, 2012. (37) ABSTRACT

(1) Int. CL. A video decoder, method and computer program product

HO4N 7/12 (2006-0;) allow tor processing of a video frame encoded 1n rectangular
GO6K 9/36 (2006'();*) tiles. An interface receirves a bit stream 1in tile order within a
HO4N 19/583 (2014'();*) video frame that was encoded into rectangular tiles. A pro-
HO4N 197176 (2014-();) cessor decodes the video frame while respecting dependency
g zj% ; g; j; y 88}38; breaks at tile boundaries; the rectangular tiles include an
04N 10744 (2014.01) integer number of two-dimensional blocks of pixels. A tile

shape 1s defined by NxM two-dimensional blocks of pixels,
respective values o N and M need not be 1dentical for each of

the rectangular tiles, and information regarding tile shape for
(2014.11); HO4N 19/436 (2014.11); HOAN cach tile being conveyed from an encoder to the decoder. The

19/44 (2014.11); HO4N 19/61 (2014.11) decoder determines N and M for each tile from the informa-

(38) FKield of Classification Search tion, and tiles have dependency breaks therebetween.
CPC ... HO4N 19/176; HO4N 19/44; HO4N 19/436;

HO4N 19/119; HO4N 19/136
See application file for complete search history. 33 Claims, 8 Drawing Sheets

(52) U.S.CL
CPC ... HO4N 19/00733 (2013.01); HO4N 19/176

-------ﬁ----------h—-------—————‘ﬁ*-----———-—--------—-—-—-------_‘#—h-----‘--——-#'#-----‘I

= e 13 a Fatr ATH L|B”
; ! : ization ntropy ' €
! E—PQ . *' Transform Quantization l > coder reformatter

[
Intra prediction
5 |

Motion compensation

- ey my o e i am o sl

H AN A EE B wge o en wge B nlk o e oER B B B o o Bk B B S BN S S .

US 9,270,994 B2

Page 2
(56) References Cited International Search Report and Written Opinion cited in PCT/
US2013/041597, mailed Aug. 6, 2013.
U.S. PATENT DOCUMENTS Sjaberg et al., AHG4: Enabling Decoder Parallelism with Tiles, Apr.

2012/0183074 Al 7/2012 Fuldseth 17, 2012, MPEG Meeting, Geneva.
uldse |
2013/0308709 Al1* 11/2013 Norkinetal. 375/240.25 Zhou et al., AHG8: Comments on HEVC version 1 Profile and Level

OTHER PUBI ICATIONS Definition, Feb. 5, 2012, MPEG Meet.mg, S.an Jc.nsa.
Zhou, AHG4: Enable Parallel Decoding with Tiles, Apr. 16, 2012,
U.S. Appl. No. 13/007,271, filed Jan. 14, 2011, Fuldseth. MPEG Meeting, Geneva.

Chi et al., Parallel Scalability and Efficiency of WPP and Tiles, Apr. _ _
25,2012, MPEG Meeting, Geneva. * cited by examiner

L 9inbi4

’ 9

US 9,270,994 B2

uoyesuadmod uonop

Sheet 1 of 8

uonotpaid enu]

Feb. 23, 2016
©

u
15p05 o —
donug onezrmeng) ULI0Jsues |
el

U.S. Patent

Z 9inbi4

US 9,270,994 B2

uonesuaduiod uono

Sheet 2 of 8

uonodipad enuy

Feb. 23, 2016

19pO3SpP
TI
O a1 =

4 27

U.S. Patent

U.S. Patent Feb. 23, 2016 Sheet 3 of 8 US 9,270,994 B2

Figure 3a

U.S. Patent Feb. 23, 2016 Sheet 4 of 8 US 9,270,994 B2

Figure 3b

US 9,270,994 B2

 a1nbi4

81l

" 3un{o0[ga(J
. m
S T emcasaesm e aanssnssanr R s e e e e e —————— -
-)
\rs :
N)
Qo)
Qs _
— "
s '
m LA~ " L
O : : o "
y— RO, = ’
b~ "
| '
&, " |
o "
5 “
@D ' ')
_ ’ _
" el 8 “

U.S. Patent

US 9,270,994 B2

Sheet 6 of 8

Feb. 23, 2016

U.S. Patent

G 21nbi4

lllllllllllllllllllllll

uonesuaduros uonow

uonoipaid vnuyg

)

wt i e T e s o R sl E O N R W OB W I T B BT s B O e w ap g R a e s W

- wE N T A A e A S S D e A W B O A e A e ml v e S T B Em o S W G A W e e e S R Wy O G e W E O e e el A By ol A e W Sl e G O Al A an mm mm mly A S am a ol e e am EE o am i S e e G P B am ale ol

g ainbi4

auwiel} Ixau Joj Jeadayy

US 9,270,994 B2

19plo 8}1} JO JBPIO UOISSIWSURI] Ul 9p0oa(

so|l} WWXN Jwsuel |

L
S
m Sal02 buissaooud juaiayip ul saji)
m oAljoadsal apoous Buissadold |9||eled
. lapeay ainjoid 1o asuanbag
m Ul Al pue N JO sanjeA jilusuel |
% G
= 18pI0 uoIssiuIsuey
= JO Juapuadapu] ‘'saji} WXN Ojul s)20|q abuely
9
S|aXid JO S)O0|q OjuUl awel} uoliued
L

U.S. Patent

US 9,270,994 B2

Sheet 8 of 8

Feb. 23, 2016

U.S. Patent

SICI

o1¢1

c0cCl
snd
90¢1 %mozmz ITTIONINO
AV1dSIa
80CI
GOCl vOC1 60CI

clIcl

dOIAdd
ONILINIOJ

MAVOHATA

[1cCl

AV IdSId

O1¢I

US 9,270,994 B2

1

VIDEO ENCODER/DECODER, METHOD AND
COMPUTER PROGRAM PRODUCT THAT
PROCESS TILES OF VIDEO DATA

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims the benefit of the earlier
filing date of U.S. Provisional application 61/666,011, filed
on Jun. 29, 2012, the entire contents of which being imncorpo-
rated herein by reference.

TECHNICAL FIELD

The present application relates to video encoders/decod-
ers, methods and computer program product generally, and
more particular to video encoders/decoders, methods and
computer program product that process groups of adjacent
blocks arranged 1n tiles.

BACKGROUND

The “background” description provided herein 1s for the
purpose ol generally presenting the context of the disclosure.
Work of the presently named inventor, to the extent it 1s
described 1n this background section, as well as aspects of the
description which may not otherwise qualify as prior art at the
time of filing, are neither expressly or impliedly admatted as
prior art against the present invention.

A video encoder 1s typically implemented by dividing each
frame of original video data 1n blocks of pixels. In existing

standards for video compression (e.g., MPEG1, MPEG?2,
H.261,H.263, and H.264) these blocks would normally be of

s1ized 16x16 and be referred to as macroblocks (MB). In the
tuture HEVC/H.265 standard, the blocks would typically be
larger (e.g. 64x64) and might be rectangular, for imnstance at
frame boundaries.

Typically, the blocks are processed and/or transmitted in
raster scan order, 1.e. from the top row of blocks to the bottom
row ol blocks, and from left to right within each row of
blocks.

For each block of original pixel data the encoding 1s typi-
cally performed 1n the following steps:

Produce prediction pixels using reconstructed pixel values
from 1) the previous frame (inter prediction), or 11) pre-
viously reconstructed pixels 1n the current frame (intra
prediction). Depending on the prediction type, the block
1s classified as an inter block or an intra block.

Compute the difference between each original pixel and
the corresponding prediction pixel within the block.

