US009270761B1
12 United States Patent (10) Patent No.: US 9.270.,761 B1
Logue et al. 45) Date of Patent: Feb. 23, 2016
(54) DEVICE CONTROL PROFILE FOR A FABRIC 7,617,328 B2* 11/2009 Lewisetal. 709/246
7,990,897 B2* &/2011 Jingetal. 370/255
NETWORK
8,014,321 B2* 9/2011 Kakivayaetal. 370/258
: _ : : 8,037,202 B2* 10/2011 Yeageretal. 709/238
(71) Applicant: Google Inc., Mountain View, CA (US) 8,194,681 B2* 6/2012 Kaarelactal. 370/401
8,331,544 B2* 12/2012 Krausetal. 379/127.01
(72) Inventors: Jay D. Logue, San Jose, CA (US); 8,370,522 B2* 2/2013 McCanne 709/238
Andrew W. Stebbins, Mountain View, 8,488,624 B2* 7/ 20;3 Friesetal. 370/466
CA (US); Taylor J. Trimble, Mountain 8,655,995 B2 : 2/20__:'-1 Elstonetal. 709/222
View, CA (US) 3,670,946 B2 3/2014 Salazaretal. 702/62
" 8,675,557 B2* 3/2014 Le .ocoviiviiiiiiiininnn, 370/328
_ _ _ 8,700,743 B2* 4/2014 Tebbsetal. 709/220
(73) Assignee: Google Inc., Mountain View, CA (US) 8,755,280 B2* 6/2014 Kligeretal. ...cooov........ 370/252
8,868,672 B2* 10/2014 Hummel etal. 709/212
(*) Notice: Subject to any disclaimer, the term of this 8,879,604 B2* 11/2014 Wooetal. 375/133
patent is extended or adjusted under 35 8,913,611 B2* 12/2014 Koponen etal. 370/389
U.S.C. 154(b) by O days. (Continued)
(21) Appl. No.: 14/592,469 OTHER PUBLICATIONS
(22) Filed: Jan. 8. 2015 Phillips et al., Internet Engineering Task Force. Tags for Identifying
' S Languages. BCP 47. Sep. 2009. http://tools.1etf.org/html/bcp47.
Related U.S. Application Data (Continued)
(60) Provisional application No. 62/061,593, filed on Oct.

] 2014, Primary Examiner — Melvin H Pollack
(51) Int.Cl. (57) ABSTRACT
GO6E 15716 (2006'O;~) Methods and systems for controlling a remote device that
GO6E 15/173 (2006-0;) includes receiving, at an assisting device, a remote passive
HO4L 29/08 (2006.01) rendezvous request from a commaissioning device. The com-
(52) U.S. Cl missioning device manages access to a fabric on which the
CPC .. HO4L 67/141 (2013.01); HO4L 67/143 assisting device resides, and the assisting device 1s configured
(2013.01) to assist a joining device 1n joining the network. Moreover, the
(58) Field of Classification Search assisting device passively waits to rendezvous with the join-
USPC e, 709/229 ing device remotely through its network interface. The remote

See application file for complete search history. passive rendezvous request includes a rendezvous timeout

field that indicates how long a remote passive rendezvous
attempt may remain open before the assisting device 1s to
close the attempt. Furthermore, the remote passive rendez-
vous request includes a filter address that indicates a device to
which device 1s to serve as the joining device.

(56) References Cited

U.S. PATENT DOCUMENTS

7,065,579 B2* 6/2006 Traversatetal. 709/230

7,103,834 B1* 9/2006 Humpleman etal. 715/205

7.324.824 B2* 1/2008 Smithetal. 455/456.1 20 Claims, 24 Drawing Sheets
266 258

242

203~—:
L _ Il ® . C
HVAC L S (t92) LEGACY .
2 - QAW [apeumice &
210 2 256
202 s54 208 21 260 510
:.}))

POOL HEATER 62

214 INTERNET

‘ IRRIGATION \ ‘ NEST/CLCUD \
216 264

US 9,270,761 Bl

Page 2
(56) References Cited 2015/0006633 Al* 1/2015 Vandwalleetal. 709/204
2015/0016407 Al1* 1/2015 Erncksonetal. 370/329
U.S. PATENT DOCUMENTS 2015/0023336 Al 1/2015 Ilsar et al.
2015/0057808 Al1* 2/2015 Cooketal. 700/275
8,942,189 B2* 1/2015 Chouetal.cocoovvvvvre.. 370/329 2015/0131485 Al* 5/2015 Brandtetal. 370/254
8,953,446 B1* 2/2015 Wangetal. 370/231
2005/0260989 A1 11/2005 Pourtier et al. OITHER PUBLICATIONS
%88??82?%222 i 3%882 g;ggue; g‘i‘al‘ J. Klensin, Internationalized Domain Names 1n Applications
2012/0246345 Al 9/9012 Contreras et al (IDNA): Protocol, Aug. 2010. http://tools.1etf.org/html/rfc5891.
2013/0136117 Al 5/2013 Schrum et al. USB Implementers’ Forum. Universal Serial Bus (USB): Device
2013/0305357 Al* 11/2013 Ayyagarietal.c.......... 726/22 Class Definition for Human Interface Devices (HID). Version 1.11.
7013/0322281 A1l 12/2013 Tudlow et al. Jun. 27, 2001, http://www.usb.org/developers/hidpage/HID1 11.
2014/0022061 Al* 1/2014 Apteetal. 340/12.5 pdt.
2014/0047080 A1* 2/2014 Piccolo et al. 709/220 Language Tags n HTML and XML, Sep. 10, 2009, http://www.w3.
2014/0169214 Al 6/2014 Nakajima org/International/articles/language-tags/Overview.en.php.
2014/0208393 Al1* 7/2014 Yasukawaetal. 726/4 Ping, Oracle Manual Pages Section 1M: System Administration
2014/0304357 Al* 10/2014 Bestleretal. ..oovvivviiiini.. 709/213 Commands, pp. 1706-1710, 2013 http://www.w3 .org/International/
2014/0344330 Al1* 11/2014 Copeland 709/203 articles/language-tags/Overview.en.php.
2014/0359101 A1 12/2014 Dawes et al.
2014/0369345 Al1* 12/2014 Yangetal. 370/355 * ~1ted by examiner

U.S. Patent Feb. 23, 2016 Sheet 1 of 24 US 9,270,761 B1

10
y

INTERFACE SENSOR '

18~ 16 ~

POWER
SUPPLY

NETWORK
INTERFACE

o 2 9l .

