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METHOD AND SYSTEM FOR DATA
DEMULITTPLEXING

CROSS REFERENCES TO RELATED
APPLICATIONS D

The present application 1s a continuation of U.S. applica-
tion Ser. No. 13/911,324, filed Jun. 6, 2013 (now U.S. Pat. No.
8,694,683), which 1s a continuation of U.S. application Ser.
No. 13/236,090, filed Sep. 19, 2011 (now abandoned), which 10
1s a continuation of U.S. application Ser. No. 10/636,314,
filed Aug. 6, 2003 know U.S. Pat. No. 8,055,786), which 1s a
continuation of U.S. application Ser. No. 09/474,664, filed
Dec. 29, 1999 (now U.S. Pat. No. 6,629,163); the disclosures
of each of the above-referenced applications are incorporated 1>
by reference herein 1n their entireties.

TECHNICAL FIELD

The present invention relates generally to a computer sys- 20
tem for data demultiplexing.

BACKGROUND

Computer systems, which are becoming increasingly per- 25
vasive, generate data in a wide variety of formats. The Internet
1s an example of iterconnected computer systems that gen-
crate data 1n many different formats. Indeed, when data 1s
generated on one computer system and 1s transmitted to
another computer system to be displayed, the data may be 30
converted 1n many different intermediate formats before 1t 1s
eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To send
the data to another computer system, the computer system
may first compress the bitmap data and then encrypt the 35
compressed data. The computer system may then convert that
compressed data into a TCP format and then into an IP format.
The IP formatted data may be converted 1nto a transmission
format, such as an ethernet format. The data in the transmais-
sion format 1s then sent to a receiving computer system. The 40
receiving computer system would need to perform each of
these conversions in reverse order to convert the data in the
bitmap format. In addition, the receiving computer system
may need to convert the bitmap data into a format that 1s
appropriate for rendering on output device. 45

In order to process data in such a wide variety of formats,
both sending and receiving computer systems need to have
many conversion routines available to support the various
formats. These computer systems typically use predefined
configuration information to load the correct combination of 50
conversion routines for processing data. These computer sys-
tems also use a process-oriented approach when processing,
data with these conversion routines. When using a process-
oriented approach, a computer system may create a separate
process for each conversion that needs to take place. A com- 55
puter system 1n certain situations, however, can be expected to
receive data and to provide data in many different formats that
may not be known until the data 1s received. The overhead of
statically providing each possible series of conversion rou-
tines 1s very high. For example, a computer system that serves 60
as a central controller for data received within a home would
be expected to process datarecerved via telephone lines, cable
TV lines, and satellite connections 1n many different formats.
The central controller would be expected to output the data to
computer displays, television displays, entertainment cen- 65
ters, speakers, recording devices, and so on 1n many different
formats. Moreover, since the various conversion routines may

2

be developed by different organizations, 1t may not be easy to
identify that the output format of one conversion routine 1s
compatible with the mput format of another conversion rou-
tine.

It would be desirable to have a technique for dynamically
identifving a series of conversion routines for processing
data. In addition, 1t would be desirable to have a technique 1n
which the output format of one conversion routine can be
identified as being compatible with the input format of
another conversion routine. It would also be desirable to store
the 1dentification of a series of conversion routines so that the
series can be quickly identified when data 1s recerved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1illustrating example processing,
ol a message by the conversion system.

FIG. 2 1s a block diagram 1llustrating a sequence of edges.

FIG. 3 15 a block diagram 1llustrating components of the
conversion system in one embodiment.

FIG. 4 1s a block diagram 1llustrating example path data
structures 1n one embodiment.

FIG. 5 1s a block diagram that illustrates the interrelation-
ship of the data structures of a path.

FIG. 6 1s a block diagram that illustrates the interrelation-
ship of the data structures associated with a session.

FIGS. 7TA, 7B, and 7C comprise a flow diagram 1illustrating
the processing of the message send routine.

FIG. 8 1s a flow diagram of the demux routine.

FIG. 9 1s a flow diagram of the mitialize demux routine.

FIG. 10 1s a flow diagram of the 1nit end routine.

FIG. 11 1s a flow diagram of a routine to get the next
binding.

FIG. 12 1s a flow diagram of the get key routine.

FIG. 13 1s a flow diagram of the get session routine.

FIG. 14 1s a flow diagram of the nail binding routine.

FIG. 15 1s a flow diagram of the find path routine.

FIG. 16 15 a flow diagram of the process of path hopping
routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
contain multiple packets from an source format 1nto a target
format. When a packet of a message 1s recerved, the conver-
s10n system 1n one embodiment searches for and 1dentifies a
sequence of conversion routines (or more generally message
handlers) for processing the packets of the message by com-
paring the mput and output formats of the conversion rou-
tines. (A message 1s a collection of data that 1s related 1n some
way, such as stream of video or audio data or an email mes-
sage.) The 1dentified sequence of conversion routines 1s used
to convert the message from the source format to the target
format using various intermediate formats. The conversion
system then queues the packet for processing by the identified
sequence of conversion routines. The conversion system
stores the 1dentified sequence so that the sequence can be
quickly found (without searching) when the next packetin the
message 1s recerved. When subsequent packets of the mes-
sage are received, the conversion system 1dentifies the
sequence and queues the packets for pressing by the
sequence. Because the conversion system receives multiple
messages with different source and target formats and 1den-
tifies a sequence of conversion routines for each message, the
conversion systems effectively “demultiplexes” the mes-
sages. That 1s, the conversion system demultiplexes the mes-
sages by receiving the message, 1dentifying the sequence of
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conversion routines, and controlling the processing of each
message by the 1dentified sequence. Moreover, since the con-
version routines may need to retain state information between
the receipt of one packet of a message and the next packet of
that message, the conversion system maintains state informa-
tion as an 1nstance or session of the conversion routine. The
conversion system routes all packets for a message through
the same session of each conversion routine so that the same
state or instance information can be used by all packets of the
message. A sequence of sessions ol conversion routines 1s
referred to as a “path.” In one embodiment, each path has a
path thread associated with it for processing of each packet
destined for that path.

