12 United States Patent

Hare, Jr.

US009270983B1

US 9,270,983 B1
Feb. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54) QUICKLY DIAGNOSE SERVICE AND

(75)

(73)

(%)

(21)

(22)

(51)

(52)

(58)

- 115¢ ~-110d - 1150
N\ L 110c ’“E
*&’é “m ~ | i 140
i‘]" =g _Li BE
~ / TFTP |
Server
135
eadend DHCP
Server
CMTS
120 - 30
- 115b
P —t

COMPONENT RELATED ISSUES ON A
CABLE MODEM, MULTIMEDIA TERMINAL
ADAPTER, OR GATEWAY

Inventor: William Charles Hare, Jr., Cumming,

GA (US)

Assignee: ARRIS Enterprises, Inc., Suwanee, GA

(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Notice:

Appl. No.: 13/525,777

Filed: Jun. 18, 2012

Int. CL.

HO4N 7/173
HO4N 17/00
HO4N 17/04

U.S. CL
CPC

(2011.01)
(2006.01)
(2006.01)

HO4N 17/00 (2013.01); HO4N 17/045
(2013.01)

Field of Classification Search
USPC 725/107, 111,114, 116, 117, 121, 124;

3770/241, 242; 455/423
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,868,508 B2* 3/2005 Greycccoveeeenn GOO6F 11/263
702/120
7,739,717 B1* 6/2010 Kuether HOAN 7/17336
725/107
8,200,732 B2* 6/2012 Le ..cooiiiiiiiiinnin, HO4N 17/00
348/180
8,544,051 B1* 9/2013 Ramakrishnan H04J 14/0298
725/111
2002/0019983 Al* 2/2002 Emsleycccoe... HO4N 7/10
725/107
2006/0184988 Al1* 8/2006 Skalina HO4N 17/004
725/107
2007/0076616 Al1* 4/2007 Ngo ...oooovvvvvnnnnnnn. HO4L 12/2697
370/241
2008/0059838 Al* 3/2008 Melman GOIR 31/318314
714/25

* cited by examiner

Primary Examiner — Brian T Pendleton
Assistant Examiner — Alexander Gee
(74) Attorney, Agent, or Firm — Bart A. Perkins

(57) ABSTRACT

Methods, systems, and computer readable media can provide
diagnosis of service-aflecting 1ssues 1 CPE devices. The
diagnostic process can include retrieving a testing hierarchy
associated with a recewved diagnostic command, executing
the lowest-level diagnostic 1n the testing hierarchy, succes-
stvely executing the remaining diagnostics 1n the testing hier-
archy 1n the order implicated by the hierarchy until the com-

manded diagnostic 1s executed, and 1dentifying the service-
alfecting 1ssues found.

24 Claims, 4 Drawing Sheets

100

U.S. Patent Feb. 23, 2016 Sheet 1 of 4 US 9,270,983 B1

135

R

140

TFTP

Server
DHCP
Server

130

FIG. 1

Headend

CMTS

U.S. Patent Feb. 23, 2016 Sheet 2 of 4 US 9,270,983 B1

210 260

Results Execution

Data Store Source

Serial
Port

Diagnostic User
Interface Logic Interface

- 230

Results

Data Store

CPE Device 11

U.S. Patent

" Qutput
. Router Log |

370

'
|

Perform Router Yes
Diac

Feb.

365 .

360

Router Diag?

23,2016 Sheet 3 of 4 US 9,270,983 B1

;f-m 305

- 310

Retrieve Testing Hierarchy

315

Consolidate Diagnostic Tests

— 320
No /

- 325

. / Output
Perform CM Diag ~ CMLog

330

Il.l'.ll

eMTA Diag?

335

."f
. Output
Perform eMTA Diag \ eMTA Log

340

End

Voice Diag?

34D |
x {f
A | Output
Perform Voice Diag | Voice Log
=330

Video Diag?

o 355)
ff
. . Qutput
Perform Video Dia .
. VideoLog

FIG. 3 i

U.S. Patent Feb. 23, 2016 Sheet 4 of 4 US 9,270,983 B1

400 2 1

Processor |} /

FIG. 4

US 9,270,983 Bl

1

QUICKLY DIAGNOSE SERVICE AND
COMPONENT RELATED ISSUES ON A
CABLE MODEM, MULTIMEDIA TERMINAL
ADAPTER, OR GATEWAY

TECHNICAL FIELD

This disclosure relates to diagnosing service-aflecting

1ssues 1n customer premise equipment.

