US009270783B2
a2y United States Patent (10) Patent No.: US 9,270,783 B2
Madruga et al. 45) Date of Patent: Feb. 23, 2016
(54) SYSTEM AND METHOD FOR 6,816,905 B1 11/2004 Sheets et al.
PHOTOREALISTIC IMAGING WORKLOAD 7,075,541 B2* 7/2000 Diard ... 345/505
DISTRIRUTION 7,200,219 Bl 4/2007 Edwards et al.
7,916,147 B2* 3/2011 Clemieetal. 345/522
(75) Inventors: Joaquin Madruga, Round Rock, TX 2004/0003022° Al [/2004 Garrison et al.
(US); Barry L. Minor, Austin, TX (US): 2007/0016560 Al* 1/2007 Guetal.ccoccvvvvrvvvnnnnnnn, 707/3
' ' -j ‘ j 2007/0101336 Al 5/2007 Moore et al.
Mark R. Nutter, Austn, 1X (US) 2008/0021987 Al 1/2008 Bates et al.
(73) Assignee: INTERNATIONAL BUSINESS 2008/0114942 AL 52008 Brown et al.
DN (%(S’)RPORATION FOREIGN PATENT DOCUMENTS
JP 2005327146 11/2005
(*) Notice: Subject to any disclaimer, the term of this TP 2007200340 /7007
patent 15 extended or adjusted under 35 WO 2008/037615 Al 4/2008
U.S.C. 154(b) by 2112 days.
OTHER PUBLICATIONS
(21) Appl. No.: 12/329,586
_ PCT/EP2008/066257 International Search Report, Sep. 16, 2010,
(22) Filed: Dec. 6, 2008 PCT Searching Authority, EPO.
(65) Prior Publication Data (Continued)
US 2010/0141665 Al Jun. 10, 2010
(51) Int.CI Primary Examiner — Jom Richer
GO6T 15/00 (2011.01) (74) Attorney, Agent, or Firm — James L. Baudino
GO6T 1720 (2006.01)
HO4L 29/08 (2006.01)
(52) U.S.CL. (57) ABSTRACT
CPC . HO4L 67/36 (2013.01); GO6T 1/20 (2013.01);
GO6T 15/005 (2013.01): HO4L 67/1002 A graphics client receives a frame, the frame comprising
(2013.01); HO4L 67/1023 (’2013 01): GO6T scene model data. A server load balancing factor 1s set based
2270/5 2 (2613 01); GOIG 2352 /0(; (2613 01) on the scene model data. A prospective rendering factor 1s set
(58) Field of Classifica tion‘ Se:;rch | based on the scene model data. The frame 1s partitioned 1nto
USPC 345/501. 502. 505 718/105 a plurality of server bands based on the server load balancing
Qep apphca‘[lon ﬁle for c omplete sjearcli hist ;ry. factor and the prospective rendering factor. The server bands
are distributed to a plurality of compute servers. Processed
(56) References Cited server bands are recerved from the compute servers. A pro-

cessed frame 1s assembled based on the recerved processed
server bands. The processed frame 1s transmitted for display
to a user as an 1mage.

U.S. PATENT DOCUMENTS

6,028,608 A * 2/2000 Jenkinscoeviiininl, 345/619
6,057,847 A * 5/2000 Jenkinsoeei. 345/422
6,192,388 Bl 2/2001 Cajolet
6,753,878 Bl * 6/2004 Heirichetal. 345/629 20 Claims, 6 Drawing Sheets
r}]ﬂ
150y 15N, 150y,
COMPUTE COMPUTE COMPUTE
SERVER SERVER SERVER
4 A A

140

114

7120

GRAPHICS
CLIENT

I 1130

USER
INTERFACE

CISPLAY

152

[132

USER

US 9,270,783 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Tetsu R. Satoh, “Symplectic ray tracing for simulation of a
Hamiltonian system: implementation 1n parallel computers and

evaluation of the calculation cost”, IPSJ SIG Technical Report,

Japan, vol. 2004, No. 32, p. 31-36, Mar. 19, 2004.
Takashi Nishikawa, et al., “Realtime Rendering Application Devel-

opment using Parallel Processing”. Unisys Technology Review,
Nihon Unisys, Ltd., vol. 23, No. 4, p. 125-137, Feb. 29, 2004.

Clark, H. et al., DAWGS—a distributed compute server utilizing idle
workstations, Journal of Parallel and Distributed Computing, 1992,

vol. 14, No. 2, Academic Press, Inc., p. 175, Feb. 1992.

Cherkasova, L. et al., Analysis of Enterprise Media Server
Workloads: Access Patterns, Locality, Content Evolution, and Rates
of Change, IEEE/ACM Transactions on Networking, vol. 12, No. 5,
Oct. 2004, p. 781.

Rocha, M. et al., Scalable Media Streaming to Interactive Users,
ACM MM Nov. 2003, p. 966, Singapore.

Bagrodia, R et al.,, A Scalable, Distributed Middleware Service

Architecture to Support Mobile Internet Applications, Wireless Net-
works 9, 2003, p. 311, The Netherlands, Jul. 2003.

Demarle et al., Memory-Savvy Distributed Interactive Ray Tracing,
Eurographics Symposium on Parallel Graphics and Visualization,

2004.

* cited by examiner

U.S. Patent Feb. 23, 2016 Sheet 1 of 6 US 9,270,783 B2

FIG. 1 100

'/

150 150 150

COMPUTE COMPUTE COMPUTE

SERVER SERVER SERVER

140

110 120

GRAPHICS
152 CLIENT

DISPLAY

130

USER

INTERFACE

132

USER

US 9,270,783 B2

Sheet 2 of 6

Feb. 23, 2016

U.S. Patent

b17 JOV443LNI XHOMLAN

JOVJH3LNI 43S0
474

JOV4H3LNI AV 1dSIA

0L¢

d40SS34dW004d
80¢

3JHOVO
90¢

F1NAON
ONIONV1VE aVO'l

)4

Nd 1041LNOO
¢0¢

US 9,270,783 B2

Sheet 3 of 6

Feb. 23, 2016

U.S. Patent

80t

90t

135

JOSS3dHdINOD
dHOVO

3401S 1vOO]
43>

dd

FOV4HdLNI YHOMLIN

143

J1NAON
v0t ONIONVY1vVE AVO]

Nd TOYLNOD
3HOLS OO

437

0lLE

d3dNAd43S J1NdINOD

£ OIA

U.S. Patent Feb. 23, 2016 Sheet 4 of 6 US 9,270,783 B2

FIG. 4 400

.

