US009270790B2
a2y United States Patent (10) Patent No.: US 9,270,790 B2
Balassanian 45) Date of Patent: Feb. 23, 2016
(54) METHOD AND SYSTEM FOR DATA (56) References Cited
DEMULTIPLEXING
U.S. PATENT DOCUMENTS
(71) Applicant: IMPLICIT, LLC, Seattle, WA (US)
5,298,674 A 3/1994 Yun
: 5,414,833 A 5/1995 Hershey et al.
(72) Inventor: Edward Balassanian, Seattle, WA (US) 5.627.997 A 5/1007 Pearsog of al
_ 5,761,651 A 6/1998 Hasebe
(73) Assignee: Implicit, LLC, Seattle, WA (US) 5,826,027 A 10/1998 Pedersen et al.
5,835,726 A 11/1998 Shw_ed et al.
(*) Notice:  Subject to any disclaimer, the term of this 5,848,233 A 12/1998 Radia et al.
patent 1s extended or adjusted under 35 g’ggi’gég i i%ﬁggg g;lﬁlgn of al
U.S.C. 154(b) by 49 days. 5.808.830 A 4/1999 Wesinger, Jr. et al.
(21)  Appl. No.: 14/230,952 (Continued)
(22) Filed: Mar. 31, 2014 FOREIGN PATENT DOCUMENTS
: S EP 0807347 11/1997
(65) Prior Publication Data Ep 01703 1 1/199%
US 2015/0009997 Al Jan. 8, 2015 OTHER PURI ICATIONS
o Alexander, D. et al., “The SwitchWare Active Network Architec-
Related U.S. Application Data fure”. Tun. 6. 1008 TEFE.
(63) Continuation of application No. 13/911,324, filed on (Continued)

Jun. 6, 2013, now Pat. No. 8,694,683, which 1s a
continuation of application No. 13/236,090, filed on Primary Examiner — Duc Duong

Sep. 19., 20'1 1, now abandoned, which 1s a continuation (74) Attorney, Agent, or Firm — Meyertons, Hood, Kivlin,
of application No. 10/636,314, filed on Aug. 6, 2003, Kowert & Goetzel, P.C.

now Pat. No. 8,055,786, which 1s a continuation of
application No. 09/474,664, filed on Dec. 29, 1999, (57) ABSTRACT

now Pat. No. 6,629,163. A method and system for demultiplexing packets of a mes-

sage 1s provided. The demultiplexing system receives packets

(1) Int. CL. H ol a message, 1dentifies a sequence of message handlers for
HO4L 29/06 (2006-0:) processing the message, identifies state information associ-
HO4L 12/701 (2013-0:) ated with the message for each message handler, and invokes
HO4L 29/08 (2006.01) the message handlers passing the message and the associated

(52) U.S. Cl state information. The system 1dentifies the message handlers
CPC HO4L 69/08 (2013.01); HO4L 29/06 based on the mitial data type of the message and a target data

(2013.01); HO4L 45/00 (2013.01); HO4L 69/22 type. The 1dentified message handlers effect the conversion of

(2013.01); HO4L 69/32 (2013.01) the data to the target data type through various intermediate
(58) Field of Classification Search data types.

None
See application file for complete search history. 20 Claims, 16 Drawing Sheets

PATH (StackList)

462
450 440 SESSION 430
(/' 463 /,. //‘ 464
33 J
TCP h‘]ﬁ' TCP “‘j Z{ TCP .zgh"

4
2 45 o1 442 o1 432

4231424 | 425

\ XX/

420
™\ ip

422
421
£13|414| 475

FI0
N emeer NN

A
|

412
£11

473 72 1
£ /~ -

QUEUE QUEUE QUEUE

A

PathEnk
(REFERENCE)




US 9,270,790 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,091,725 A 7/2000 Cheriton et al.

6,104,500 A 8/2000 Alam et al.

6,115,393 A 9/2000 Engel et al.

6,119,236 A 9/2000 Shipley

6,141,749 A 10/2000 Coss et al.

6,151,390 A 11/2000 Volftsun et al.

6,226,267 Bl 5/2001 Spinney et al.

6,243,667 Bl 6/2001 Kerr et al.

6,259,781 Bl 7/2001 Crouch et al.

6,356,529 Bl 3/2002 Zarom

6,401,132 Bl 6/2002 Bellwood et al.

6,426,943 Bl 7/2002 Spinney et al.

6,519,636 B2 2/2003 Engel et al.

6,598,034 Bl 7/2003 Kloth

6,629,163 B1* 9/2003 Balassanian ............ HO4L. 29/06
370/401

6,651,099 Bl 11/2003 Dietz et al.

6,678,518 B2 1/2004 Eerola

6,680,922 Bl 1/2004 Jorgensen

6,701,432 Bl 3/2004 Deng et al.

6,711,166 Bl 3/2004 Amir et al.

6,785,730 Bl 8/2004 Taylor

6,871,179 Bl 3/2005 Kist et al.

6,889,181 B2 5/2005 Kerr et al.

7,233,569 Bl1* 6/2007 Swallow ............. HO4L 12/4633
370/225

7,281,036 B1* 10/2007 Lu ..coovvivviinnin, HO041. 29/12028
709/220

7,383,341 Bl 6/2008 Saito et al.

8,055,786 B2* 11/2011 Balassanian ............ HO041L. 29/06
370/351

8,694,683 B2* 4/2014 Balassanian ............ HO4L. 29/06
370/466

2008/0250045 Al1* 10/2008 Balassanian ...... GO6F 17/30569
2009/0265695 Al* 10/2009 Karino ................ GO6F 11/3612

717/131

OTHER PUBLICATIONS

Antoniazzi, S. et al., “An Open Software Architecture for Multimedia
Consumer Terminals”, Central Research Labs, Italy; Alcatel SEL

Research Centre, Germany, ECMAST 1997.

Arbanowski, Stefan, “Generic Description of Telecommunication
Services and Dynamic Resource Selection 1n Intelligent Communi-

cation Environments”, Thesis, Technische Universitat Berlin, Oct. 9,
1996. (3 documents).
Arbanowski, S., et al., Service Personalization for Unified Messaging

Systems, Jul. 6-8, 1999, The Fourth IEEE Symposium on Computers
and Communications, ISCC ’99, Red Sea, Egypt.

Atkinson, R., “Security Architecture for the Internet Protocol”, Aug.
1995, Naval Research Laboratory.

Atkinson, R., “IP Authentication Header”, Aug. 1995, Naval
Research Laboratory.

Atkinson, R., “IP Encapsulating Security Payload (ESP)”, Aug.
1995, Naval Research Laboratory.

Back, G., et al., Java Operating Systems: Design and Implementa-
tion, Aug. 1998, Technical Report UUCS-98-015, University of
Utah.

Baker, Dr. Sean, “CORBA Implementation Issues”, 1994, IONA
Technologies, O’Reilly Institute Dublin, Ireland.

Barrett, R., et al., “Intermediaries: New Places for Producing and
Manipulating Web Content™, 1998, IBM Almaden Research Center,
Elsevier Science.

Bellare, M., et al., “A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation”, Aug. 15,
1997, Dept. of Computer Science and Engineering, University of
California, San Diego.

Bellare, M., et al., “A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation”, Aug. 15,
1997, IEEE.

Bellare, M., etal., “XOR MACs: New Methods for Message Authen-
tication Using Finite Pseudorandom Functions™, 1995, CRYPTO
95, LNCS 963, pp. 15-28, Springer-Verlag Berlin Heidelberg.

Bellissard, L., et al., “Dynamic Reconfiguration of Agent-Based
Applications”, Third European Research Seminar on Advances in
Distributed Systems, (ERSADS ’99) Maderra Island.

Bolding, Darren, “Network Security, Filters and Firewalls”, 1995,
www.acm.org/crossroads/xrds2-1/security.html.

Booch, G., et al., “Software Engineering with ADA”, 1994, Third
Edition, The Benmjamin/Cummings Publishing Company, Inc. (2
documents).

Breugst, et al., “Mobile Agents—Enabling Technology for Active
Intelligent Network Implementation™”, May/Jun. 1998, IEEE Net-
work.

“C Library Functions”, AUTH(3) Sep. 17, 1993, Solbourne Com-

puter, Inc.
Chapman, D., et al., “Building Internet Firewalls”, Sep. 1995,
O’Reilly & Associates, Inc.
CheckPoint FireWall-1 Technical White Paper, Jul. 18, 1994,
CheckPoint Software Technologies, Ltd.
CheckPoint FrreWall-1 White Paper, Sep. 1995, Version 2.0,
CheckPoint Software Technologies, Ltd.

ommand Line Interface Guide P/N 093-0011-000 Rev C Version
2.5, 2000-2001, NetScreen Technologies, Inc.
Coulson, G. et al., “A CORBA Compliant Real-Time Multimedia
Platform for Broadband Networks™, Lecture Notes in Computer Sci-
ence, 1996, Trends in Distributed Systems CORBA and Beyond.
Cox, Brad, “SuperDistribution, Objects As Property on the Elec-

tronic Frontier”, 1996, Addison-Wesley Publishing Company.
Cranes, et al., “A Configurable Protocol Architecture for CORBA
Environments”, Autonomous Decentralized Systems 1997 Proceed-
ings ISADS, Third International Symposium Apr. 9-11, 1997.
Curran, K., et al., “CORBA Lacks Venom”, University of Ulster,
Northern Ireland, UK 2000.

Dannert, Andreas, “Call Logic Service for a Personal Communica-
tion Supporting System”, Thesis, Jan. 20, 1998, Technische
Universitat Berlin.

DARPA Internet Program Protocol Specification, “Transmission
Control Protocol™, Sep. 1981, Information Sciences Institute, Cali-
fornia.

DARPA Internet Program Protocol Specification, “Internet Proto-
col”, Sep. 1981, Information Sciences Institute, California.
Decasper, D., et al., “Crossbow: A Toolkit for Integrated Services
over Cell Switched IPv6”, 1997, Computer Engineering and Net-
works Laboratory, ETH Zurich, Switzerland.

Decasper, D., et al., “Router Plugins A Software Architecture for
Next Generation Routers™, 1998, Proceedings of ACM SIGCONM
"08.

Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1998, Nokia, The Internet Society.

Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1995, Network Working Group, RFC 1883.

Dutton, et al, “Asynchronous Transfer Mode Technical Overview
(ATM)”, Second Edition; IBM, Oct. 1995, 2¢ Edition, Prentice Hall

PTR, USA.

Eckardt, T., et al., “Application of X.500 and X.700 Standards for
Supporting Personal Communications in Distributed Computing
Environments™, 1995, IEEE.

Eckardt, T., et al., “Personal Communications Support based on
TMN and TINA Concepts™, 1996, IEEE Intelligent Network Work-
shop (IN ’96), Apr. 21-24, Melbourne, Australia.

Eckardt, T., et al., “Beyond In and UPT—A Personal Communica-
tions Support System Based on TMN Concepts™, Sep. 1997, IEEE
Journal on Selected Areas in Communications, vol. 15, No. 7.
Egevang, K., et al., “The IP Network Address Translator (NAT)”,
May 1994, Network Working Group, RFC 1631.

Estrin, D., et al., “Visa Protocols for Controlling Inter-Organizational
Datagram Flow”, Dec. 1998, Computer Science Department, Uni-

versity of Southern California and Digital Equipment Corporation.
Faupel, M., “Java Distribution and Deployment”, Oct. 9, 1997, APM

Ltd., United Kingdom.
Felber, P, “The CORBA Object Group Service: A Service Approach
to Object Groups 1n CORBA”, Thesis, 1998, Ecole Polytechnique

Federale de Lausanne, Switzerland.




US 9,270,790 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Fish, R., et al., “DRoPS: Kernel Support for Runtime Adaptable

Protocols”, Aug. 25-27, 1998, IEEE 24" Euromicro Conference,
Sweden.

Fiuczynski, M., et al., “An Extensible Protocol Architecture for
Application-Specific Networking”, 1996, Department of Computer
Science and Engineering, University of Washington.

Franz, Stefan, “Job and Stream Control in Heterogeneous Hardware
and Software Architectures”, Apr. 1998, Technische Universitat, Ber-
lin (2 documents).

Fraser, T., “DTE Firewalls: Phase Two Measurement and Evaluation
Report™, Jul. 22, 1997, Trusted Information Systems, USA.

Gazis, V., et al., “A Survey of Dynamically Adaptable Protocol
Stacks™, first Quarter 2010, IEEE Communications Surveys & Tuto-
rials, vol. 12, No. 1, 1 Quarter.

Gokhale, A., et al., “Evaluating the Performance of Demultiplexing
Strategies for Real-Time CORBA™, Nov. 1997, GLOBECOM.
Gokhale, A., etal., “Measuring and Optimizing CORBA Latency and
Scalability Over High-Speed Networks”, Apr. 1998, IEEE Transac-
tion on Computers, vol. 47, No. 4; Proceedings of the International
Conference on Distributed Computing Systems (ICDCS ’97) May
27-30, 1997.

Gokhale, A., et al., “Operating System Support for High-Perfor-
mance, Real-Time CORBA™, 1996.

Gokhale, A., et al., “Principles for Optimizing CORBA Internet
Inter-ORB Protocol Performance”, Jan. 9, 1998, Proceedings of the
HICSS Conference, Hawaii.