Apply a two-dimensional transform to the difference
samples resulting 1n a set of transform coelficients.

Quantize each transform coetlicient to an integer number.

Perform lossless entropy coding of the quantized transform
coellicient.

Apply a two-dimensional mnverse transform to the quan-
tized transform coelficient to compute a quantized ver-
sion of the difference samples.

Add the prediction to form the reconstructed pixels for the
current block.

Moreover, 1n reference to FIG. 1, a current frame as well as

a prediction frame are input to a subtractor 9. The subtractor
9 1s provided with mput from an intra prediction processing
path 3 and a motion compensation processing path 3, the
selection of which is controlled by switch 7. Intra prediction
processing 1s selected for finding similarities within the cur-
rent image frame, and 1s thus referred to as “intra” prediction.

10

15

20

25

30

35

40

45

50

55

60

65

2

Motion compensation has a temporal component and thus
involves anslysis between successive frames that 1s referred
to as “inter” prediction.

The output of the switch 7 1s subtracted from the pixels of
the current frame 1n a subtractor 9, prior to being subjected to
a two dimensional transform process 13. The transformed
coellicients are then subjected to quantization 1n a quantizer
15 and then subject to an entropy encoder 17. Entropy encod-
ing removes redundancies without losing information, and 1s
referred to as a lossless encoding process. Subsequently, the
encoded data 1s arranged 1n network packets via a packetizer,
prior to be transmitted 1n a bit stream.

However, the output of the quantizer 15 1s also applied to an
inverse transform and used for assisting 1n prediction process-
ing. The output 1s applied to a deblocking filter 8, which
suppresses some of the sharpness 1n the edges to improve
clarity and better support prediction processing. The output of
the deblocking filer 8 1s applied to a frame memory 6, which
holds the processed 1mage pixel data in memory for use in
subsequent motion processing.

The corresponding decoding process for each block can be
described as follows (as indicated in FIG. 2). After entropy
decoding 22 (to produce the quantized transform coetficients)
and two dimensional 1nverse transformation 26 on the quan-
tized transform coefficient to provide a quantized version of
the difference samples, the resultant 1mage 1s reconstructed
alter adding the inter prediction and intra prediction data
previously discussed.

Some of the more detailed encoder and decoder processing
steps will now be described in more detail. In video encoders,
blocks can be divided 1nto sub-blocks. Typically, the blocks
are of fixed (square) size, while the sub-blocks can be of
various e.g. (rectangular) shapes. Also, the partitioming nto
sub-blocks will typically vary from one block to another.

Inter prediction 1s typically achieved by deriving a set of
motion vectors for each sub-block. The motion vectors define
the spatial displacement between the original pixel data and
the corresponding reconstructed pixel data in the previous
frame. Thus, the amount of data that needs to be transmitted
to a decoder can be greatly reduced 11 a feature 1n a first frame
can be i1dentified to have moved to another location 1n a
subsequent frame. In this situation, a motion vector may by
used to elliciently convey the information about the feature
that has changed position from one frame to the next.

Intra prediction 1s typically achieved by deriving an intra
direction mode for each sub-block. The intra direction mode
defines the spatial displacement between the original pixel
data and the previously reconstructed pixel data in the current
frame.

Both motion vectors and intra direction modes are encoded
and transmitted to the decoder as side information for each
sub-block. In order to reduce the number of bits used for this
side information, encoding of these parameters depends on
the corresponding parameters of previously processed sub-
blocks.

Typically, some form of adaptive entropy coding 1s used.
The adaptation makes the entropy encoding/decoding for a
sub-block dependent on previously processed sub-blocks.
Entropy encoding 1s lossless encoding that reduces the num-
ber of bits that are needed to convey the mformation to a
receiving site.

Many video encoding/decoding systems and methods
apply a deblocking filter (8 in FIG. 2) across boundaries
between blocks. Moreover, a deblocking filter 1s applied to
blocks 1n decoded video to improve visual quality and pre-
diction performance by smoothing the sharp edges which can

US 9,270,994 B2

3

form between blocks when block coding techniques are used.
The filter aims to improve the appearance of decoded pic-
tures.

The AVC/H.264 standard for video compression supports
two mechanisms for parallel processing of blocks: Slices and
Slice groups.

Slices

Aslice in AVC/H.264 1s defined as anumber of consecutive
blocks 1n raster scan order. The use of slices 1s optional on the
encoder side, and the information about slice boundaries 1s
sent to the decoder in the network transportation layer or 1n
the bit-stream as a unique bit pattern.

The most important feature for slice design in AVC/H.264
1s to allow transportation of compressed video over packet-
based networks. Typically, one slice of compressed video
data 1s transported as one packet. To ensure resilience to
packet loss, each slice 1s independently decodable. As recog-
nized by the present inventor this requirement implies that all
dependencies between blocks of different slices are broken.
In addition, key parameters for the entire slice 1s transported
in a slice header.

Slice Groups

Slice groups 1n AVC/H.264 define a partitioning of the
blocks within a frame. The partitioning 1s signalled in the
picture header. Blocks are processed and transmitted in ras-
ter-scan order within a slice group. Also, as recognmized by the
present inventor, since a slice can not span more than one slice
group, dependencies are broken between slice groups in the
same manner as between slices. As recognized by the present
inventor, slice groups are different from “tiles” (as will be
subsequently be discussed 1n detail) 1n at least two important
aspects. First, with slice groups, blocks are transmitted 1n
raster scan order within the slice group. Having to decode a bit
stream that uses raster-scan order within a slice-group 1s a
highly undesirable requirement for many decoders, espe-
cially those using a single core. This 1s because pixels are best
decoded 1n the same order as they are rendered and stored 1n
memory for rendering on a display device. In the extreme
case, a bit stream with slice groups could force the decoder to
decode each frame one column (of blocks) at a time rather
than one row (of blocks) at a time. Secondly, slice groups can
specily non-contiguous partitions of a frame (e.g. checker-
board pattern). Having to decode e.g. all the “white” blocks
betore all the “black™ blocks of a checkerboard pattern or
even more sophisticated patterns place an even worse burden
on a decoder. Because of these difficulties 1n implementing
generic slice groups 1n AVC/H.264 decoders, the latest revi-
sion of the AVC/H.264 standard mtroduced a new profile
(constrained profile) which disallowed the use of slice groups

in the bit stream. Decoders not being able to decode slice
groups could then claim compliance with the constrained
profile (instead of the baseline profile). With tiles (as will be
discussed 1n the detailed description), blocks are transmatted
in raster-scan order within the frame which 1s the optimal
transmission order for most single core decoders.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the disclosure and many
of the attendant advantages thereotf will be readily obtained as
the same becomes better understood by reference to the fol-
lowing detailed description when considered in connection
with the accompanying drawings, wherein:

FIG. 1 1s a block diagram of a video encoder.

FI1G. 2 1s a block diagram of a video decoder.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 3a and 35 show a layout relationship between
encoder processing order and transmission order respectively

according to one embodiment.

FIG. 4 shows a block diagram of an encoder according to
an embodiment that supports parallel processing with the use
of tiles.

FIG. 5 1s a block diagram of a decoder according to an
embodiment that supports parallel processing with the use of
tiles.

FIG. 6 1s a flowchart of an exemplary process performed
according to an embodiment.

FIG. 7 1s a block diagram of a host communication device
according to an embodiment that employs the use of tiles 1n
video encoding and decoding.