BACKGROUND

The Data-Over-Cable Service Interface Specification
(DOCSIS) was established by cable television network
operators to facilitate transporting data traffic, primarily
Internet traffic, over existing community antenna television
(CATV) networks. In addition to transporting data traffic, as
well as television content signals over a CATV network,
multiple services operators (MSQO) also use their CATV net-
work infrastructure for carrying voice, video on demand
(VoD) and video conferencing traflic signals, among other
types.

When a service-affecting issue occurs 1 a customer
premise equipment (CPE) device, there are few tools avail-
able to quickly diagnose the problem without having exten-
stve knowledge of the interworking of the modem. Rather,
current diagnostic tools capture traces and use one or more
command line 1mnterfaces (CLI) to sift through large amounts
of data. This results in multiple 1terations and additional CLI
commands being needlessly executed. Using current diag-
nostic tools, diagnosing even the simplest i1ssues can take
more time than 1s necessary.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating an example network
environment operable to facilitate diagnostics for service-
alfecting 1ssues 1n a CPE device quickly using a single com-
mand.

FIG. 2 1s a block diagram 1llustrating an exemplary CP.
device operable to diagnose service-ailfecting 1ssues i a CP.
device.

FI1G. 3 1s a tlowchart illustrating an example process oper-
able to provide a quick diagnosis for service-allecting 1ssues
in a CPE device.

FIG. 4 1s a block diagram of a hardware configuration
operable to provide a single command diagnosis for service-
affecting 1ssues in a CPE device.

Like reference numbers and designations in the various
drawings indicate like elements.

L (L

DETAILED DESCRIPTION

In some 1mplementations of this disclosure, systems and
methods can operate to diagnose service-atlecting 1ssues in a
CPE device quickly by using a single command. When ser-
vice-allecting 1ssues occur 1 a CPE device, there are few
tools available to quickly diagnose the problem. Diagnosing
the problem typically requires knowledge of the inner-work-
ings of the device, along with the execution of multiple CLI
commands and knowledge of a nominal value range for
responses to the CLI commands.

FIG. 1 1s a block diagram 1llustrating an example network
environment 100 operable to facilitate diagnostics for ser-
vice-allecting 1ssues in CPE devices quickly using a single
command. In some implementations, a headend 105 can pro-
vide video, data and/or voice service(s) to customer premise

10

15

20

25

30

35

40

45

50

55

60

65

2

equipment (CPE) devices 110a-d 1n one or more subscriber
groups (e.g., service group(s)). The CPE devices can include,
for example, a cable modem 110a, a set top box 1105, a
wireless router including an embedded cable modem 110¢, or
a media terminal adapter (MTA) 1104, among many others
(e.g., digital subscriber line (DSL) modem, voice over inter-
net protocol (VolIP) terminal adapter, video game console,
digital versatile disc (DVD) player, communications device,
etc.). A cable modem 110a can facilitate communications
between the headend 105 and a computer 115a. A set top box
1105 can facilitate communications from the headend 103 to
a television or a digital video recorder. A wireless router 110c¢
can facilitate wireless communications between a computer
115¢ and a headend 105. An MTA 1104 can facilitate com-
munications between a telephone 1154 and a headend 105.

The CPE devices 110a-d can communicate with the head-
end 105 via a hybrid fiber-coax (HFC) network 120. The
headend 105 can include devices such as a cable modem
termination system (CMTS) 125 and/or an edge quadrature
amplitude modulation (EQAM) device (not shown), or a
combined or converged device (not shown) including mul-
tiple edge and/or video or data processing functionalities.
Such devices can operate to {facilitate communications
between a network 130 and the CPE devices 110a-d. In vari-
ous 1mplementations, the network 130 can include one or
more networks internal to the headend and/or one or more
networks external to the headend (e.g., one or more extranets,
the Internet, etc.).

Data services can be handled by the headend 105 through
a CMTS 125. The CMTS 125 can receive data signals from
external device(s) or nodes through network(s) 130. The net-
work(s) 130, for example, can operate using internet protocol
(IP), sending data packets to and recerving data packets from
the headend 105. In some examples, the CMTS 125 can be
paired with a SIP proxy server (not shown) operable to pro-
vide voice over internet protocol (VoIP) services with voice
connectivity to other subscribers or voice connectivity to a
public switched telephone network (PSTN) (not shown). In
still further examples, one or more video sources may provide
streaming data through the network(s) 130 to the CMTS 125.