Gong, L1, “Java Security: Present and Near Future”, May/Jun. 1997,
IEEE Micro.

Gong, L1, “New Security Architectural Directions for Java (Extended
Abstract)”, Dec. 19, 1996, IEEE.

Gong, L1, “Secure Java Class Loading”, Nov./Dec. 1998, IEEE
Internet.

Goos, G., etal., “Lecture Notes in Computer Science: Mobile Agents
and Security”, 1998, Springer-Verlag Berlin Heidelberg.

Goralski, W., “Introduction to ATM Networking”, 1995, McGraw-
Hill Series on Computer Communications, USA.

Hamzeh, K., etal., Layer Two Tunneling Protocol “L2TP”, Jan. 1998,
PPP Working Group, Internet Draft.

Harrison, T., et al., “The Design and Performance of a Real-Time
CORBA Event Service”, Aug. 8, 1997, Proceedings of the OOPSLA
"977 Conference, Atlanta, Georgia in Oct. 1997,

Huitema, Christian, “IPv6 The New Internet Protocol”, 1997
Prentice Hall, Second Edition.

Hutchins, J., et al., “Enhanced Internet Firewall Design Using State-
ful Filters Final Report™, Aug. 1997, Sandia Report; Sandia National
Laboratories.

IBM, Local Area Network Concepts and Products: Routers and Gate-
ways, May 1996.

Juniper Networks Press Release, Juniper Networks Announces
Junos, First Routing Operating System for High-Growth Internet
Backbone Networks, Jul. 1, 1998, Juniper Networks.

Juniper Networks Press Release, Juniper Networks Ships the Indus-
try’s First Internet Backbone Router Delivering Unrivaled Scal-
ability, Control and Performance, Sep. 16, 1998, Juniper Networks.
Karn, P, et al., “The ESP DES-CBC Transform”, Aug. 1995, Net-
work Working Group, RFC 1829.

Kelsey, J. et al., “Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor”, Sep. 1996, CARDIS.
Krieger, D., et al., “The Emergence of Distributed Component Plat-
forms”, Mar. 1998, IEEE.

Krupczak, B., et al., “Implementing Communication Protocols 1n
Java”, Oct. 1998, IEEE Communications Magazine.

Krupczak, B., et al., “Implementing Protocols in Java: The Price of
Portability”, 1998, IEEE.

Lawson, Stephen, “Cisco NetFlow Switching Speeds Traffic Rout-
ing”, Jul. 7, 1997, Infoworld.

L1, S, et al., “Active Gateway: A Facility for Video Conferencing
Tratfic Control”, Feb. 1, 1997, Purdue University; Purdue e-Pubs;
Computer Science Technical Reports.

Magedanz, T., et al., “Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?”, 1996, IEEE.

Mills, H., et al., “Principles of Information Systems Analysis and
Design”, 1986, Academic Press, Inc. (2 documents).

Mosberger, David, “Scout: A Path-Based Operating System”, Doc-
toral Dissertation Submitted to the Unmiversity of Arizona, 1997 (3
documents).

Muhugusa, M., et al., “ComScript : An Environment for the Imple-

mentation of Protocol Stacks and their Dynamic Reconfiguration™,
Dec. 1994,

Nelson, M., et al., The Data Compression Book, 2% Edition, 1996,
M&T Books, A division of MIS Press, Inc.

NetRanger User’s Guide, 1996, WheelGroup Corporation.
NetScreen Command [ine Reference Guide, 2000, P/N 093-0000-
001 Rev A, NetScreen Technologies, Inc., USA.

NetScreen Command Line Reference Guide, 2000, P/N 093-0000-
001 NetScreen Technologies, Inc., USA.

NetScreen Concepts and Examples ScreenOS Reference Gude,
1998-2001, Version 2.5 P/N 093-0039-000 Rev. A, NetScreen Tech-
nologies, Inc.

NetScreen Products Webpage, wysiwyg://body_ bottom.3/http://
www...een.com/products/products.html  1998-1999,  NetScreen
Technologies, Inc.

NetScreen WebUI, Reference Guide, Version 2.5.0 P/N 093-0040-
000 Rev. A, 2000-2001, NetScreen Technologies, Inc.

NetStalker Installation and User’s Guide, 1996, Version 1.0.2, Hay-
stack Labs, Inc.

Niculescu, Dragos, “Survey of Active Network Research™, Jul. 14,
1999, Rutgers University.

Nortel Northern Telecom, “ISDN Primary Rate User-Network Inter-
face Specification”, Aug. 1998.

Nygren, Erik, “The Design and Implementation of a High-Perfor-
mance Active Network Node”, Thesis, Feb. 1998, MIT.

Osbourne, E., “Morningstar Technologies SecureConnect Dynamic
Firewall Filter User’s Guide”, Jun. 14, 1995, V. 1.4, Morning Star
Technologies, Inc.

Padovano, Michael, “Networking Applications on UNIX System V
Release 4,” 1993 Prentice Hall, USA (2 documents).

Pfeifer, T., “Automatic Conversion of Communication Media”, 2000,
GMD Research Series, Germany.

Pfeifer, T., “Automatic Conversion of Communication Media”, The-
s1s, 1999, Technischen Universitat Berlin, Berlin.

Pteifer, T., et al., “Applying Quality-of-Service Parametrization for
Medium-to-Medium Conversion”, Aug. 25-28, 1996, 8" IEEE Work-
shop on Local and Metropolitan Area Networks, Potsdam, Germany:.
Pteifer, T., “Micronet Machines—New Architectural Approaches for
Multimedia End-Systems”™, 1993 Technical University of Berlin.
Pteifer, T., “On the Convergence of Distributed Computing and Tele-
communications in the Field of Personal Communications™, 1995,
Ki1VS, Berlin.

Pteifer, T., “Speech Synthesis in the Intelligent Personal Communi-
cation Support System (IPCSS)”, Nov. 2-3, 1995, 2" “Speak!” Work-
shop on Speech Generation in Multimodal Information Systems and
Practical Applications.

Pfeifer, T., et al., “Generic Conversion of Communication Media for
Supporting Personal Mobility”, Nov. 25-27, 1996, Proc. of the Third
COST 237 Workshop: Multimedia Telecommunications and Appli-
cations.

Pteifer, T., et al., “Intelligent Handling of Communication Media”,
Oct. 29-31, 1997, 6" IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS) Tunis.

Pteifer, T., et al., “Resource Selection in Heterogeneous Communi-
cation Environments using the Teleservice Descriptor”, Dec. 15-19,
1997, Proceedings from the 47 COST 237 Workshop: From Multi-
media Services to Network Services, Lisboa.

Pteifer, T., et al., Mobile Guide—Iocation-Aware Applications from
the Lab to the Market, 1998, IDMS 98, LNCS 1483, pp. 15-28.
Pteifer, T., et al., “The Active Store providing Quality Enhanced
Unified Messaging”, Oct. 20-22, 1998, 5 Conference on computer
Communications, AFRICOM-CCDC *98, Tunis.

Pteifer, T.,, et al., “A4 Modular Location-Aware Service and Applica-
tion Platform”, 1999, Technical University of Berlin.




US 9,270,790 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Plagemann, T., et al., “Evaluating Crucial Performance Issues of
Protocol Configuration in DaCaPo”, 1994, University of Oslo.
Psounis, Konstantinos, “Active Networks: Applications, Security,

Safety, and Architectures”, First Quarter 1999, IEEE Communica-
tions Surveys.

Rabiner, Lawrence, “Applications of Speech Recognition in the Area
of lelecommunications”, 1997, IEEE.

Raman, Suchitra, et al, “A4 Model, Analysis, and Protocol Framework
for Soft State-based Communications”, Department of EECS, Uni-
versity of California, Berkeley.

Rogaway, Phillip, “Bucket Hashing and its Application to Fast Mes-
sage Authentication”, Oct. 13, 1997, Department of Computer Sci-
ence, University of California.

Schneier, B., et al., “Remote Auditing of Software Quiputs Using a
Trusted CoProcessor”, 1997, Elsevier Paper Reprint 1999,
Tennenhouse, D., et al., “From Internet to ActiveNer”, Laboratory of
Computer Science, MIT, 1996.

Tudor, P., “Tutorial MPEG-2 Video Compression”, Dec. 1995, Elec-
tronics & Communication Engineering Journal.

US Copyright Webpage of Copyright Title, “IPv6. the New Internet
Protocol”, by Christian Huitema, 1998 Prentice Hall.

Van der Meer, et al., “An Approach for a 4" Generation Messaging
System”, Mar. 21-23, 1999, The Fourth International Symposium on
Autonomous Decentralized Systems ISADS *99, Tokyo.

Van der Meer, Sven, “Dynamic Configuration Management of the
FEquipment in Distributed Communication Environments”, Thesis,
Oct. 6, 1996, Berlin (3 documents).

Van Renesse, R. et al., “Building Adaptive Systems Using Ensemble”,
Cornell University Jul. 1997.

Venkatesan, R., et al., “Threat-Adaptive Security Policy”, 1997,
IEEE.

Wetherall, D., etal., “The Active IP Option”, Sep. 1996, Proceedings
of the 7 ACM SIGOPS European Workshop, Connemara, Ireland.
Welch, Terry, “A Technique for High-Performance Data Compres-
sion”, 1984, Sperry Research Center, IEEE.

Zeletin, R. et al., “Applying Location-Aware Computing for Elec-
tronic Commerce. Mobile Guide”, Oct. 20-22, 1998, 5* Conference
on Computer Communications, AFRICOM-CCDC *98, Tunis.

Zell, Markus, “Selection of Converter Chains by Means of Quality of
Service Analysis”, Thesis, Feb. 12, 1998, Technische Universitat
Berlin.

Implicit Networks, Inc. v. Advanced Micro Devices, Inc. et al.; CO8-
0184 JLR; USDC for the Western District of Washington, Seattle
Division.

Feb. 4, 2008 Plaintiff’s Original Complaint.

Aug. 26, 2008 Defendant NVIDIA Corporation’s Answer to Com-

plaint.

Aug. 26, 2008 Defendant Sun Microsystems, Inc.’s Answer to Com-
plaint.

Aug. 27, 2008 Defendant Advanced Micro Devices, Inc.’s Answer to
Complaint for Patent Infringement.

Aug. 27, 2008 RealNetworks, Inc.”’s Answer to Implicit Networks,
Inc.’s Ornginal Complaint for Patent Infringement, Affirmative
Detenses, and Counterclaims.

Aug. 27, 2008 Intel Corp.’s Answer, Defenses and Counterclaims.
Aug. 27, 2008 Defendant RMI Corporation’s Answer to Plaintiffs
Original Complaint.

Sep. 15, 2008 Plaintiffs Reply to NVIDIA Corporation’s Counter-
claims,

Sep. 15, 2008 Plaintiffs Reply to Sun Microsystems Inc.’s Counter-
claims.

Sep. 16, 2008 Plaintiffs Reply to RealNetworks, Inc.’s Counter-
claims.

Sep. 16, 2008 Plaintiffs Reply to Intel Corp.’s Counterclaims.

Dec. 10, 2008 Order granting Stipulated Motion for Dismissal with
Prejudice re NVIDIA Corporation, Inc.

Dec. 16, 2008 Defendants AMD, RealNetworks, RMI, and Sun’s
Motion to Stay Pending the Patent and Trademark Office’s Reexami-
nation of the 163 Patent.

Dec. 29, 2008 Order granting Stipulated Motion for Dismissal with-

out Prejudice of Claims re Sun Microsystems, Inc.

Jan. 5, 2009 Plamtiff’s Opposition to Defendants AMD,
RealNetworks, RMI, and Sun’s Motion to Stay Pending Reexamina-
tion and Exhibit A.

Jan. 9, 2009 Reply of Defendants AMD, RealNetworks, RMI, and
Sun’s Motion to Stay Pending the Patent and Trademark Office’s
Reexamination of the *163 Patent.

Feb. 9, 2009 Order Granting Stay Pending the United States Patent
and Trademark Office’s Reexamination of U.S. Pat. No. 6,629,163.
Feb. 17, 2009 Order Granting Stipulated Motion for Dismissal of
Advanced Micro Devices, Inc. with Prejudice.

May 14, 2009 Order Granting Stipulated Motion for Dismussal of
RMI Corporation with Prejudice.

Oct. 13, 2009 Order Granting Stipulated Motion for Dismissal of
Claims Against and Counterclaims by Intel Corporation.

Oct. 30, 2009 Executed Order for Stipulated Motion for Dismissal of
Claims Against and Counterclaims by RealNetworks, Inc.

Implicit Networks, Inc. v. Microsoft Corp., C09-5628 HLR; USDC
for the Northern District of California, San Francisco Division.
Nov. 30, 2009 Plaintiffs Original Complaint, implicit v Microsoft,
Case No. 09-5628.

Jan. 22, 2010 Order Dismussing Case, Implicit v Microsoft, Case No.
09-5628.

Implicit Networks, Inc. v. Cisco Systems, Inc., C10-3606 HRL;
USDC for the Northern District of California, San Francisco Divi-
S101.

Aug. 16, 2010 Plaintiffs Orniginal Complaint, Implicit v Cisco, Case
No. 10-3606.