405 RECEIVE/GENERATE FRAME COMPRISING
SCENE MODEL DATA
410
RECEIVE USER INPUT
415
SET SERVER LOAD BALANCING FACTOR BASED ON FRAME
420 SET PROSPECTIVE RENDERING FACTOR

BASED ON USER INPUT AND SCENE MODEL DATA

425 PARTITION FRAME INTO BANDS BASED ON SERVER LOAD
BALANCING FACTOR AND PROSPECTIVE RENDERING FACTOR

#90 DISTRIBUTE BANDS TO COMPUTE SERVERS

435 RECEIVE COMPRESSED PROCESSED
BANDS FROM COMPUTE SERVERS

440 DECOMPRESS RECEIVED COMPRESSED BANDS

445 ASSEMBLE PROCESSED FRAME
BASED ON DECOMPRESSED BANDS

45
) STORE PROCESSED FRAME

45
DISPLAY IMAGE BASED ON PROCESSED FRAME

190 RECEIVE REPORTED RENDERING TIMES FROM SERVERS

465 MODIFY SERVER LOAD BALANCING FACTOR BASED ON
REPORTED RENDERING TIMES

U.S. Patent Feb. 23, 2016 Sheet 5 of 6 US 9,270,783 B2

FIG. 5 500

AN

505
RECEIVE RAW DISPLAY BAND FROM GRAPHICS CLIENT

910 PARTITION RAW DISPLAY BAND INTO PE BLOCKS BASED
ON PE LOAD BALANCING FACTOR

515
DISTRIBUTE PE BLOCKS TO PROCESSING ELEMENTS (PE)

620
EACH PE RENDERS PE BLOCK

525

RECEIVE RENDERED PE BLOCKS

530 COMBINE RENDERED PE BLOCKS INTO PROCESSED
DISPLAY BAND

535
COMPRESS PROCESSED DISPLAY BAND

940 TRANSMIT COMPRESSED DISPLAY BAND
TO GRAPHICS CLIENT

545
DETERMINE RENDER TIME FOR EACH PE

050
REPORT RENDERING TIME TO GRAPHICS CLIENT

599 ADJUST PE LOAD BALANCING FACTOR BASED ON
RENDERING TIME FOR EACH PE

¢09

US 9,270,783 B2

b9
3IDIAIA _
AY1dSIa OvS
JOV4HILNI
39IA3Q O/
1NdNI ¥3SN
- AL
I~
-
\&
2
i
7 P,
269
&
1 —
& S32IA3A B 059
s SH¥3LNANOD H31dvay
= ¥3H1O YHOMLIN
P
.

009

U.S. Patent
\

00 7E9
JOVHOLS HSV'1

9¢9

1VOI1dO

ce9
ASIA AJVH

IV

219 -

019

y

929
SNOILONNA
SS300V

A4S
SNOILVOI'lddV

09 AHOWIW

d055300dd

US 9,270,783 B2

1

SYSTEM AND METHOD FOR
PHOTOREALISTIC IMAGING WORKLOAD
DISTRIBUTION

TECHNICAL FIELD

The present invention relates generally to the field of com-
puter networking and parallel processing and, more particu-
larly, to a system and method for improved photorealistic
imaging workload distribution.

BACKGROUND OF THE INVENTION

Modermn electronic computing systems, such as micropro-
cessor systems, are often configured to divide a computation-
ally-intensive task into discrete sub-tasks. For heterogeneous
systems, some systems employ cache-aware task decompo-
sition to improve performance on distributed applications. As
technology advances, the gap between fast local caches and
large slower memory widens, and caching becomes even
more important. Generally, typical modern systems attempt
to distribute work across multiple processing elements (PEs)
so as to improve cache hit rates and reduce data stall times.

For example, ray tracing, a photorealistic imaging tech-
nique, 1s a computationally expensive algorithm that usually
does not have fixed data access patterns. However, ray tracing
tasks can nevertheless have a very high spatial and temporal
locality. As such, a cache aware task distribution for ray
tracing applications can lead to high performance gains.

But typical ray tracing approaches cannot be configured to
take full advantage of cache aware task distribution. For
example, current ray tracers decompose the rendering prob-
lem by breaking up an image into tiles. Typical ray tracers
either expressly distribute these tiles among computational
units or greedily reserve the tiles for access by the PEs
through work stealing.

Both of these approaches suller from significant disadvan-
tages. In typical express distribution systems, the additional
workload required to manage the distribution of tiles mnhibits
performance. In some cases, this additional workload can
mitigate any gains achieved through managed distribution.

In typical work-stealing systems, each PE grabs new tiles
alter 1t has processed its prior allotment. But since the PEs
grab the tiles from a general pool, the tiles are less likely to
have a high spatial locality. Thus, 1n a work-stealing system,
the PEs regularly flush their caches with new scene data and
are therefore cold for the next frame, completely failing to
take any advantage of the task’s spatial locality.

BRIEF SUMMARY

The following summary 1s provided to facilitate an under-
standing of some of the mnovative features unique to the
embodiments disclosed and 1s not intended to be a full
description. A full appreciation of the various aspects of the
embodiments can be gained by taking 1into consideration the
entire specification, claims, drawings, and abstract as a
whole.