In some implementations, the CMTS 125 can forward
packets destined for subscribers to an EQAM device used to
apply the signal to a carrier wavetform. In some implementa-
tions, the carrier wavelform can include either or both data and
video streams, 1n either or both multicast and unicast (e.g.,
point-to-point) formats for transmission to a combiner, which
can combine multiple signals onto a single fiber for transmis-
s10n to one or more CPE devices 110a-d via the hybrid fiber-
coax (HFC) network 120. In other implementations, the
CMTS 125 can apply a baseband signal to a carrier wave and
transmuit the signal to a combiner for upconversion to a trans-
mission frequency.

When a CPE device 110a-d imitially attempts to connect to
the headend 105, the device 110a-d goes through a ranging
and registration process with the headend 105. Ranging typi-
cally involves finding and locking onto a signal and determin-
ing a timing offset for the device 110a-d. The registration
process typically includes retrieval of a configuration file-
name from a dynamic host control protocol (DHCP) server
130 through the network 125. Upon receipt of the configura-
tion filename, the CPE device 110q-d 1dentifies a trivial file
transier protocol (TFTP) server 1335 where the configuration
file 1s stored. The CPE device 110a-d then requests the con-
figuration file from the TFTP server 135 using the filename

provided by the DHCP server. Upon recerving the configura-
tion file, the CPE device 110a-d can register with the CMTS

120.

US 9,270,983 Bl

3

At times, the CPFE device will be unable to connect to the
headend. This can occur for various reasons, and diagnosis of
the 1ssue can nvolve mitiating several complicated com-
mands with results that may not clearly identity whether there
1s a problem and can waste valuable time. The ability to
connect to the headend can occur for a variety ol reasons, e.g.,
including errors 1n a cable modem, an embedded multimedia
terminal adapter (eMTA), a CMTS, a router, or faults 1n the
HFC network 1tself.

FIG. 2 1s a block diagram 1llustrating an exemplary CPE
device 110 operable to diagnose service-affecting 1ssues 1n a
CPE device quickly by using a single command. The CPE
device 110 can include a network interface 210, a diagnostic
logic module 220, a device results data store 230, a client
interface 240, and a serial port 250. The network interface 210
(e.g., an HFC interface) can be used to provide an interface to
a network (e.g., an HFC network 120 of FIG. 1). It should be
understood that in other devices, the network intertace 210
can be a generic network interface to a local area network
(LAN) or wide area network (WAN).

In some 1mplementations, the diagnostics logic module
220 can be used to retrieve a testing hierarchy from the HFC
network 120, or other generic network, execute diagnostics
commands associated with the testing hierarchy, compare the
results from those commands to sets of nominal results asso-
ciated with the executed diagnostics commands, and print
information found on service-atlecting 1ssues. In some 1imple-
mentations, the device results data store 230 can be operable
to store imnformation found on service-ailfecting errors. The
client interface 240 1s operable to provide a client interface,
for example, to a host computer in the case of a cable modem
or MTA device, or to a television for a set top box, etc. Insome
implementations, the serial port 250 can be operable to print
or communicate data to a device external to the CPE device.

Execution of diagnostic testing can be started by entering a
diagnostic command through an execution source 260 such as
command line iterface (CLI), hypertext transier protocol
(HT'TP) or simple network management protocol (SNMP). In
some 1mplementations, when 1mtiating the diagnostic pro-
cessvia HI'TP or SNMP, entering a diagnostic command may
result 1n the performance of a deep check of the service that
can report the first found 1ssue based upon a testing hierarchy
and the particular diagnostic command entered.

In some implementations, when executing the diagnostic
commands via CLI, the user can be given two standard com-
mand options: diagnostic level and intrusive action query. For
example, 1n response to the diagnostic level option, the user
may be able to choose between four different diagnostic
levels. The first level may print only information on the low-
est-level service-atfecting error found. The second level may
print information on all service-afiecting errors. The third
level may print information on all service-atfecting errors as
well as potential service-atfecting warnings. The fourth level
may print information on all data examined during execution
of the command, including all errors and warnings. The user
can choose which diagnostic level to run based on the user’s
experience with the system or simply the level of thorough-
ness sought by the user. The user can also be provided the
option of allowing the system to run intrusive actions during
execution of the command.