DETAILED DESCRIPTION OF EXAMPL.
EMBODIMENTS

L1

The present inventor recogmized limitations with conven-
tional approaches for partitioning frames 1nto groups of mac-
roblocks. For example, although the dependency breaks that
are defined for slices in AVC/H.264 are useful also for parallel
processing, the definition of slices also has some disadvan-
tages. The slice header implies a significant overhead that 1s
not needed for parallel processing. Also, the grouping of
blocks 1nto slices needs to comply with the raster-scan pro-
cessing ol blocks. In turn, this 1mposes an unnecessary an
often undesired restriction on how a frame can be divided into
independently decodable blocks.

With respect to slice groups being able to make available
many partitions, the present inventor recognized that rectan-
gular partitions/slice groups are most relevant for parallel
processing. Rectangular partitioming enables partitioning
vertically (columns) as well as horizontally. Even though the
definition of slice groups gives the encoder flexibility to
define almost any partition of the frame, the scheme has some
undesired implications on the decoder. In particular, the
decoder 1s forced to process the blocks 1n the same order as
the encoder (1.e. raster-scan within a slice group). This might
have severe implications on the decoder implementation as
the decoder must be designed to handle almost arbitrary scan-
orders. Another disadvantage of the slice groups in AV(C/
H.264 1s that a maximum of 8 slice groups are allowed, and
that each slice group consist of a separate slice including a
slice header.

Typically, a video decoder specification defines sequential
block processing in raster scan order as the normal mode of
operation. This ensures maximum compression efficiency by
allowing dependency between neighbour blocks of the same
frame to be exploited without restrictions. Typically, this
implies that parameters for a given block depend on the same
parameters 1n the blocks to the left and above. As described
previously, this typically applies to reconstructed pixels for
intra prediction, motion vector coding, intra direction mode
coding, and adaptive entropy coding.

Independent of the sequential nature of video encoding/
decoding methods, many hardware architectures are
designed for parallel processing to maximize the throughput
(number of pixels processed per second). Typically a process-
ing device designed for parallel processing comprises a num-
ber of cores (typically between 2 and 100), each core being
able to encode/decode a subset of the blocks within a frame 1n
parallel with other cores. This 1s best achieved 11 there are no
dependencies between blocks being processed on different
cores. Thus there 1s a trade-ofl between compression eifi-
ciency and the degree of parallel processing (number of
blocks being processes simultaneously).

US 9,270,994 B2

S

The cores have access to shared memory where the previ-
ous reconstructed frames are stored. In those cases, depen-
dencies between neighbouring blocks only needs to be bro-
ken for the current frame, allowing for unrestricted choice of
motion vectors.

Accordingly, one aspect of the present disclosure 1s that it
mimmizes the penalty on compression eificiency, while
maximizing the degree and flexibility of parallel processing
when encoding video frames.

Moreover, another aspect of the present disclosure 1s that it
introduces tiles as a group of NxM adjacent blocks with
dependency breaks at the tile boundaries. As opposed to slices
and slice groups, the definition of tiles 1s independent of the
transmission order. The transmission order i1s assumed to
follow the normal raster scan order within a frame (or slice
group). This implies that an encoder/decoder can choose to
perform all processing except bit-stream generation/parsing,
independently for each tile. Even 1f the encoder processes the
frame by tiles, the decoder can choose to decode the frame 1n
raster scan order.

The present embodiment introduces the notion of “tiles™ to
exploit the two dimensional dependencies between blocks
while also supporting the exploitation of multiple processors,
i available 1n the encoder, to simultaneously perform encod-
ing operations on multiple tiles. The partitioning of a frame
into tiles 1s completely specified by the numbers N and M,
climinating the need for a slice header, which 1s a basic
requirement 1n conventional slice processing. Here, N and M
are the height and width of a tile measured in number of
blocks. Typically, the values of N and M are conveyed to the
decoder 1n the sequence header or picture header resulting 1n
negligible transmission bandwidth overhead. In addition to
unilaterally transmitting the N and M numbers to the decoder
in the sequence or picture header, an alternative 1s to have a
handshaking operation between the decoding device and
encoding device, where the values of N and M are exchanged.,
as well as perhaps the processing capabilities of the decoder.

By making the dependency breaks in a NxM tile, the sys-
tem exploits the possibility in 1images to create both vertical
boundaries as well as horizontal boundaries that minimally
disturbed correspondences between blocks. Moreover, the
content of a particular series of 1images may be a natural
landscapes that often have horizontal dependencies (such as
horizons, etc.). On the other hand, 1magery involving forests
or other vertical oriented 1mages may benefit more greatly by
having a larger vertical dimension so that more blocks in the
vertical dimension may be included as part of a common tile,
thereby allowing for the exploitation of the dependencies
between blocks 1n the vertical direction. The specification of
the numbers N and M specifies dependency breaks at tile
boundaries by implication.

In a typical video encoder according to the present embodi-
ment, at least the following dependencies are broken at tile
boundaries (other dependencies may be broken as well
depending on the relevant standard defining the decoding
requirements):

Use of reconstructed pixels for intra prediction,

Use of motion vectors from neighbouring blocks for

motion vector coding,

Use of intra direction modes from neighbour blocks.

Adaptive entropy coding based on previously encoded
blocks.

Flushing of arithmetic coding bits.

Deblocking filter across tile boundaries, although this can
be avoided if deblocking is performed as a separate pass
on a single processing core.

Use of adaptive loop filter (ALF)

Use of sample adaptive offset (SAQO).

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3a shows an arrangement of 2x3 tiles (arbitrarily
choosing 2 as being the vertical component and 3 being the
horizontal component of a tile, but vice versa would also be an
acceptable convention). Blocks having a same letter belong to
a common tile and therefore are best suitable for being pro-
cessed with one processing core. Therefore, supposing four
processing cores are available, the “A” tile may be processed
by one core while separate cores may handle the B, C and D
tiles respectively, where all the processing 1s done 1n parallel.

In a non-limiting context, the numbers 1n each tile of FIG.
3a represent an ordering of macro blocks (or other blocks)
within the tile. For example, for tile A the first three blocks 0-2
are arranged 1n a horizontal row (in the raster scan direction),
while a second row of blocks 3-5 are disposed 1n a row
beneath the first row. Thus, the blocks are arranged in a
two-dimensional group of blocks where the dependencies are
broken at the vertical edge between tile A and tile B, and at the
horizontal edge between tile A and tile C.

FI1G. 36 shows the transmission order for the frame, which
tollows the raster-scan order. In order to reorder the bits from
the tiles into the bits 1n raster scan order, a tile reformatter 1s
used. Likewise, at the decoder, 11 processing by tiles 1s cho-
sen, a tile formatter 1s used to return the bits to proper block
for each tile. The tile reformatter at the encoder conversion
changes the tile-order (A0,A1,A2,A3,A4,A5,B0,.B1.B2,...)
as shown 1n FIG. 34 to raster-scan order (A0,A1,A2,B0.B1,
B2,A3, A4, . . .) as shown 1n FIG. 3b. Likewise, the tile
formatter at the decoder performs a reordering operation from
raster-scan order to tile-order.

Regarding this reformatting process, 1f the encoder pro-
cesses 1n tiles and the bits from each tile were not reordered,
the resulting bitstream would be 1n tile-order. In that case, the
decoder would have two options could either a) do nothing
with the bitstream and decode the blocks 1n tile-order, or b)
convert to raster-scan order and then decode the blocks 1n
raster-scan order. Both options are alternative embodiments,
although they place an extra processing burden on the
decoder. On the other hand, the primary embodiment
reflected 1n the drawings 1s to have the encoder place the bits
in raster-scan order In turn, this minimizes the processing
burden on the decoder and allows the decoder to either: a) do
nothing with the bitstream and decode the blocks 1n raster
scan order (1.e. no tile penalty), or b) convert from raster-scan
order to tile-order and decode the blocks 1n tile-order. There-
fore, 11 the encoder processes 1n tiles and assumes the burden
of converting from tile-order to raster-scan order the decoder
are compelled to do nothing except respect the dependency
breaks at the tile boundaries.