Nov. 22, 2010 Defendant Cisco Systems, Inc.’s Answer and Coun-
terclaims, Implicit v Cisco, Case No. 10-3606.

Dec. 13, 2010 Plaintitf, Implicit Networks, Inc.’s, Answer to Coun-
terclaims, Implicit v Cisco, Case No. 10-3606.

Oct. 4, 2011 Order of Dismissal with Prejudice, Implicit v Cisco,
Case No. 10-3600.

Implicit Networks, Inc. v. Citrix Systems, Inc., C10-3766 JL; USDC
for the Northern District of California, San Francisco Division.
Aug. 24, 2010 Plaintiffs Onginal Complaint, Implicit v Citrix, Case
No. 10-3766.

Dec. 1, 2010 Plaintiff’s First Amended Complaint, Implicit v Citrix,
Case No. 10-37660.

Jan. 14, 2011 Defendant Citrix Systems, Inc.’s Answer, Defenses and
Counter-complaint for Declaratory Judgment, Implicit v Citrix, Case
No. 10-3766.

Feb. 18, 2011 Plamntiff, Implicit Networks, Inc.’s, Answer to Defen-
dants Counterclaims, Implicit v Citrix, Case No. 10-3766.

May 2, 2011 Order of Dismussal, Implicit v Citrix, Case No. 10-3766.
Implicit Networks, Inc. v. 5 Networks, Inc., C10-3365 JCS; USDC
for the Northern District of California, San Francisco Division.

Jul. 30, 2010 Plamntiffs Oniginal Complaint, Implicit v F'5, Case No.
10-3365.

Oct. 13, 2010 Defendants’ Answer and Counter-Complaint, Implicit
v 5, Case No. 10-3365.

Nov. 3, 2010 Plaintiff”s Answer to Counter-Complaint, Implicit v F5,
Case No. 10-3365.

Dec. 10, 2010 Plaintiff’s First Amended Complaint, Implicit v I3,
Case No. 10-3365.

Jan. 14, 2011 Defendants” Answer to 1 Amended Complaint and
Counterclaim, Implicit v 5, Case No. 10-3365.

Feb. 18, 2011 Plaintiffs Answer to F5’s Amended Counter-Com-
plaint, Implicit v 5, Case No. 10-3365.

Apr. 18, 2011 Defendants’ Amended Answer to 1¥° Amended Com-
plaint and Counter-Complaint, Implicit v F5, Case No. 10-3365.
May 5, 2011 Plaintiffs Answer to F5’s Amended Counter-Complaint,
Implicit v F5, Case No. 10-3365.

Jul. 22, 2011 F5 Networks, Inc.’s Invalidity Contentions, Implicit v
£S5, Case No. 10-3365.

Jul. 22, 2011 F5 Networks, Inc.’s Invalidity Contentions, Exhibit A,
Implicit v F5, Case No. 10-3365 (31 documents).

Jul. 22, 2011 F5 Networks, Inc.’s Invalidity Contentions, Exhibit B,
Implicit v F5, Case No. 10-3365.

Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3), Implicit v F5, Case No. 10-3365.




US 9,270,790 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3) Exhibit A, Implicit v 5, Case No. 10-3365 (2 documents).
Nov. 28, 2011 Plaintiffs Opening Claim Construction Brief, Implicit

v F5, Case No. 10-3365.

Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Implicit v F'5, Case No. 10-3365.

Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Exhibit A, Implicit v F5, Case No. 10-3365.

Dec. 12, 2011 Defendants’ Claim Construction Brief, Implicit v F5,
Case No. 10-3365.

Dec. 19, 2011 Plaintiffs Reply to Detfendants’ (F5, HP, Juniper)
Responsive Claim Construction Brief (4-5), Implicit v F'5, Case No.
10-3365.

Jan. 27, 2012 Transcript of Proceeding Held on Jan. 17, 2012;
Implicit v F5, Case No. 10-3365.

Jan. 27, 2012 Transcript of Proceeding Held on Jan. 18, 2012;
Implicit v F5, Case No. 10-3365.

Jan. 27, 2012 Transcript of Proceeding Held on Jan. 19, 2012;
Implicit v F5, Case No. 10-3365.

Feb. 29, 2012 Claim Construction Order.

Aug. 15, 2012 Storer Invalidity Report.

Sep. 10, 2012 Implicit’s Expert Report of Scott M. Nettles.

Mar. 13, 2013 Order Granting Defendants” Motion for Summary
Judgment.

Apr. 9, 2013 Notice of Appeal to the Federal Circuit.

Implicit Networks, Inc. v. Hewlett-Packard Company, C10-3746
JCS: USDC for the Northern District of California, San Francisco
Division.

Aug. 23, 2010 Plaintiffs Original Complaint, Implicit v HP, Case No.
10-3746.

Nov. 23, 2010 Plaintiff’s First Amended Complaint, Implicit v HP,
Case No. 10-3746.

Jan. 14, 2011 Defendant HP’s Answer and Counterclaims, Implicit v
HP, Case No. 10-3746.

Feb. 18, 2011 Implicit Networks, Inc.’s Answer to HP Counter-
claims, Implicit v HP, Case No. 10-3746.

May 10, 2011 Plamtiff’s Amended Disclosure of Asserted Claims
and Infringement Contentions, Case No. 10-3746.

Jun. 30, 2011 Defendant HP Company’s Invalidity Contentions,
Implicit v HP, Case No. 10-3746.

Jun. 30, 2011 Defendant HP Company’s Invalidity Contentions,
Al-14, Implicit v HP, Case No. 10-3746.

Jun. 30, 2011 Defendant HP Company’s Invalidity Contentions,
B1-21, Implicit v HP, Case No. 10-3746.

Implicit Networks, Inc. v. Juniper Networks, C10-4234 EDL: USDC
for the Northern District of California, San Francisco Division.
Sep. 20, 2010 Plaintiff’s Original Complaint, Implicit v Juniper, Case
No. 10-4234.

Nov. 12, 2010 Juniper Network’s Motion to Dismiss For Failure to
State a Claim Under Rule 12(B)(6): Memorandum of Points and
Authorities; Implicit v Juniper, Case No. 10-4234,

Nov. 12, 2010 Juniper Network’s Request for Judicial Notice in
Support of its Motion to Dismiss For Failure to State a Claim Under
Rule 12(B)(6): Memorandum of Points and Authorities; Implicit v
Juniper, Case No. 10-4234.

Dec. 1, 2010 First Amended Complaint; Implicit v Juniper, Case No.
10-4234.

Jan. 18, 2011 Juniper Networks, Inc.’s Answer and Affirmative
Defenses to 1 Amended Complaint, Implicit v Juniper, Case No.
10-4234.

Feb. 18, 2011 Plamntiffs Answer to Defendant’s Counterclaims,
Implicit v Juniper, Case No. 10-4234.

May 23, 2011 Plaintiffs Disclosure of Asserted Claims and Infringe-
ment Contentions, Implicit v Juniper, Case No. 10-4234.

Nov. 15, 2011 Plaintiffs Amended Disclosure of Asserted Claim and
Infringement Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Briet), Implicit v Juniper, Case No.
10-4234.

™

Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit E, Implicit v Juniper,
Case No. 10-4234.

Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Briet Exhibit I, Implicit v Juniper, Case
No. 10-4234.

Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit K, Implicit v Juniper,
Case No. 10-4234.

Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibits M-O, Implicit v Juniper,
Case No. 10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Briet, Implicit v Juniper, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brietf, Exhibit B, Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit F, Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit N, Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit P, Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit Q, Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit S., Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit T-1, Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Briet, Exhibit T-2, Implicit v Juniper, Case No.

10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Briet, Exhibit T-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Briet, Exhibit T-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit U, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit V, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit W, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit X, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit Y-1, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Briet, Exhibit Y-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Briet, Exhibit Y-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit Y-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants’
Claim Construction Brief, Exhibit Z, Implicit v Juniper, Case No.
10-4234.




US 9,270,790 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

"‘I’

Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff’s

Reply Claim Construction Brief, Implicit v Juniper, Case No.
10-4234.

Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Reply Claim Construction Briet, Exhibit P, Implicit v Juniper, Case
No. 10-4234.

Jan. 10, 2012 Plamntiff’s Jan. 10, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.

Feb. 10, 2012 Juniper Networks, Inc.’s Supplemental Invalidity Con-
tentions, Implicit v Juniper, Case No. 10-4234,

Feb. 10, 2012 Juniper Networks, Inc.”s Supplemental Invalidity Con-
tentions, Exhibit A1, Implicit v Juniper, Case No. 10-4234.

Feb. 10, 2012 Juniper Networks, Inc.”s Supplemental Invalidity Con-
tentions, Exhibit A2, Implicit v Juniper, Case No. 10-4234.

Feb. 10, 2012 Juniper Networks, Inc.’s Supplemental Invalidity Con-
tentions, Exhibit A3, Implicit v Juniper, Case No. 10-4234.

Feb. 10, 2012 Juniper Networks, Inc.”s Supplemental Invalidity Con-
tentions, Exhibit A4, Implicit v Juniper, Case No. 10-4234.

Feb. 10, 2012 Juniper Networks, Inc.’s Supplemental Invalidity Con-
tentions, Exhibit B1, Implicit v Juniper, Case No. 10-4234.

Feb. 29, 2012 Plamtiff’s Feb. 29, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.

Apr. 6,2012 Plaintiff’s Apr. 6, 2012 Amended Disclosure of Asserted
Claims and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.

Apr. 9,2012 Plaintiff’s Apr. 9, 2012 Amended Disclosure of Asserted
Claims and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.

Sep. 11, 2012 Implicit’s Expert Report of Scott Nettles.

Nov. 9, 2012 Juniper’s Notice of Motion and Memorandum of Law
ISO Motion for Summary Judgment or, in the alternative, for Partial
Summary Judgment, on the Issue of Invalidity.

Nov. 9, 2012 Exhibit 2 to Declaration in support of Juniper’s Motion
for Summary Judgment—Calvert Expert Report.

Nov. 9, 2012 Exhibit 3 to Declaration in support of Juniper’s Motion
for Summary Judgment—Calvert Supplemental Expert Report.
Nov. 26, 2012 Implicit Opposition to Juniper’s and F5 Motion on
Invalidity.

Nov. 26, 2012 Exhibit A to Hosie Declaration—Aug. 27, 2012
Excerpts from David Blaine deposition.

Nov. 26, 2012 Exhibit B to Hosie Declaration—Oct. 25, 2012
Excerpts from Kenneth Calvert Deposition.

Nov. 26, 2012 Exhibit C to Hosie Declaration—Aug. 15, 2012
Excerpts from Kenneth Calvert Expert Report.

Nov. 26, 2012 Exhibit D to Hosie Declaration—U.S. Pat. No.
6,651,099 to Dietz et al.

Nov. 26, 2012 Exhibit E to Hosie Declaration—Understanding
Packet-Based and Flow-Based Forwarding,

Nov. 26, 2012 Exhibit F to Hosie Declaration—Wikipedia on Soft
State.

Nov. 26, 2012 Exhibit G to Hosie Declaration—Sprint Notes.

Nov. 26, 2012 Exhibit H to Hosie Declaration—Implicit’s Supple-
mental Response to Juniper’s 2¢ Set of Interrogatories.

Nov. 26, 2012 Exhibit I to Hosie Declaration—U.S. Pat. No.
7,650,634 (Zuk).

Other Implicit Networks, Inc. Prosecution Matters.

U.S. Appl. No. 11/933,022 Utility Application filed Oct. 31, 2007.
U.S. Appl. No. 11/933,022 Preliminary Amendment filed Feb. 19,
2008.

U.S. Appl. No. 11/933,022 Office Action mailed Jun. 24, 2009.
U.S. Appl. No. 11/933,022 Amendment filed Sep. 24, 2009.

U.S. Appl. No. 11/933,022 Office Action dated Dec. 11, 2009.

U.S. Appl. No. 11/933,022 Amendment and Response dated Jan. 29,
2010.

U.S. Appl. No. 11/933,022 Notice of Allowance dated Mar. 2, 2010.
U.S. Appl. No. 11/933,022 Issue Notification dated May 4, 2010.
U.S. Appl. No. 10/636,314 Utility Application filed Aug. 6, 2003.

U.S. Appl. No. 10/636,314 Office Action dated Apr. 7, 2008.

U.S. Appl. No. 10/636,314 Response to Restriction Requirement
dated Aug. 5, 2008.

U.S. Appl. No. 10/636,314 Office Action dated Oct. 3, 2008.

U.S. Appl. No. 10/636,314 Response to Office Action dated Apr. 3,
20009.

U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated May 4, 20009.

U.S. Appl. No. 10/636,314 Amendment to Office Action Response
dated Jun. 4, 2009,

U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jun. 12, 2009.

U.S. Appl. No. 10/636,314 Amendment to Office Action dated Jul.
10, 2009.

U.S. Appl. No. 10/636,314 Final Rejection Office Action dated Oct.
21, 20009.

U.S. Appl. No. 10/636,314 Amendment after Final Office Action
dated Dec. 14, 2009.

U.S. Appl. No. 10/636,314 Advisory Action dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jan. 11, 2010.

U.S. Appl. No. 10/636,3 14 Supplemental Amendment and Response
dated Mar. 13, 2010.

U.S. Appl. No. 10/636,314 Office Action dated May 11, 2010.