In some implementations, the diagnostic command can be
service-type commands, for example “‘cm_diag,”
“mta_diag,” “voice_diag,” “router_diag” and “video_diag.”
The service-type command can be used to perform a status
check of the corresponding CPE device/service component
by verifying that everything needed for a selected service-
type 1s functioning properly within the component. In this

10

15

20

25

30

35

40

45

50

55

60

65

4

example, the header of each command name corresponds to
the type of component to be checked. For example, the “cm™
command will check the status of a cable modem, the “mta”
command will check the status of the embedded multimedia
terminal adapter (eMTA), the “voice” command will check
the status of the voice line, and the “router” command will
check the status of the router.

In some implementations, the service-type commands can
include service diagnostic sub-commands such as “ri_diag,”
“cmDhcp_diag,” “mtaDhcp_diag,” among others. These sub-
commands can check the status of individual sub-compo-
nents of the component/service corresponding to the service-
type command. When a service-type command 1s executed,
all of the sub-commands associated with that service-type
command can be executed. In additional implementations,
the sub-commands can be executed separately and individu-
ally.

When a diagnostic command 1s entered via CLI, HTTP, or
SNMP, the diagnostic logic module 220 can retrieve a testing
hierarchy from the network. Alternatively, the testing hierar-
chy can be retrieved from a local data store. The testing
hierarchy can identify the service-type commands and their
corresponding sub-commands 1n a prioritized order. In some
implementations, the service-type commands can build upon
one another. For example, when a main service command 1s
entered, the diagnostic logic module 220 can first execute the
service-type commands associated with the service-type
diagnostic command 1nitiated by the user based upon the
testing hierarchy associated with that service-type command.
Thus, for example, because voice service can be disrupted by
a connection error 1n the cable modem, when the command
corresponding to the voice service 1s executed, the status of
the cable modem will first be checked by mvoking the ser-
vice-type command corresponding to the cable modem ser-
vice. In some implementations, service-type commands and
sub-commands can be added to the testing hierarchy or have
their priority within the testing hierarchy altered.

When a command 1s entered via CLI, HI'TP, or SNMP, the
diagnostic logic module 220 can execute the specified com-
mand, and any other commands implicated by the testing
hierarchy. The diagnostic logic can store information found
on any service-affecting issues in the device results data store
230 and 1n some implementations, 1n an external results data
store 270. The device results data store 230 can be located 1n
the CPE device’s non-volatile memory or volatile memory.
The external results data store 270 can be located 1n memory
external to the CPE device and can be accessed via the CPE
device’s network interface 210 or serial port 250.

After the diagnostic process has been executed, the diag-
nostic logic module 220 can access the information stored in
the device results data store 230 and print or display the
information requested by the command to a location external
to the device. In some implementations, the information
requested by the command can include any of: only the first
service-altlecting 1ssue found, all service-affecting issues
found, or all service-ailecting 1ssues and potential service-
alfecting warnings found during the diagnostic process.

FIG. 3 1s a flowchart illustrating an example process 300
operable to diagnose service-atfecting 1ssues ina CPE device.
The process 300 can start at stage 305 when a diagnostic
command 1s entered, for example, via CLI, HTTP, or SNMP.
The command can be entered, for example, using a service
interface (e.g., an execution source 260 or serial port 250 of
FIG. 2). The diagnostic command can be a service-type diag-
nostic command including, for example, “cm_diag,”
“mta_diag,” “voice_diag,” “‘router_diag” or “video_diag.”
Alternatively, the diagnostic command can be a service-type

US 9,270,983 Bl

S

diagnostic sub-command including, for example, “ri_diag,”
“cmDhcp_diag,” “mtaDhcp_diag,” etc.

At stage 310, the CPE device can retrieve a testing hierar-
chy through the HFC network. The testing hierarchy can be

retrieved, for example, from a test source (e.g., execution
source 260 of FIG. 2 or diagnostics logic 220 of FIG. 2). In

some 1mplementations, the testing hierarchy can list the ser-
vice-type diagnostic commands and the service-type diag-
nostic sub-commands 1n order starting with the lowest-level
diagnostic. For example, the service-type diagnostic com-
mands and the service diagnostic sub-commands can be listed
in order from the lowest-level diagnostic to the highest-level
diagnostic.

At stage 315, a determination can be made as to what
diagnostic tests should be conducted based on the recerved
diagnostic command and those diagnostic tests can be con-
solidated. The determination can be made, for example, by a
diagnostic logic (e.g., diagnostic logic 220 of FIG. 2). For
example, the diagnostics logic 220 can remove any tests from
the testing hierarchy that are unnecessary based on the par-
ticular diagnostic command received. In some implementa-
tions, the diagnostics logic 220 can add to the testing hierar-
chy diagnostic tests implicated by a received diagnostic
command.