In one embodiment, the packets of the messages are 1ni-
tially recerved by “drivers,” such as an Ethernet driver. When
a driver recerves a packet, 1t forwards the packet to a forward-
ing component of the conversion system. The forwarding
component 1s responsible for identifying the session of the
conversion routine that should next process the packet and
invoking that conversion routine. When invoked by a driver,
the forwarding component may use a demultiplexing (“de-
mux”’) component to 1dentily the session of the first conver-
s1on routine of the path that 1s to process the packet and then
queues the packet for processing by the path. A path thread 1s
associated with each path. Each path thread is responsible for
retrieving packets from the queue of its path and forwarding,
the packets to the forwarding component. When the forward-
ing component 1s invoked by a path thread, 1t initially invokes
the first conversion routine 1n the path. That conversion rou-
tine processes the packet and forwards the processed packet
to the forwarding component, which then invokes the second
conversion routine in the path. The process of ivoking the
conversion routines and forwarding the processed packet to
the next conversion routine continues until the last conversion
routine in the path i1s invoked. A conversion routine may defer
invocation of the forwarding component until 1t aggregates
multiple packets or may invoke the forwarding component
multiple times for a packet once for each sub-packet.

The forwarding component 1dentifies the next conversion
routine in the path using the demux component and stores that
identification so that the forwarding component can quickly
identily the conversion routine when subsequent packets of
the same message are received. The demux component,
searches for the conversion routine and session that 1s to next
process a packet. The demux component then stores the 1den-
tification of the session and conversion routine as part of a
path data structure so that the conversion system does not
need to search for the session and conversion routine when
requested to demultiplex subsequent packets of the same
message. When searching for the next conversion routine, the
demux component mnvokes a label map get component that
identifies the next conversion routine. Once the conversion
routine 1s found, the demux component 1dentifies the session
associated with that message by, in one embodiment, 1nvok-
ing code associated with the conversion routine. In general,
the code of the conversion routine determines what session
should be associated with a message. In certain situations,
multiple messages may share the same session. The demux
component then extends the path for processing that packet to
include that session and conversion routine. The sessions are
identified so that each packet 1s associated with the appropri-
ate state information. The dynamic identification of conver-
s1on routines 1s described in U.S. patent application Ser. No.
11,933,093, filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,
211), entitled “Method and System for Generating a Mapping
Between Types of Data,” which i1s hereby incorporated by
reference.
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FIG. 1 1s a block diagram illustrating example processing
of a message by the conversion system. The driver 101
receives the packets of the message from a network. The
driver performs any appropriate processing of the packet and
invokes a message send routine passing the processed packet
along with a reference path entry 150. The message send
routine 1s an embodiment of the forwarding component. A
path 1s represented by a series of path entries, which are
represented by triangles. Each member path entry represents
a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that 1t 1s
being invoked by a driver. The message send routine 1nvokes
the demux routine 102 to search for and i1dentity the path of
sessions that 1s to process the packet. The demux routine may
in turn invoke the label map get routine 104 to identily a
sequence of conversion routines for processing the packet. In
this example, the label map get routine 1dentifies the first three
conversion routines, and the demux routine creates the mem-
ber path entries 151, 152, 153 of the path for these conversion
routines. Each path entry 1dentifies a session for a conversion
routine, and the sequence of path entries 151-155 1dentifies a
path. The message send routine then queues the packet on the
queue 149 for the path that 1s to process the packets of the
message. The path thread 105 for the path retrieves the packet
from the queue and mmvokes the message send routine 106
passing the packet and an indication of the path. The message
send routine determines that the next session and conversion
routine as indicated by path entry 151 has already been found.
The message send routine then mmvokes the mstance of the
conversion routine for the session. The conversion routine
processes the packet and then invokes the message send rou-
tine 107. This processing continues until the message send
routine mmvokes the demux routine 110 after the packet 1s
processed by the conversion routine represented by path entry
153. The demux routine examines the path and determines
that 1t has no more path entries. The demux routine then
invokes the label map get routine 111 to identify the conver-
s10n routines for further processing of the packet. When the
conversion routines are identified, the demux routine adds
path entries 154, 155 to the path. The messages send routine
invokes the conversion routine associated with path entry
154. Eventually, the conversion routine associated with path
entry 155 performs the final processing for the path.