In an encoder according to the present embodiment, tiles
are processed 1n parallel on different cores. Each core pro-
duces a string of compressed bits for that particular tile. In
order to transmit the compressed data in raster scan order, the
bits produced by different tiles/cores need to be reformatted.
This 1s typically done on a single core.

A parallel processor embodiment 1s illustrated 1n FIG. 4,
where the dashed line indicates modules that are processed in
parallel on respective cores. Moreover, each core 1s assigned
a processing task per tile (although there 1s no restriction on
processing multiple tiles per core), and share memory
resources to assist in sharing reference data for mter predic-
tion between tiles and blocks. The frame memory resides in
shared memory, while the tile reformatter 1s implemented on
a single core. (Alternatively, the deblocking filter can run on
a single core.) Moreover, the subtractor 9, transform 13, quan-
tization 15, inverse transform 26, blocking filter 8, frame
memory 6, motion compensation 3, intraprediction 3, switch

US 9,270,994 B2

7

7 and entropy coder 17 are all similar to that described earlier
in FIG. 1. However, 1n this multicore embodiment that pro-
vides tile-compatible processing, a tile reformatter 18 1s used
to retrieve and arrange bits from respective tiles so as to place
them 1n raster scan order so that the bit stream sent from the
encoder of FIG. 4 would be 1n raster scan order. Likewise, a
decoder would optionally employ a corresponding tile for-
matter 1f 1t 1s configured to repackage the bits into the end by
end tiles betore decoding.

Another thing to note 1n FIG. 4, 1s the presence of dashed
lines. As discussed above, a common core may perform all the
functions, for example, of the transform 13, quantization 15,
entropy coder 17, mverse transform 26, deblocking filter 8,
motion compensation 5, switch 7 and interprediction 3.
Because the tile reformatter 18 and frame memory 6 are
available as a common resource amongst the different cores,
cach used for processing different tiles, the frame memory
and tile reformatter 18 are not limited to use on a single core,
but rather available for interfacing between the different
cores. Likewise the subtractors and adders shown are imple-
mented on a different core. The present arrangement of
encoding functions on different cores 1s meant to be non-
exhaustive. Instead, one aspect of having the arrangement 1n
tiles 1s that there can be a correspondence between the tiles
and the number of cores made available. Moreover, as dis-
cussed above, having multiple processor cores, provides
available processing resources that may result in arranging a
number of tiles to correspond with those cores.

At the decoder side, the decoder 1n the handshaking pro-
cess with the encoder, can specily whether the tile reformatter
18 shall be used or not (in a tile partitioning mode or not). The
tile partitioning mode allows for the reception of bits read out
from respective tiles, without reformatting, or reformatted so
as to place the bits 1n the same order as would be provided 1n
araster-scan or as would be done with a conventional encoder.
Of course, in a more straightforward process, no handshaking
1s performed and the encoder and decoder always operate 1n
the tile partitioning mode. It should be noted that when both
the encoder and decoder operate 1n tile partitioning mode the
tile reformatter (encoder) and tile formatter (decoder) are not
needed since there 1s no need to put the bit-stream 1n raster
scan order. Thus, the tile reformatter 18 and tile formatter 25
have an internal by-pass capability for passing the bit-stream
there through without manipulation. Of course in FIGS. 4 and
5 the tile reformatter 18 and tile formatter 25 are also used to
show the two way communication between the encoder and
decoder. This connection 1s merely exemplary because the
encoder and decoder can exchange information (such as the
values for N and M through sequence- or picture headers)
through any one of a variety of communication interfaces.
Moreover, the bits representing the values N and M need not
be reformatted 1n any way, and thus by-pass the reformatting,
and formatting functions in the tile reformatter 18 and tile
formatter 235 respectively. In this same way, other message
data exchanged between the encoder and decoder use the tile
reformatter and tile formatter as a communications interface,
without bit reordering.

FIG. 5 1s a block diagram of a decoder according to an
embodiment that supports a tile portioning mode of opera-
tion, and 1ncludes parallel processing to assist 1n processing,
separate tiles. As was the case with FIG. 4, a dashed line
indicates what decoding components are supported on a sepa-
rate processing core, such that multiple cores may be used to
simultaneously process tiles recerved from the encoder. The
frame memory 6 1s used as a common resource, similar to
what 1s done at the encoder 1n FIG. 4. The tile formatter 25
initially receives the values N and M from the tile reformatter

10

15

20

25

30

35

40

45

50

55

60

65

8

18 from the encoder, although the tile reformatter does not
perform any bit manipulation or reordering of these values.
Instead, from the values N and M, the tile formatter 25 rec-
ognizes the tile shapes for the data arriving from the incoming
bit stream and ultimately allows the decoder components to
perform a decoding operation based on the tile partitioning
(and associated dependency breaks) introduced at the
encoder. Moreover, the decoder breaks the dependencies 1n
the current frame between blocks at tile boundaries as dic-
tated by the values N and M. It should be noted that the
encoder may provide multiple pairs of N and M, indicating
that each tile, or at least multiple tiles, 1n a frame can have a
different rectangular shape.

In some 1nstances, the decoder can specily its wishes to the
encoder for required/desired values of N and M or whether to
use tile partitioning at all. This may be useful, for example, by
the decoder informing the encoder that the decoder can sup-
port only a 720p30 display format 11 not 1n tile partitionming
mode, but could support 1080p30 display format 11 used 1n a
tile partitioning mode using tiles that are not larger than NxM.
This two-way communication between the encoder and the
decoder 1s represented by a double headed arrow at the tile
formatter 25 in FIG. 5.

When arranged 1n this way, tiles offer the advantage over
conventional slices and slice groups 1n that no tile header 1s
needed to i1dentify tile boundaries. Moreover, there 1s no
overhead required on a tile-by-tile or block-by-block basis to
support the 1dentification of tile boundaries. Instead, by speci-
tying at first the shape of the tiles, or by reading the sequence
or frame headers, the decoder has all the information 1t needs
to 1dentify tile boundaries based on the original specification
of the values N and M. Also, the decoder has the option of
using the tiles or not. In this way, the impact on the decoder 1s
minimal since the decoder need not perform tile processing 1
it chooses not to. Also by allowing the encoder to specity
different NxM shaped tiles, there 1s a large amount of flex-
ibility with regard to arranging the number and size of the tiles
to better support parallel processing and the speed with which
encoding may be performed when multiple cores are avail-
able.

Moreover, tiles offer an advantage of decoupling the
encoding process from the transmission order in which the
bits are transmitted. This allows for better vertical intra pre-
diction as opposed to conventional processes. Also, by using
parallel tiles allows for better parallization for analysis since
there 1s less constraint on tile shape and no header 1s required.

As further explanation, an advantage of breaking depen-
dency at column boundaries (vertical boundaries), 1s that by
dividing a frame vertically provides a smaller penalty on
compression performance since a vertical boundary 1s shorter
than a horizontal boundary when a 16:9 aspect ratio is the
format for display, because motion generally tends to be
performed 1n a horizontal direction. Also, parallelization by
columns reduces a delay since the data arrives one row at a
time from the camera and all available cores can start to work
immediately on a new row, as 1t arrives. Thus, partitioning a
frame 1nto tiles allows for the more efficient use of available
cores to begin immediate processing of data provided from a
camera, as compared with conventional approaches using
slices or slice groups.