At stage 320, the diagnostic logic can determine whether
the diagnostic command initiated 1s a cable modem service
diagnostic command. The determination can be made, for
example, by a diagnostics logic (e.g., diagnostics logic 220 of
FIG. 2). In some implementations, the name of the command
can be compared with known commands to determine what
type of service 1s associated with the diagnostic command
mnitiated by the user.

If the diagnostic command 1s a cable modem diagnostic
command or 1s a lower listed diagnostic than the diagnostic
command initiated by the user, then the process 300 can
proceed to stage 325 and execute the cable modem diagnos-
tic. The cable modem diagnostic can be executed, for
example, by a diagnostic logic (e.g., diagnostic logic 220 of
FIG. 2). In some implementations, after executing the diag-
nostic command, the diagnostic logic can print or write the
results of the diagnostic test to a results data store (e.g., an
output log).

After executing the cable modem diagnostic, the diagnos-
tic logic can then proceed to stage 330. At stage 330, the
diagnostic logic can determine whether the diagnostic com-
mand 1nitiated by the user 1s an embedded multimedia termi-
nal adapter (eMTA) diagnostic command or a lower-level
diagnostic command. The determination can be made, for
example, by a diagnostic logic (e.g., diagnostic logic 220 of
FIG. 2). If the eMTA diagnostic 1s the commanded diagnostic
or 1s a lower listed diagnostic than the commanded diagnos-
tic, then the diagnostic logic can proceed to stage 3335 and
execute the eMTA diagnostic. In some implementations, the
diagnostic logic can then print or write the information found
during the execution of the eMTA diagnostic to the results
data store (e.g., an output log).

After executing the eMTA diagnostic, the process 300 can
proceed to stage 340. At stage 340, the diagnostic logic can
determine whether the service-type command 1nitiated by the
user 1s a voice diagnostic command or a lower-level diagnos-
tic. The determination can be made, for example, by a diag-
nostic logic (e.g., diagnostic logic 220 of FIG. 2). If the voice
diagnostic 1s the commanded diagnostic or 1s a lower listed
diagnostic than the commanded diagnostic, then the diagnos-
tic logic can proceed to stage 345 and execute the voice
diagnostic. In some implementations, the diagnostic logic can

10

15

20

25

30

35

40

45

50

55

60

65

6

then print or write the information found during the execution
ol the voice diagnostic to the results data store (e.g., an output
log).

After executing the voice diagnostic, the process 300 can
then proceed to stage 350. At stage 350, the diagnostic logic
can determine whether the service-type diagnostic command
received from the user 1s a video diagnostic or a lower-listed
diagnostic. The determination can be made, for example, by a
diagnostic logic (e.g., diagnostic logic 220 of FIG. 2).

I1 the video diagnostic 1s the commanded diagnostic or 1s a
lower listed diagnostic than the commanded diagnostic, then
the diagnostic logic can proceed to stage 355 and execute the
video diagnostic. The video diagnostic can be executed, for
example, by a diagnostic logic (e.g., diagnostic logic 220 of
FIG. 2). In some implementations, the diagnostic logic can
then print or write the information found during the execution
of the video diagnostic to the results data store (e.g., an output
log). After executing the video diagnostic, the diagnostic
logic can then proceed to stage 360 where the process 300
ends.

At each of stages 320, 330, 340 and 350, if the associated
type of diagnostic command 1s not implicated by the received
service-type diagnostic command, the provisioning logic can
proceed to stage 365.

At stage 365, the diagnostic logic can determine whether
the router diagnostic 1s the commanded diagnostic or 1s a
lower-listed diagnostic than the commanded diagnostic. This
determination can be made, for example, by a diagnostic logic
(e.g., diagnostic logic 220 of FIG. 2).

I1 the router diagnostic 1s the commanded diagnostic or 1s
a lower listed diagnostic than the commanded diagnostic,
then the process can proceed to stage 370 and execute the
router diagnostic. The router diagnostic can be executed, for
example, by a diagnostic logic (e.g., diagnostic logic 220 of
FIG. 2). In some implementations, the diagnostic logic can
then print or write the information found during the execution
of the router diagnostic to the results data store (e.g., an output
log). After executing the router diagnostic, the diagnostic
logic can then proceed to stage 360 where the process 300
ends. Returning to stage 365, 11 the received diagnostic com-
mand 1s not a router diagnostic command or a lower-level
diagnostic, the provisioning logic can proceed to the end,
stage 360.