The label map get routine 1dentifies a sequence of “edges”
for converting data 1n one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge 1s part of a “protocol”
(or more generally a component) that may include multiple
related edges. For example, a protocol may have edges that
cach convert data in one format 1into several different formats.
Each edge has an input format and an output format. The label
map get routine 1dentifies a sequence of edges such that the
output format of each edge 1s compatible with the input for-
mat of another edge in the sequence, except for the mput
format of the first edge 1n the sequence and the output format
of the last edge 1n the sequence. FIG. 2 1s a block diagram
illustrating a sequence of edges. Protocol PI includes an edge
for converting format D1 to format D2 and an edge for con-
verting format D1 to format D3; protocol P2 includes an edge
for converting format D2 to format D35, and so on. A 30
sequence for converting format D1 to format D15 1s shown by
the curved lines and 1s defined by the address “P1:1, P2:1,
P3:2, P4:7.”” When a packet of data in format DI 1s processed
by this sequence, 1t 1s converted to format DIS. During the
process, the packet of data 1s sequentially converted to format

D2, D5, and D13. The output format of protocol P2, edge 1
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(1.e., P2:1)1s format D5, but the input format o1 P3:2 1s format
D10. The label map get routine uses an aliasing mechanism
by which two formats, such as D5 and D10 are identified as
being compatible. The use of aliasing allows ditlerent names
of the same format or compatible formats to be correlated.

FIG. 3 1s a block diagram illustrating components of the
conversion system 1n one embodiment. The conversion sys-
tem 300 can operate on a computer system with a central
processing unit 301, I/0 devices 302, and memory 303. The
110 devices may include an Internet connection, a connection
to various output devices such as a television, and a connec-
tion to various mput devices such as a television receiver. The
media mapping system may be stored as imstructions on a
computer-readable medium, such as a disk drive, memory, or
data transmission medium. The data structures of the media
mapping system may also be stored on a computer-readable
medium. The conversion system includes drivers 304, a for-
warding component 305, a demux component 306, a label
map get component 307, path data structures 308, conversion
routines 309, and instance data 310. Each driver recerves data
in a source format and forwards the data to the forwarding
component. The forwarding component i1dentifies the next
conversion routine in the path and invokes that conversion
routine to process a packet. The forwarding component may
invoke the demux component to search for the next conver-
s10n routine and add that conversion routine to the path. The
demux component may invoke the label map get component
to 1dentily the next conversion routine to process the packet.
The demux component stores information defining the paths
in the path structures. The conversion routines store their state
information 1n the nstance data.

FIG. 4 1s a block diagram illustrating example path data
structures 1n one embodiment. The demux component 1den-
tifies a sequence of “edges”™ for converting data 1n one format
into another format by invoking the label map get component.
Each edge corresponds to a conversion routine for converting
data from one format to another. As discussed above, each
edge 1s part of a “protocol” that may 1include multiple related
edges. For example, a protocol may have edges that each
convert data 1n one format into several different formats. Each
edge has as an mput format (*“input label”) and an output
format (“output label”). Each rectangle represents a session
410,420,430, 440, 450 for a protocol. A session corresponds
to an instance of a protocol. That 1s, the session includes the
protocol and state information associated with that instance
of the protocol. Session 410 corresponds to a session for an
Ethernet protocol; session 420 corresponds to a session for an
IP protocol; and sessions 430, 440, 450 correspond to ses-
sions for a TCP protocol. FIG. 4 illustrates three paths 461,
462, 463. Each path includes edges 411, 421, 431. The paths
share the same Ethernet session 410 and IP session 420, but
cach path has a unique TCP session 430, 440, 450. Thus, path
461 includes sessions 410, 420, and 430; path 462 includes
sessions 410, 420, and 440; and path 463 includes sessions
410, 420, and 450. The conversion system represents each
path by a sequence of path entry structures. Each path entry
structure 1s represented by a triangle. Thus, path 461 1s rep-
resented by path entries 415, 4235, and 433. The conversion
system represents the path entries of a path by a stack list.
Each path also has a queue 471, 472, 473 associated with 1t.
Each queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session
includes a binding 412, 422, 432, 442, 452 that 1s represented
by an oblong shape adjacent to the corresponding edge. A
binding for an edge of a session represents those paths that
include the edge. The binding 412 indicates that three paths
are bound (or “nailed”) to edge 411 of the Ethernet session
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6

410. The conversion system uses a path list to track the paths
that are bound to a binding. The path list of binding 412
identifies path entries 413, 414, and 415.