A graphics client receives a frame, the frame comprising
scene model data. A server load balancing factor 1s set based
on the scene model data. A prospective rendering factor 1s set
based on the scene model data. The frame 1s partitioned nto
a plurality of server bands based on the server load balancing
factor and the prospective rendering factor. The server bands
are distributed to a plurality of compute servers. Processed
server bands are recerved from the compute servers. A pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

cessed frame 1s assembled based on the received processed
server bands. The processed frame 1s transmitted for display
to a user as an 1mage.

In an alternate embodiment, a system comprises a graphics
client. The graphics client 1s configured to receive a frame, the
frame comprising scene model data; set a server load balanc-
ing factor based on the scene model data; set a prospective
rendering factor based on the scene model data; partition the
frame 1nto a plurality of server bands based on the server load
balancing factor and the prospective rendering factor; distrib-
ute the plurality of server bands to a plurality of compute
servers; receive processed server bands from the plurality of
compute servers; assemble a processed frame based on the
received processed server bands; and transmit the processed
frame for display to a user as an 1mage.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, 1n which like reference numer-
als refer to 1identical or Ifunctionally-similar elements
throughout the separate views and which are incorporated in
and form a part of the specification, further illustrate the
embodiments and, together with the detailed description,
serve to explain the embodiments disclosed herein.

FIG. 1 illustrates a block diagram showing an improved
photorealistic imaging system in accordance with a preferred
embodiment;

FIG. 2 illustrates a block diagram showing an improved
graphics client 1n accordance with a preferred embodiment;

FIG. 3 illustrates a block diagram showing an improved
compute server 1n accordance with a preferred embodiment;

FIG. 4 1llustrates a high-level flow diagram depicting logi-
cal operational steps of an improved photorealistic imaging
workload distribution method, which can be implemented in
accordance with a preferred embodiment;

FIG. § illustrates a high-level flow diagram depicting logi-
cal operational steps of an improved photorealistic 1maging
workload distribution method, which can be implemented in
accordance with a preferred embodiment; and

FIG. 6 1llustrates a block diagram showing an exemplary
computer system that can be configured to incorporate one or
more preferred embodiments.

DETAILED DESCRIPTION

The particular values and configurations discussed 1n these
non-limiting examples can be varied and are cited merely to
illustrate at least one embodiment and are not intended to
limit the scope of the invention.

In the following discussion, numerous specific details are
set forth to provide a thorough understanding of the present
invention. Those skilled 1n the art will appreciate that the
present invention may be practiced without such specific
details. In other instances, well-known elements have been
illustrated 1n schematic or block diagram form in order not to
obscure the present invention 1n unnecessary detail. Addition-
ally, for the most part, details concerning network communi-
cations, electro-magnetic signaling techniques, user interface
or mput/output techniques, and the like, have been omatted
inasmuch as such details are not considered necessary to
obtain a complete understanding of the present invention, and
are considered to be within the understanding of persons of
ordinary skill in the relevant art.

As will be appreciated by one skilled 1n the art, the present
invention may be embodied as a system, method or computer
program product. Accordingly, the present mmvention may
take the form of an entirely hardware embodiment, an entirely

US 9,270,783 B2

3

soltware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product embodied 1 any tangible medium of expression hav-
ing computer usable program code embodied 1n the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, inifrared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran-
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Note that the computer-usable or
computer-readable medium could even be paper or another
suitable medium upon which the program 1s printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed 1n a suitable man-
ner, if necessary, and then stored 1n a computer memory. In the
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the mstruction execution system, appa-
ratus, or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either 1n baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc.

Computer program code for carrying out operations of the
present invention may be written 1n any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

The present invention 1s described below with reference to
flowchart 1llustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks 1n the flowchart 1llus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program nstruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create

10

15

20

25

30

35

40

45

50

55

60

65

4

means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program mstructions may also be stored 1n
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function 1n
a particular manner, such that the instructions stored 1n the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified 1n the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram
block or blocks.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening 1I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

Referring now to the drawings, FI1G. 1 1s a high-level block
diagram 1llustrating certain components of a system 100 for
improved photorealistic 1maging workload distribution, 1n
accordance with a preferred embodiment of the present
invention. System 100 comprises a graphics client 110.

Graphics client 110 1s a graphics client module or device,
as described 1n more detail 1n conjunction with FIG. 2, below.
Graphics client 110 couples to display 120. Display 120 1s an
otherwise conventional display, configured to display digi-
tized graphical images to a user.

Graphics client 110 also couples to a user interface 130.
User interface 130 1s an otherwise conventional user inter-
face, configured to send information to, and recerve informa-
tion from, a user 132. In one embodiment, graphics client 110
receives user mput from user interface 130. In one embodi-
ment, user input comprises a plurality of image frames, each
frame comprising scene model data, the scene model data
describing objects arranged 1n an 1mage. In one embodiment,
user mput also comprises camera movement commands
describing perspective (or “eye”) movement from one 1image
frame to another.

In the illustrated embodiment, graphics client 110 also
couples to network 140. Network 140 1s an otherwise con-
ventional network. In one embodiment, network 140 1s a
gigabit Ethernet network. In an alternate embodiment, net-
work 140 1s an Infiniband network.

Network 140 couples to a plurality of compute servers 150.
Each compute server 150 1s a compute server as described 1n
more detail 1n conjunction with FIG. 3, below. In the illus-

US 9,270,783 B2

S

trated embodiment, graphics client 110 couples to the com-
pute servers 150 through network 140.

In an alternate embodiment, graphics client 110 couples to
one or more computer servers 150 through a direct link 152.
In one embodiment, link 152 1s a direct physical link. In an
alternate embodiment, link 152 1s a virtual link, such as a

virtual private network (VPN) link, for example.

Generally, 1n an exemplary operation, described in more
detail below, system 100 operates as follows. User 132,
through user interface 130, directs graphics client 110 to
display a series of images on display 120. Graphics client 110
receives the series of 1mages as a series of digitized 1mage
“frames,” for example, by retrieving the series of frames from
a storage on graphics client 110 or from user interface 130.
Generally, each frame comprises scene model data describing
clements arranged 1n a scene.