FIG. 4 1s a block diagram of a hardware configuration 400
operable to diagnose service-atiecting issues in a CPE device
quickly by using a single command. However, 1t should be
understood that many different kinds of network devices
(e.g., including network hubs, bridges, routers, edge termina-
tion devices, etc.) can implement a service-atiecting diagnos-
tic mechanism. The hardware configuration 400 can include a
processor 410, a memory 420, a storage device 430, and an
input/output device 440. Each of the components 410, 420,
430, and 440 can, for example, be interconnected using a
system bus 450. The processor 410 1s capable of processing,
instructions for execution within the system 400. In one
implementation, the processor 410 1s a single-threaded pro-
cessor. In another implementation, the processor 410 1s a
multi-threaded processor. The processor 410 1s capable of
processing instructions stored in the memory 420 or on the
storage device 430.

The memory 420 stores information within the hardware
configuration 400. In one implementation, the memory 420 1s
a computer-readable medium. In one implementation, the
memory 420 1s a volatile memory unit. In another implemen-
tation, the memory 420 1s a non-volatile memory unait.

In some implementations, the storage device 430 1s capable
of providing mass storage for the device 400. In one 1mple-

US 9,270,983 Bl

7

mentation, the storage device 430 1s a computer-readable
medium. In various different implementations, the storage
device 430 can, for example, include a hard disk device, an
optical disk device, flash memory or some other large capac-
ity storage device.

The mput/output device 440 provides iput/output opera-
tions for the hardware configuration 400. In one implemen-
tation, the input/output device 440 can include one or more of
a plain old telephone system (POTS) interface (e.g., an RJ11
connector), a network interface device, e.g., an Ethernet card,
a serial communication device, e.g., and RS-232 port, and/or
a wireless 1nterface device, e.g., and 802.11 card. In another
implementation, the input/output device can include driver
devices configured to receive mput data and send output data
to other input/output devices, such as one or more subscriber
devices 460 (e.g., set top box, cable modem, etc.), as well as
sending communications to, and recerving communications
from a network 470. Other implementations, however, can
also be used, such as mobile computing devices, mobile com-
munication devices, set-top box television client devices, eftc.

The subject matter of this disclosure, and components
thereol, can be realized by instructions that upon execution
cause one or more processing devices to carry out the pro-
cesses and functions described above. Such instructions can,
for example, comprise interpreted instructions, such as script
instructions, e.g., JavaScript or ECMAScript instructions, or
executable code, or other instructions stored 1n a computer
readable medium.

Implementations of the subject matter and the functional
operations described 1n this specification can be provided 1n
digital electronic circuitry, or 1n computer soltware, firm-
ware, or hardware, including the structures disclosed 1n this
specification and their structural equivalents, or 1n combina-
tions of one or more of them. Embodiments of the subject
matter described in this specification can be implemented as
one or more computer program products, 1.e., one or more
modules of computer program instructions encoded on a tan-
gible program carrier for execution by, or to control the opera-
tion of, data processing apparatus. The tangible program car-
riecr can be a propagated signal or a computer readable
medium. The propagated signal 1s an artificially generated
signal, e.g., a machine generated electrical, optical, or elec-
tromagnetic signal that 1s generated to encode information for
transmission to suitable receiver apparatus for execution by a
computer. The computer readable medium can be a machine
readable storage device, a machine readable storage sub-
strate, a memory device, a composition of matter effecting a
machine readable propagated signal, or a combination of one
or more of them.

The term ““system processor’” encompasses all apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The system processor can
include, 1n addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of one or more of them.

A computer program (also known as a program, software,
soltware application, script, or code) can be written 1n any
form of programming language, including compiled or inter-
preted languages, or declarative or procedural languages, and
it can be deployed 1n any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use 1 a computing environment. A computer
program does not necessarily correspond to a file 1n a file
system. A program can be stored 1n a portion of a file that

10

15

20

25

30

35

40

45

50

55

60

65

8

holds other programs or data (e.g., one or more scripts stored
in a markup language document), 1n a single file dedicated to
the program 1n question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub programs, or por-
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described 1n this specifica-
tion are performed by one or more programmable processors
executing one or more computer programs to perform func-
tions by operating on mnput data and generating output
thereby tying the process to a particular machine (e.g., a
machine programmed to perform the processes described
herein). The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special purpose
logic circuitry, e.g., an FPGA (field programmable gate array)
or an ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram 1nclude, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The elements of a computer
typically include a processor for performing instructions and
one or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to recetve data from or transier data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer can be
embedded 1n another device, e.g., a mobile communications
device, a telephone, a cable modem, a set-top box, a mobile
audio or video player, or a game console, to name just a few.