FIG. 5 1s a block diagram that illustrates the interrelation-
ship of the data structures of a path. Each path has a corre-
sponding path structure 501 that contains status information
and pointers to a message queue structure 502, a stack list
structure 503, and a path address structure 504. The status of
a path can be extend, continue, or end. Each message handler
returns a status for the path. The status of extend means that
additional path entries should be added to the path. The status
of end means that this path should end at this point and
subsequent processing should continue at a new path. The
status of continue means that the protocol does not care how
the path 1s handled. In one embodiment, when a path has a
status of continue, the system creates a copy of the path and
extends the copy. The message queue structure 1dentifies the
messages (or packets of a message) that are queued up for
processing by the path and 1dentifies the path entry at where
the processing should start. The stack list structure contains a
list of pointers to the path entry structures 505 that comprise
the path. Each path entry structure contains a pointer to the
corresponding path data structure, a pointer to a map structure
507, a pointer to a multiplex list 508, a pointer to the corre-
sponding path address structure, and a pointer to a member
structure 509. A map structure identifies the output label of
the edge of the path entry and optionally a target label and a
target key. A target key identifies the session associated with
the protocol that converts the packet to the target label. (The
terms “media,” “label,” and “format™ are used interchange-
ably to refer to the output of a protocol.) The multiplex list 1s
used during the demux process to track possible next edges
when a path 1s being 1dentified as having more than one next
edge. The member structure indicates that the path entry
represents an edge of a path and contains a pointer to a
binding structure to which the path entry 1s associated (or
“nailed™), a stack list entry is the position of the path entry
within the associated stack list, a path list entry 1s the position
of the path entry within the associated path list of a binding
and an address entry 1s the position of the binding within the
associated path address. A path address of a path identifies the
bindings to which the path entries are bound. The path address
structure contains a URL for the path, the name of the path
identified by the address, a pointer to a binding list structure
506, and the 1dentification of the current binding within the
binding list. The URL (e.g., “protocol://tcp(0)/1p(0)/ eth(0)”)
identifies conversion routines (e.g., protocols and edges) of a
path 1n a human-readable format. The URL (universal
resource locator) mncludes a type field (e.g., “protocol”) fol-
lowed by a sequence of 1items (e.g., “tcp(0)”). The type field
specifies the format of the following information in the URL,
that specifies that the type field 1s followed by a sequence of
items. Each item i1dentifies a protocol and an edge (e.g., the
protocol 1s “tcp” and the edge 1s “0”’). In one embodiment, the
items of a URL may also contain an identifier of state infor-
mation that 1s to be used when processing a message. These
URLSs can be used to 1llustrate to a user various paths that are
available for processing a message. The current binding 1s the
last binding 1n the path as the path 1s being built. The binding
list structure contains a list of pointers to the binding struc-
tures associated with the path. Fach binding structure 510
contains a pointer to a session structure, a pointer to an edge
structure, a key, a path list structure, and a list of active paths
through the binding. The key 1dentifies the state information
for a session of a protocol. A path list structure contains
pointers to the path entry structures associated with the bind-
ing.
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FIG. 6 1s a block diagram that 1llustrates the interrelation-
ship of the data structures associated with a session. A session
structure 601 contains the context for the session, a pointer to
a protocol structure for the session, a pointer to a binding table
structure 602 for the bindings associated with the session, and
the key. The binding table structure contains a list of pointers
to the binding structures 510 for the session. The binding
structure 1s described above with retference to FIG. 5. The path
list structure 603 of the binding structure contains a list of
pointers to path entry structures 505. The path entry structures
are described with reference to FIG. 5.

FIGS.7A, 7B, and 7C comprise a tlow diagram 1llustrating,
the processing of the message send routine. The message send
routine 1s passed a message along with the path entry associ-
ated with the session that last processed the message. The
message send routine invokes the message handler of the next
edge 1n the path or queues the message for processing by a
path. The message handler invokes the demux routine to
identily the next path entry of the path. When a driver receives
a message, 1t imvokes the message send routine passing a
reference path entry. The message send routine examines the
passed path entry to determine (1) whether multiple paths
branch from the path of the passed path entry, (2) whether the
passed path entry 1s a reference with an associated path, or (3)
whether the passed path entry 1s a member with a next path
entry. If multiple paths branch from the path of the passed
path entry, then the routine recursively invokes the message
send routine for each path. It the path entry 1s a reference with
an associated path, then the driver previously invoked the
message send routine, which associated a path with the ref-
erence path entry, and the routine places the message on the
queue for the path. I the passed path entry 1s a member with
a next path entry, then the routine invokes the message han-
dler (1.e., conversion routine of the edge) associated with the
next path entry. If the passed path entry 1s a reference without
an associated path or 1s a member without a next path entry,
then the routine invokes the demux routine to identity the next
path entry. The routine then recursively invokes the messages
send routine passing that next path entry. In decision block
701, 1t the passed path entry has a multiplex list, then the path
branches off into multiple paths and the routine continues at
block 709, else the routine continues at block 702. A packet
may be processed by several different paths. For example, 1T
a certain message 1s directed to two ditlerent output devices,
then the message 1s processed by two different paths. Also, a
message may need to be processed by multiple partial paths
when searching for a complete path. In decision block 702, 1
the passed path entry 1s a member, then either the next path
entry indicates a nailed binding or the path needs to be
extended and the routine continues at block 704, else the
routine continues at block 703. A nailed binding is a binding,
(e.g., edge and protocol) 1s associated with a session. In
decision block 703, the passed path entry 1s a reference and 1f
the passed path entry has an associated path, then the routine
can queue the message for the associated path and the routine
continues at block 703A, else the routine needs to 1dentily a
path and the routine continues at block 707. In block 703 A,
the routine sets the entry to the first path entry in the path and
continues at block 717. In block 704, the routine sets the
variable position to the stack list entry of the passed path
entry. In decision block 705, the routine sets the variable next
entry to the next path entry 1n the path. If there 1s a next entry
in the path, then the next session and edge of the protocol have
been 1dentified and the routine continues at block 706, else the
routine continues at block 707. In block 706, the routine
passes the message to the message handler of the edge asso-
ciated with the next entry and then returns. In block 706, the
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routine mvokes the demux routine passing the passed mes-
sage, the address of the passed path entry, and the passed path
entry. The demux routine returns a list of candidate paths for
processing ol the message. In decision block 708, i1 at least
one candidate path 1s returned, then the routine continues at
block 709, else the routine returns.

Blocks 709-716 illustrate the processing of a list of candi-
date paths that extend from the passed path entry. In blocks
710-716, the routine loops selecting each candidate path and
sending the message to be process by each candidate path. In
block 710, the routine sets the next entry to the first path entry
of the next candidate path. In decision block 711, 1t all the
candidate paths have not yet been processed, then the routine
continues at block 712, else the routine returns. In decision
block 712, 11 the next entry 1s equal to the passed path entry,
then the path 1s to be extended and the routine continues at
block 705, else the routine continues at block 713. The can-
didate paths include a first path entry that 1s a reference path
entry for new paths or that is the last path entry of a path being
extended. In decision block 713, if the number of candidate
paths 1s greater than one, then the routine continues at block
714, else the routine continues at block 718. In decision block
714, 11 the passed path entry has a multiplex list associated
with 1t, then the routine continues at block 716, else the
routine continues at block 715. In block 715, 11 the routine
associates the list of candidate path with the multiplex list of
the passed path entry and continues at block 716. In block
716, the routine sends the message to the next entry by recur-
stvely mvoking the message send routine. The routine then
loops to block 710 to select the next entry associated with the
next candidate path.