Also, by using tiles, it 1s possible to be more flexible 1n the
encoder for performing “stitchung”. Stitching 1s the collection
of arbitrarily shaped rectangles which means that the change
in spatial position of sub-pictures by manipulation in the
compressed domain may be made possible.

Tiles also allow for more eflicient packetization into (al-
most) fixed-sized packets. Thus a packetizer can assemble

[l

US 9,270,994 B2

9

independent shelves of compressed data (one per column/
row) into one packet without any backwards dependency to
the encoding process. This helps provide autonomy in how
data 1s transmitted from one location to the next for both
transmission over separate communication paths, as well as
processing independently at the decoder side. As discussed
above, allowing for parallization by columns, also provides
for finer-grained parallelism and better load balancing
amongst processing cores.

Finally, another advantage of using tiles 1s that by encoding,
by smaller widths provides the opportunity to reduce memory
bandwidth and internal memory as composed to slice pro-

cessing or slice groups. Moreover, the reduction 1n memory
bandwidth and internal memory may be made available even
i a single-core implementation 1s used.

As a summary, below 1s a list of advantages of dependency

breaks at column boundaries:

1) Dividing a frame vertically gives smaller penalty on
compression performance since a vertical boundary 1s
shorter than a horizontal boundary (assuming 16:9
aspect ratio) and because motion tends to be horizon-
tally.

2) Parallelization by columns reduces the delay since data
arrives one row at a time from the camera, and all cores
can start to work immediately as a new row arrives.

3) Flexibility 1n the encoder to do “stitching” of arbitrarily
shaped rectangles, 1.e. change the spatial position of
sub-pictures by mampulations 1n the compressed
domain.

4) More ellicient packetization into (almost) fixed-sized
packets. The packetizer can assemble independent
chunks of compressed data (one per column/row) 1nto
one packet without any backward dependency to the
encoder process.

5) Parallelization by columns provides finer-grained par-
allelism and better load balancing.

6) Encoding by smaller widths might reduce the memory
bandwidth and internal memory. This 1s true even for
single-core implementations.

FIG. 6 1s a flowchart showing a method for encoding

frames using NxM tiles. The process begins 1n step S1, where
a frame 1s portioned into blocks of pixels. The process then
proceeds to step S3 where the blocks are arranged into NxM
tiles. The tiles are grouped independent of the order of trans-
mission of the blocks. The process then proceeds to step S5,
where the values of N and M are transmitted to the receiving,
device 1n the sequence or picture header, but not 1n a slice or
slice group header, recognizing that AVC/H.264 does not
support anything but slices or slice groups. The tiles would
not be compliant with AVC/H.264 because 1f the encoder
decided to divide the frame into tiles, the decoder would not
recognize the format. In a sequence header (before the first
frame—which 1s part of the video stream, but after the call set
up), the encoder would send the height and width of the tile.
This way the decoder would know the size of the tiles. It
should be noted that there can also be a pre-assignment of tile
shape to type of frame, for example I (intra frame), B and P
frames.

Each tile may then be encoded 1n parallel 1n step S7, where
cach tile 1s optionally encoded by a separate processing core.
Of course a single core can process more than one tile. Also,
devices with only one core can process all of the tiles. The
process then proceeds to step S9 where the encoded tiles are
transmitted to the recerving device. The transmission order

10

15

20

25

30

35

40

45

50

55

60

65

10

can be 1n the raster scan order even though the tiles may have
been encoded 1 a different order. Once transmitted to the
decoder at the recerving device, the decoder decodes the tiles

in step S11 with one or more cores. The process then repeats
in step S13 for processing the next frame.

The present inventor recognized that processing tiles may
present an 1implementation burden for single-core decoders.
Accordingly, for adopting an industry-wide video compres-
s1on standard that includes tile processing, some restrictions
may be applied. Example restrictions are described below.

Even 1f the bitstream 1s in tile order, some single core
hardware decoders might be adapted to process in raster

scan order. To make that feasible, single core decoders

would benefit from knowing the start location (mea-
sured 1n number of bytes) in the bitstream for each tile in
a frame or sub-frame. It should be noted that although

tiles sizes 1n the pixel domain are deterministic, tile sizes

in the compressed domain are mput/content-dependent.
It 1s plausible that future video compression standards,
in some profiles, will make 1t mandatory for an encoder
to send the size of each tile (1n bytes) 1n the beginning of
each frame, or sub-frame. However, this has a bandwidth
cost that 1s unwanted for decoders that are capable of
processing in tile order.

For single-core decoders 1t 1s desirable to have as few tiles
as possible. This desire 1s 1n contlict with multi-core
encoders that are better suited to process many tiles at
the same time. It 1s plausible that future video compres-
sion standards, 1 some profiles, will contain a compro-
mise expressed as a minimum tile width and a minimum
tile height. For example, there may be a minimum tile
width of 384 pixels (or samples), and there may be a
minimum tile height of 192 pixels (or samples). In this

example, these restrictions will allow for only 3x3=9
tiles for 1280x720 resolution.

It 1s anticipated 1n future video compression standards,
there will be some profiles where tile restrictions apply (are
mandatory), and other profiles where tile restrictions do not
apply (are optional). For profiles where tile restrictions are
optional, 1t would be possible for decoders to benefit from a
flag, that 1s sent from the encoder i1n the sequence header,
which informs the decoder whether certain tile restrictions
(1including those above) apply or not. An additional benefit of
this tlag 1s that 1t makes 1t easy to specily (1n a standard text)
whether the tile restrictions apply or not. The tlag may be a
single bit when signaling whether all tile restrictions are 1n
place, or not. A multi-bit symbol may be used when there are
multiple restrictions in place, and each bit within the multi-bit

symbol signifies whether a particular restriction applies to the
encoding and the bit stream.

The following table 1s from “High efliciency video coding,
(HEVC) text specification draft 77, which was developed by
Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11. In the
standard, text specifies conformance points for an HEVC
decoder. Essentially 1t defines decoder capabilities by level.
For example, a decoder supporting 720p (1280x720 pixels)
resolution would claim conformance to level 3.1, while a
decoder supporting 1080p (1920x1080 resolution) would
claim conformance to level 4.

US 9,270,994 B2

11 12
Max luma Max luma
sample rate picture size Max bit Min MaxDpbSize
MaxLumaPR MaxLumalFS rate MaxBR Compression (picture storage Max CPB size
Level (samples/sec) (samples) (1000 bits/s) Ratio MinCR bufiers) (1000 bits)

1 552,960 36,864 128 2 6 350
2 3,686,400 122,880 1,000 2 6 1,000
3 13,762,560 458,752 5,000 2 6 5,000
3.1 33,177,600 983,040 9,000 2 6 9,000
4 62,668,800 2,088,960 15,000 4 6 15,000
4.1 62,668,800 2,088,960 30,000 4 6 30,000
4.2 133,693,440 2,228,224 30,000 4 6 30,000
4.3 133,693,440 2,228,224 50,000 4 6 50,000
5 267,386,880 8,912,896 50,000 6 6 50,000
5.1 267,386,880 8,912,896 100,000 8 6 100,000
5.2 534,773,760 8,912,896 150,000 8 6 150,000
6 1,002,700,800 33,423,360 300,000 8 6 300,000
6.1 2,005401,600 33,423,360 500,000 8 6 500,000
6.2 4,010,803,200 33,423,360 800,000 6 6 800,000

Presently there 1s a tile size restriction expressed 1n “High
elliciency video coding (HEVC) text specification draft 77,
cited above, that 1s independent of decoder capability level
and therefore not included 1n the table above. For example,
the mmimum tile width 1s 384 pixels, independent of the
level.