G013/ 154N

~—91¢

US 9,270,761 B1

¢9¢

4
— Obe

& _

2)

m IOKYTddY
7 AT
&

e

—

-

o

gl

o=

P

.S

mmm o _hwmm

U.S. Patent

U.S. Patent

Feb. 23, 2016 Sheet 3 of 24 US 9,270,761 B1

90
/

APPLICATION LAYER ~ 102

PLATFORM LAYER 100

¥

TRANSPORT LAYER 98

NETWORK LAYER 96
DATA LINK LAYER 94

PHYSICAL LAYER ~92

U.S. Patent Feb. 23, 2016 Sheet 4 of 24 US 9,270,761 B1

1000 1006

U.S. Patent Feb. 23, 2016 Sheet 5 of 24 US 9,270,761 B1
1078
1070 0 e WEAVE
i FABRIC 1074
“SERVICE A
{ END 1 ~ SERVICE
a’ N _
weave OINT. - WEAVE
FABRIC Jp— FABRIC
U 1082
rc'o'rzéb'm'e R 1
------ - DEVICE 1 1U80
. b e e e -
86 ? 1&38
1086 -
G T

DEVICE

- 1092

DEVICE

U.S. Patent Feb. 23, 2016 Sheet 6 of 24 US 9,270,761 B1

1098 ULA (UNIQUE LOCAL ADDRESS)

-1100 -1102 1104

GLOBAL [D SUBNET [D INTERFACE D

—— 40 BITS——}—16 BIIS+———64 BITS ——
FABRIC 1D :11{}3 HG g

1109

\ ASSIGN VIRTUAL ADDRESS | _ 1106
10 PERIPHERY NODE

MAINTAIN LIST OF

~1108

PERIPHERY NODES

MONITOR FOR NEIGHBOR
SOLICITATION MESSAGE OF [415
VIRTUAL ADDRESS

IN LIST

ASSIGN VIRTUL ADDRESS 10
HUB NETWORK INTERFACE | 1il2
FOR ROUTING NODE

RESEND 10 NEIGHBOR
SOLICITATION MESSAGE AND [—11i4

RECEIVE PACKET

REWRITE DESTINATION —~ 1116
ADDRESS

FORWARD PACKET 1118

=G 10

U.S. Patent Feb. 23, 2016 Sheet 7 of 24 US 9,270,761 B1

1120

~1122 1124 ~1126

U.S. Patent Feb. 23, 2016 Sheet 8 of 24 US 9,270,761 B1

GENERAL MESSAGE PROTOCOL
(1 T/ttt TTTtTraaT T rTTTr Tt rTTTr 1T T T T

2 BYTES 115 PACKET LENGTH 0 *“1130

2 BYTES |15 MESSAGE HEADER o 1132
3] ' 16 b-1134
4 BYTES MESSAGE ID
15 0

r'ﬂ"T'_r'ﬂ'_T"F_ﬂ"T"r'ﬂ"T'_r'ﬂ'_T"F_1

153 @8:

— —

| L1136
8 BYTES SOURCE NODE ID —

|

L —

115 0 :

| I TN RN SRR FER R NN N R SR PN M N P I E—

r_ﬂ__T__r 1 T " r "M Trr T T r T TTTrTTmTr T

1563 43:

— —

. 1138
8 BYTES - DESTINATION NODE ID —

— —

1] 0

b e e el o o e o ol o o e o o L o ol e o e e e L e ol e e ke e e e J--L--L_I

(1 T " r—1rr T r/aa T Tt rTTTr 1T rTTr T

2 BYTES 15 KLY IEJ () P“*-llﬁiﬂ

(] ! r--r/aar-rTTrr|aanTtTTtrTTrTa1aTTtrTTrT T T rTr T

2 BYTES 115 PAYLDAD LENGTH 0 ""“'1142

r:'l::T::I' e -n::r::r-; o
I
VARIABLE |— INTIALIZATION VECTOR

I

__J_

APPLICATION PAYLOAD -4

l
|
VARIABLE
l
:. - --T--r-a--ToCreaTCTrTorCATCTrUrUaTCTror—|
1 L-1148
VARIABLE 1 |— MESSAGE INTEGRITY CHECK =
| |
:L-J__¢-_L I N S ST SN SN SEUPUY TN TP MU TR T) N § o
lc= =~ T~ r- T TrTTTrT T T T |
1 }%‘115@
VARIABLE | — PADDING |
EL N NN T TR NP N TR NN TP N (I R T J--L--L-J:
PRttty yutoustpustouiyustyulyyes bptpubpustguyutyyutyustyulyutyniyutyo Syulyuys byutputonpulyutpnpuipuiyulylpp _'I-
_ L1154
VARIABLE MESSAGE SIGNATURE —
|
I

L
r-—r-—

112/; ?EGE 12

U.S. Patent Feb. 23, 2016 Sheet 9 of 24 US 9,270,761 B1

1132
AN 1158 1160
1156) ' ~1162 1164

15 VERSION |- |- | s [0 excaetion Tvee [skeshrus vt 0
—4 BITS——4 BITS—— 4 BITS——4 BITS—]
=16, 13

~1166 1168

KEY NUMBER

|— 4 BITS —|712 BITS %
FIG. 14

U.S. Patent Feb. 23, 2016 Sheet 10 of 24 US 9,270,761 B1

1146
.

—38 BITS —4—8 BITS —4——16 BITS —

o SN0 172 2
VERSION |[MSG TYPE || EXCHANGE ID 1174
PROFILE ID 1176

APPLICATION PAYLOAD SUB-FIELD 1180

US 9,270,761 B1

Sheet 11 of 24

Feb. 23, 2016

U.S. Patent

COMLLMOG3M BNIYIS b o FHOD

Vv PN AT Y

ALIBIEEANNE
FHAAL

L}
oo g

__ ._-.-._L._..-____ “
5;@"
, _‘
- ..._.. .1.____..1...1._____._ .-_-__._.. ..- " ﬂ\iﬂm
. m ;))
mmm%...wﬁv :

ANS
C o} ' -‘r{
Lt o

WA
FHAIC

AL
i
L

P "..

EIVER B EEITe
LOINNGD AT LI T0IATG
o SNINOISIAGH TR

o FAMEES AT

LALIA

AP Gal

ﬁx MRS
uni.. ._..H.m._w.w.

AT LA

.._..n

J 1]
;-.E-!"
{ .'." DL
-

£

>

|ih'h'h'hl‘| iy oy vy,
K
e
i £ -
=
e e
"-n‘
T3
I
e W
]
s

R
£

U.S. Patent Feb. 23, 2016 Sheet 12 of 24 US 9,270,761 B1

1182
\a
1184
2 BYTES |15 STATUS CODE n 1186
1 BYTE | O NEXT STATUS 7 |—1188
|'_'I__T__I"'I__T__I'_'I__T'__I'_'I_'T__I'_'I_'T'_I"'I
VARIABLE} ~~ ADDITIONAL STATUS INFO 1190
-1 17

1184

U.S. Patent Feb. 23, 2016 Sheet 13 of 24 US 9,270,761 B1

1196

SW_UPDATE [— | sw_UPDATE
CLIENT PO SERVER

(DOWNLOAD 1210

DOWNLOAD NOTIFY (-1212

|
| I :
l |
! |
I |
! |
! |
! |
l |
=z =
- C 1E™ \
2 E =
i} = | - |
= FT :._‘;1:3 |
23 T3
(/> i 1] €3 :
Y - 1| 5 l
- :'{ I.'f--_-'.:ir I
- T 1| == |
(/3 s || &3 :
Ty iy |
! |
l |
1) L | _ __
bt fromt | & I ook |
3 A | B2 .
+= 3 :-IE- | -
|