Blocks 717-718 are performed when the passed path entry
1s a reference path entry that has a path associated with it. In
block 717, 1t there 1s a path associated with the next entry, then
the routine continues at block 718, else the routine returns. In
block 718, the routine queues the message for the path of the
next entry and then returns.

FIG. 8 15 a flow diagram of the demux routine. This routine
1s passed the packet (message) that 1s recerved, an address
structure, and a path entry structure. The demux routine
extends a path, creating one 1f necessary. The routine loops
identifving the next binding (edge and protocol) that 1s to
process the message and “nailing” the binding to a session for
the message, 11 not already nailed. After 1identifying the nailed
binding, the routine searches for the shortest path through the
nailed binding, creating a path 11 none exists. In block 801, the
routine ivokes the 1mitialize demux routine. In blocks 802-
810, the routine loops identifying a path or portion of a path
for processing the passed message. In decision block 802, 1f
there 1s a current status, which was returned by the demuxkey
routine that was last invoked (e.g., continue, extend, end, or
postpone), then the routine continues at block 803, else the
routine continues at block 811. In block 803, the routine
invokes the get next binding routine. The get next binding
routine returns the next binding in the path. The binding 1s the
edge of a protocol. That routine extends the path as appropri-
ate to include the binding. The routine returns a return status
of break, binding, or multiple. The return status of binding
indicates that the next binding in the path was found by
extending the path as appropriate and the routine continues to
“nail” the binding to a session as appropriate. The return
status of multiple means that multiple trails (e.g., candidate
paths) were 1dentified as possible extensions of the path. In a
decision block 804, if the return status 1s break, then the
routine continues at block 811. I1 the return status 1s multiple,
then the routine returns. If the return status 1s binding, then the
routine continues at block 805. In decision block 805, if the
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retrieved binding 1s nailed as indicated by being assigned to a
session, then the routine loops to block 802, else the routine
continues at block 806. In block 806, the routine invokes the
get key routine of the edge associated with the binding. The
get key routine creates the key for the session associated with
the message. I a key cannot be created until subsequent
bindings are processed or because the current binding 1s to be
removed, then the get key routine returns a next binding
status, else 1t returns a continue status. In decision block 807,
if the return status of the get key routine 1s next binding, then
the routine loops to block 802 to get the next binding, else the
routine continues at block 808. In block 808, the routine
invokes the routine get session. The routine get session
returns the session associated with the key, creating a new
session 1 necessary. In block 809, the routine invokes the
routine nail binding. The routine nail binding retrieves the
binding 1f one 1s already nailed to the session. Otherwise, that
routine nails the binding to the session. In decision block 810,
if the nail binding routine returns a status of simplex, then the
routine continues at block 811 because only one path can use
the session, else the routine loops to block 802. Immediately
upon return from the nail binding routine, the routine may
invoke a set map routine of the edge passing the session and
a map to allow the edge to set 1ts map. In block 811, the
routine mvokes the find path routine, which finds the shortest
path through the binding list and creates a path 1f necessary. In
block 812, the routine invokes the process path hopping rou-
tine, which determines whether the identified path 1s partof a
different path. Path hopping occurs when, for example, IP
fragments are bult up along separate paths, but once the
fragments are built up they can be processed by the same
subsequent path.

FIG. 9 1s a flow diagram of the mitialize demux routine.
This routine 1s mvoked to 1nitialize the local data structures
that are used 1n the demux process and to identily the nitial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine 1s to extend the path of the
passed path entry by adding additional path entries. If the
current status 1s demux end, then the demux routine 1s ending
the current path. If the current status 1s demux continue, then
the demux routine 1s 1n the process of continuing to extend or
in the process of starting a path identified by the passed
address. In block 901, the routine sets the local map structure
to the map structure 1n the passed path entry structure. The
map structure identifies the output label, the target label, and
the target key. In the block 902, the routine initializes the local
message structure to the passed message structure and 1nitial-
1zes the pointers path and address element to null. In block
903, the routine sets of the variable saved status to 0 and the
variable status to demux continue. The variable saved status 1s
used to track the status of the demux process when backtrack-
ing to nail a binding whose nail was postponed. In decision
block 904, 11 the passed path entry 1s associated with a path,
then the routine continues at block 905, else the routine con-
tinues at block 906. In block 905, the routine sets the variable
status to the status of that path. In block 906, i1 the variable
status 1s demux continue, then the routine continues at block
907. If the variable status 1s demux end, then the routine
continues at block 908. If the variable status 1s demux extend,
then the routine continues at block 909. In block 907, the
status 1s demux continue, and the routine sets the local pointer
path address to the passed address and continues at block 911.
In block 908, the status 1s demux end, and the routine invokes
the 1n1t end routine and continues at block 911. In block 909,
the status 1s demux extend, and the routine sets the local path
address to the address of the path that contains the passed path
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entry. In block 910, the routine sets the address element and
the current binding of the path address pointed to by the local
pointer path address to the address entry of the member struc-
ture of the passed path entry. In the block 911, the routine sets
the local variable status to demux continue and sets the local
binding list structure to the binding list structure from the
local path address structure. In block 912, the routine sets the
local pointer current binding to the address of the current
binding pointed to by local pointer path address and sets the
local variable postpone to 0. In block 913, the routine sets the
function traverse to the function that retrieves the next data in
a list and sets the local pointer session to null. The routine then
returns.