Computer readable media suitable for storing computer
program 1nstructions and data include all forms of non vola-
tile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD ROM disks. The processor and the
memory can be supplemented by, or incorporated 1n, special
purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be operable
to interface with a computing device having a display, e.g., a
CRT (cathoderay tube) or LCD (liquid crystal display) moni-
tor, for displaying information to the user and a keyboard and
a pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and 1mnput from the user can be received 1n
any form, including acoustic, speech, or tactile input.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any mvention or of what may be claimed, but
rather as descriptions of features that may be specific to
particular embodiments of particular inventions. Certain fea-
tures that are described 1n this specification 1n the context of
separate embodiments can also be implemented 1n combina-
tion 1n a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or 1n any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even

US 9,270,983 Bl

9

initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted 1n the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation 1n all embodiments,
and 1t should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged 1into multiple software
products.

Particular embodiments of the subject matter described in
this specification have been described. Other embodiments
are within the scope of the following claims. For example, the
actions recited in the claims can be performed 1n a different
order and still achieve desirable results, unless expressly
noted otherwise. As one example, the processes depicted in
the accompanying figures do not necessarily require the par-
ticular order shown, or sequential order, to achieve desirable
results. In some implementations, multitasking and parallel
processing may be advantageous.

What 1s claimed 1s:

1. A computer-implemented method, comprising:

receiving a diagnostic command at a device that 1s config-
ured to provide multiple services, the multiple services
comprising data services, video services, voice services
and routing services;

retrieving a testing hierarchy, the testing hierarchy being
comprised of a plurality of diagnostic tests, wherein
cach diagnostic test 1s associated with at least one of the
multiple services provided by the device, and wherein
the plurality of diagnostic tests are ordered within the
testing hierarchy based upon dependencies existing
between the diagnostic tests, and the diagnostic tests are
further ordered within the testing hierarchy based upon
dependencies existing between the multiple services
provided by the device;

generating a modified testing hierarchy by removing from
the retrieved testing hierarchy one or more diagnostic
tests that are associated with a service upon which the
service associated with the recerved diagnostic com-
mand 1s not dependent, such that the modified testing
hierarchy includes only those diagnostic tests that are
associated with a service upon which the service asso-
ciated with the received diagnostic command 1s depen-
dent;

executing a lowest-level diagnostic test below the recerved
diagnostic command 1n the modified testing hierarchy;

successively executing a next highest-level diagnostic test
in the modified testing hierarchy until the received diag-
nostic command has been executed; and

providing results from each executed diagnostic test.

2. The computer-implemented method of claim 1, further

comprising;

il a service error 1s 1dentified during any diagnostic test,
ending the method prior to completion of the successive
execution of diagnostic tests implicated by the modified
testing hierarchy; and

providing information associated with the service error
found.

10

15

20

25

30

35

40

45

50

55

60

65

10

3. The computer-implemented method of claim 2, wherein
the service error makes further diagnostic tests associated
with the modified testing hierarchy unnecessary.

4. The computer-implemented method of claim 1, turther
comprising:

comparing the service test results to ranges ol known nomi-
nal values; and

flagging results that lie outside the nominal values but
within a second range as warnings, and values that lie
outside the second range as service affecting errors.

5. The computer-implemented method of claim 1, further

comprising:

providing an output log comprising information on all
service-allecting errors and all potential service-atfect-
ing warnings found.

6. The computer-implemented method of claim 1, further

comprising;

providing an output log comprising information on all data
examined during the diagnostic process.

7. The computer-implemented method of claim 1, turther

comprising;
executing intrusive actions during the diagnostic process
based upon explicit istruction included 1 a received
diagnostic command.
8. The computer-implemented method of claim 1, wherein
the diagnostic command 1s a service-type command or a
service-type sub-command.
9. The computer-implemented method of claim 1, turther
comprising;
consolidating diagnostic tests associated with the received
diagnostic command 1n the testing hierarchy.
10. A system, comprising:
an interface operable to recerve and transmit data and com-
mands to or from external modules, through a hybnd
fiber-coaxial network;
a data store operable to store computer program instruc-
tions and provide temporary storage for the system;
a processor operable to execute said computer program
instructions, the computer program instructions being,
operable to cause the processor to:
receive a diagnostic command, wherein the diagnostic
command 1s associated with a service provided by the
system:

retrieve a testing hierarchy, the testing hierarchy com-
prising a plurality of diagnostic tests, wherein each
diagnostic test 1s associated with at least one service
type provided by the system, and the plurality of diag-
nostic tests are ordered within the testing hierarchy
according to dependencies existing between one or
more of the service types;

generate a modified testing hierarchy by removing from
the retrieved testing hierarchy one or more diagnostic
tests that are associated with a service upon which the
service associated with the recerved diagnostic com-
mand 1s not dependent, such that the modified testing,
hierarchy includes only those diagnostic tests that are
associated with a service upon which the service asso-
ciated with the received diagnostic command 1s
dependent;

execute a lowest-level diagnostic test below the recerved
diagnostic command 1n the modified testing hierar-
chy:

successively execute a next highest-level diagnostic test
in the modified testing hierarchy until the received
diagnostic command has been executed; and

provide results from each executed diagnostic test.

US 9,270,983 Bl

11

11. The system of claim 10, wherein said computer pro-
gram 1nstructions are further operable to cause the processor
to:

end the method prior to completion of the successive

execution of diagnostic tests implicated by the modified
testing hierarchy if a service error 1s identified during
any diagnostic test; and

provide information associated with the service error

found.

12. The system of claim 11, wherein the service error
makes further diagnostic tests associated with the modified
testing hierarchy unnecessary.

13. The system of claim 10, wherein said computer pro-
gram 1nstructions are further operable to cause the processor
to:

compare the service test results to ranges of known nomi-

nal values; and

flag results that lie outside the nominal values but within a

second range as warnings, and values that lie outside the
second range as service allecting errors.

14. The system of claim 10, wherein said computer pro-
gram 1nstructions are further operable to cause the processor
to:

provide an output log comprising mnformation on all ser-

vice-alfecting errors and all potential service-atlecting
warnings found.

15. The system of claim 10, wherein said computer pro-
gram 1nstructions are further operable to cause the processor
to:

provide an output log comprising information on all data

examined during the diagnostic process.

16. The system of claim 10, wherein said computer pro-
gram 1nstructions are further operable to cause the processor
to:

execute itrusive actions during the diagnostic process

based upon explicit instruction mcluded 1n a received
diagnostic command.

17. The system of claim 10, wherein the diagnostic com-
mand 1s a service-type command or a service-type sub-com-
mand.

18. One or more non-transitory computer readable media
operable to execute on a processor, the computer readable
being operable to cause the processor to perform the opera-
tions comprising:

receiving a diagnostic command at a device that 1s config-

ured to provide data services, video services, voice ser-
vices and routing services, the diagnostic command
being associated with a service provided by the device;

10

15

20

25

30

35

40

45

12

dynamically constructing a testing hierarchy based upon a
service associated with the recerved diagnostic com-
mand, the testing hierarchy being comprised of a plural-
ity of diagnostic tests that are associated with the service
associated with the diagnostic command or at least one
service provided by the device upon which the service
associated with the diagnostic command 1s dependent,
wherein the first diagnostic test in the testing hierarchy 1s
associated with the lowest-level component which can
affect the service associated with the received diagnostic
command;

executing the lowest-level diagnostic test in the testing
hierarchy;

successively executing a next highest-level diagnostic test
in the testing hierarchy; and

providing results from each executed diagnostic test.

19. The one or more non-transitory computer-readable
media of claim 18, further operable to cause the processor to
perform the operations comprising;:

comparing the results to ranges of known nominal values;
and

flagging results that lie outside the nominal values but
within a second range as warnings, and values that lie
outside the second range as service affecting errors.

20. The one or more non-transitory computer-readable
media of claim 18, further operable to cause the processor to
perform the operations comprising;:

providing an output log comprising information on all data
examined during the diagnostic process.

21. The one or more non-transitory computer-readable
media of claim 18, further operable to cause the processor to
perform the operations comprising;:

executing intrusive actions during the diagnostic process
based upon explicit istruction included 1n a recerved
diagnostic command.

22. The computer-implemented method of claim 1,
wherein the testing hierarchy is retrieved from an upstream
network.

23. The one or more non-transitory computer-readable
media of claim 18, wherein the last diagnostic test in the
testing hierarchy 1s associated with the recerved diagnostic
command.

24. The one or more non-transitory computer-readable
media of claim 18, wherein a next highest-level diagnostic
test 1n the testing hierarchy 1s successively executed until a
diagnostic test returns a service-allecting error.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