U.S. Appl. No. 10/636,314 Amendment and Response dated Sep. 13,
2010.

U.S. Appl. No. 10/636,314 Final Rejection dated Nov. 24, 2010.
U.S. Appl. No. 10/636,314 Notice of Appeal dated May 19, 2011.
U.S. Appl. No. 10/636,314 Amendment and Request for Continued
Examination dated Jul. 19, 2011.

U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 13, 2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 19, 2011.
U.S. Appl. No. 10/636,314 Issue Notification dated Oct. 19, 2011.
U.S. Appl. No. 09/474,664 Utility Application filed Dec. 29, 1999.
U.S. Appl. No. 09/474,664 Office Action dated Sep. 23, 2002.

U.S. Appl. No. 09/474,664 Amendment and Response dated Feb. 24,
2003.

U.S. Appl. No. 09/474,664 Notice of Allowance dated May 20, 2003.
U.S. Appl. No. 90/010,356 Request for Ex Parte Reexamination
dated Dec. 15, 2008.

U.S. Appl. No. 90/010,356 Office Action Granting Reexamination
dated Jan. 17, 2009.

U.S. Appl. No. 90/010,356 First Office Action dated Jul. 7, 2009.
U.S. Appl. No. 90/010,356 First Oflice Action Response dated Sep. 1,
20009.

U.S. Appl. No. 90/010,356 Patent Owner Interview Summary dated
Oct. 23, 2009.

U.S. Appl. No. 90/010,356 Office Action Final dated Dec. 4,2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Dec. 18, 2009.

U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Jan. 4, 2010.

U.S. Appl. No. 90/010,356 Advisory Action dated Jan. 21, 2010.
U.S. Appl. No. 90/010,356 Amendment and Response to Advisory
Action dated Feb. 8, 2010.

U.S. Appl. No. 90/010,356 Notice of Intent to Issue a Reexam Cer-
tificate dated Mar. 2, 2010.

U.S. Appl. No. 90/010,356 Reexamination Certificate Issued dated
Jun. 22, 2010.

U.S. Appl. No. 95/000,659 Inter Partes Reexam Request dated Feb.
13, 2012.

U.S. Appl. No. 95/000,659 Order Granting Reexamination dated Apr.
3,2012.

U.S. Appl. No. 95/000,659 Office Action dated Apr. 3, 2012.

U.S. Appl. No. 95/000,659 Office Action Response dated Jun.4,2012
(including Exhibits 1 & 2) (4 documents).

U.S. Appl. No. 95/000,659 Third Party Comments to Patent Owner’s
Response to Office Action dated Jul. 5, 2012.

U.S. Appl. No. 95/000,659 Appendix R-1 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(Declaration of Prof. Dr. Bernhard Plattner).




US 9,270,790 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 95/000,659 Appendix R-2 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012 (Prof.
Dr. Bernhard Plattner CV).

U.S. Appl. No. 95/000,659 Appendix R-3 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).

U.S. Appl. No. 95/000,659 Appendix R-4 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 35,
2012(Othice Action Granting Reexamination 1n 95/000,660 dated
May 10, 2012).

U.S. Appl. No. 95/000,659 Appendix R-5 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(Office Action 1n 95/000,660 dated May 10, 2012).

U.S. Appl. No. 95/000,659 Appendix R-6 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,659 Appendix R-7 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012

(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).

U.S. Appl. No. 95/000,659 Appendix R-8 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).

U.S. Appl. No. 95/000,659 Appendix R-9 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(Claim Construction Order dated Feb. 29, 2012).

U.S. Appl. No. 95/000,659 Appendix R-10-1 to Third Party Com-
ments to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(vol. I of Edward Balassanian Deposition Transcript dated May 30,
2012).

U.S. Appl. No. 95/000,659 Appendix R-10-2 to Third Party Com-
ments to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(vol. II of Edward Balassanian Deposition Transcript dated May 31,
2012).

U.S. Appl. No. 95/000,659 Appendix R-10-3 to Third Party Com-
ments to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(vol. III of Edward Balassanian Deposition Transcript dated Jun. 7,
2012).

U.S. Appl. No. 95/000,659 Appendix R-10-4 to Third Party Com-
ments to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(vol. IV of Edward Balassanian Deposition Transcript dated Jun. 8,
2012).

U.S. Appl. No.95/000,659 Appendix R-11 to Third Party Comments
to Patent Owner’s Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc.”s Response to Juniper Networks, Inc.’s First
Set of Requests for Admission 1-32).

U.S. Appl. No. 95/000,659 Action Closing Prosecution dated Oct. 1,
2012.

U.S. Appl. No. 95/000,659 Petition to Withdraw and Reissue Action
Closing Prosecution dated Nov. 20, 2012.

U.S. Appl. No. 95/000,659 Patent Owner Comments to Action Clos-
ing Prosecution dated Dec. 3, 2012.

U.S. Appl. No. 95/000,659 Opposition to Petition dated Dec. 17,
2012.

U.S. Appl. No. 95/000,659 Third Party Comments to Action Closing
Prosecution dated Jan. 2, 2013.

U.S. Appl. No. 95/000,660 Inter Partes Reexam Request dated Mar.
2,2012.

U.S. Appl. No. 95/000,660 Order Granting Reexamination dated
May 10, 2012.

U.S. Appl. No. 95/000,660 Office Action dated May 10, 2012.

U.S. Appl. No. 95/000,660 Response to Office Action dated Jul. 10,
2012 (including Exhibits 1 and 2).

U.S. Appl. No. 95/000,660 Third Party Comments to Office After
Patent Owner’s Response dated Aug. 8, 2012 (including Revised
Comments).

U.S. Appl. No. 95/000,660 to Third Party Comments to Patent Own-
er’s Response to Office Action dated Aug. 8, 2012 (Declaration of
Prof. Dr. Bernhard Plattner).

U.S. Appl. No. 95/000,660 Appendix R-1 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Prof. Dr. Bernhard Plattner CV).

U.S. Appl. No. 95/000,660 Appendix R-3 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).

U.S. Appl. No. 95/000,660 Appendix R-4 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8,
2012(Office Action Granting Reexamination i 95/000,660 dated
May 10, 2012).

U.S. Appl. No. 95/000,660 Appendix R-5 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Office Action 1n 95/000,660 dated May 10, 2012).

U.S. Appl. No. 95/000,660 Appendix R-6 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,660 Appendix R-7 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).

U.S. Appl. No. 95/000,660 Appendix R-8 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).

U.S. Appl. No. 95/000,660 Appendix R-9 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Claim Construction Order dated Feb. 29, 2012).

U.S. Appl. No. 95/000,660 Appendix R-10 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012 (vol.
[-IV of Edward Balassanian Deposition Transcript dated May 30,
2012).

U.S. Appl. No. 95/000,660 Appendix R-11 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Shacham, A., et al, “IP Payload Compression Protocol”, Network
Working Group, RFC 3173 Sep. 2001).

U.S. Appl. No. 95/000,660 Appendix R-12 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Shacham, A., et al, “IP Payload Compression Protocol”, Network
Working Group, RFC 2393 Dec. 1998).

U.S. Appl. No. 95/000,660 Appendix R-13 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(’163 Pfeiffer Claim Chart).

U.S. Appl. No. 95/000,660 Appendix R-14 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Ylonen, T., “SSH I1ransport Layer Profocol”, Network Working
Group—Draft Feb. 22, 1999).

U.S. Appl. No. 95/000,660 Appendix R-15 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Dommety, G., “Key and Sequence Number Extensions 10 GRE”,
Network Working Group, RFC 2890 Sep. 2000).

U.S. Appl. No. 95/000,660 Appendix R-16 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Monsour, R., et al, “Compression in IP Security” Mar. 1997).

U.S. Appl. No. 95/000,660 Appendix R-17 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8, 2012
(Friend, R., Internet Working Group RFC 3943 dated Nov. 2004
Transport Layer Security Protocol Compression Using Lempel-Ziv-
Stac).

U.S. Appl. No. 95/000,660 Appendix R-18 to Third Party Comments
to Patent Owner’s Response to Office Action dated Aug. 8,

2012(Implicit Networks, Inc.’s Response to Juniper Networks, Inc.’s
First Set of Requests for Admission 1-32).

U.S. Appl. No. 95/000,660 Revised—Third Party Comments to
Office After Patent Owner’s Response dated Nov. 2, 2012.

U.S. Appl. No. 95/000,660 Action Closing Prosecution dated Dec.
21, 2012.

U.S. Appl. No. 95/000,660 Comments to Action Closing Prosecution
dated Feb. 21, 2013 (including Dec of Dr. Ng).




US 9,270,790 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 95/000,660 Third Party Comments to Action Closing
Prosecution dated Mar. 25, 2013.

PCT/US00/33634—PCT application (WO 01/2077 A2—Jul. 12,
2001).

PCT/US00/33634—Written Opinion (WO 01/50277 A3—Feb. 14,
2002).

PCT/US00/33634—International Search Report (Oct. 9, 2001).
PCT/US00/33634—Response to Official Communication dated
Dec. 7, 2001 (Mar. 21, 2002).

PCT/US00/33634—International Preliminary Examination Report
(Apr. 8, 2002).

PCT/US00/33634—Oftlicial Communication (Jan. 24, 2003).
PCT/US00/33634—Response to Official Communication dated Jan.
24, 2003 (Mar. 12, 2003).

PCT/US00/33634—O0Of1hcial Communication (May 13, 2004).
PCT/US00/33634—Response to Summons to Attend Oral Proceed-
ing dated May 13, 2004 (Oct. 9, 2004).
PCT/US00/33634—Decision to Refuse a European Patent applica-
tion (Nov. 12, 2004).

PCT/US00/33634—Minutes of the oral proceedings before the
Examining Division (Oct. 12, 2004).

PCT/US00/33634—Closure of the procedure 1n respect to Applica-
tion No. 00984234.5-2212 (Feb. 22, 2005).

May 3, 2013 Expert Report of Dr. Alfonso Cardenas Regarding
Validity of U.S. Pat. Nos. 6,877,006, 7,167,864, 7,720,861, and
8,082,268 (6 documents).

Expert Report of Dr. Alfonso Cardenas Regarding Validity of U.S.

Pat. No. 7,167,864 (3 documents).

“InfoReports User Guide: Version 3.3.1;” Platinum Technolo gy, Pub-
lication No. PRO-X-331-UG00-00, printed Apr. 1998; pp. 1-430.
Non-Final Office Action 1n Inter Partes Reexamination Control No.
95/000,659 1ssued Aug. 16, 2013, 107 pages.

Decision on Petition 1n Reexamination Control No. 95/000,659
1ssued Aug. 19, 2013, 3 pages.

Response to Non-Final Office Action in Reexamination Control No.
95/000,659 mailed Oct. 2, 2013 including Exhibits A-C, 37 pages.
Decision on Petition 1n Reexamination Control No. 95/000,660
1ssued Jul. 30, 2013, 12 pages.

Non-Final Office Action 1n Inter Partes Reexamination Control No.
95/000,660 1ssued Aug. 30, 2013, 23 pages.

RFC: 791. Internet Protocol: DARPA Internet Program Protocol
Specification, Sep. 1981, prepared for Defense Advanced Research
Projects Agency Information Processing Techniques Office by Infor-
mation Sciences Institute Unmiversity of Southern California, 52

pages.

* cited by examiner



U.S. Patent Feb. 23, 2016 Sheet 1 of 16 US 9,270,790 B2

101 102 103 104
e v
150
3 MESSAGE L ABELMAP
DRIVESR SN [ PO —
105
149 ’
QUEURL 1 THREAD
106
151
A\ A MESSAGE
SEND
107
152
\ A MESSAGE
SEND
108
153 3
v MESSAGE
SEND
09 A1 Pl
MESSAGE DEMUX | ABELMAP
SEND J | GET
154 Y
114
155~ | MESSAGE
./ SEND

F1g. 1



U.S. Patent Feb. 23, 2016 Sheet 2 of 16 US 9,270,790 B2

P1 P2 p3 o4
D1] ¢ |02 03[ 1 12
= = DI5] 1 N
-
Flg. 2
300
MEMORY 303
304 08
LABEL MAP
FORWARDING DEMUX
DRIVERS | L
| CONPONENT | | COMPONENT | | copmineent
|
s CONVERSION INSTANCE
STRUCTURES ROUTINES DATA
CPU 01 /0 302

Fis. 3



U.S. Patent Feb. 23, 2016 Sheet 3 of 16 US 9,270,790 B2

PATH (StackList)

467
SESSION
450 463 440 / 430 454
453 443 S 433
TCP TCP TCP !A_’
452 442 432
431 437 4517
42314241 425
420
XX LY
\
427
421
41314744715
410
e | NV
\
412
417
473 472 471
QUEUE QUEUE QUEUE
/\
PathEnt

ng. 4 (REFERENCE)



U.S. Patent Sheet 4 of 16

Feb. 23, 2016

MessageQueve 202

505
PathEnt

' \ ¢

501 multiplayList -
PATH StackList pAddress -
ﬂ pPathtntry -
MessageQueue | 503
StackList
'l aress _ ) 505
T A PathEnt