FIG. 10 1s a flow diagram of the it end routine. If the path
1s stmplex, then the routine creates a new path from where the
other one ended, else the routine creates a copy of the path. In
block 1001, 11 the binding of the passed path entry 1s stmplex
(1.e., only one path can be bound to this binding), then the
routine continues at block 1002, else the routine continues at
block 1003. In block 1002, the routine sets the local pointer
path address to point to an address structure that 1s a copy of
the address structure associated with the passed path entry
structure with 1ts current binding to the address entry associ-
ated with the passed path entry structure, and then returns. In
block 1003, the routine sets the local pointer path address to
point to an address structure that contains the URL of the path
that contains the passed path entry. In block 1004, the routine
sets the local pointer element to null to 1nitialize the selection
of the bindings. In blocks 1005 through 1007, the routine
loops adding all the bindings for the address of the passed
path entry that include and are before the passed path entry to
the address pointed to by the local path address. In block
1005, the routine retrieves the next binding from the binding
list starting with the first. If there 1s no such binding, then the
routine returns, else the routine continues at block 1006. In
block 1006, the routine adds the binding to the binding list of
the local path address structure and sets the current binding of
the local variable path address. In the block 1007, 11 the local
pointer element 1s equal to the address entry of the passed path
entry, then the routine returns, else the routine loops to block
1005 to select the next binding.

FIG. 11 1s a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local
binding list. If there 1s no next binding, then the routine
invokes the routine label map get to 1dentify the list of edges
(“trails™) that will map the output label to the target label. It
only one trail 1s identified, then the binding list ol path address
1s extended by the edges of the trail. ITf multiple trails are
identified, then a path 1s created for each trail and the routine
returns so that the demux process can be invoked for each
created path. In block 1101, the routine sets the local pointer
binding to point to the next or previous (as indicated by the
traverse function) binding in the local binding list. In block
1102, i1 a binding was found, then the routine returns an
indication that a binding was found, else the routine continues
at block 1103. In block 1103, the routine invokes the label
map get function passing the output label and target label of
the local map structure. The label map get function returns a
trail list. A trail 1s a list of edges from the output label to the
target label. In decision block 1104, if the size of the trail list
1s one, then the routine continues at block 1105, else the
routine continues at block 1112. In blocks 1105-1111, the
routine extends the binding list by adding a binding data
structure for each edge 1n the trail. The routine then sets the
local binding to the last binding in the binding list. In block
1108, the routine sets the local pointer current binding to
point to the last binding in the local binding list. In block
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1106, the routine sets the local variable temp trail to the trail
in the trail list. In block 1107, the routine extends the binding
list by temp trail by adding a binding for each edge in the trail.
These bindings are not yet nailed. In block 1108, the routine
sets the local binding to point to the last binding 1n the local
binding list. In decision block 1109, if the local binding does
not have a key for a session and the local map has a target key
for a session, then the routine sets the key for the binding to
the target key of the local map and continues at block 1110,
clse the routine loops to block 1101 to retrieve the next bind-
ing 1n path. In block 1110, the routine sets the key of the local
binding to the target key of the local map. In block 1111, the
routine sets the target key of the local map to null and then
loop to block 1101 to return the next binding. In decision
block 1112, if the local session 1s set, then the demultiplexing
1s already 1n progress and the routine returns a break status. In
block 1113, the routine mvokes a prepare multicast paths
routine to prepare a path entry for each trail 1n the trail list.
The routine then returns a multiple status.

FI1G. 12 1s a flow diagram of the get key routine. The getkey
routine invokes an edge’s demuxkey routine to retrieve a key
tor the session associated with the message. The key identifies
the session of a protocol. The demux key routine creates the
appropriate key for the message. The demux key routine
returns a status of remove, postpone, or other. The status of
remove indicates that the current binding should be removed
from the path. The status of postpone indicates that the demux
key routine cannot create the key because i1t needs informa-
tion provided by subsequent protocols i the path. For
example, a TCP session 1s defined by a combination of a
remote and local port address and an IP address. Thus, the
TCP protocol postpones the creating of a key until the IP
protocol 1dentifies the IP address. The get key routine returns
a next binding status to continue at the next binding 1n the
path. Otherwise, the routine returns a continue status. In block
1201, the routine sets the local edge to the edge of the local
binding (current binding) and sets the local protocol to the
protocol of the local edge. In block 1202, the routine invokes
the demux key routine of the local edge passing the local
message, local path address, and local map. The demux key
routine sets the key in the local binding. In decision block
1203, if the demux key routine returns a status of remove, then
the routine continues at block 1204. If the demux key routine
returns a status ol postpone, then the routine continues at
block 1205, else the routine continues at block 1206. In block
1204, the routine sets the flag of the local binding to indicate
that the binding 1s to be removed and continues atblock 1206.
In block 1205, the routine sets the variable traverse to the
function to list the next data, increments the variable post-
pone, and then returns a next binding status. In blocks 1206-
1214, the routine processes the postponing of the creating of
a key. In blocks 1207-1210, 11 the creating of a key has been
postponed, then the routine indicates to backtrack on the path,
save the demux status, and set the demux status to demux
continue. In blocks 1211-1213, if the creating of a key has not
been postponed, then the routine indicates to continue for-
ward 1n the path and to restore any saved demux status. The
save demux status 1s the status associated by the binding
where the backtrack started. In decision block 1206, if the
variable postpone 1s set, then the routine continues at block
1207, else the routine continues at block 1211. In block 1207,
the routine decrements the variable postpone and sets the
variable traverse to the list previous data function. In decision
block 1208, 1t the variable saved status is set, then the routine
continues at block 1210, else the routine continues at block
1209. The variable saved status contains the status of the
demux process when the demux process started to backtrack.
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In block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, 1f the variable
saved status 1n set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status and
sets the variable saved status to 0. In decision block 1214, 1f
the local binding indicates that 1t 1s to be removed, then the
routine returns a next binding status, else the routine returns a
continue status.