U.S. Patent Feb. 23, 2016 Sheet 14 of 24 US 9,270,761 B1

1204

N
18E | 0 FRAME CONTROL 7 |~1218

5 BYTES SRODUCT SPECIFICATION "le20

L L L L L L L L AL L L L B L D R

VARIABLE 1 VENDDR SPEBIFIC DATA L1222

VARIARLE VERSION SPECIFICATION ~1224

r-ﬂ--ﬂ--T--T--T--F-ﬂ--1-'T--T-_r-ﬂ-_1--T--T-_I

VARIABLE 1 LOCALE SPE{ZIFICATIDN L1226

2.4 BYTES INTEGRITY TYPES SUPPORTED 1228
2.5 BYIES UPDATE SUHEMES SUPPORTED ~1230

1218
N 1232 1234

VERDOR oPECIFIC FLAG | LOCALE SPECIFICATION FLAG RESERVED 7

192*3 FIG. 21

VENDOR D 1236
PRODUCT 1D ~12383
FRODUCT REVISION 1240

1224

~1246 1248

U.S. Patent Feb. 23, 2016 Sheet 15 of 24 US 9,270,761 B1

N 1250 1252

N\ 1254 1256
0 SCHEME LIST LENGTH 7 UPDATE SCHEME LIST

-G 20

1208
\a
VARIABLE QUERY STATUS - |1258
ra-r--r—-|--r——|---r--|—-'r--r--|--r--|--'r-—|—-11—5-: 1960
I] I |
VARIABLE URI ' _!
|
. :_—_-."-_-_-i.—_-_JI-_-_-.I'.-_-4.—.—..%;.—1.—.—.}-.—.—:::.1-.—.—?.—.1-.—.—%.—. —_—.i.-_—_l .
VARIABLE | INTEGRITY SPECIFICATIONS L~1262
T T T T S S S T ST S |
2 BYTES | 0 UPDATE SCHEME 7 [0, UPDATE OPTIONS _ 7 j~1266
1264 TN
Fia. 27
1260

N\

INTEGRITY TYPE 1 b1272
1274

INFEGRITY VALUE

U.S. Patent Feb. 23, 2016 Sheet 16 of 24 US 9,270,761 B1

zzri‘;a
1276 1278 1280 1282
e U RERGRT "
JPDATE PRIGRITY UPDATE CONDITION S RESERVED

— B ———— 3 81— —1 T ———2 B ——

-G, 30

U.S. Patent Feb. 23, 2016 Sheet 17 of 24 US 9,270,761 B1

1420
\
1422 ~1424
2 BYTES [0 TRANSFER CONTROL 7| 8 RANGE CONTROL 15
2 BYTES | O FILE DESIGNATOR LENGTH 51426
2 BYTES | O MAX BLOCK SIZE 15 1428
START OFFSET
o ~1430
4-8 BYTES
| ENGTH u
4-8 BYTES ~ 1434
~1434
VARIABLE FILE DESIGNATOR
: {} | | | | | | | i | | | i | | I].5 :
1 —
: :
VARIABLE j— METADATA —L-~ 1480
" .
! "
:-__I__J.__I._.l__J.__I._.I__J.__I.__I__J.__L__I__J.__l._.:

FG. 34

U.S. Patent Feb. 23, 2016 Sheet 18 of 24 US 9,270,761 B1

1422
~1450 14572 1454 1456

-
— 1 B ——1 B ——1 B —— 1 Bl ——————— ¢ By ——————————

G, 33
1424
1470 ~1472 1474
--- e | - [- [on | o
1500 G, 34
.
1 BYTE TRANSFER CONTROL 1502
2 BYTES | O MAX BLOCK SIZE
r-ﬂ—-1-—r--r—1—-1—-r——r-ﬁ--1-—r-—r—ﬂ--1—-r-1
| |]
VARIABLE L- METADATA -1 1906
L_J__J__L__L_J__J__L_J__J__L__L_J__J__L__L_J
G, 35
1520
o
2 BYTES | O STATUS CODE 15 1922
{ BYTE NEXT STATUS ~1924

(! 1T rHreaaTTTTTr-rrr-mar 1Tt rTTr/ T T TT T re
i

]
VARIABLE - ADD'L INFO —4{—1525
]

-G, 36

U.S. Patent Feb. 23, 2016 Sheet 19 of 24 US 9,270,761 B1

L L N I I D I AN N I -I_-T--r--l---r--rl-s-lk“'lﬁﬁﬁ

| 0 MAX BLOCK SIZE

LENGHH {4-8 BYTES)
~1548

o Sy WA
VO
b e N L

SEVICE
LONTRUL SERVER

CONTRUL CLIENT

RESET CONFIG

(ALL | NETWORK | FABRIC | SERVICEY
« SERVER RESETS

CONFIGHRATHON

DEVILE e Vile

CLNTRUL GLIENTY LCONTHUL SERVER

ARM FALERA
(NEW MODE, FALRA

| 2—“! E“»’*

SERVER ARMS
FAHLRAFE AND
 SETENEW
FAILSAFE TOKEN
H DHSARMED

F%G 39 FAILS UHTHERWISE

U.S. Patent Feb. 23, 2016 Sheet 20 of 24 US 9,270,761 B1

hal Sy
DEVICE

LEVILE

_CONTROL CLIENT

CONTROL SERVER

(RESET MODE, FAILSAFE TOKEN)

532 SEAVER RESETS
STATUR REPORT 834 NETWORK, FASRIC
AND SERVICE
| CONFIGS. ARMS
FALSAFE AND
SETS NEW

DEVICE LV

LUNTROL SERVER

CONTROL GLE

ARM FALSAFE

{RESL#?@?E RXISTHNG MOUE, RALSAFE TOREN]
- H3h SERVER ARMS
- LA ALSARE ﬁ
____________________ STATUS REPORT 838 PAILSAFE AND
e ittt R PP T | | hﬁ E: &t i‘i“}%{kﬁ Eg‘_‘
LISARMER. OR
ARMELY WITH

. SRR FUKEN;
F E G . "i ’E Fadl o UTHERWIRE

B0 - B4
DEVICE

DEVICE

CONTROL GUEN

LUNTRUL SERVER

DISARM FAILEARE
640

AT IG BEBNET n g F FAILSAFE

STATUS REPOR] 847 Al

A <"“---------------------l"'..-" | ﬁﬁ\RR&fE{} SER\){EQ

DISARMS FAILSAFE
' AND RESETS

FE G ;{%, 2 FAILSARE TOKEN

US 9,270,761 B1

Sheet 21 of 24

Feb. 23, 2016

U.S. Patent

MAAOGENDOD ONES
a7 S40L ¥30A6EY

NAOOLNACO OH3S
S14V1S3 WAL
FENOASHY OHO:

SOLSE HIAMES

3

Y8 HO)
N OINNGD HO
wfoﬂzayuﬁzga
W31 LN
TAY A LN ONTE NG
OO MOLLOYENYY L

Q e

'L'L'L

ML IENQLSTY
OHOS SIS HS

AR NG00 UGS
OHOD SLudil d3AuHS

RNV
wum ‘,mﬂ

"
.,.m

et NGO

mm@

“..i ..wq\ frwmm M
SN IR NS

INTS)