504
506

BindingList
Binding

US 9,270,790 B2

Map 207
Jute '

araeiLgope
TargetKey

L

MultiplayList 08

Member 209

StackListEn

A

ddresstnt

Binding 210

i%

PathList
ActivePaths

T UL

.‘ i

Binding 517



US 9,270,790 B2

- b
Sy
= e/ Bupulg
i
E
—
” 505 3o °p —
15114404
o : R
- SHULD
s 09 $sH14i0d 0IC Guipuig ) 8/qo| bulpuig
=
W
&=
G0G Aju3yied
o1/ Bupug

U.S. Patent

| heyd
|
1 8 8 ,
|

— auigd
)

1gq-/ UoIsses



U.S. Patent Feb. 23, 2016 Sheet 6 of 16 US 9,270,790 B2

MessageSend (Message, PathEntry)
/01

list =
athEntry --> Mulliplex
List

LA o

NQ
/02

PathEntry =-> \NO

Member 703

YES 704
PatnEntry —=> YES
o 'posiiion :b Pat
athbntry ==> Member -->
S%ckLisiEniry " 703A
| ,
05 > nexiEntry = List Head
| Data (&ﬁhEniry -=>
705 Path —-> StackList)
NexiEntry =
L Ustexfgﬂia |
(position) |
706 NO
Y [

retVal = nextEniry -->
Member ~-> Binding ~->
Edcbe ~~> MessogeHondler
(Message, nextEntry)

| List = Demux 707
‘Message,
PathEn ng f;ﬁ Address,
athEntry -
Fio. 74
/08
NO YES
09 >

Return

(retval)



U.S. Patent

Feb. 23, 2016 Sheet 7 of 16

/10

Select next
Candidate path
in List

/11
~° (B
YES
E /12

NeiiEp_fry
PothEntry
N

YES
0 >

/13

Number of
Candidate

Path > 1

Ry

/19

NO PathEntry -->

PathEntry —-> MultiplayList = List

MultiplayList

&S 716

MessageSend
(Message, “nextEntry)

Fig. 7B

US 9,270,790 B2

/17
/

NexiEntry -->
Pot

V&S 718

OueueMessuEe
(Message, Nexttntry)

Fig. 7C



U.S. Patent Feb. 23, 2016 Sheet 8 of 16 US 9,270,790 B2

L

Message
Address

801 PathEntry

Initialize
Demux

8072

<
YES [303

| Get Next Binding |

804
Break

binding

805
XS @

NO /805

I Get Key I
807

next binding w

continued 808

[ |
809
| Nail Binding l

810

e mmme

other

simplex

811

Find Path

B17
Process Path
Hopping

multiple

!

. return )

Fig. 8



U.S. Patent Feb. 23, 2016 Sheet 9 of 16 US 9,270,790 B2

Initialize
Demux

| Map
PathEntry ~-> Map

907

message = Message 902

path = null
address Elem = null

sovedStatus = 0 03

Status = demux Continue
904 905

YES status =
909 Pathtntry —=> PathEntry --> Path ~->
Path Stalus

| poin Address =
| pothEntry ——> Path --> NO

Address 906 907

demux demux
addressElem = Extend continue pathAddress =
pathAddress --> Address
CurrentBinding = 910 demux

pathEntry -~> Member End 908

~--> Addresskntry I IntEnd l

stotus = demux Continue | 911
binding List =
pathAddress -->
Bindinglist

CurrentBinding = 912
&pathAddress —->
CurrentBinding
postpone = (

traverse = ListDataNext
session = Null

913

F1e. 9




U.S. Patent Feb. 23, 2016 Sheet 10 of 16 US 9,270,790 B2

InitEnd

1002
1007

pathAddress =

PothEnt AddressCopy
-=~> Member YES PathEntry =>
-~> Binding --> Path -> Address,

Flags ==

PathEntry => Member

Simplex ~-> AddressEntry)
10 1003
pathAddress =
AddressCreate
(PathEntry -> Path ->

Address -> URL)

1004

hinding =

(I!;istDEGIE ext
athentry =>
Path -> Address ->

BindingList,
& elem)

YES 71006

pathAddress =->
CurrentBinding =
ListTaillnsert

(pathAddress -->
BindingList, binding)

1007

glem = =
PathEntry -->
Member -~>
Addresstntry

s Fig. 10

NO

Return



U.S. Patent Feb. 23, 2016 Sheet 11 of 16 US 9,270,790 B2

GetNext Binding

1101

binding = traverse
(BindingList,

currentBinding)
1102
YES Return
(binding)
N 1103

raillist = LabelMapGet

(map --> Output Label,
map --> Target Label)

= { size of > |
| 1105 traillist
curren}Bindind =] 1112
ListTail (bindingList
: Data YES
1106 1109
Ibindin
I tmpTrail = -> Key &&g map NO NO 1113
ListHeadRemove ~> Target key
(trailliist) _ returnList =
1107 Prepcre Mullicast Paths
| "S- 1110 (trailLis}, map)

Address Extend — -
(pathAddress, l binding -=> Key =

tmpTrail) | | _map —-> Target key Return 1
| 1111 (multiple)
binding = map --> Targel key =
ListTail Data Null

(binding List)

Fig. 11



U.S. Patent Feb. 23, 2016 Sheet 12 of 16 US 9,270,790 B2

Get Key

— 1207
edge = binding —-> Ldge '
tdge profocol = edge F Ig ' ] 2
--> Protocol
Status = edge --> 1202
DemuxKey (message,
pothAddress, map)
1204 1203 1205

binding -~> Flags | TEMOVE traverse = ListDataNext
| = Binding—Remove bostpone posfpone++
other
Return
1206 (next binding)
NO YES
postpone
1217 /‘720.7
— postpone —-
fraverse = ListDataNext traverse = LisiDataPrey
1212 1209 1208
N0 sovedSious = NO
)
YES YES
1213 | 1210
status = saved status sfatus = demux
savedstotus = 0 continue
1214

binding
-> Flags & Binding
Remaove

Return NO YES Return
(continue) (next binding)



U.S. Patent

Feb. 23, 2016 Sheet 13 01 16

session = TableGef
(protocol => SessionTable,
& binding -> key)

302

1301

US 9,270,790 B2

!

NO

session =
CreateSession
(protocol)

session —-> key =
LabelReference

(binding —=~> key)

Table Put
(protocol ~> sessionTable
& session —> key session

protocol —~>
CreateSession
(session)

Fi1e. 13

1303

1304

1305

1306



U.S. Patent Feb. 23, 2016 Sheet 14 of 16 US 9,270,790 B2

Nail
Binding

1407
1405 1402

session —=>

binding = session -->

binding —-> session = NO BinélingTable YES BindingTable
session [eEﬂgeI;If ledge —-> EdgelD]
1406 1403
binding —-> key = ListDataSet
Label Reference (*currentBinding,
(session ——> key) binding)
1407
1404

session —=> BindingTable
[edge ~—> Edgeld] =
binding YES

Return
(simplex)
1408

binding —> flags N0

simplex

bindin
-=> Edgeg--> EMOve binding —=> Flag 1 =
Cr?gjegjndSng Binding — Remove
inding

continue

return

Fip. 14



U.S. Patent Feb. 23, 2016 Sheet 15 of 16 US 9,270,790 B2

Find Path

binding ->
Flags == simplex &&

1502
entry = ListHeadDatg
(binding >

1501

It path = entry ~> Path
PothList

lem = null :
sh:rfg:iry :unull F’Ig : 1 5

ﬁath =
PathEnlry ->
Path && I?GIh ->

status ==
Extend

No 1903
| firstBinding =
ListHeadDato iretBindi 207
(pﬁéhAqdfesﬁ <=2 :=flrl.5i‘s?;~{ledxlngutu
inding List) (ListNext(enfry -> Path ~>

StackList, NUL E) -> Member
-> Binding && !LisiNexi(entry =>
Path -> Stacklist, entry -> member ->
StackLisiEniry) && !shortEntry!1{entry

~> Path -> StackListSize <
shoritniry ~> Path ->

1506

entry ==
ListDataNext
(binding ~» Pothlis},
& elem)

YES

1508

StackListSize
shorttntry = 1
entry = shorttntry
YES oath = entry -> Path
O e 1513 1514

ath =

PathEntry -> Create Path (path Address, elem = null
ath &n& p;hw..) Staluy it PafhEniry( -> ma entry = ListHeadDalg
== exfend PathEntry ~> Q0S) (path —> StackList)

elem = PathEntry ~>
Member -> Addresstniry
entry = PathEntry

ExtendPath

(poth, map, status) Return



U.S. Patent Feb. 23, 2016 Sheet 16 of 16 US 9,270,790 B2

Process
Path Hopping

PathEntry ~-> Path >0

1601 1610

PathEntry ~> Path = path

1611
entry = ListHeadDato
(path -> Stacklist)

PaihEniry -> Path
path

NO

1603
oldStack = PathEntry —>
Path -> stacklist
1604
newStack =
path —> StackList
1605
oldEIm ListNext
(oldStack, Null)
1606
elem = ListNext
(NBWStGCk, NU”) 1609
entry = ListDataPrev
(newStack, & elem)
1607

oldEtnt
UstDuiuNextloldsiuck
&oldelem) & enirl
ListDataNext newS ack, & elem)
&& ent --> Member -~>
Binding == oldEniry
Member -->
Binding

NO

1612

ListHeadInseri
(returnList, Entry)

flg. 16



US 9,270,790 B2

1

METHOD AND SYSTEM FOR DATA
DEMULITTPLEXING

CROSS REFERENCES TO RELATED
APPLICATIONS D

The present application 1s a continuation of U.S. applica-
tion Ser. No. 13/911,324, filed Jun. 6, 2013 (now U.S. Pat. No.
8,694,683), which 1s a continuation of U.S. application Ser.
No. 13/236,090, filed Sep. 19, 2011 (now abandoned), which 10
1s a continuation of U.S. application Ser. No. 10/636,314,
filed Aug. 6, 2003 know U.S. Pat. No. 8,055,786), which 1s a
continuation of U.S. application Ser. No. 09/474,664, filed
Dec. 29, 1999 (now U.S. Pat. No. 6,629,163); the disclosures
of each of the above-referenced applications are incorporated 1>
by reference herein 1n their entireties.

TECHNICAL FIELD

The present invention relates generally to a computer sys- 20
tem for data demultiplexing.

BACKGROUND

Computer systems, which are becoming increasingly per- 25
vasive, generate data in a wide variety of formats. The Internet
1s an example of iterconnected computer systems that gen-
crate data 1n many different formats. Indeed, when data 1s
generated on one computer system and 1s transmitted to
another computer system to be displayed, the data may be 30
converted 1n many different intermediate formats before 1t 1s
eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To send
the data to another computer system, the computer system
may first compress the bitmap data and then encrypt the 35
compressed data. The computer system may then convert that
compressed data into a TCP format and then into an IP format.
The IP formatted data may be converted 1nto a transmission
format, such as an ethernet format. The data in the transmais-
sion format 1s then sent to a receiving computer system. The 40
receiving computer system would need to perform each of
these conversions in reverse order to convert the data in the
bitmap format. In addition, the receiving computer system
may need to convert the bitmap data into a format that 1s
appropriate for rendering on output device. 45

In order to process data in such a wide variety of formats,
both sending and receiving computer systems need to have
many conversion routines available to support the various
formats. These computer systems typically use predefined
configuration information to load the correct combination of 50
conversion routines for processing data. These computer sys-
tems also use a process-oriented approach when processing,
data with these conversion routines. When using a process-
oriented approach, a computer system may create a separate
process for each conversion that needs to take place. A com- 55
puter system 1n certain situations, however, can be expected to
receive data and to provide data in many different formats that
may not be known until the data 1s received. The overhead of
statically providing each possible series of conversion rou-
tines 1s very high. For example, a computer system that serves 60
as a central controller for data received within a home would
be expected to process datarecerved via telephone lines, cable
TV lines, and satellite connections 1n many different formats.
The central controller would be expected to output the data to
computer displays, television displays, entertainment cen- 65
ters, speakers, recording devices, and so on 1n many different
formats. Moreover, since the various conversion routines may

2

be developed by different organizations, 1t may not be easy to
identify that the output format of one conversion routine 1s
compatible with the mput format of another conversion rou-
tine.

It would be desirable to have a technique for dynamically
identifving a series of conversion routines for processing
data. In addition, 1t would be desirable to have a technique 1n
which the output format of one conversion routine can be
identified as being compatible with the input format of
another conversion routine. It would also be desirable to store
the 1dentification of a series of conversion routines so that the
series can be quickly identified when data 1s recerved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1illustrating example processing,
ol a message by the conversion system.

FIG. 2 1s a block diagram 1llustrating a sequence of edges.

FIG. 3 15 a block diagram 1llustrating components of the
conversion system in one embodiment.

FIG. 4 1s a block diagram 1llustrating example path data
structures 1n one embodiment.

FIG. 5 1s a block diagram that illustrates the interrelation-
ship of the data structures of a path.

FIG. 6 1s a block diagram that illustrates the interrelation-
ship of the data structures associated with a session.

FIGS. 7TA, 7B, and 7C comprise a flow diagram 1illustrating
the processing of the message send routine.

FIG. 8 1s a flow diagram of the demux routine.

FIG. 9 1s a flow diagram of the mitialize demux routine.

FIG. 10 1s a flow diagram of the 1nit end routine.

FIG. 11 1s a flow diagram of a routine to get the next
binding.