FIG. 13 1s a flow diagram of the get session routine. This
routine retrieves the session data structure, creating a data
structure session 1 necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key of
the local binding. Each protocol maintains a mapping from
cach key to the session associated with the key. In decision
block 1302, if there 1s no session, then the routine continues at
block 1303, else the routine returns. In block 1303, the routine
creates a session for the local protocol. In block 1304, the
routine initializes the key for the local session based on the
key of the local binding. In block 1305, the routine puts the
session 1nto the session table of the local protocol. In block
1306, the routine 1nvokes the create session function of the
protocol to allow the protocol to initialize 1ts context and then
returns.

FIG. 14 1s a flow diagram of the nail binding routine. This
routine determines whether a binding 1s already associated
with (“nailed t0”) the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate that
only one path can extend through the nailed binding. In deci-
s1ion block 1401, 11 the binding table of the session contains an
entry for the edge, then the routine continues at block 1402,
else the routine continues at block 1405. In block 1402, the
routine sets the binding to the entry from the binding table of
the local session for the edge. In block 1403, the routine sets
the current binding to point to the binding from the session. In
block 1404, 11 the binding 1s simplex, then the routine returns
a simplex status, else the routine returns. Blocks 1405 through
1410 are performed when there 1s no binding 1n the session for
the edge. In block 1405, the routine sets the session of the
binding to the variable session. In block 1406, the routine sets
the key of the binding to the key from the session. In block
1407, the routine sets the entry for the edge in the binding
table of the local session to the binding. In block 1408, the
routine mvokes the create binding function of the edge of the
binding passing the binding so the edge can initialize the
binding. Ifthat function returns a status of remove, the routine
continues at block 1409. In block 1409, the routine sets the
binding to be removed and then returns.

FIG. 15 15 a flow diagram of the find path routine. The find
path routine 1dentifies the shortest path through the binding
list. If no such path exists, then the routine extends a path to
include the binding list. In decision block 1501, 1f the binding
1s simplex and a path already goes through this binding (re-
turned as an entry), then the routine continues at block 1502,
else the routine continues at block 1503. In block 1502, the
routine sets the path to the path of the entry and returns. In
block 1503, the routine 1nitializes the pointers element and
short entry to null. In block 1504, the routine sets the path to
the path of the passed path entry. If the local path 1s not null
and 1ts status 1s demux extend, then the routine continues at
block 1509, else the routine continues at block 1505. In
blocks 1505-1508, the routine loops 1dentitying the shortest
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path through the bindings in the binding list. The routine
loops selecting each path through the binding. The selected
path 1s eligible 11 1t starts at the first binding 1n the binding list
and the path ends at the binding. The routine loops setting the
short entry to the shortest eligible path found so far. In block
1505, the routine sets the variable first binding to the first

binding in the binding list of the path address. In block 1506,
the routine selects the next path (entry) 1n the path list of the
binding starting with the first. If a path 1s selected (indicating,
that there are more paths in the binding), then the routine
continues at block 1507, else the routine continues at block
1509. In block 1507, the routine determines whether the
selected path starts at the first binding in the binding list,
whether the selected path ends at the last binding in the
binding list, and whether the number of path entries in the
selected path 1s less than the number of path entries in the
shortest path selected so far. If these conditions are all satis-
fied, then the routine continues at block 1508, else the routine
loops to block 1506 to select the next path (entry). In block
1508, the routine sets the shortest path (short entry) to the
selected path and loops to block 1506 to select the next path
through the binding. In block 1509, the routine sets the
selected path (entry) to the shortest path. In decision block
1510, if a path has been found, then the routine continues at
block 1511, else the routine continues at block 1512. In block
1511, the routine sets the path to the path of the selected path
entry and returns. Blocks 1512-1516 are performed when no
paths have been found. In block 1512, the routine sets the path
to the path of the passed path entry. If the passed path entry
has a path and its status 1s demux extend, then the routine
continues at block 1515, else the routine continues at block
1513. In block 1513, the routine creates a path for the path
address. Inblock 1514, the routine sets the variable element to
null and sets the path entry to the first element 1n the stack list
of the path. In block 1515, the routine sets the variable ele-
ment to be address entry of the member of the passed path
entry and sets the path entry to the passed path entry. In block
1516, the routine invokes the extend path routine to extend the
path and then returns. The extend path routine creates a path
through the bindings of the binding list and sets the path status
to the current demux status.