For each frame, graphics client 110 partitions the frame
into a plurality of server bands, each server band associated
with a particular compute server 150, based on a server load
balancing factor and a prospective rendering factor. Graphics
client 110 distributes the server bands to the compute servers
150. Each compute server 150 (comprising a plurality of
processing elements (PEs)) divides the received server bands
(recerved as “raw display bands”) into PE blocks, each PE
block associated with a particular PE, based on a PE load
balancing factor. In some embodiments, the compute servers
150 divide the server bands into PE blocks based on the PE
load balancing factor and prospective rendering information
received from the graphics client 110. The compute servers
150 distribute the PE blocks to their PEs.

The PEs process the PE blocks, rendering the raw frame
data and performing the computationally intensive work of
turning the raw frame data into a form suitable for the target
display 120. In photorealistic imaging processing, rendering
can include ray tracing, ambient occlusion, and other tech-
niques. The PEs return the processed PE blocks to their parent
compute server 150, which assembles the processed PE
blocks 1nto a processed display band.

In some embodiments, the compute servers 150 compress
the processed display bands for transmission to graphics cli-
ent 110. In some embodiments, one or more compute servers
150 transmit the processed display bands without additional
compression. Each compute server 150 determines the time
cach of 1ts PEs took to render its PE block and the total
rendering time for the entire raw display band.

The compute servers 150 adjust their PE load balancing
factor based on the individual rendering times for each PE. In
one embodiment, each compute server 150 also reports 1ts
total rendering time to graphics client 110.

Graphics client 110 receives the processed display bands
and assembles the bands into a processed frame. Graphics
client 110 transmits the processed frame to display 120 for
display to the user. In one embodiment, graphics client 110
modifies the load balancing factor based on reported render-
ing times recerved from the compute servers 150.

Thus, as described generally above and in more detail
below, graphics client 110 distributes unprocessed server
bands to compute servers 150 based 1n part on the relative
load between the servers and 1n part on prospective rendering
information recerved from the user. The compute servers 150
divide the unprocessed server bands into PE blocks based on
the relative load between the PE blocks and the prospective
rendering information. The PEs process the blocks, which the
compute servers 150 combine into processed bands and
return to the graphics client 110. Graphics client 110
assembles the received processed bands into a form suitable

10

15

20

25

30

35

40

45

50

55

60

65

6

for display to a user. Both the compute servers 150 and
graphics client 110 use rendering times to adjust load balanc-
ing factors dynamically.

As such, system 100 can dynamically distribute the work-
load among the elements performing computationally inten-
stve tasks. As the frame data changes, certain portions of the
frame become more computationally intensive than others,
and the system can respond by reapportioning the tasks so as
to keep the response times roughly equivalent. As one skilled
in the art will understand, roughly equivalent response times
indicate a balanced load and help to reduce idle time for the
PEs/servers.

FIG. 2 1s a block diagram 1illustrating an exemplary graph-
ics client 200 1n accordance with one embodiment of the
present mvention. In particular, client 200 includes control
processing umt (PU) 202. Control PU 202 1s an otherwise
conventional processing unit, configured as described herein.
In one embodiment, client 200 1s a PlayStation3™ (PS3). In
an alternate embodiment, client 200 1s an x&86 machine. In an
alternate embodiment, client 200 1s a thin client.

Client 200 also 1includes load balancing module 204. Gen-
erally, control PU 202 and load balancing module 204 parti-
tion a graphics image frame into a plurality of bands based on
a server load balancing factor and a prospective rendering
factor. In particular, 1n one embodiment, load balancing mod-
ule 204 1s configured to set and modily a server load balanc-
ing factor based on server response times and user input. In
one embodiment, user mput comprises manual server load
balancing settings.

In one embodiment, load balancing module 204 divides the
frame 1nto bands comprising the frame data, and system 200
transmits the divided frame data to the compute servers for
rendering. In an alternate embodiment, client 200 transmits
coordinate information demarcating the boundaries of each
band 1n the frame. In one embodiment, the coordinate infor-
mation comprises coordinates referring to a cached (and com-
monly accessible) frame.

Load balancing module 204 1s also configured to set and
modily a prospective rendering factor based on scene model
data, user mnput, and server response times. In one embodi-
ment, user mput comprises camera motion information. In
one embodiment, camera motion information comprises a
perspective, or camera “eye”, and a movement vector indi-
cating the speed and direction of a change in perspective.

For example, 1n one embodiment, client 200 accepts user
input including camera motion information and 1s therefore
aware of the direction and speed of the eye’s motion. In an
alternate embodiment, client 200 accepts user input including
tracking information for a human user’s eye movement, sub-
stituting the human user’s eye movement for a camera eye
movement. As such, load balancing module 204 can adjust
the server band partitioning 1n advance, based on the expected
change 1n computational load across the frame.

That 1s, one skilled in the art will understand that certain
parts of the frame are more computationally intensive than
other parts. For example, a frame segment consisting of only
a solid, single-color background 1s much less computation-
ally intensive than a frame segment containing a disco ball
reflecting light from multiple sources. Thus, for example,
load balancing module 204 could divide the frame into three
bands, one band comprising one-half of the disco ball, and
two bands each comprising the entire background and one-
quarter of the disco ball.

Further, when the camera eye changes, the scene elements
in the frame (e.g., the disco ball) occupy more or less of the
frame, 1n a different location of the frame. In one embodi-
ment, the camera eye movement information includes the

US 9,270,783 B2

7

direction and velocity of the camera or human eye change, as
a “tracking vector.” In an alternate embodiment, the camera
cye movement imformation includes a target scene object,
upon which the camera eye 1s focused, and the target scene
object’s relative distance from the current perspective point.
That 1s, 1f the system 1s aware of a specific object that 1s the
focus of the user’s attention, a “target scene object,” the
system can predict that the scene will shift to move that
specific object toward the center or near-center of the viewing
window. If, for example, the target scene object 1s located
upward and rightward of the current perspective, the camera
eye, and therefore the scene, will likely next shift upward and
rightward, and the load balancing module can optimize the
server band partitioning for that tracking vector.