AL L2000y
Qb0 84048

AL 182000 QD2

SLaVisdy (NG

e,

mwﬁﬁw mwﬁsm mx

i .Em,.ﬁ .# 12350108

FRATD

| _._Li

US 9,270,761 B1

Sheet 22 of 24

Feb. 23, 2016

U.S. Patent

by Ol

|
S0 NOLLOENNG T 401 | (A0 NOILLTIENNGD &2
. I .
* “ | .
_
& |) &
LNATD QL Ol449dl | T O DAY L DGO
|
: x\n\!}fm - .1.9__ ‘ -l A N i A TEL e SR 4 A
G99 SOIAZG A NONAIIUNIE Dl | 2 A0 GAEN0ALZ0NAY O D44l
m.,, LTKQ 5§ DAY AR |) P
| :
_
® . ®
. Vo9
° AL NOD NOLLDENNGD 3100

,.U,
1604 SN0ATION ﬁ SRS IHN0E8M T d SEAE00
MO CHSTTRY LSS NOULORMNGD 401 D65

NOLLY YD TINNAL H04 A IGEE SIS
WIETIYD df 5436 ¥AAYES

T i SEHOLY
Y 210N

z
!
e

mxm%& A3 A 1009 SALLTYN
}w AL SORALION m)m,}_}ﬁwwr
mwm)gr.nﬁ? wf .wnm W ..Mw... _ . ;

ERTETE

LN mau HIAING

nmﬁemim@ }.\.,anﬁﬂ .vw

AE0

G944

i&")
&3
LN
£
A

US 9,270,761 B1

Sheet 23 of 24

Feb. 23, 2016

U.S. Patent

g Ol

NaAAL A4YETY SalAR Y

OO0 Py GiAR L

N
T
L}

US 9,270,761 B1

Sheet 24 of 24

Feb. 23, 2016

U.S. Patent

Y

41

O
—

8y Ol

5

L5

A3y o400

L5
£

ANDZNE ALIALL YN

LA L SR0ASH0N Y

Ly Ol

T D AN GO LINCIH NMHLOZNNGD

FROENEL HOLINCHY NOLLIANNOD

;o :
mm_.ﬁ»ﬁm mw 4

| 84LA8 <

{3 Rl AG L

O |53iA87¢

| 83LAB7

US 9,270,761 Bl

1

DEVICE CONTROL PROFILE FOR A FABRIC
NETWORK

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application claims the benefit of Provisional Applica-
tion Ser. No. 62/061,593, filed Oct. 8, 2014, entitled “FAB-

RIC NETWORK.,” which 1s incorporated by reference herein
in its entirety.

BACKGROUND

This disclosure relates to data communication profiles for
systems, devices, methods, and related computer program
products for smart buildings, such as a smart home. This
disclosure relates to a fabric network that couples electronic
devices using one or more network types and a device control
profile used to remotely control device functions.

Some homes today are equipped with smart home net-
works to provide automated control of devices, appliances
and systems, such as heating, ventilation, and air conditioning
(“HVAC”) systems, lighting systems, alarm systems, and
home theater and entertainment systems. Smart home net-
works may include control panels that a person may use to
iput settings, preferences, and scheduling information that
the smart home network uses to provide automated control
the various devices, appliances and systems 1n the home. For
example, a person may mput a command to make a network
joinable via a device. However, these networks may include
various devices that are may perform various actions, but
these devices may not be easily accessible or have desirable
user interfaces or the devices may lack a robust user interface
altogether. Instead, 1t may be desirable to control these
devices remotely from other devices in the network.

This section 1s mntended to mtroduce the reader to various
aspects of art that may be related to various aspects of the
present techmiques, which are described and/or claimed
below. This discussion 1s believed to be helpiul 1n providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are
to be read 1n this light, and not as admissions of prior art.

SUMMARY

A summary of certain embodiments disclosed herein 1s set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not
intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

Embodiments of the present disclosure relate to a fabric
network that includes one or more logical networks that
enables devices connected to the fabric to communicate with
cach other using a list of protocols and/or profiles known to
the devices to cause specific actions based on the message
type and profile of the message. The communications
between the devices may follow a typical message format to
cause a specific action with the message format enabling the
devices to understand communications between the devices
regardless of which logical networks the communicating
devices are connected to 1n the fabric. Within the message
format, a payload of data may be included for the receiving
device to store and/or process to cause a recerving device to
perform an indicated action. The format and the contents of

10

15

20

25

30

35

40

45

50

55

60

65

2

the payload may vary according to a header (e.g., profile tag)
within the payload that indicates a specific profile (including
one or more protocols) and/or a type of message that 1s being
sent according to the profile in order to cause the action
indicated 1n the message according to the profile.

According to some embodiments, two or more devices 1n a
fabric may communicate using various profiles. For example,
in certain embodiments, a data management profile, a net-
work provisioning profile, or a core profile (including status
reporting protocols) that are available to devices connected to
the fabric. Also, a device control profile may be used for
controlling remote devices, such as causing the remote device
to enter a remote passive rendezvous state that enables other
devices to contact the remote device with the remote device
monitoring a predefined port. The device control profile may
also be used to open a connection monitor to verily that the
connection between the remote device and 1ts controlling
device remain open.

Various refinements of the features noted above may exist
in relation to various aspects of the present disclosure. Further
features may also be incorporated in these various aspects as
well. These refinements and additional features may exist
individually or in any combination. For instance, various
features discussed below in relation to one or more of the
illustrated embodiments may be incorporated into any of the
above-described aspects of the present disclosure alone or 1n
any combination. The briel summary presented above 1is
intended only to familiarize the reader with certain aspects
and contexts ol embodiments of the present disclosure with-
out limitation to the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better understood
upon reading the following detailed description and upon
reference to the drawings 1n which:

FIG. 1 1s a block diagram of an electronic device having
that may be interconnected with other devices using a fabric
network, 1n accordance with an embodiment;

FIG. 2 illustrates a block diagram of a home environment 1n
which the general device of FIG. 1 may communicate with
other devices via the fabric network, 1n accordance with an
embodiment;

FIG. 3 illustrates a block diagram of an Open Systems
Interconnection (OSI) model that characterizes a communi-
cation system for the home environment of FIG. 2, 1n accor-
dance with an embodiment;

FI1G. 4 1llustrates the fabric network having a single logical
network topology, in accordance with an embodiment;

FIG. 3 illustrates the fabric network having a star network
topology, 1n accordance with an embodiment;

FIG. 6 1llustrates the fabric network having an overlapping
networks topology, 1n accordance with an embodiment;

FIG. 7 illustrates a service communicating with one or
more fabric networks, 1n accordance with an embodiment;

FIG. 8 illustrates two devices 1n a fabric network 1n com-
municative connection, in accordance with an embodiment;

FIG. 9 1llustrates a unique local address format (ULA) that
may be used to address devices 1n a fabric network, 1n accor-
dance with an embodiment;

FIG. 10 1llustrates a process for proxying periphery devices
on a hub network, in accordance with an embodiment:

FIG. 11 illustrates a tag-length-value (TLV) packet that
may be used to transmit data over the fabric network, in
accordance with an embodiment;