However, as recognized by the present inventor, a limita-
tion with defining tile size restrictions 1n this way is that 1t
does not allow for encoder/bitstream flexibility in terms of the
number of tiles i1t can send to a decoder claiming support for
a certain capability level. For example, suppose there 1s a
decoder that can decode level 4 (1080x1280 pixels). It 1s
expected that this decoder would also be able to handle the
same number of tiles (as per level 4 performance) for a lower
resolution. However, “High efficiency video coding (HEVC)
text specification draft 77, as cited above, does not allow for
the encoder to send the same number of tiles for all resolu-
tions. For example, with the current minimum tile width of
384, the encoder can send 1920/384=35 horizontal tiles at
1080x1920 resolution but only 3 horizontal tiles at 1280x720
resolution to the same level 4 capable decoder. It should be
noted that the terms “horizontal tiles” and “vertical tiles™ are
used, “tile rows” and ““tile columns™ could also be used.

20

25

30

35

40

cach level. An advantage of augmenting the table with
decoder tile number capability 1s that allows a decoder to
more clearly make known how many tiles 1t can support. As a
consequence, the encoder can send bitstreams at different
resolutions but with the same number of tiles to a decoder
claiming support to a certain decoder capability level. As a
concrete example, suppose a decoder can support level 4
(1920 horizontal pixels by 1080 vertical pixels) and suppose
level 4 (as per the augmented table) corresponds to a maxi-
mum of 5x3 tiles. Since the decoder has implicitly announced
support for 5x3 tiles, through claiming support for level 4, an
encoder can send a bitstream having 5x5 tiles at any resolu-
tion lower than 1080x1920.

An additional benefit of adding two new columns to the
table, 1s that it 1s possible for the decoder through external
signaling to announce that 1t can handle more tiles than given
by the capability level 1t claims support for. For example, a
decoder can announce that 1t conforms to level 3.1 (1280x
720), but 1t can additionally support the number of tiles cor-
responding to, for instance, level 6.2. An example revised

table 1s shown below, where CPB 1s coded picture butier; and
DPB 1s decoded picture butfer.

Max luma Max luma

sample rate picture size Max bit Max Max

MaxLumaPR MaxLumaFS rate MaxBR Max CPBsize Vert. Hornz

Level (samples/sec) (samples) (1000 bits/s) MinCR MaxDpbSize (1000 bits) Tiles Tiles
1 552,960 36,864 128 2 6 350 2 2
2 3,686,400 122,880 1,000 2 6 1,000 2 2
3 13,762,560 458,752 5,000 2 6 5,000 3 3
3.1 33,177,600 983,040 9,000 2 6 9,000 3 3
4 62,668,800 2,088,960 15,000 4 6 15,000 4 5
4.1 62,668,800 2,088,960 30,000 4 6 30,000 4 5
4.2 133,693,440 2,228,224 30,000 4 6 30,000 5 5
4.3 133,693,440 2,228,224 50,000 4 6 50,000 5 5
5 267,386,880 8,912,896 50,000 6 6 50,000 6 6
5.1 267,386,880 8,912,896 100,000 8 6 100,000 6 6
5.2 534,773,760 8,912,896 150,000 8 6 150,000 6 6
6 1,002,700,800 33,423,360 300,000 8 6 300,000 8 8
6.1 2,005,401,600 33,423,360 500,000 8 6 500,000 8 8
6.2 4,010,803,200 33,423,360 800,000 6 6 800,000 8 8

To solve this problem, to the present disclosure allows for
the decoder to also specily its capability 1 terms of tile
processing, such as maximum number of tiles vertically and
maximum number of tiles horizontally.

This can be done by augmenting the table above with
maximum numbers of tiles horizontally and vertically for

65

The encoder may know 1n advance the maximum number
of vertical and horizontal tiles that a particular decoder can
process. However, the decoder may also inform the encoder
of its capability in advance of the encoder sending the bat

stream. Once again, by allowing the decoder to inform the
encoder 1n advance (either through signaling, or as a prereg-

US 9,270,994 B2

13

1stered value known to the encoder), the encoder can send the
same number of tiles, independent of the resolution of the
1mage.

FIG. 7 illustrates a computer system 1201 upon which an
embodiment of the present invention may be implemented.
The computer system 1201 may be programmed to imple-
ment a computer based video conferencing endpoint that
includes a video encoder or decoder for processing real time
video images. The computer system 1201 includes a bus 1202
or other communication mechanism for communicating
information, and a processor 1203 coupled with the bus 1202
for processing the information. While the figure shows a
signal block 1203 for a processor, it should be understood that
the processors 1203 represent a plurality of processing cores,
cach of which can perform separate Tile The computer system
1201 also includes a main memory 1204, such as a random
access memory (RAM) or other dynamic storage device (e.g.,
dynamic RAM (DRAM), static RAM (SRAM), and synchro-
nous DRAM (SDRAM)), coupled to the bus 1202 for storing,
information and instructions to be executed by processor
1203. In addition, the main memory 1204 may be used for
storing temporary variables or other intermediate information
during the execution of instructions by the processor 1203.
The computer system 1201 further includes a read only

memory (ROM) 1205 or other static storage device (e.g.,
programmable ROM (PROM), erasable PROM (EPROM),

and electrically erasable PROM (EEPROM)) coupled to the
bus 1202 for storing static information and instructions for the
processor 1203.

The computer system 1201 also includes a disk controller
1206 coupled to the bus 1202 to control one or more storage
devices for storing information and instructions, such as a
magnetic hard disk 1207, and a removable media drive 1208
(e.g., floppy disk drive, read-only compact disc drive, read/
write compact disc drive, compact disc jukebox, tape drive,
and removable magneto-optical drive). The storage devices
may be added to the computer system 1201 using an appro-
priate device interface (e.g., small computer system interface
(SCSI), mtegrated device electronics (IDE), enhanced-IDE
(E-IDE), direct memory access (DMA), or ultra-DMA).

The computer system 1201 may also include special pur-
pose logic devices (e.g., application specific integrated cir-
cuits (ASICs)) or configurable logic devices (e.g., simple
programmable logic devices (SPLDs), complex program-
mable logic devices (CPLDs), and field programmable gate
arrays (FPGAs)), that, in addition to microprocessors and
digital signal processors may individually, or collectively, are
types of processing circuitry. The processing circuitry may be
located 1n one device or distributed across multiple devices.

The computer system 1201 may also include a display
controller 1209 coupled to the bus 1202 to control a display
1210, such as a cathode ray tube (CRT), for displaying infor-
mation to a computer user. The computer system includes
input devices, such as a keyboard 1211 and a pointing device
1212, for interacting with a computer user and providing
information to the processor 1203. The pointing device 1212,
for example, may be a mouse, a trackball, or a pointing stick
for communicating direction information and command
selections to the processor 1203 and for controlling cursor
movement on the display 1210. In addition, a printer may
provide printed listings of data stored and/or generated by the
computer system 1201.

The computer system 1201 performs a portion or all of the
processing steps of the invention 1n response to the processor
1203 executing one or more sequences of one or more instruc-
tions contained in a memory, such as the main memory 1204.
Such 1nstructions may be read into the main memory 1204

10

15

20

25

30

35

40

45

50

55

60

65

14

from another computer readable medium, such as a hard disk
1207 or a removable media drive 1208. One or more proces-
sors 1n a multi-processing arrangement may also be employed
to execute the sequences of instructions contained 1n main
memory 1204. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware 1nstructions. Thus, embodiments are not limited to any
specific combination of hardware circuitry and software.