As such, 1n one embodiment, load balancing module 204
uses the camera eye movement information and the scene
model data to adjust the server band partitioning 1n advance,
which tends to equalize the computational load across the
compute servers. In one embodiment, load balancing module
204 uses the tracking vector, target scene object, and relative
distance to determine the magnitude of the server band par-
titioning adjustments. In one embodiment, the magnitude of
the server band partitioning adjustments 1s a measure of the
“aggressiveness’ of a server band partitioning.

Generally, having partitioned the frame 1nto server bands,
client 200 distributes the server bands to their assigned com-
pute servers. Client 200 recerves processed display bands
from the compute servers in return. In one embodiment, client
200 determines the response time for each compute server. In
an alternate embodiment, client 200 receives reported
response times from each compute server.

Client 200 also includes cache 206. Cache 206 1s an oth-
erwise conventional cache. Generally, client 200 stores pro-
cessed and unprocessed frames, and other information, 1n
cache 206.

Client 200 also 1includes decompressor 208. In one embodi-
ment, client 200 receives compressed processed server bands
from the compute servers. As such, decompressor 208 1is
configured to decompress compressed processed server
bands.

Client 200 also includes display interface 210, user inter-
face 212, and network interface 214. Display interface 210 1s
an otherwise conventional display interface, configured to
interface with a display, such as display 120 of FIG. 1, for
example. User interface 212 1s an otherwise conventional user
interface, configured, for example, as user interface 130 of
FIG. 1. Network interface 214 1s an otherwise conventional
network interface, configured to interface with a network,
such as network 140 of FIG. 1, for example.

As described above, client 200 1s a graphics client, such as
graphics client 110 of FIG. 1, for example. Accordingly,
client 200 transmits raw server bands to computer servers for
rendering and recerves processed display bands for display.
FIG. 3 illustrates an exemplary compute server in accordance
with one embodiment of the present invention.

In particular, FIG. 3 1s a block diagram illustrating an
exemplary compute server 300 i1n accordance with one
embodiment of the present invention. In particular, server 300
includes control processing umt (PU) 302. As illustrated,
control PU 302 1s an otherwise conventional processing unit,
configured to operate as described below.

Server 300 also includes a plurality of processing elements
(PEs) 310. Generally, each PE 310 1s an otherwise conven-
tional PE, configured with a local store 312. As described in
more detail below, each PE 310 receives a PE block for
rendering, renders the PE block, and returns a rendered PE

block to the control PU 302.

10

15

20

25

30

35

40

45

50

55

60

65

8

Server 300 also includes load balancing module 304. Gen-
erally, control PU 302 and load balancing module 304 parti-
tion a recerved raw display band 1nto a plurality of PE blocks
based on a PE load balancing factor. In particular, in one
embodiment, load balancing module 304 1s configured to set
and modify a PE load balancing factor based on PE response
times. In an alternate embodiment, the PE load balancing
factor includes a prospective rending factor, and load balanc-
ing module 304 1s configured to modity the PE load balancing
factor based on PE response times and user input.

In one embodiment, load balancing module 304 divides the
received raw display band into PE blocks comprising the
frame data and control PU 302 transmits the divided frame
data to the PEs for rendering. In an alternate embodiment,
control PU 302 transmits coordinate information demarcat-
ing the boundaries of each PE block. In one embodiment, the
coordinate information comprises coordinates referring to a
cached (and commonly accessible) frame.

Generally, having partitioned the raw display bands nto
PE blocks, server 300 distributes the PE blocks their assigned
PEs. The PEs 310 render their recerved PE blocks and return
rendered PE blocks to control PU 302. In one embodiment,
cach PE 310 stores a rendered PE block 1n cache 306 and
indicates to control PU 302 that the PE has completed ren-
dering its PE block.

As such, server 300 also includes cache 306. Cache 306 1s
an otherwise conventional cache. Generally, server 300 stores
processed and unprocessed bands, PE blocks, and other infor-
mation, in cache 306.

Server 300 also includes compressor 308. In one embodi-
ment, the graphics client recerves compressed processed
server bands from the compute servers. As such, compressor
308 is configured to compress processed display bands for

transmission to the graphics client.

Server 300 also includes network interface 314. Network
interface 314 1s an otherwise conventional network interface,
configured to interface with a network, such as network 140
of FIG. 1, for example.

Generally, server 300 recerves raw display bands from a
graphics client. Control PU 302 and load balancing module
304 divide the received display band into PE blocks based on
a PE load balancing factor. The PEs 310 render their assigned
blocks and control PU 302 assembles the rendered PE blocks
into a processed display band. Compressor 308 compresses
the processed display band and server 300 transmits the pro-
cessed display band to the graphics client.

In one embodiment, control PU 302 adjusts the PE load
balancing factor based on the rendering times for each PE
310. In one embodiment, control PU 302 also determines a
total rendering time for the entire display band and reports the
total rendering time to the graphics client. Thus, generally,
server 300 can modity the PE load balancing factor to adapt to
changing loads on the PEs.

Thus, server 300 can balance the rendering load between
the PEs, which in turn helps improve (minimize) response
time. The operation of the graphics client and the compute
server are described 1n additional detail below. More particu-
larly, the operation of an exemplary graphics client 1is
described with respect to FIG. 4, and the operation of an
exemplary compute server 1s described with respectto FI1G. 5.

FIG. 4 1llustrates one embodiment of a method for photo-
realistic imaging workload distribution. Specifically, FI1G. 4
illustrates a high-level flow chart 400 that depicts logical
operational steps performed by, for example, system 200 of
FIG. 2, which may be implemented in accordance with a
preferred embodiment. Generally, control PU 202 performs
the steps of the method, unless indicated otherwise.