US 9,270,761 Bl

3

FIG. 12 1llustrates a general message protocol (GMP) that
may be used to transmait data over the fabric network that may
include the TLV packet of FIG. 11, 1n accordance with an

embodiment;
FI1G. 13 illustrates a message header field of the GMP of >

FI1G. 12, in accordance with an embodiment;

FI1G. 14 illustrates a key identifier field of the GMP of FIG.
12, 1n accordance with an embodiment;

FI1G. 15 illustrates an application payload field of the GMP
of FIG. 12, in accordance with an embodiment;

FIG. 16 illustrates a profile library that includes various
profiles that may be used 1n the application payload field of

FIG. 15;
FI1G. 17 illustrates a status reporting schema that may be

used to update status information in the fabric network, in

accordance with an embodiment;

FIG. 18 illustrates a profile field of the status reporting
schema of FIG. 17, 1n accordance with an embodiment;

FI1G. 19 illustrates a protocol sequence that may be used to 20
perform a software update between a client and a server, in
accordance with an embodiment;

FI1G. 20 illustrates an image query frame that may be used
in the protocol sequence of FIG. 19, 1n accordance with an
embodiment; 25

FIG. 21 illustrates a frame control field of the image query
frame of FIG. 20, 1n accordance with an embodiment;

FI1G. 22 1llustrates a product specification field ol the image
query frame of FIG. 20, 1n accordance with an embodiment;

FI1G. 23 1llustrates a version specification field of the image 30
query frame of FIG. 20, 1n accordance with an embodiment;

FI1G. 24 illustrates a locale specification field of the image
query frame of FIG. 20, 1n accordance with an embodiment;

FI1G. 25 illustrates an integrity types supported field of the
image query frame ol FI1G. 20, 1n accordance with an embodi- 35
ment;

FI1G. 26 1llustrates an update schemes supported field of the
image query frame of FI1G. 20, 1n accordance with an embodi-
ment;

FI1G. 27 illustrates an image query response frame that may 40
be used 1n the protocol sequence of FIG. 19, i accordance
with an embodiment;

FI1G. 28 illustrates a uniform resource 1identifier (URI) field
of the image query response frame of FIG. 27, 1n accordance
with an embodiment; 45

FIG. 29 illustrates a integrity specification field of the
image query response frame of F1G. 27, in accordance with an
embodiment;

FIG. 30 illustrates an update scheme field of the image
query response frame of FIG. 27, imn accordance with an 50
embodiment;

FI1G. 31 illustrates a communicative connection between a
sender and a receiver in a bulk data transfer, in accordance
with an embodiment;

FIG. 32 1llustrates a SendInit message that may be used to 55
initiate the communicative connection by the sender of FIG.
31, in accordance with an embodiment;

FI1G. 33 illustrates a transfer control field of the SendInait
message of FIG. 32, 1n accordance with an embodiment;

FIG. 34 illustrates a range control field of the SendImt 60
message of FIG. 33, 1n accordance with an embodiment;

FI1G. 35 illustrates a Send Accept message that may be used
to accept a communicative connection proposed by the Sen-
dInit message of FIG. 32 sent by the sender of FIG. 32, 1n
accordance with an embodiment; 65

FI1G. 36 1llustrates a SendReject message that may be used
to reject a communicative connection proposed by the Sen-

10

15

4

dInit message of FIG. 32 sent by the sender of FIG. 32, 1n
accordance with an embodiment;

FIG. 37 1llustrates a ReceiveAccept message that may be
used to accept a communicative connection proposed by the
recetver of FIG. 32, in accordance with an embodiment:

FIG. 38 illustrates a protocol sequence diagram view of a
reset configuration interaction, according to an embodiment;

FIG. 39 illustrates a protocol sequence diagram view of an
new arm failsafe interaction, according to an embodiment;

FIG. 40 1llustrates a protocol sequence diagram view of a
reset arm failsatfe interaction, according to an embodiment;

FIG. 41 1illustrates a protocol sequence diagram view of a
resume arm failsafe interaction, according to an embodiment;

FIG. 42 illustrates a protocol sequence diagram view of a
disarm failsafe interaction, according to an embodiment;

FIG. 43 illustrates a protocol sequence diagram view of an
enable connection monitor interaction, according to an
embodiment;

FIG. 44 1llustrates a protocol sequence diagram view of a
remote passive rendezvous interaction, according to an
embodiment;

FIG. 45 1llustrates a schematic view of areset configuration
data frame, according to an embodiment;

FIG. 46 1llustrates a schematic view of an arm failsate data
frame, according to an embodiment;

FIG. 47 illustrates a schematic view of an enable connec-
tion monitor data frame, according to an embodiment; and

FIG. 48 illustrates a schematic view of a remote passive
rendezvous request data frame, according to an embodiment.

DETAILED DESCRIPTION

One or more specific embodiments of the present disclo-
sure will be described below. These described embodiments
are only examples of the presently disclosed techniques.
Additionally, 1n an effort to provide a concise description of
these embodiments, features of an actual implementation
may not be described in the specification. It should be appre-
ciated that 1n the development of any such actual implemen-
tation, as 1n any engineering or design project, numerous
implementation-specific decisions must be made to achieve
the developers’ specific goals, such as compliance with sys-
tem-related and business-related constraints, which may vary
from one implementation to another. Moreover, 1t should be
appreciated that such a development effort might be complex
and time consuming, but may nevertheless be aroutine under-
taking of design, fabrication, and manufacture for those of
ordinary skill having the benefit of this disclosure.

When introducing elements of various embodiments of the
present disclosure, the articles “a,” “an,” and “the” are
intended to mean that there are one or more of the elements.
The terms “comprising,” “including,” and “having” are
intended to be inclusive and mean that there may be addi-
tional elements other than the listed elements. Additionally, 1t
should be understood that references to “one embodiment™ or
“an embodiment™ of the present disclosure are not intended to
be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features.

Embodiments of the present disclosure relate generally to
an efficient fabric network that may be used by devices and/or
services commumnicating with each other 1n a home environ-
ment. Generally, consumers living 1n homes may find 1t usetul
to coordinate the operations of various devices within their
home such that of their devices are operated efficiently. For
example, a thermostat device may be used to detect a tem-
perature of ahome and coordinate the activity of other devices

(e.g., lights) based on the detected temperature. In this

US 9,270,761 Bl

S

example, the thermostat device may detect a temperature that
may indicate that the temperature outside the home corre-
sponds to daylight hours. The thermostat device may then
convey to the light device that there may be daylight available
to the home and that thus the light should turn off.

In addition to operating these devices efficiently, consum-
ers generally prefer to use user-friendly devices that involve a
mimmum amount of set up or iitialization. That 1s, consum-
ers may generally prefer to purchase devices that are fully
operational after performing a few number 1nitialization steps
that may be performed by almost any individual regardless of
age or technical expertise.