FIG. 12 1s a flow diagram of the get key routine.

FIG. 13 1s a flow diagram of the get session routine.

FIG. 14 1s a flow diagram of the nail binding routine.

FIG. 15 1s a flow diagram of the find path routine.

FIG. 16 15 a flow diagram of the process of path hopping
routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
contain multiple packets from an source format 1nto a target
format. When a packet of a message 1s recerved, the conver-
s10n system 1n one embodiment searches for and 1dentifies a
sequence of conversion routines (or more generally message
handlers) for processing the packets of the message by com-
paring the mput and output formats of the conversion rou-
tines. (A message 1s a collection of data that 1s related 1n some
way, such as stream of video or audio data or an email mes-
sage.) The 1dentified sequence of conversion routines 1s used
to convert the message from the source format to the target
format using various intermediate formats. The conversion
system then queues the packet for processing by the identified
sequence of conversion routines. The conversion system
stores the 1dentified sequence so that the sequence can be
quickly found (without searching) when the next packetin the
message 1s recerved. When subsequent packets of the mes-
sage are received, the conversion system 1dentifies the
sequence and queues the packets for pressing by the
sequence. Because the conversion system receives multiple
messages with different source and target formats and 1den-
tifies a sequence of conversion routines for each message, the
conversion systems effectively “demultiplexes” the mes-
sages. That 1s, the conversion system demultiplexes the mes-
sages by receiving the message, 1dentifying the sequence of




US 9,270,790 B2

3

conversion routines, and controlling the processing of each
message by the 1dentified sequence. Moreover, since the con-
version routines may need to retain state information between
the receipt of one packet of a message and the next packet of
that message, the conversion system maintains state informa-
tion as an 1nstance or session of the conversion routine. The
conversion system routes all packets for a message through
the same session of each conversion routine so that the same
state or instance information can be used by all packets of the
message. A sequence of sessions ol conversion routines 1s
referred to as a “path.” In one embodiment, each path has a
path thread associated with it for processing of each packet
destined for that path.

In one embodiment, the packets of the messages are 1ni-
tially recerved by “drivers,” such as an Ethernet driver. When
a driver recerves a packet, 1t forwards the packet to a forward-
ing component of the conversion system. The forwarding
component 1s responsible for identifying the session of the
conversion routine that should next process the packet and
invoking that conversion routine. When invoked by a driver,
the forwarding component may use a demultiplexing (“de-
mux”’) component to 1dentily the session of the first conver-
s1on routine of the path that 1s to process the packet and then
queues the packet for processing by the path. A path thread 1s
associated with each path. Each path thread is responsible for
retrieving packets from the queue of its path and forwarding,
the packets to the forwarding component. When the forward-
ing component 1s invoked by a path thread, 1t initially invokes
the first conversion routine 1n the path. That conversion rou-
tine processes the packet and forwards the processed packet
to the forwarding component, which then invokes the second
conversion routine in the path. The process of ivoking the
conversion routines and forwarding the processed packet to
the next conversion routine continues until the last conversion
routine in the path i1s invoked. A conversion routine may defer
invocation of the forwarding component until 1t aggregates
multiple packets or may invoke the forwarding component
multiple times for a packet once for each sub-packet.

The forwarding component 1dentifies the next conversion
routine in the path using the demux component and stores that
identification so that the forwarding component can quickly
identily the conversion routine when subsequent packets of
the same message are received. The demux component,
searches for the conversion routine and session that 1s to next
process a packet. The demux component then stores the 1den-
tification of the session and conversion routine as part of a
path data structure so that the conversion system does not
need to search for the session and conversion routine when
requested to demultiplex subsequent packets of the same
message. When searching for the next conversion routine, the
demux component mnvokes a label map get component that
identifies the next conversion routine. Once the conversion
routine 1s found, the demux component 1dentifies the session
associated with that message by, in one embodiment, 1nvok-
ing code associated with the conversion routine. In general,
the code of the conversion routine determines what session
should be associated with a message. In certain situations,
multiple messages may share the same session. The demux
component then extends the path for processing that packet to
include that session and conversion routine. The sessions are
identified so that each packet 1s associated with the appropri-
ate state information. The dynamic identification of conver-
s1on routines 1s described in U.S. patent application Ser. No.
11,933,093, filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,
211), entitled “Method and System for Generating a Mapping
Between Types of Data,” which i1s hereby incorporated by
reference.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 1s a block diagram illustrating example processing
of a message by the conversion system. The driver 101
receives the packets of the message from a network. The
driver performs any appropriate processing of the packet and
invokes a message send routine passing the processed packet
along with a reference path entry 150. The message send
routine 1s an embodiment of the forwarding component. A
path 1s represented by a series of path entries, which are
represented by triangles. Each member path entry represents
a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that 1t 1s
being invoked by a driver. The message send routine 1nvokes
the demux routine 102 to search for and i1dentity the path of
sessions that 1s to process the packet. The demux routine may
in turn invoke the label map get routine 104 to identily a
sequence of conversion routines for processing the packet. In
this example, the label map get routine 1dentifies the first three
conversion routines, and the demux routine creates the mem-
ber path entries 151, 152, 153 of the path for these conversion
routines. Each path entry 1dentifies a session for a conversion
routine, and the sequence of path entries 151-155 1dentifies a
path. The message send routine then queues the packet on the
queue 149 for the path that 1s to process the packets of the
message. The path thread 105 for the path retrieves the packet
from the queue and mmvokes the message send routine 106
passing the packet and an indication of the path. The message
send routine determines that the next session and conversion
routine as indicated by path entry 151 has already been found.
The message send routine then mmvokes the mstance of the
conversion routine for the session. The conversion routine
processes the packet and then invokes the message send rou-
tine 107. This processing continues until the message send
routine mmvokes the demux routine 110 after the packet 1s
processed by the conversion routine represented by path entry
153. The demux routine examines the path and determines
that 1t has no more path entries. The demux routine then
invokes the label map get routine 111 to identify the conver-
s10n routines for further processing of the packet. When the
conversion routines are identified, the demux routine adds
path entries 154, 155 to the path. The messages send routine
invokes the conversion routine associated with path entry
154. Eventually, the conversion routine associated with path
entry 155 performs the final processing for the path.

The label map get routine 1dentifies a sequence of “edges”
for converting data 1n one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge 1s part of a “protocol”
(or more generally a component) that may include multiple
related edges. For example, a protocol may have edges that
cach convert data in one format 1into several different formats.
Each edge has an input format and an output format. The label
map get routine 1dentifies a sequence of edges such that the
output format of each edge 1s compatible with the input for-
mat of another edge in the sequence, except for the mput
format of the first edge 1n the sequence and the output format
of the last edge 1n the sequence. FIG. 2 1s a block diagram
illustrating a sequence of edges. Protocol PI includes an edge
for converting format D1 to format D2 and an edge for con-
verting format D1 to format D3; protocol P2 includes an edge
for converting format D2 to format D35, and so on. A 30
sequence for converting format D1 to format D15 1s shown by
the curved lines and 1s defined by the address “P1:1, P2:1,
P3:2, P4:7.”” When a packet of data in format DI 1s processed
by this sequence, 1t 1s converted to format DIS. During the
process, the packet of data 1s sequentially converted to format

D2, D5, and D13. The output format of protocol P2, edge 1




US 9,270,790 B2

S

(1.e., P2:1)1s format D5, but the input format o1 P3:2 1s format
D10. The label map get routine uses an aliasing mechanism
by which two formats, such as D5 and D10 are identified as
being compatible. The use of aliasing allows ditlerent names
of the same format or compatible formats to be correlated.

FIG. 3 1s a block diagram illustrating components of the
conversion system 1n one embodiment. The conversion sys-
tem 300 can operate on a computer system with a central
processing unit 301, I/0 devices 302, and memory 303. The
110 devices may include an Internet connection, a connection
to various output devices such as a television, and a connec-
tion to various mput devices such as a television receiver. The
media mapping system may be stored as imstructions on a
computer-readable medium, such as a disk drive, memory, or
data transmission medium. The data structures of the media
mapping system may also be stored on a computer-readable
medium. The conversion system includes drivers 304, a for-
warding component 305, a demux component 306, a label
map get component 307, path data structures 308, conversion
routines 309, and instance data 310. Each driver recerves data
in a source format and forwards the data to the forwarding
component. The forwarding component i1dentifies the next
conversion routine in the path and invokes that conversion
routine to process a packet. The forwarding component may
invoke the demux component to search for the next conver-
s10n routine and add that conversion routine to the path. The
demux component may invoke the label map get component
to 1dentily the next conversion routine to process the packet.
The demux component stores information defining the paths
in the path structures. The conversion routines store their state
information 1n the nstance data.

FIG. 4 1s a block diagram illustrating example path data
structures 1n one embodiment. The demux component 1den-
tifies a sequence of “edges”™ for converting data 1n one format
into another format by invoking the label map get component.
Each edge corresponds to a conversion routine for converting
data from one format to another. As discussed above, each
edge 1s part of a “protocol” that may 1include multiple related
edges. For example, a protocol may have edges that each
convert data 1n one format into several different formats. Each
edge has as an mput format (*“input label”) and an output
format (“output label”). Each rectangle represents a session
410,420,430, 440, 450 for a protocol. A session corresponds
to an instance of a protocol. That 1s, the session includes the
protocol and state information associated with that instance
of the protocol. Session 410 corresponds to a session for an
Ethernet protocol; session 420 corresponds to a session for an
IP protocol; and sessions 430, 440, 450 correspond to ses-
sions for a TCP protocol. FIG. 4 illustrates three paths 461,
462, 463. Each path includes edges 411, 421, 431. The paths
share the same Ethernet session 410 and IP session 420, but
cach path has a unique TCP session 430, 440, 450. Thus, path
461 includes sessions 410, 420, and 430; path 462 includes
sessions 410, 420, and 440; and path 463 includes sessions
410, 420, and 450. The conversion system represents each
path by a sequence of path entry structures. Each path entry
structure 1s represented by a triangle. Thus, path 461 1s rep-
resented by path entries 415, 4235, and 433. The conversion
system represents the path entries of a path by a stack list.
Each path also has a queue 471, 472, 473 associated with 1t.
Each queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session
includes a binding 412, 422, 432, 442, 452 that 1s represented
by an oblong shape adjacent to the corresponding edge. A
binding for an edge of a session represents those paths that
include the edge. The binding 412 indicates that three paths
are bound (or “nailed”) to edge 411 of the Ethernet session

10

15

20

25

30

35

40

45

50

55

60

65

6

410. The conversion system uses a path list to track the paths
that are bound to a binding. The path list of binding 412
identifies path entries 413, 414, and 415.

FIG. 5 1s a block diagram that illustrates the interrelation-
ship of the data structures of a path. Each path has a corre-
sponding path structure 501 that contains status information
and pointers to a message queue structure 502, a stack list
structure 503, and a path address structure 504. The status of
a path can be extend, continue, or end. Each message handler
returns a status for the path. The status of extend means that
additional path entries should be added to the path. The status
of end means that this path should end at this point and
subsequent processing should continue at a new path. The
status of continue means that the protocol does not care how
the path 1s handled. In one embodiment, when a path has a
status of continue, the system creates a copy of the path and
extends the copy. The message queue structure 1dentifies the
messages (or packets of a message) that are queued up for
processing by the path and 1dentifies the path entry at where
the processing should start. The stack list structure contains a
list of pointers to the path entry structures 505 that comprise
the path. Each path entry structure contains a pointer to the
corresponding path data structure, a pointer to a map structure
507, a pointer to a multiplex list 508, a pointer to the corre-
sponding path address structure, and a pointer to a member
structure 509. A map structure identifies the output label of
the edge of the path entry and optionally a target label and a
target key. A target key identifies the session associated with
the protocol that converts the packet to the target label. (The
terms “media,” “label,” and “format™ are used interchange-
ably to refer to the output of a protocol.) The multiplex list 1s
used during the demux process to track possible next edges
when a path 1s being 1dentified as having more than one next
edge. The member structure indicates that the path entry
represents an edge of a path and contains a pointer to a
binding structure to which the path entry 1s associated (or
“nailed™), a stack list entry is the position of the path entry
within the associated stack list, a path list entry 1s the position
of the path entry within the associated path list of a binding
and an address entry 1s the position of the binding within the
associated path address. A path address of a path identifies the
bindings to which the path entries are bound. The path address
structure contains a URL for the path, the name of the path
identified by the address, a pointer to a binding list structure
506, and the 1dentification of the current binding within the
binding list. The URL (e.g., “protocol://tcp(0)/1p(0)/ eth(0)”)
identifies conversion routines (e.g., protocols and edges) of a
path 1n a human-readable format. The URL (universal
resource locator) mncludes a type field (e.g., “protocol”) fol-
lowed by a sequence of 1items (e.g., “tcp(0)”). The type field
specifies the format of the following information in the URL,
that specifies that the type field 1s followed by a sequence of
items. Each item i1dentifies a protocol and an edge (e.g., the
protocol 1s “tcp” and the edge 1s “0”’). In one embodiment, the
items of a URL may also contain an identifier of state infor-
mation that 1s to be used when processing a message. These
URLSs can be used to 1llustrate to a user various paths that are
available for processing a message. The current binding 1s the
last binding 1n the path as the path 1s being built. The binding
list structure contains a list of pointers to the binding struc-
tures associated with the path. Fach binding structure 510
contains a pointer to a session structure, a pointer to an edge
structure, a key, a path list structure, and a list of active paths
through the binding. The key 1dentifies the state information
for a session of a protocol. A path list structure contains
pointers to the path entry structures associated with the bind-
ing.