US 9,270,783 B2

9

As indicated at block 405, the process begins, wherein
system 200 receives a digital graphic image frame comprising
scene model data for display. For example, system 200 can
receive a frame from a user or other input. Next, as 1llustrated
at block 410, system 200 receives user mput. As described
above, 1n one embodiment, user input includes camera move-
ment information.

Next, as 1llustrated at block 415, system 200 sets or modi-
fies a server load balancing factor based on the recerved
frame. Next, as 1llustrated at block 420, system 200 sets or
modifies a prospective rendering factor based on received
user mput and scene model data. Next, as 1llustrated at block
425, system 200 partitions the frame into server bands based
on the server load balancing factor and the prospective ren-
dering factor.

Based on the user mput and the prospective rendering
factor, system 200 1s aware of the direction and speed of the
camera eye’s motion. As such, system 200 can pre-adjust the
server workload without having to rely exclusively on reac-
tive adjustments. For example, 11 the user “looks” up or down
(moving the camera eye vertically), system 200 can decrease
the size of the regions of the compute server on the leading
edge to account for the new model geometry that1s aboutto be
introduced 1nto the scene.

Moreover, system 200 can adjust how aggressively to
rebalance the workload based on the speed of the eye motion.
If the camera eye 1s moving more quickly, system 200 can
adjust the workload more aggressively. If the camera eye 1s
moving more slowly, system 200 can adjust the workload less
aggressively.

Additionally, system 200 can tailor workload rebalancing
according to the type of eye movement demonstrated by the
user mput. That 1s, certain types of eye movement respond
best to different adjustment patterns. For example, zooming,
in or moving along the eye vector leads to less of an imbalance
across compute servers. As such, system 200 can adjust the
workload less aggressively 1n response to a rapid zoom func-
tion, for example, than 1n response to a rapid pan function.

In one embodiment, system 200 partitions the frame 1nto
horizontal server bands. In an alternate embodiment, system
200 partitions the frame into vertical server bands. In an
alternate embodiment, system 200 partitions the frame into
horizontal or vertical server bands, depending on which
alignment yields the more effective (load balancing) parti-
tioning.

Next, as illustrated at block 430, system 200 distributes the
server bands to compute servers. Next, as illustrated at block
435, system 200 receives compressed processed display
bands from the compute servers. Next, as 1llustrated at block
440, system 200 decompresses the recerved compressed pro-
cessed display bands.

Next, as 1llustrated at block 4435, system 200 assembles a
processed frame based on the processed display bands. Next,
as 1llustrated at block 450, system 200 stores the processed
frame. Next, as 1llustrated at block 455, system 200 displays
an 1mage based on the processed frame. As described above,
in one embodiment, system 200 transmits the processed
frame to a display module for display.

Next, as 1illustrated at block 460, system 200 receives
reported rendering times from the compute servers. Next, as
illustrated at block 465, system 200 modifies the server load
balancing based on the reported rendering times. The process
returns to block 405, wherein the graphics client receives a
frame for processing.

FI1G. 3 1llustrates one embodiment of a method for photo-
realistic imaging workload distribution. Specifically, FIG. 5
illustrates a high-level flow chart 500 that depicts logical

10

15

20

25

30

35

40

45

50

55

60

65

10

operational steps performed by, for example, system 300 of
FIG. 3, which may be implemented 1n accordance with a
preferred embodiment. Generally, compute PU 302 performs
the steps of the method, unless indicated otherwise.

As 1llustrated at block 505, the process begins, wherein a
compute server recerves a raw display band from a graphics
client. For example, system 300 of FIG. 3 receives a raw
display band from a graphics client 200 of FIG. 2. Next, as
illustrated at block 510, system 300 partitions the raw display
band 1nto PE blocks based on a PE load balancing factor.

In one embodiment, the raw display band includes camera
movement 1nformation and system 300 partitions the raw
display band into PE blocks based on a PE load balancing
factor and the camera movement information. In one embodi-
ment, system 300 partitions the raw display band in a similar
fashion as does system 200 as described with respect to block
425, above. Accordingly, system 300 can dynamically parti-
tion the raw display band to account for prospective changes
in the composition of the frame 1mage, helping to maintain
load balance between the PEs.

Next, as 1llustrated at block 515, system 300 distributes the
PE blocks to the processing elements. For example, control
PU 302 distributes the PE blocks to one or more PEs 310.
Next, as illustrated at block 520, each PE renders 1ts received
PE block. For example, the PEs 310 render their received PE
blocks.

Next, as 1llustrated at block 525, control PU 302 receives
the rendered PE blocks from the PEs 310. As described above,
in one embodiment, control PU 302 receives a notification
from the PEs 310 that the rendered blocks are available 1n
cache 306. Next, as illustrated at block 530, system 300
combines the rendered PE blocks into a processed display
band.

Next, as 1llustrated at block 335, system 300 compresses
the processed display band for transmission to the graphics
client. For example, compressor 308 compresses the pro-
cessed display band for transmission to the graphics client.
Next, as 1llustrated at block 540, system 300 transmits the
compressed display band to the graphics client.

Next, as 1llustrated at block 545, system 300 determines a
render time for each PE. For example, control PU 302 deter-
mines a render time for each PE 310. Next, as illustrated at
block 545, system 300 reports the rendering time to the graph-
ics client. In one embodiment, system 300 calculates the total
rendering time for the processed display band, based on the
slowest PE, and reports the total rendering time to the graph-
ics client. In an alternate embodiment, system 300 reports the
rendering time for each PE to the graphics client.

Next, as 1llustrated at block 3355, system 300 adjusts the PE
load balancing factor based on the rendering time for each PE.
As described above, system 300 can set the PE load balancing
tactor to divide the workload among the PEs such that each
PE takes approximately the same amount of time to complete
its rendering task.