With the foregoing 1n mind, to enable to effectively com-
municate data between each other within the home environ-
ment, the devices may use a fabric network that includes one
or more logical networks to manage communication between
the devices. That 1s, the efficient fabric network may enable
numerous devices within a home to communicate with each
other using one or more logical networks. The communica-
tion network may support Internet Protocol version 6 (IPv6)
communications such that each connected device may have a
unique local address (ILA). Moreover, to enable each device to
integrate with a home, 1t may be useful for each device to
communicate within the network using low amounts of
power. That 1s, by enabling devices to communicate using low
power, the devices may be placed anywhere 1n a home with-
out being coupled to a continuous power source (e.g., battery-
powered).

I. Fabric Introduction

By way of introduction, FIG. 1 1llustrates an example of a
general device 10 that may that may communicate with other
like devices within a home environment. In one embodiment,
the device 10 may include one or more sensors 12, a user-
interface component 14, a power supply 16 (e.g., including a
power connection and/or battery), a network interface 18, a
processor 20, and the like. Particular sensors 12, user-inter-
face components 14, and power-supply configurations may
be the same or similar with each devices 10. However, i1t
should be noted that in some embodiments, each device 10
may include particular sensors 12, user-interface components
14, power-supply configurations, and the like based on a
device type or model.

The sensors 12, in certain embodiments, may detect vari-
ous properties such as acceleration, temperature, humaidity,
water, supplied power, proximity, external motion, device
motion, sound signals, ultrasound signals, light signals, fire,
smoke, carbon monoxide, global-positioning-satellite (GPS)
signals, radio-frequency (RF), other electromagnetic signals
or fields, or the like. As such, the sensors 12 may include
temperature sensor(s), humidity sensor(s), hazard-related
sensor(s) or other environmental sensor(s), accelerometer(s),
microphone(s), optical sensors up to and including camera(s)
(e.g., charged coupled-device or video cameras), active or
passive radiation sensors, GPS recetver(s) or radiofrequency
identification detector(s). While FIG. 1 1llustrates an embodi-
ment with a single sensor, many embodiments may include
multiple sensors. In some instances, the device 10 may
includes one or more primary sensors and one or more sec-
ondary sensors. Here, the primary sensor(s) may sense data
central to the core operation of the device (e.g., sensing a
temperature 1 a thermostat or sensing smoke 1 a smoke
detector), while the secondary sensor(s) may sense other
types of data (e.g., motion, light or sound), which can be used
for energy-elliciency objectives or smart-operation objec-
tives.

One or more user-interface components 14 1n the device 10
may receive mput from the user and/or present information to

10

15

20

25

30

35

40

45

50

55

60

65

6

the user. The user-interface component 14 may also include
one or more user-input components that may receive infor-
mation from the user. The recetved input may be used to
determine a setting. In certain embodiments, the user-input
components may include a mechanical or virtual component
that responds to the user’s motion. For example, the user can
mechanically move a sliding component (e.g., along a verti-
cal or horizontal track) or rotate a rotatable ring (e.g., along a
circular track), the user’s motion along a touchpad may be
detected, or motions/gestures may be detected using a con-
tactless gesture detection sensor (e.g., infrared sensor or cam-
era). Such motions may correspond to a setting adjustment,
which can be determined based on an absolute position of a
user-interface component 104 or based on a displacement of
a user-interface components 104 (e.g., adjusting a setpoint
temperature by 1 degree F. for every 10° rotation of a rotat-
able-ring component). Physically and virtually movable user-
input components can allow a user to set a setting along a
portion of an apparent continuum. Thus, the user may not be
confined to choose between two discrete options (e.g., as
would be the case 11 up and down buttons were used) but can
quickly and intuitively define a setting along a range of pos-
sible setting values. For example, a magnitude of a movement
ol a user-input component may be associated with a magni-
tude of a setting adjustment, such that a user may dramatically
alter a setting with a large movement or finely tune a setting
with s small movement.

The user-interface components 14 may also include one or
more buttons (e.g., up and down buttons), a keypad, a number
pad, a switch, a microphone, and/or a camera (e.g., to detect
gestures). In one embodiment, the user-input component 14
may include a click-and-rotate annular ring component that
may enable the user to interact with the component by rotat-
ing the ring (e.g., to adjust a setting) and/or by clicking the
ring inwards (e.g., to select an adjusted setting or to select an
option). In another embodiment, the user-input component 14
may 1nclude a camera that may detect gestures (e.g., to indi-
cate that a power or alarm state of a device 1s to be changed).
In some instances, the device 10 may have one primary 1mput
component, which may be used to set various types of set-
tings. The user-interface components 14 may also be config-
ured to present information to a user via, €.g., a visual display
(e.g., a thin-film-transistor display or organic light-emitting-
diode display) and/or an audio speaker.

The power-supply component 16 may include a power
connection and/or a local battery. For example, the power
connection may connect the device 10 to a power source such
as a line voltage source. In some instances, an AC power
source can be used to repeatedly charge a (e.g., rechargeable)
local battery, such that the battery may be used later to supply
power to the device 10 when the AC power source 1s not
available. In certain embodiments, the power supply compo-
nent 16 may include intermittent or reduced power connec-
tions that may be less than that provided via an AC plug in the
home. In certain embodiments, devices with batteries and/or
intermittent or reduced power may be operated as “sleepy
devices” that alternate between an online/awake state and an
oltline/sleep state to reduce power consumption.

The network interface 18 may include one or more com-
ponents that enable the device 10 to communicate between
devices using one or more logical networks within the fabric
network. In one embodiment, the network interface 18 may
communicate using an eflicient network layer as part of 1ts
Open Systems Interconnection (OSI) model. In certain
embodiments, one component of the network interface 18
may communicate with one logical network (e.g., WikF1) and
another component of the network interface may communi-

US 9,270,761 Bl

7

cate with another logical network (e.g., 802.15.4). In other
words, the network interface 18 may enable the device 10 to
wirelessly communicate via multiple IPv6 networks. As such,
the network 1nterface 18 may include a wireless card, Ether-
net port, and/or other suitable transceiver connections.

The processor 20 may support one or more of a variety of
different device functionalities. As such, the processor 20
may include one or more processors configured and pro-
grammed to carry out and/or cause to be carried out one or
more of the functionalities described herein. In one embodi-
ment, the processor 20 may include general-purpose proces-
sors carrying out computer code stored 1in local memory (e.g.,
flash memory, hard drive, random access memory), special-
purpose processors or application-specific integrated circuits,
other types of hardware/firmware/software processing plat-
forms, and/or some combination thereotf. Further, the proces-
sor 20 may be implemented as localized versions or counter-
parts of algorithms carried out or governed remotely by
central servers or cloud-based systems, such as by virtue of
running a Java virtual machine (JVM) that executes nstruc-
tions provided from a cloud server using Asynchronous Java-
script and XML (AJAX) or similar protocols. By way of
example, the processor 20 may detect when a location (e.g., a
house or room) 1s occupied, up to and including whether 1t 1s
occupied by a specific person or 1s occupied by a specific
number of people (e.g., relative to one or more thresholds). In
one embodiment, this detection can occur, e.g., by analyzing
microphone signals, detecting user movements (e.g., 1n front
of a device), detecting opemings and closings of doors or
garage doors, detecting wireless signals, detecting an IP
address of a recerved signal, detecting operation of one or
more devices within a time window, or the like. Moreover, the
processor 20 may include 1image recognition technology to
identily particular occupants or objects.