US 9,270,790 B2

7

FIG. 6 1s a block diagram that 1llustrates the interrelation-
ship of the data structures associated with a session. A session
structure 601 contains the context for the session, a pointer to
a protocol structure for the session, a pointer to a binding table
structure 602 for the bindings associated with the session, and
the key. The binding table structure contains a list of pointers
to the binding structures 510 for the session. The binding
structure 1s described above with retference to FIG. 5. The path
list structure 603 of the binding structure contains a list of
pointers to path entry structures 505. The path entry structures
are described with reference to FIG. 5.

FIGS.7A, 7B, and 7C comprise a tlow diagram 1llustrating,
the processing of the message send routine. The message send
routine 1s passed a message along with the path entry associ-
ated with the session that last processed the message. The
message send routine invokes the message handler of the next
edge 1n the path or queues the message for processing by a
path. The message handler invokes the demux routine to
identily the next path entry of the path. When a driver receives
a message, 1t imvokes the message send routine passing a
reference path entry. The message send routine examines the
passed path entry to determine (1) whether multiple paths
branch from the path of the passed path entry, (2) whether the
passed path entry 1s a reference with an associated path, or (3)
whether the passed path entry 1s a member with a next path
entry. If multiple paths branch from the path of the passed
path entry, then the routine recursively invokes the message
send routine for each path. It the path entry 1s a reference with
an associated path, then the driver previously invoked the
message send routine, which associated a path with the ref-
erence path entry, and the routine places the message on the
queue for the path. I the passed path entry 1s a member with
a next path entry, then the routine invokes the message han-
dler (1.e., conversion routine of the edge) associated with the
next path entry. If the passed path entry 1s a reference without
an associated path or 1s a member without a next path entry,
then the routine invokes the demux routine to identity the next
path entry. The routine then recursively invokes the messages
send routine passing that next path entry. In decision block
701, 1t the passed path entry has a multiplex list, then the path
branches off into multiple paths and the routine continues at
block 709, else the routine continues at block 702. A packet
may be processed by several different paths. For example, 1T
a certain message 1s directed to two ditlerent output devices,
then the message 1s processed by two different paths. Also, a
message may need to be processed by multiple partial paths
when searching for a complete path. In decision block 702, 1
the passed path entry 1s a member, then either the next path
entry indicates a nailed binding or the path needs to be
extended and the routine continues at block 704, else the
routine continues at block 703. A nailed binding is a binding,
(e.g., edge and protocol) 1s associated with a session. In
decision block 703, the passed path entry 1s a reference and 1f
the passed path entry has an associated path, then the routine
can queue the message for the associated path and the routine
continues at block 703A, else the routine needs to 1dentily a
path and the routine continues at block 707. In block 703 A,
the routine sets the entry to the first path entry in the path and
continues at block 717. In block 704, the routine sets the
variable position to the stack list entry of the passed path
entry. In decision block 705, the routine sets the variable next
entry to the next path entry 1n the path. If there 1s a next entry
in the path, then the next session and edge of the protocol have
been 1dentified and the routine continues at block 706, else the
routine continues at block 707. In block 706, the routine
passes the message to the message handler of the edge asso-
ciated with the next entry and then returns. In block 706, the

10

15

20

25

30

35

40

45

50

55

60

65

8

routine mvokes the demux routine passing the passed mes-
sage, the address of the passed path entry, and the passed path
entry. The demux routine returns a list of candidate paths for
processing ol the message. In decision block 708, i1 at least
one candidate path 1s returned, then the routine continues at
block 709, else the routine returns.

Blocks 709-716 illustrate the processing of a list of candi-
date paths that extend from the passed path entry. In blocks
710-716, the routine loops selecting each candidate path and
sending the message to be process by each candidate path. In
block 710, the routine sets the next entry to the first path entry
of the next candidate path. In decision block 711, 1t all the
candidate paths have not yet been processed, then the routine
continues at block 712, else the routine returns. In decision
block 712, 11 the next entry 1s equal to the passed path entry,
then the path 1s to be extended and the routine continues at
block 705, else the routine continues at block 713. The can-
didate paths include a first path entry that 1s a reference path
entry for new paths or that is the last path entry of a path being
extended. In decision block 713, if the number of candidate
paths 1s greater than one, then the routine continues at block
714, else the routine continues at block 718. In decision block
714, 11 the passed path entry has a multiplex list associated
with 1t, then the routine continues at block 716, else the
routine continues at block 715. In block 715, 11 the routine
associates the list of candidate path with the multiplex list of
the passed path entry and continues at block 716. In block
716, the routine sends the message to the next entry by recur-
stvely mvoking the message send routine. The routine then
loops to block 710 to select the next entry associated with the
next candidate path.

Blocks 717-718 are performed when the passed path entry
1s a reference path entry that has a path associated with it. In
block 717, 1t there 1s a path associated with the next entry, then
the routine continues at block 718, else the routine returns. In
block 718, the routine queues the message for the path of the
next entry and then returns.

FIG. 8 15 a flow diagram of the demux routine. This routine
1s passed the packet (message) that 1s recerved, an address
structure, and a path entry structure. The demux routine
extends a path, creating one 1f necessary. The routine loops
identifving the next binding (edge and protocol) that 1s to
process the message and “nailing” the binding to a session for
the message, 11 not already nailed. After 1identifying the nailed
binding, the routine searches for the shortest path through the
nailed binding, creating a path 11 none exists. In block 801, the
routine ivokes the 1mitialize demux routine. In blocks 802-
810, the routine loops identifying a path or portion of a path
for processing the passed message. In decision block 802, 1f
there 1s a current status, which was returned by the demuxkey
routine that was last invoked (e.g., continue, extend, end, or
postpone), then the routine continues at block 803, else the
routine continues at block 811. In block 803, the routine
invokes the get next binding routine. The get next binding
routine returns the next binding in the path. The binding 1s the
edge of a protocol. That routine extends the path as appropri-
ate to include the binding. The routine returns a return status
of break, binding, or multiple. The return status of binding
indicates that the next binding in the path was found by
extending the path as appropriate and the routine continues to
“nail” the binding to a session as appropriate. The return
status of multiple means that multiple trails (e.g., candidate
paths) were 1dentified as possible extensions of the path. In a
decision block 804, if the return status 1s break, then the
routine continues at block 811. I1 the return status 1s multiple,
then the routine returns. If the return status 1s binding, then the
routine continues at block 805. In decision block 805, if the




US 9,270,790 B2

9

retrieved binding 1s nailed as indicated by being assigned to a
session, then the routine loops to block 802, else the routine
continues at block 806. In block 806, the routine invokes the
get key routine of the edge associated with the binding. The
get key routine creates the key for the session associated with
the message. I a key cannot be created until subsequent
bindings are processed or because the current binding 1s to be
removed, then the get key routine returns a next binding
status, else 1t returns a continue status. In decision block 807,
if the return status of the get key routine 1s next binding, then
the routine loops to block 802 to get the next binding, else the
routine continues at block 808. In block 808, the routine
invokes the routine get session. The routine get session
returns the session associated with the key, creating a new
session 1 necessary. In block 809, the routine invokes the
routine nail binding. The routine nail binding retrieves the
binding 1f one 1s already nailed to the session. Otherwise, that
routine nails the binding to the session. In decision block 810,
if the nail binding routine returns a status of simplex, then the
routine continues at block 811 because only one path can use
the session, else the routine loops to block 802. Immediately
upon return from the nail binding routine, the routine may
invoke a set map routine of the edge passing the session and
a map to allow the edge to set 1ts map. In block 811, the
routine mvokes the find path routine, which finds the shortest
path through the binding list and creates a path 1f necessary. In
block 812, the routine invokes the process path hopping rou-
tine, which determines whether the identified path 1s partof a
different path. Path hopping occurs when, for example, IP
fragments are bult up along separate paths, but once the
fragments are built up they can be processed by the same
subsequent path.

FIG. 9 1s a flow diagram of the mitialize demux routine.
This routine 1s mvoked to 1nitialize the local data structures
that are used 1n the demux process and to identily the nitial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine 1s to extend the path of the
passed path entry by adding additional path entries. If the
current status 1s demux end, then the demux routine 1s ending
the current path. If the current status 1s demux continue, then
the demux routine 1s 1n the process of continuing to extend or
in the process of starting a path identified by the passed
address. In block 901, the routine sets the local map structure
to the map structure 1n the passed path entry structure. The
map structure identifies the output label, the target label, and
the target key. In the block 902, the routine initializes the local
message structure to the passed message structure and 1nitial-
1zes the pointers path and address element to null. In block
903, the routine sets of the variable saved status to 0 and the
variable status to demux continue. The variable saved status 1s
used to track the status of the demux process when backtrack-
ing to nail a binding whose nail was postponed. In decision
block 904, 11 the passed path entry 1s associated with a path,
then the routine continues at block 905, else the routine con-
tinues at block 906. In block 905, the routine sets the variable
status to the status of that path. In block 906, i1 the variable
status 1s demux continue, then the routine continues at block
907. If the variable status 1s demux end, then the routine
continues at block 908. If the variable status 1s demux extend,
then the routine continues at block 909. In block 907, the
status 1s demux continue, and the routine sets the local pointer
path address to the passed address and continues at block 911.
In block 908, the status 1s demux end, and the routine invokes
the 1n1t end routine and continues at block 911. In block 909,
the status 1s demux extend, and the routine sets the local path
address to the address of the path that contains the passed path

10

15

20

25

30

35

40

45

50

55

60

65

10

entry. In block 910, the routine sets the address element and
the current binding of the path address pointed to by the local
pointer path address to the address entry of the member struc-
ture of the passed path entry. In the block 911, the routine sets
the local variable status to demux continue and sets the local
binding list structure to the binding list structure from the
local path address structure. In block 912, the routine sets the
local pointer current binding to the address of the current
binding pointed to by local pointer path address and sets the
local variable postpone to 0. In block 913, the routine sets the
function traverse to the function that retrieves the next data in
a list and sets the local pointer session to null. The routine then
returns.

FIG. 10 1s a flow diagram of the it end routine. If the path
1s stmplex, then the routine creates a new path from where the
other one ended, else the routine creates a copy of the path. In
block 1001, 11 the binding of the passed path entry 1s stmplex
(1.e., only one path can be bound to this binding), then the
routine continues at block 1002, else the routine continues at
block 1003. In block 1002, the routine sets the local pointer
path address to point to an address structure that 1s a copy of
the address structure associated with the passed path entry
structure with 1ts current binding to the address entry associ-
ated with the passed path entry structure, and then returns. In
block 1003, the routine sets the local pointer path address to
point to an address structure that contains the URL of the path
that contains the passed path entry. In block 1004, the routine
sets the local pointer element to null to 1nitialize the selection
of the bindings. In blocks 1005 through 1007, the routine
loops adding all the bindings for the address of the passed
path entry that include and are before the passed path entry to
the address pointed to by the local path address. In block
1005, the routine retrieves the next binding from the binding
list starting with the first. If there 1s no such binding, then the
routine returns, else the routine continues at block 1006. In
block 1006, the routine adds the binding to the binding list of
the local path address structure and sets the current binding of
the local variable path address. In the block 1007, 11 the local
pointer element 1s equal to the address entry of the passed path
entry, then the routine returns, else the routine loops to block
1005 to select the next binding.

FIG. 11 1s a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local
binding list. If there 1s no next binding, then the routine
invokes the routine label map get to 1dentify the list of edges
(“trails™) that will map the output label to the target label. It
only one trail 1s identified, then the binding list ol path address
1s extended by the edges of the trail. ITf multiple trails are
identified, then a path 1s created for each trail and the routine
returns so that the demux process can be invoked for each
created path. In block 1101, the routine sets the local pointer
binding to point to the next or previous (as indicated by the
traverse function) binding in the local binding list. In block
1102, i1 a binding was found, then the routine returns an
indication that a binding was found, else the routine continues
at block 1103. In block 1103, the routine invokes the label
map get function passing the output label and target label of
the local map structure. The label map get function returns a
trail list. A trail 1s a list of edges from the output label to the
target label. In decision block 1104, if the size of the trail list
1s one, then the routine continues at block 1105, else the
routine continues at block 1112. In blocks 1105-1111, the
routine extends the binding list by adding a binding data
structure for each edge 1n the trail. The routine then sets the
local binding to the last binding in the binding list. In block
1108, the routine sets the local pointer current binding to
point to the last binding in the local binding list. In block




US 9,270,790 B2

11

1106, the routine sets the local variable temp trail to the trail
in the trail list. In block 1107, the routine extends the binding
list by temp trail by adding a binding for each edge in the trail.
These bindings are not yet nailed. In block 1108, the routine
sets the local binding to point to the last binding 1n the local
binding list. In decision block 1109, if the local binding does
not have a key for a session and the local map has a target key
for a session, then the routine sets the key for the binding to
the target key of the local map and continues at block 1110,
clse the routine loops to block 1101 to retrieve the next bind-
ing 1n path. In block 1110, the routine sets the key of the local
binding to the target key of the local map. In block 1111, the
routine sets the target key of the local map to null and then
loop to block 1101 to return the next binding. In decision
block 1112, if the local session 1s set, then the demultiplexing
1s already 1n progress and the routine returns a break status. In
block 1113, the routine mvokes a prepare multicast paths
routine to prepare a path entry for each trail 1n the trail list.
The routine then returns a multiple status.