Accordingly, the disclosed embodiments provide numer-
ous advantages over other methods and systems. For
example, the disclosed embodiments improve balanced
workload distribution over current approaches, especially
work-stealing systems. Because the disclosed embodiments
better distribute the computational workload, work-stealing
1s unnecessary, and the computational units can retain rel-
evant cache data without also incurring the penalties inherent
in re-tasking a processing element under common work-
stealing schema.

More specifically, the disclosed embodiments provide the
balance of photorealistic 1imaging workload distribution,
especially 1n ray tracing applications. By actively managing

US 9,270,783 B2

11

the computationally intensive regions of a frame, and stalling,
the computational units waiting for the next frame, the ren-
dering system spends less time stalled for data.

Further, the disclosed embodiments offer methods that
maintain focus of a computational unit on a particular region,
even as that region 1s expanded or reduced to maintain relative
workload. As such, any particular computational unit 1s more
likely to retain usetul frame data 1n 1ts cache, which improves
cache hit rates. Moreover, the improved cache hit rates over-
come the slightly increased intra-frame stalls, improving the
overall rendering time.

Additionally, the disclosed embodiments provide a system
and method that dynamically adjusts the workload based on
prospective rendering tasking. As such, the disclosed
embodiments can reduce the performance impact of a rapidly
moving camera eye by anticipating changes in the computa-
tional intensity of regions 1n the scene. Other technical advan-
tages will be apparent to one of ordinary skill 1n the relevant
arts.

As described above, one or more embodiments described
herein may be practiced or otherwise embodied 1n a computer
system. Generally, the term “computer,” as used herein, refers
to any automated computing machinery. The term “com-
puter’” therefore includes not only general purpose computers
such as laptops, personal computers, minicomputers, and
mainirames, but also devices such as personal digital assis-
tants (PDAs), network enabled handheld devices, internet or
network enabled mobile telephones, and other suitable
devices. FIG. 6 1s a block diagram providing details illustrat-
ing an exemplary computer system employable to practice
one or more of the embodiments described herein.

Specifically, FIG. 6 illustrates a computer system 600.
Computer system 600 includes computer 602. Computer 602
1s an otherwise conventional computer and includes at least
one processor 610. Processor 610 1s an otherwise conven-
tional computer processor and can comprise a single-core,
dual-core, central processing unit (PU), synergistic PU,
attached PU, or other suitable processors.

Processor 610 couples to system bus 612. Bus 612 1s an
otherwise conventional system bus. As illustrated, the various
components of computer 602 couple to bus 612. For example,
computer 602 also includes memory 620, which couples to
processor 610 through bus 612. Memory 620 1s an otherwise
conventional computer main memory, and can comprise, for
cxample, random access memory (RAM). Generally,
memory 620 stores applications 622, an operating system
624, and access functions 626.

Generally, applications 622 are otherwise conventional
soltware program applications, and can comprise any number
of typical programs, as well as computer programs 1mncorpo-
rating one or more embodiments of the present mvention.
Operating system 624 1s an otherwise conventional operating
system, and can include, for example, Unix, AIX, Linux,
Microsoit Windows™, MacOS™. and other suitable operat-
ing systems. Access functions 626 are otherwise conventional
access functions, including networking functions, and can be
include 1n operating system 624.

Computer 602 also includes storage 630. Generally, stor-
age 630 1s an otherwise conventional device and/or devices
for storing data. As 1illustrated, storage 630 can comprise a
hard disk 632, tflash or other volatile memory 634, and/or
optical storage devices 636. One skilled in the art will under-
stand that other storage media can also be employed.

An I/O mterface 640 also couples to bus 612. I/O interface
640 1s an otherwise conventional intertace. As illustrated, I/O
intertace 640 couples to devices external to computer 602. In
particular, I/O mterface 640 couples to user input device 642

10

15

20

25

30

35

40

45

50

55

60

65

12

and display device 644. Input device 642 1s an otherwise
conventional mnput device and can include, for example, mice,
keyboards, numeric keypads, touch sensitive screens, micro-
phones, webcams, and other suitable input devices. Display
device 644 1s an otherwise conventional display device and
can 1include, for example, monitors, LCD displays, GUI
screens, text screens, touch sensitive screens, Braille dis-
plays, and other suitable display devices.

A network adapter 650 also couples to bus 612. Network
adapter 630 1s an otherwise conventional network adapter,
and can comprise, for example, a wireless, Ethernet, LAN,
WAN, or other suitable adapter. As illustrated, network
adapter 650 can couple computer 602 to other computers and
devices 652. Other computers and devices 652 are otherwise
conventional computers and devices typically employed 1n a
networking environment. One skilled 1n the art will under-
stand that there are many other networking configurations
suitable for computer 602 and computer system 600.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the tflowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable istructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, 1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

One skilled 1n the art will appreciate that variations of the
above-disclosed and other features and functions, or alterna-
tives thereol, may be desirably combined into many other
different systems or applications. Additionally, various pres-
ently unforeseen or unanticipated alternatives, modifications,
variations or improvements therein may be subsequently
made by those skilled in the art, which are also intended to be
encompassed by the following claims.

What 1s claimed 1s:

1. A method, comprising:

receving, by a graphics client, a frame, the frame compris-
ing scene model data;

receving camera motion mformation from a user;

setting a server load balancing factor based on the scene
model data:

setting a prospective rendering factor based on the scene
model data and received camera motion information;

partitioning the frame into a plurality of server bands based
on the server load balancing factor and the prospective
rendering factor;

distributing, by the graphics client, the plurality of server
bands to a plurality of compute servers;

receving, by the graphics client, processed server bands
from the plurality of compute servers;

assembling a processed frame based on the received pro-
cessed server bands; and

transmitting the processed frame for display to a user as an
image.

US 9,270,783 B2

13

2. The method of claim 1, wherein partitioning the frame
turther comprises selecting between horizontal server bands
and vertical server bands.

3. The method of claim 1, further comprising;

receiving reported rendering times from at least one of the

plurality of servers; and

wherein setting the server load balancing factor further

comprises setting the server load balancing factor based
on the scene model data and the reported rendering
times.