As stated above, the computer system 1201 includes at
least one computer readable medium or memory for holding
instructions programmed according to the teachings of the
invention and for containing data structures, tables, records,
or other data described herein. Examples of computer read-
able media are compact discs, hard disks, floppy disks, tape,
magneto-optical disks, PROMs (EPROM, EEPROM, flash
EPROM), DRAM, SRAM, SDRAM, or any other magnetic
medium, compact discs (e.g., CD-ROM), or any other optical
medium, punch cards, paper tape, or other physical medium
with patterns of holes, a carrier wave (described below), or
any other medium from which a computer can read.

Stored on any one or on a combination of computer read-
able media, the present invention includes software for con-
trolling the computer system 1201, for driving a device or
devices for implementing the ivention, and for enabling the
computer system 1201 to interact with a human user (e.g.,
print production personnel). Such software may include, but
1s not limited to, device drivers, operating systems, develop-
ment tools, and applications software. Such computer read-
able media further includes the computer program product of
the present invention for performing all or a portion (if pro-
cessing 1s distributed) of the processing performed in 1imple-
menting the mvention.

The computer code devices of the present invention may be
any interpretable or executable code mechanism, imncluding
but not limited to scripts, interpretable programs, dynamic
link libraries (DLLs), Java classes, and complete executable
programs. Moreover, parts of the processing of the present
invention may be distributed for better performance, reliabil-
ity, and/or cost.

The term “computer readable medium™ as used herein
refers to any medium that participates 1n providing instruc-
tions to the processor 1203 for execution. A computer read-
able medium may take many forms, including but not limited
to, non-volatile media, volatile media, and transmission
media. Non-volatile media includes, for example, optical,
magnetic disks, and magneto-optical disks, such as the hard
disk 1207 or the removable media drive 1208. Volatile media
includes dynamic memory, such as the main memory 1204.
Transmission media includes coaxial cables, copper wire and
fiber optics, including the wires that make up the bus 1202.
Transmission media also may also take the form of acoustic or
light waves, such as those generated during radio wave and
infrared data communications.

Various forms of computer readable media may be
involved 1n carrying out one or more sequences of one or
more 1instructions to processor 1203 for execution. For
example, the instructions may 1nitially be carried on a mag-
netic disk of a remote computer. The remote computer can
load the 1nstructions for implementing all or a portion of the
present invention remotely into a dynamic memory and send
the instructions over a telephone line using a modem. A
modem local to the computer system 1201 may receive the
data on the telephone line and use an infrared transmitter to
convert the data to an infrared signal. An infrared detector
coupled to the bus 1202 can receive the data carried 1n the
infrared signal and place the data on the bus 1202. The bus
1202 carries the data to the main memory 1204, from which

US 9,270,994 B2

15

the processor 1203 retrieves and executes the instructions.
The mstructions recerved by the main memory 1204 may
optionally be stored on storage device 1207 or 1208 either
before or after execution by processor 1203.

The computer system 1201 also includes a communication
interface 1213 coupled to the bus 1202. The communication
interface 1213 provides a two-way data communication cou-
pling to a network link 1214 that 1s connected to, for example,
a local area network (LAN) 1215, or to another communica-
tions network 1216 such as the Internet. For example, the
communication interface 1213 may be a network interface
card to attach to any packet switched LAN. As another
example, the communication interface 1213 may be an asym-
metrical digital subscriber line (ADSL) card, an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
communications line. Wireless links may also be imple-
mented. In any such implementation, the commumnication
interface 1213 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types ol information.

The network link 1214 typically provides data communi-
cation through one or more networks to other data devices.
For example, the network link 1214 may provide a connection
to another computer through a local network 1215 (e.g., a
LLAN) or through equipment operated by a service provider,
which provides communication services through a commu-
nications network 1216. The local network 1214 and the
communications network 1216 use, for example, electrical,
clectromagnetic, or optical signals that carry digital data
streams, and the associated physical layer (e.g., CAT 5 cable,
coaxial cable, optical fiber, etc). The signals through the
various networks and the signals on the network link 1214
and through the communication interface 1213, which carry
the digital data to and from the computer system 1201 maybe
implemented 1n baseband signals, or carrier wave based sig-
nals. The baseband signals convey the digital data as unmodu-
lated electrical pulses that are descriptive of a stream of digital
data bits, where the term “bits™ 1s to be construed broadly to
mean symbol, where each symbol conveys at least one or
more information bits. The digital data may also be used to
modulate a carrier wave, such as with amplitude, phase and/or
frequency shift keyed signals that are propagated over a con-
ductive media, or transmitted as electromagnetic waves
through a propagation medium. Thus, the digital data may be
sent as unmodulated baseband data through a “wired” com-
munication channel and/or sent within a predetermined fre-
quency band, different than baseband, by modulating a carrier
wave. The computer system 1201 can transmit and receive
data, including program code, through the network(s) 12135
and 1216, the network link 1214 and the communication
interface 1213. Moreover, the network link 1214 may provide
a connection through a LAN 1215 to a mobile device 1217
such as a personal digital assistant (PDA) laptop computer, or
cellular telephone.

The term “a” or ““the” as used herein should not be con-

strued a being limited to a singular element, but may also used
in the context of a pluarlity of elements.

Obviously, numerous modifications and variations of the
present disclosure are possible 1n light of the above teachings.
It 1s therefore to be understood that within the scope of the
appended claims, the mvention may be practiced otherwise
than as specifically described herein.

10

15

20

25

30

35

40

45

50

55

60

65

16

The mvention claimed 1s:

1. A video decoder, comprising:

an 1terface configured to receive a bit stream 1n tile order
within a video frame that was encoded into rectangular
tiles; and

processing circuitry configured to decode the video frame
while respecting dependency breaks at tile boundaries,
wherein

the rectangular tiles including an integer number of two-
dimensional blocks of pixels,

a tile shape of each of the rectangular tiles being defined by
NxM two-dimensional blocks of pixels,

respective values of N and M need not be 1identical for each
of the rectangular tiles, and

information regarding tile shape being conveyed from an
encoder to the decoder, the decoder configured to deter-
mine the values of N and M for each tile from the
information, the rectangular tiles having dependency
breaks therebetween;

wherein the processing circuitry 1s configured to process a
maximum number of horizontal tiles and a maximum
number of vertical tiles independent of a resolution of
video frames, wherein the resolution of the video frames
1s determined by a width of the video frames and a height
of the video frames.

2. The video decoder of claim 1, wherein

the processing circuitry 1s configured to support decoding
according to level 3.1 of the High Efficiency Video Cod-
ing (HEVC) standard, wherein the maximum number of
vertical tiles o1 3 and the maximum number of horizontal
tiles of 3.

3. The video decoder of claim 2, wherein,

the processing circuitry 1s configured to support a maxi-
mum picture size of 983,040 samples.

4. The video decoder of claim 1, wherein

the maximum number of horizontal tiles 1s 3.

5. The video decoder of claim 4, wherein

the processing circuitry 1s configured to support level
decodmg according to level 4 and level 4.1 of the High

Efficiency Video Coding (HEVC) standard, with an
associated maximum number of vertical tiles and maxi-
mum number of horizontal tiles.

6. The video decoder of claim 4, wherein

the processing circuitry 1s configured to support a maxi-
mum bit rate of 30,000 (1000 bits/sec) and S5 vertical
tiles.