FI1G. 12 1s a flow diagram of the get key routine. The getkey
routine invokes an edge’s demuxkey routine to retrieve a key
tor the session associated with the message. The key identifies
the session of a protocol. The demux key routine creates the
appropriate key for the message. The demux key routine
returns a status of remove, postpone, or other. The status of
remove indicates that the current binding should be removed
from the path. The status of postpone indicates that the demux
key routine cannot create the key because i1t needs informa-
tion provided by subsequent protocols i the path. For
example, a TCP session 1s defined by a combination of a
remote and local port address and an IP address. Thus, the
TCP protocol postpones the creating of a key until the IP
protocol 1dentifies the IP address. The get key routine returns
a next binding status to continue at the next binding 1n the
path. Otherwise, the routine returns a continue status. In block
1201, the routine sets the local edge to the edge of the local
binding (current binding) and sets the local protocol to the
protocol of the local edge. In block 1202, the routine invokes
the demux key routine of the local edge passing the local
message, local path address, and local map. The demux key
routine sets the key in the local binding. In decision block
1203, if the demux key routine returns a status of remove, then
the routine continues at block 1204. If the demux key routine
returns a status ol postpone, then the routine continues at
block 1205, else the routine continues at block 1206. In block
1204, the routine sets the flag of the local binding to indicate
that the binding 1s to be removed and continues atblock 1206.
In block 1205, the routine sets the variable traverse to the
function to list the next data, increments the variable post-
pone, and then returns a next binding status. In blocks 1206-
1214, the routine processes the postponing of the creating of
a key. In blocks 1207-1210, 11 the creating of a key has been
postponed, then the routine indicates to backtrack on the path,
save the demux status, and set the demux status to demux
continue. In blocks 1211-1213, if the creating of a key has not
been postponed, then the routine indicates to continue for-
ward 1n the path and to restore any saved demux status. The
save demux status 1s the status associated by the binding
where the backtrack started. In decision block 1206, if the
variable postpone 1s set, then the routine continues at block
1207, else the routine continues at block 1211. In block 1207,
the routine decrements the variable postpone and sets the
variable traverse to the list previous data function. In decision
block 1208, 1t the variable saved status is set, then the routine
continues at block 1210, else the routine continues at block
1209. The variable saved status contains the status of the
demux process when the demux process started to backtrack.

10

15

20

25

30

35

40

45

50

55

60

65

12

In block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, 1f the variable
saved status 1n set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status and
sets the variable saved status to 0. In decision block 1214, 1f
the local binding indicates that 1t 1s to be removed, then the
routine returns a next binding status, else the routine returns a
continue status.

FIG. 13 1s a flow diagram of the get session routine. This
routine retrieves the session data structure, creating a data
structure session 1 necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key of
the local binding. Each protocol maintains a mapping from
cach key to the session associated with the key. In decision
block 1302, if there 1s no session, then the routine continues at
block 1303, else the routine returns. In block 1303, the routine
creates a session for the local protocol. In block 1304, the
routine initializes the key for the local session based on the
key of the local binding. In block 1305, the routine puts the
session 1nto the session table of the local protocol. In block
1306, the routine 1nvokes the create session function of the
protocol to allow the protocol to initialize 1ts context and then
returns.

FIG. 14 1s a flow diagram of the nail binding routine. This
routine determines whether a binding 1s already associated
with (“nailed t0”) the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate that
only one path can extend through the nailed binding. In deci-
s1ion block 1401, 11 the binding table of the session contains an
entry for the edge, then the routine continues at block 1402,
else the routine continues at block 1405. In block 1402, the
routine sets the binding to the entry from the binding table of
the local session for the edge. In block 1403, the routine sets
the current binding to point to the binding from the session. In
block 1404, 11 the binding 1s simplex, then the routine returns
a simplex status, else the routine returns. Blocks 1405 through
1410 are performed when there 1s no binding 1n the session for
the edge. In block 1405, the routine sets the session of the
binding to the variable session. In block 1406, the routine sets
the key of the binding to the key from the session. In block
1407, the routine sets the entry for the edge in the binding
table of the local session to the binding. In block 1408, the
routine mvokes the create binding function of the edge of the
binding passing the binding so the edge can initialize the
binding. Ifthat function returns a status of remove, the routine
continues at block 1409. In block 1409, the routine sets the
binding to be removed and then returns.

FIG. 15 15 a flow diagram of the find path routine. The find
path routine 1dentifies the shortest path through the binding
list. If no such path exists, then the routine extends a path to
include the binding list. In decision block 1501, 1f the binding
1s simplex and a path already goes through this binding (re-
turned as an entry), then the routine continues at block 1502,
else the routine continues at block 1503. In block 1502, the
routine sets the path to the path of the entry and returns. In
block 1503, the routine 1nitializes the pointers element and
short entry to null. In block 1504, the routine sets the path to
the path of the passed path entry. If the local path 1s not null
and 1ts status 1s demux extend, then the routine continues at
block 1509, else the routine continues at block 1505. In
blocks 1505-1508, the routine loops 1dentitying the shortest




US 9,270,790 B2

13

path through the bindings in the binding list. The routine
loops selecting each path through the binding. The selected
path 1s eligible 11 1t starts at the first binding 1n the binding list
and the path ends at the binding. The routine loops setting the
short entry to the shortest eligible path found so far. In block
1505, the routine sets the variable first binding to the first

binding in the binding list of the path address. In block 1506,
the routine selects the next path (entry) 1n the path list of the
binding starting with the first. If a path 1s selected (indicating,
that there are more paths in the binding), then the routine
continues at block 1507, else the routine continues at block
1509. In block 1507, the routine determines whether the
selected path starts at the first binding in the binding list,
whether the selected path ends at the last binding in the
binding list, and whether the number of path entries in the
selected path 1s less than the number of path entries in the
shortest path selected so far. If these conditions are all satis-
fied, then the routine continues at block 1508, else the routine
loops to block 1506 to select the next path (entry). In block
1508, the routine sets the shortest path (short entry) to the
selected path and loops to block 1506 to select the next path
through the binding. In block 1509, the routine sets the
selected path (entry) to the shortest path. In decision block
1510, if a path has been found, then the routine continues at
block 1511, else the routine continues at block 1512. In block
1511, the routine sets the path to the path of the selected path
entry and returns. Blocks 1512-1516 are performed when no
paths have been found. In block 1512, the routine sets the path
to the path of the passed path entry. If the passed path entry
has a path and its status 1s demux extend, then the routine
continues at block 1515, else the routine continues at block
1513. In block 1513, the routine creates a path for the path
address. Inblock 1514, the routine sets the variable element to
null and sets the path entry to the first element 1n the stack list
of the path. In block 1515, the routine sets the variable ele-
ment to be address entry of the member of the passed path
entry and sets the path entry to the passed path entry. In block
1516, the routine invokes the extend path routine to extend the
path and then returns. The extend path routine creates a path
through the bindings of the binding list and sets the path status
to the current demux status.

FIG. 16 1s a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the bind-
ing list 1s not the same path as that of the passed path entry. In
decision block 1601, if the path of the passed path entry 1s set,
then the routine continues at block 1602, else the routine
continues at block 1609. In decision block 1602, 11 the path of
the passed path entry 1s equal to the local path, then the routine
continues at 1612, else path hopping 1s occurring and the
routine continues at block 1603. In blocks 1603-1607, the
routine loops positioning pointers at the first path entries of
the paths that are not at the same binding. In block 1603, the
routine sets the variable old stack to the stack list of the path
ol the passed path entry. In block 1604, the routine sets the
variable new stack to the stack list of the local path. In block
1605, the routine sets the variable old element to the next
element 1n the old stack. In block 1606, the routine sets the
variable element to the next element in the new stack. In
decision block 1607, the routine loops until the path entry that
1s not 1n the same binding is located. In decision block 1608,
if the variable old entry 1s set, then the routine 1s not at the end
of the hopped from path and the routine continues at block
1609, else routine continues at block 1612. In block 1609, the
routine sets the variable entry to the previous entry in the
hopped-to path. In block 1610, the routine sets the path of the
passed path entry to the local path. In block 1611, the routine

10

15

20

25

30

35

40

45

50

55

60

65

14

sets the local entry to the first path entry of the stack list of the
local path. In block 1612, the routine inserts an entry into
return list and then returns.

Although the conversion system has been described 1n
terms of various embodiments, the invention 1s not limited to
these embodiments. Modification within the spirit of the
invention will be apparent to those skilled 1in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demuxkey routine.
These routines can advance the reference past the header
information for the protocol so that the reference 1s positioned
at the next header. After the demux process, the reference can
be reset to point to the first header for processing by the
conversion routines in sequence. The scope of the invention 1s
defined by the claims that follow.

What 1s claimed 1s:

1. An apparatus, comprising;

a processing unit; and

a memory storing instructions executable by the process-
ing unit to:

identily a path for one or more recerved packets of a mes-
sage, wherein the path indicates a sequence of two or
more routines for processing packets in the message,
wherein the path 1s identified based on a key located 1n
one ol the recerved packets, and wherein the key
includes an IP address and a port address; and

process the one or more received packets using the
sequence ol routines indicated in the identified path,
wherein the sequence 1ncludes a routine that 1s used to
execute a Transmission Control Protocol (TCP) to con-
vert one or more packets having a TCP format into a
different format.

2. The apparatus of claim 1, wherein the key includes a

remote port address and a local port address.
3. The apparatus of claim 1, wherein the sequence of rou-
tines includes:
a second routine that 1s used to execute a second, different
protocol to convert packets of the different format into
another format, wherein the second protocol 1s an appli-
cation layer protocol.
4. The apparatus of claim 3, wherein the sequence of rou-
tines further includes a third routine that 1s used to execute a
different application layer protocol to further convert the
packets.
5. The apparatus of claim 1, wherein the path further indi-
cates sessions corresponding to respective ones of the
sequence ol routines.
6. The apparatus of claim 1, wherein the key 1dentifies a
TCP session associated with the received one or more pack-
ets.
7. The apparatus of claim 1, wherein the sequence of rou-
tines includes a routine that 1s executable to process the one or
more packets without converting a format of the packets.
8. An apparatus, comprising;
a processing unit; and
a memory storing instructions executable by the process-
ing unit to:
receive one or more packets of a message;
identily, using an IP address and one or more port
addresses located in one of the received packets, a
sequence ol two or more routines for processing pack-
ets 1n the message; and

process the one or more recerved packets using the 1den-
tified sequence of routines, wherein the sequence
includes a routine that 1s executable to perform a




US 9,270,790 B2

15

Transmission Control Protocol (TCP) to convert at
least one of the packets of the message into a different
format.
9. The apparatus of claim 8, wherein the one or more port
addresses 1nclude a remote port address and a local port
address.

10. The apparatus of claim 8, wherein the sequence of
routines includes a plurality of application-level routines.

11. The apparatus of claim 8, wherein the IP address and
the one or more port addresses located 1n one of the received
packets forms a key value that 1identifies a TCP session asso-
ciated with the one or more receirved packets.

12. The apparatus of claim 8, wherein the instructions are
executable to use the IP address and the one or more port
addresses to 1dentily sessions corresponding to various ones
of the sequence of routines.

13. The apparatus of claim 8, wherein the instructions are
executable to use the IP address and the one or more port
addresses to 1dentily a corresponding queue for the message.

14. The apparatus of claim 8, wherein the sequence of
routines includes a routine that does not perform a format
conversion on the one or more receirved packets.

15. A non-transitory, computer-readable medium compris-
ing software mstructions for processing a message, wherein
the software instructions, when executed, cause a computer
system to:

identify a path for one or more recerved packets of the

message, wherein the path indicates a sequence of two or
more routines for processing packets in the message,

5

10

15

20

25

16

wherein the path 1s identified based on a key value
located 1n one of the received packets, and wherein the
key value includes an IP address and one or more port
addresses;

process the one or more received packets using the

sequence ol routines indicated in the identified path,
wherein the sequence 1includes a routine that 1s used to
execute a Transmission Control Protocol (TCP) to con-
vert one or more packets having a TCP format 1nto a
different format.

16. The computer-readable medium of claim 15, wherein
the one or more port addresses in the key value include a
remote port address and a local port address.

17. The computer-readable medium of claim 15, wherein
the path indicates sessions corresponding to respective ones
ol the sequence of routines.

18. The computer-readable medium of claim 15, wherein
the sequence of routines includes a plurality of application-
level routines.

19. The computer-readable medium of claim 18, wherein
the plurality of application-level routines includes a decryp-
tion routine.

20. The computer-readable medium of claim 15, wherein
the sequence of routines includes a routine that 1s used to
execute an Internet Protocol (IP) to convert packets having an
IP format into the TCP format, and wherein the key value
turther 1dentifies a TCP session associated with the one or
more received packets.

¥ ¥ H ¥ H



	Front Page
	Drawings
	Specification
	Claims