In some 1nstances, the processor 20 may predict desirable
settings and/or implement those settings. For example, based
on presence detection, the processor 20 may adjust device
settings to, e.g., conserve power when nobody 1s home orin a
particular room or to accord with user preferences (e.g., gen-
cral at-home preferences or user-specific preferences). As
another example, based on the detection of a particular per-
son, animal or object (e.g., a child, pet or lost object), the
processor 20 may initiate an audio or visual indicator of
where the person, animal or object 1s or may 1nitiate an alarm
or security feature 1f an unrecognized person 1s detected
under certain conditions (e.g., at mght or when lights are off).

In some nstances, devices may interact with each other
such that events detected by a first device influences actions of
a second device using one or more common profiles between
the devices. For example, a first device can detect that a user
has pulled into a garage (e.g., by detecting motion in the
garage, detecting a change 1n light 1n the garage or detecting
opening of the garage door). The first device can transmit this
information to a second device via the fabric network, such
that the second device can, e.g., adjust a home temperature
setting, a light setting, a music setting, and/or a security-alarm
setting. As another example, a first device can detect a user
approaching a front door (e.g., by detecting motion or sudden
light pattern changes). The first device may cause a general
audio or visual signal to be presented (e.g., such as sounding
of a doorbell) or cause a location-specific audio or visual
signal to be presented (e.g., to announce the visitor’s presence
within a room that a user 1s occupying).

With the foregoing in mind, FIG. 2 illustrates a block
diagram of a home environment 30 1n which the device 10 of
FIG. 1 may communicate with other devices via the fabric
network. The depicted home environment 30 may include a

10

15

20

25

30

35

40

45

50

55

60

65

8

structure 32 such as a house, office building, garage, or
mobile home. It will be appreciated that devices can also be
integrated into a home environment that does not include an
entire structure 32, such as an apartment, condominium,
oflice space, or the like. Further, the home environment 30
may control and/or be coupled to devices outside of the actual
structure 32. Indeed, several devices 1in the home environment
30 need not physically be within the structure 32 at all. For
example, a device controlling a pool heater 34 or irrigation
system 36 may be located outside of the structure 32.

The depicted structure 32 includes multiple rooms 38,
separated at least partly from each other via walls 40. The
walls 40 can include interior walls or exterior walls. Each
room 38 can further include a floor 42 and a ceiling 44.
Devices can be mounted on, integrated with and/or supported
by the wall 40, the tloor 42, or the ceiling 44.

The home environment 30 may include multiple devices,
including 1ntelligent, multi-sensing, network-connected
devices that may integrate seamlessly with each other and/or
with cloud-based server systems to provide any of a variety of
useiul home objectives. One, more or each of the devices
illustrated 1n the home environment 30 may include one or
more sensors 12, a user interface 14, a power supply 16, a
network interface 18, a processor 20 and the like.

Example devices 10 may include a network-connected
thermostat 46 that may detect ambient climate characteristics
(e.g., temperature and/or humidity) and control a heating,
ventilation and air-conditioning (HVAC) system 48. Another
example device 10 may include a hazard detection unit 50 that
can detect the presence of a hazardous substance and/or a
hazardous condition in the home environment 30 (e.g.,
smoke, fire, or carbon monoxide). Additionally, entryway
interface devices 52, which can be termed a “smart doorbell”,
can detect a person’s approach to or departure from a loca-
tion, control audible functionality, announce a person’s
approach or departure via audio or visual means, or control
settings on a security system (e.g., to activate or deactivate the
security system).

In certain embodiments, the device 10 may include a light
switch 54 that may detect ambient lighting conditions, detect
room-occupancy states, and control a power and/or dim state
of one or more lights. In some instances, the light switches 54
may control a power state or speed of a fan, such as a ceiling
fan.

Additionally, wall plug interfaces 56 may detect occu-
pancy of a room or enclosure and control supply of power to
one or more wall plugs (e.g., such that power 1s not supplied
to the plug 11 nobody 1s at home). The device 10 within the
home environment 30 may further include an appliance 58,
such as refrigerators, stoves and/or ovens, televisions, wash-
ers, dryers, lights (inside and/or outside the structure 32),
stereos, mtercom systems, garage-door openers, floor fans,
ceiling fans, whole-house fans, wall air conditioners, pool
heaters 34, irrigation systems 36, security systems, and so
forth. While descriptions of FIG. 2 may identily specific
sensors and functionalities associated with specific devices, it
will be appreciated that any of a variety of sensors and func-
tionalities (such as those described throughout the specifica-
tion) may be integrated into the device 10.

In addition to contaiming processing and sensing capabili-
ties, each of the example devices described above may be
capable of data communications and information sharing
with any other device, as well as to any cloud server or any
other device that 1s network-connected anywhere in the
world. In one embodiment, the devices 10 may send and
receive communications via a fabric network discussed
below. In one embodiment, fabric may enable the devices 10

US 9,270,761 Bl

9

to communicate with each other via one or more logical
networks. As such, certain devices may serve as wireless
repeaters and/or may function as bridges between devices,
services, and/or logical networks in the home environment
that may not be directly connected (1.e., one hop) to each
other.

In one embodiment, a wireless router 60 may further com-
municate with the devices 10 in the home environment 30 via
one or more logical networks (e.g., WiF1). The wireless router
60 may then communicate with the Internet 62 or other net-
work such that each device 10 may commumicate with a
remote service or a cloud-computing system 64 through the
Internet 62. The cloud-computing system 64 may be associ-
ated with a manufacturer, support entity or service provider
associated with a particular device 10. As such, in one
embodiment, a user may contact customer support using a
device 1tsell rather than using some other communication
means such as a telephone or Internet-connected computer.
Further, software updates can be automatically sent from the
cloud-computing system 64 or devices in the home environ-
ment 30 to other devices in the fabric (e.g., when available,
when purchased, when requested, or at routine 1ntervals).

By virtue of network connectivity, one or more of the
devices 10 may further allow a user to interact with the device
even 11 the user 1s not proximate to the device. For example, a
user may communicate with a device using a computer (e.g.,
a desktop computer, laptop computer, or tablet) or other por-
table electronic device (e.g., a smartphone) 66. A webpage or
application may receirve communications from the user and
control the device 10 based on the received communications.
Moreover, the webpage or application may present informa-
tion about the device’s operation to the user. For example, the
user can view a current setpoint temperature for a device and
adjust 1t using a computer that may be connected to the
Internet 62. In this example, the thermostat 46 may recerve the
current setpoint temperature view request via the fabric net-
work via one or more underlying logical networks.

In certain embodiments, the home environment 30 may
also include a variety of non-communicating legacy appli-
ances 68, such as old conventional washer/dryers, refrigera-
tors, and the like which can be controlled, albeit coarsely
(ON/OFF), by virtue of the wall plug interfaces 56. The home
environment 30 may further include a variety of partially
communicating legacy appliances 70, such as infra-red (IR)
controlled wall air conditioners or other IR-controlled
devices, which can be controlled by IR signals provided by
the hazard detection units 50 or the light switches 54.