7. The video decoder of claim 4, wherein

the processing circuitry 1s configured to support a maxi-
mum bit rate of 50,000 (1000 bits/sec) and S5 vertical
tiles.

8. The video decoder of claim 1, wherein

the processing circuitry supports decoding according to
level 2 of the High Efficiency Video Coding (HEVC)
standard, with an associated maximum number of ver-
tical tiles and maximum number of horizontal tiles.

9. The video decoder of claim 1, wherein

the processing circuitry supports decoding according to
level 3 of the High Efficiency Video Coding (HEVC)
standard, with an associated maximum number of ver-
tical tiles and maximum number of horizontal tiles.

10. The video decoder of claim 9, wherein

the processing circuitry processes the associated maximum
number of vertical tiles and maximum number of hori-
zontal tiles independent of the resolution of the video
frames.

US 9,270,994 B2

17

11. The video decoder of claim 1, wherein

the processing circuitry supports decoding according to the
High Efficiency Video Coding (HEVC) standard of at
least one of level 5, level 5.1, and level 5.2, with an
assoclated maximum number of vertical tiles and maxi-
mum number of horizontal tiles.

12. The video decoder of claim 1, wherein

the processing circuitry supports decoding according to the
High Efficiency Video Coding (HEVC) standard of at

least one of level 6, level 6.1, and level 6.2, with an
associated maximum number of vertical tiles and maxi-
mum number of horizontal tiles.

13. A video decoding method, comprising:

receiving a bit stream 1n tile order within a video frame that
was encoded 1nto rectangular tiles;

preparing to process a maximum number of horizontal tiles
and a maximum number of vertical tiles independent of
a resolution of video frames, wherein the resolution of
the video frames 1s determined by a width of the video

frames and a height of the video frames, wherein the
maximum number of horizontal tiles and the maximum
number of vertical tiles are known to an encoder 1n
advance either by the encoder having a preregistered
indication of tiles, or by a decoder informing the encoder
1n advance:; and

decoding with processing circuitry at least part of the video
frame while respecting dependency breaks at tile bound-
aries, wherein

the rectangular tiles including an integer number of two-
dimensional blocks of pixels,

a tile shape of the rectangular tiles being defined by NxM
two-dimensional blocks of pixels,

respective values of N and M need not be 1dentical for each
of the rectangular tiles,

the receiving an indication including receiving information
regarding tile s1ze, and the decoding including determin-
ing the values of N and M {for each tile from the infor-
mation,

the rectangular tiles having dependency breaks therebe-
tween.

14. The video decoding method of claim 13, wherein

the decodmg 1s compliant with level 3.1 of the High Eili-
ciency Video Coding (HEVC) standard, and wherein the
maximum number of vertical tiles 1s 3 and the maximum
number of horizontal tiles 1s 3.

15. The video decoding method of claim 14, wherein

the decoding supports a maximum picture size of 983,040
samples.

16. The video decoding method of claim 13, wherein

the maximum number of horizontal tiles 1s 5.

17. The video decoding method of claim 16, wherein

the decoding 1s compliant with level 4 and level 4.1 of the
High Efficiency Video Coding (HEVC) standard.

18. The video decoding method of claim 16, wherein

the decoding supports a maximum bit rate of 30,000 (1000
bits/sec) and 5 vertical tiles.

19. The video decoding method of claim 16, wherein

the decoding supports a maximum b1t rate of 50,000 (1000
bits/sec) and 5 vertical tiles.

20. The video decoding method of claim 13, wherein

the decoding supports decoding according to level 2 of the

High Efficiency Video Coding (HEVC) standard, with
an associated maximum number of vertical tiles and
maximum number of horizontal tiles.

21. The video decoding method of claim 13, wherein

the decoding supports decoding according to level 3 of the

High Efficiency Video Coding (HEVC) standard, with

10

15

20

25

30

35

40

45

50

55

60

18

an assocliated maximum number of vertical tiles and
maximum number of horizontal tiles.
22. The video decoding method of claim 13, wherein

the decoding supports decoding according to the High

Efficiency Video Coding (HEVC) standard of at least
one of level 5, level 5.1, and level 5.2, with an associated
maximum number of vertical tiles and maximum num-
ber of horizontal tiles.

23. The video decoding method of claim 13, wherein

the decoding supports decoding according to the High

Efficiency Video Coding (HEVC) standard of at least
one of level 6, level 6.1, and level 6.2, with an associated
maximum number of vertical tiles and maximum num-
ber of horizontal tiles.

24. A non-transitory computer program product embodied

with a computer program that when executed by processing
circuitry implements a method, the method comprising:

recerving a bit stream 1n tile order within a video frame that

was encoded 1nto rectangular tiles;

preparing to process a maximum number of horizontal tiles
and a maximum number of vertical tiles independent of
a resolution of video frames, wherein the resolution of
the video frames 1s determined by a width of the video
frames and a height of the video frames, wherein the
maximum number of horizontal tiles and the maximum
number of vertical tiles are known to an encoder in
advance eirther by the encoder having a preregistered
indication of maximum number of horizontal and verti-
cal tiles, or by the decoder informing the encoder 1n
advance; and

decoding with the processing circuitry at least part of the
video frame while respecting dependency breaks at tile
boundaries, wherein

the rectangular tiles including an integer number of two-
dimensional blocks of pixels,

a tile shape of the rectangular tiles being defined by NxM
two-dimensional blocks of pixels,

respective values of N and M need not be 1identical for each
of the rectangular tiles,

the recerving an indication including recerving information
regarding tile size, and the decoding including determin-
ing the values of N and M for each tile from the infor-
mation, the rectangular tiles having dependency breaks
therebetween.

25. The non-transitory computer program product of claim

24, wherein

[1

the decodmg 1s compliant with level 3 of the High Eifi-
ciency Video Coding (HEVC) standard, and wherein the
maximum number of vertical tiles o1 3 and the maximum
number of horizontal tiles of 3.

26. The non-transitory computer program product of claim

25, wherein,

the decoding supports a maximum picture size of 983,040

samples.
2’7. The non-transitory computer program product of claim

24, wherein

the decoding supports a maximum number of horizontal
tiles of 5.
28. The non-transitory computer program product of claim

26, wherein

the decoding 1s compliant with level 4 and level 4.1 of the
High Efficiency Video Coding (HEVC) standard.

29. The non-transitory computer program product of claim

65 26, wherein

the decoding supports a maximum b1t rate of 30,000 (1000
bits/sec) and 5 vertical tiles.

US 9,270,994 B2

19

30. The non-transitory computer program product of claim
24, wherein
the decoding supports decoding according to level 2 of the
High Efficiency Video Coding (HEVC) standard, with
an assoclated maximum number of vertical tiles and
maximum number of horizontal tiles.
31. The non-transitory computer program product of claim
24, wherein
the decoding supports decoding according to level 3 of the
High Efficiency Video Coding (HEVC) standard, with
an associlated maximum number of vertical tiles and
maximum number of horizontal tiles.
32. The non-transitory computer program product of claim
24, wherein
the decoding supports decoding according to the High
Efficiency Video Coding (HEVC) standard of at least
one of level 3, level 5.1, and level 5.2, with an associated
maximum number of Vertical tiles and maximum num-
ber of horizontal tiles.
33. The non-transitory computer program product of claim
24, wherein
the decoding supports decoding according to the High
Efficiency Video Coding (HEVC) standard of at least
one of level 6, level 6.1, and level 6.2, with an associated
maximuim number of Vertical tiles and maximum num-
ber of horizontal tiles.

¥ H H ¥ ¥

10

15

20

25

20

	Front Page
	Drawings
	Specification
	Claims