FIG. 16 1s a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the bind-
ing list 1s not the same path as that of the passed path entry. In
decision block 1601, if the path of the passed path entry 1s set,
then the routine continues at block 1602, else the routine
continues at block 1609. In decision block 1602, 11 the path of
the passed path entry 1s equal to the local path, then the routine
continues at 1612, else path hopping 1s occurring and the
routine continues at block 1603. In blocks 1603-1607, the
routine loops positioning pointers at the first path entries of
the paths that are not at the same binding. In block 1603, the
routine sets the variable old stack to the stack list of the path
ol the passed path entry. In block 1604, the routine sets the
variable new stack to the stack list of the local path. In block
1605, the routine sets the variable old element to the next
element 1n the old stack. In block 1606, the routine sets the
variable element to the next element in the new stack. In
decision block 1607, the routine loops until the path entry that
1s not 1n the same binding is located. In decision block 1608,
if the variable old entry 1s set, then the routine 1s not at the end
of the hopped from path and the routine continues at block
1609, else routine continues at block 1612. In block 1609, the
routine sets the variable entry to the previous entry in the
hopped-to path. In block 1610, the routine sets the path of the
passed path entry to the local path. In block 1611, the routine
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sets the local entry to the first path entry of the stack list of the
local path. In block 1612, the routine inserts an entry into
return list and then returns.

Although the conversion system has been described 1n
terms of various embodiments, the invention 1s not limited to
these embodiments. Modification within the spirit of the
invention will be apparent to those skilled 1in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demuxkey routine.
These routines can advance the reference past the header
information for the protocol so that the reference 1s positioned
at the next header. After the demux process, the reference can
be reset to point to the first header for processing by the
conversion routines in sequence. The scope of the invention 1s
defined by the claims that follow.

What 1s claimed 1s:

1. An apparatus, comprising;

a processing unit; and

a memory storing instructions executable by the process-
ing unit to:

identily a path for one or more recerved packets of a mes-
sage, wherein the path indicates a sequence of two or
more routines for processing packets in the message,
wherein the path 1s identified based on a key located 1n
one ol the recerved packets, and wherein the key
includes an IP address and a port address; and

process the one or more received packets using the
sequence ol routines indicated in the identified path,
wherein the sequence 1ncludes a routine that 1s used to
execute a Transmission Control Protocol (TCP) to con-
vert one or more packets having a TCP format into a
different format.

2. The apparatus of claim 1, wherein the key includes a

remote port address and a local port address.
3. The apparatus of claim 1, wherein the sequence of rou-
tines includes:
a second routine that 1s used to execute a second, different
protocol to convert packets of the different format into
another format, wherein the second protocol 1s an appli-
cation layer protocol.
4. The apparatus of claim 3, wherein the sequence of rou-
tines further includes a third routine that 1s used to execute a
different application layer protocol to further convert the
packets.
5. The apparatus of claim 1, wherein the path further indi-
cates sessions corresponding to respective ones of the
sequence ol routines.
6. The apparatus of claim 1, wherein the key 1dentifies a
TCP session associated with the received one or more pack-
ets.
7. The apparatus of claim 1, wherein the sequence of rou-
tines includes a routine that 1s executable to process the one or
more packets without converting a format of the packets.
8. An apparatus, comprising;
a processing unit; and
a memory storing instructions executable by the process-
ing unit to:
receive one or more packets of a message;
identily, using an IP address and one or more port
addresses located in one of the received packets, a
sequence ol two or more routines for processing pack-
ets 1n the message; and

process the one or more recerved packets using the 1den-
tified sequence of routines, wherein the sequence
includes a routine that 1s executable to perform a
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Transmission Control Protocol (TCP) to convert at
least one of the packets of the message into a different
format.
9. The apparatus of claim 8, wherein the one or more port
addresses 1nclude a remote port address and a local port
address.

10. The apparatus of claim 8, wherein the sequence of
routines includes a plurality of application-level routines.

11. The apparatus of claim 8, wherein the IP address and
the one or more port addresses located 1n one of the received
packets forms a key value that 1identifies a TCP session asso-
ciated with the one or more receirved packets.

12. The apparatus of claim 8, wherein the instructions are
executable to use the IP address and the one or more port
addresses to 1dentily sessions corresponding to various ones
of the sequence of routines.

13. The apparatus of claim 8, wherein the instructions are
executable to use the IP address and the one or more port
addresses to 1dentily a corresponding queue for the message.

14. The apparatus of claim 8, wherein the sequence of
routines includes a routine that does not perform a format
conversion on the one or more receirved packets.

15. A non-transitory, computer-readable medium compris-
ing software mstructions for processing a message, wherein
the software instructions, when executed, cause a computer
system to:

identify a path for one or more recerved packets of the

message, wherein the path indicates a sequence of two or
more routines for processing packets in the message,
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wherein the path 1s identified based on a key value
located 1n one of the received packets, and wherein the
key value includes an IP address and one or more port
addresses;

process the one or more received packets using the

sequence ol routines indicated in the identified path,
wherein the sequence 1includes a routine that 1s used to
execute a Transmission Control Protocol (TCP) to con-
vert one or more packets having a TCP format 1nto a
different format.

16. The computer-readable medium of claim 15, wherein
the one or more port addresses in the key value include a
remote port address and a local port address.

17. The computer-readable medium of claim 15, wherein
the path indicates sessions corresponding to respective ones
ol the sequence of routines.

18. The computer-readable medium of claim 15, wherein
the sequence of routines includes a plurality of application-
level routines.

19. The computer-readable medium of claim 18, wherein
the plurality of application-level routines includes a decryp-
tion routine.

20. The computer-readable medium of claim 15, wherein
the sequence of routines includes a routine that 1s used to
execute an Internet Protocol (IP) to convert packets having an
IP format into the TCP format, and wherein the key value
turther 1dentifies a TCP session associated with the one or
more received packets.
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