4. The method of claim 1, wherein assembling a processed
frame band further comprises decompressing the recerved
processed server bands.

5. A computer program product for processing a digitized
graphic frame, the computer program product stored on a
non-transitory computer usable medium having computer
usable program code embodied therewith, the computer use-
able program code comprising:;

computer usable program code configured to receive a

frame, the frame comprising scene model data;
computer usable program code configured to recerve cam-
era motion information from a user;
computer usable program code configured to set a server
load balancing factor based on the scene model data;

computer usable program code configured to set a prospec-
tive rendering factor based on the scene model data and
recetved camera motion information;

computer usable program code configured to partition the

frame 1nto a plurality of server bands based on the server
load balancing factor and the prospective rendering fac-
tor;
computer usable program code configured to distribute the
plurality of server bands to a plurality of compute serv-
Crs;

computer usable program code configured to receive pro-
cessed server bands from the plurality of compute serv-
ers;

computer usable program code configured to assemble a

processed frame based on the received processed server
bands; and

computer usable program code configured to transmit the

processed frame for display to a user as an 1mage.

6. The computer program product of claim 5, wherein
partitioning the frame further comprises selecting between
hornizontal server bands and vertical server bands.

7. The computer program product of claim 5, further com-
prising:

computer usable program code configured to recerving

reported rendering times from at least one of the plural-
ity of servers; and

wherein setting the server load balancing factor further

comprises setting the server load balancing factor based
on the scene model data and the reported rendering
times.

8. The computer program product of claim 5, wherein
assembling a processed frame band turther comprises decom-
pressing the received processed server bands.

9. A method, comprising:

receiving, by a compute server, araw display band, the raw

display band comprising scene model data and prospec-
tive rendering mnput based on receirved camera motion
information;

the compute server comprising a plurality of processing

clements (PEs);

partitioning the raw display band into a plurality of PE

blocks based on a PE load balancing factor and the
prospective rendering mput;

10

15

20

25

30

35

40

45

50

55

60

65

14

distributing the plurality of PE blocks to the plurality of
PEs:
rendering, by each PE, the PE blocks, to generate rendered

PE blocks;
combining, by the compute server, the rendered PE blocks,

to generate a processed display band;
determining, by the compute server, a rendering time for
each PE;
moditying the PE load balancing factor based on the deter-
mined rendering times; and
transmitting the processed display band to a graphics cli-
ent.
10. The method of claim 9, wherein transmitting comprises
compressing the processed display band.
11. The method of claim 9, further comprising reporting a
rendering time to the graphics client based on the determined
rendering times.

12. The method of claim 9, wherein moditying the PE load

balancing factor further comprises modifying the PE load
balancing factor based on the determined rendering times and
received prospective rendering mput.

13. A computer program product for processing a digitized
graphic frame, the computer program product stored on a
non-transitory computer usable medium having computer
usable program code embodied therewith, the computer use-
able program code comprising:

computer usable program code configured to receive a raw

display band, the raw display band comprising scene
model data and prospective rendering 1mnput based on
recelrved camera motion information;

computer usable program code configured to partition the

raw display band into a plurality of PE blocks based on
a PE load balancing factor and the prospective rendering
input;

computer usable program code configured to distribute the

plurality of PE blocks to a plurality of PEs;
computer usable program code configured to render, by
cach PE, the PE blocks, to generate rendered PE blocks;

computer usable program code configured to combine the
rendered PE blocks, to generate a processed display
band;

computer usable program code configured to determine a

rendering time for each PE;

computer usable program code configured to modify the

PE load balancing factor based on the determined ren-
dering times; and

computer usable program code configured to transmit the

processed display band to a graphics client.

14. The computer program product of claim 13, wherein
transmitting comprises compressing the processed display
band.

15. The computer program product of claim 13, further
comprising computer usable program code configured to
report a rendering time to the graphics client based on the
determined rendering times.

16. The computer program product of claim 13, wherein
modifying the PE load balancing factor further comprises
moditying the PE load balancing factor based on the deter-
mined rendering times and receirved prospective rendering
input.

17. A system comprising a graphics client, the graphics
client configured to:

recerve a frame, the frame comprising scene model data;

receive camera motion information from a user;

set a server load balancing factor based on the scene model

data;

US 9,270,783 B2

15

set a prospective rendering factor based on the scene model
data and received camera motion information;

partition the frame 1nto a plurality of server bands based on
the server load balancing factor and the prospective ren-
dering factor;

distribute the plurality of server bands to a plurality of
compute servers;

receive processed server bands from the plurality of com-
pute servers;

assemble a processed frame based on the received pro-
cessed server bands; and

transmit the processed frame for display to a user as an
image.

18. The system of claim 17, further comprising:

wherein the graphics client 1s further configured to recerve
reported rendering times from at least one of the plural-
ity of servers; and

wherein setting the server load balancing factor further
comprises setting the server load balancing factor based
on the scene model data and the reported rendering
times.

19. The system of claim 17, further comprising;

a plurality of compute servers, each compute server
coupled to the graphics client and comprising a plurality
of processing elements (PEs), and each compute server
coniigured to:

5

10

15

20

16

receive a raw display band from the graphics client, the
raw display band comprising scene model data;
partition the raw display band into a plurality of PE
blocks based on a PE load balancing factor; and
distribute the plurality of PE blocks to the plurality of
PEs;
wherein each PE 1s configured to render the PE blocks, to
generate rendered PE blocks; and
wherein each compute server 1s further configured to:
combine the rendered PE blocks rendered by that com-
pute server’s PEs, to generate a processed display

band;
determine a rendering time for each of that compute
server’s PEs;
modity the PE load balancing factor based on the deter-
mined rendering times; and
transmit the processed display band to the graphics cli-
ent.
20. The system of claim 19, further comprising;
wherein the raw display band further comprises prospec-
tive rendering input; and
wherein partitioning the raw display band comprises par-
titioning based on the PE load balancing factor and the
prospective rendering mput.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