As mentioned above, each of the example devices 10
described above may form a portion of a fabric network.
Generally, the fabric network may be part of an Open Systems
Interconnection (OSI) model 90 as depicted in FIG. 4. The
OSI model 90 illustrates functions of a communication sys-
tem with respect to abstraction layers. That 1s, the OSI model
may specily a networking framework or how communica-
tions between devices may be implemented. In one embodi-
ment, the OSI model may include six layers: a physical layer
92, a data link layer 94, a network layer 96, a transport layer
98, a platform layer 100, and an application layer 102. Gen-
erally, each layer 1n the OSI model 90 may serve the layer
above 1t and may be served by the layer below it.

Keeping this in mind, the physical layer 92 may provide
hardware specifications for devices that may communicate
with each other. As such, the physical layer 92 may establish
how devices may connect to each other, assist in managing,
how communication resources may be shared between
devices, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

10

The data link layer 94 may specily how data may be trans-
terred between devices. Generally, the data link layer 94 may
provide away in which data packets being transmitted may be
encoded and decoded into bits as part of a transmission pro-
tocol.

The network layer 96 may specity how the data being
transierred to a destination node 1s routed. The network layer
96 may also provide a security protocol that may maintain the
integrity of the data being transterred. The efficient network
layer discussed above corresponds to the network layer 96. In
certain embodiments, the network layer 96 may be com-
pletely independent of the platform layer 100 and include any
suitable IPv6 network type (e.g., WiF1, Ethernet, HomePlug,
802.15 .4, etc).

The transport layer 98 may specily a transparent transfer of
the data from a source node to a destination node. The trans-
port layer 98 may also control how the transparent transter of
the data remains reliable. As such, the transport layer 98 may
be used to vernify that data packets intended to transfer to the
destination node indeed reached the destination node.
Example protocols that may be employed 1n the transport
layer 98 may include Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP).

The platform layer 100 includes the fabric network and
establishes connections between devices according to the
protocol specified within the transport layer 98 and may be
agnostic of the network type used in the network layer 96. The
plattorm layer 100 may also translate the data packets 1nto a
form that the application layer 102 may use. The application
layer 102 may support a software application that may
directly interface with the user. As such, the application layer
102 may implement protocols defined by the software appli-
cation. For example, the software application may provide
serves such as file transiers, electronic mail, and the like.

I1. Fabric Device Interconnection

As discussed above, a fabric may be implemented using
one or more suitable communications protocols, such as IPv6
protocols. In fact, the fabric may be partially or completely
agnostic to the underlying technologies (e.g., network types
or communication protocols) used to implement the fabric.
Within the one or more communications protocols, the fabric
may be implemented using one or more network types used to

communicatively couple electrical devices using wireless or

wired connections. For example, certain embodiments of the
fabric may include FEthernet, WikF1, 802.15.4, ZigBee®,

ISA100.11a, WirelessHART, M1W1™ power-line networks,
and/or other suitable network types. Within the fabric devices
(e.g., nodes) can exchange packets of information with other
devices (e.g., nodes) in the fabric, either directly or via inter-
mediary nodes, such as intelligent thermostats, acting as IP
routers. These nodes may include manufacturer devices (e.g.,
thermostats and smoke detectors) and/or customer devices
(c.g., phones, tablets, computers, etc.). Additionally, some
devices may be “always on” and continuously powered using
clectrical connections. Other devices may have partially
reduced power usage (e.g., medium duty cycle) using a
reduced/intermittent power connection, such as a thermostat
or doorbell power connection. Finally, some devices may
have a short duty cycle and run solely on battery power. In
other words, in certain embodiments, the fabric may include
heterogeneous devices that may be connected to one or more
sub-networks according to connection type and/or desired
power usage. FIGS. 4-6 illustrate three embodiments that
may be used to connect electrical devices via one or more
sub-networks in the fabric.

US 9,270,761 Bl

11

A. Single Network Topology

FIG. 4 1llustrates an embodiment of the fabric 1000 having,
a single network topology. As 1llustrated, the fabric 1000
includes a single logical network 1002. The network 1002
could include Ethernet, WikF1, 802.15.4, power-line networks,
and/or other suitable network types 1n the IPv6 protocols. In
fact, in some embodiments where the network 1002 includes
a WikF1 or Ethernet network, the network 1002 may span
multiple WiF1 and/or Ethernet segments that are bridged at a
link layer.

The network 1002 includes one or more nodes 1004, 1006,
1008, 1010,1012,1014, and 1016, referred to collectively as
1004-1016. Although the illustrated network 1002 includes
seven nodes, certain embodiments of the network 1002 may
include one or more nodes mterconnected using the network
1002. Moreover, 11 the network 1002 1s a WiF1 network, each
of the nodes 1004-1016 may be interconnected using the node
1016 (e.g., WiF1 router) and/or paired with other nodes using
WiF1 Direct (1.e., WiF1 P2P).

B. Star Network Topology

FIG. S illustrates an alternative embodiment of fabric 1000
as a fabric 1018 having a star network topology. The fabric
1018 includes a hub network 1020 that joins together two
periphery networks 1022 and 1024. The hub network 1020
may iclude a home network, such as WiF1/Ethernet network
or power line network. The periphery networks 1022 and
1024 may additional network connection types different of
different types than the hub network 1020. For example, 1n
some embodiments, the hub network 1020 may be a Wik1/
Ethernet network, the periphery network 1022 may include
an 802.15.4 network, and the periphery network 1024 may
include a power line network, a ZigBee® network, a
ISA100.11a network, a WirelessHART, network, or a
Mi1Wi1™ network. Moreover, although the 1llustrated embodi-
ment of the fabric 1018 includes three networks, certain
embodiments of the fabric 1018 may include any number of
networks, such as 2, 3, 4, 5, or more networks. In fact, some
embodiments of the fabric 1018 include multiple periphery
networks of the same type.

Although the illustrated fabric 1018 includes fourteen
nodes, each referred to individually by reference numbers
1024-1052, respectively, 1t should be understood that the
tabric 1018 may include any number of nodes. Communica-
tion within each network 1020, 1022, or 1024, may occur
directly between devices and/or through an access point, such
as node 1042 1n a WiFi/Ethernet network. Communications
between periphery network 1022 and 1024 passes through the
hub network 1020 using inter-network routing nodes. For
example, in the 1llustrated embodiment, nodes 1034 and 1036
are be connected to the periphery network 1022 using a first
network connection type (e.g., 802.15.4) and to the hub net-
work 1020 using a second network connection type (e.g.,
WiF1) while the node 1044 1s connected to the hub network
1020 using the second network connection type and to the
periphery network 1024 using a third network connection
type (e.g., power line). For example, a message sent from

node 1026 to node 1052 may pass through nodes 1028, 1030,
1032, 1036, 1042, 1044, 1048, and 1050 1n transit to node
1052.

C. Overlapping Networks Topology

FIG. 6 illustrates an alternative embodiment of the fabric

1000 as a fabric 1054 having an overlapping networks topol-
ogy. The fabric 1054 includes networks 1056 and 1058. As

illustrated, each of the nodes 1062, 1064, 1066, 1068, 1070,
and 1072 may be connected to each of the networks. In other
embodiments, the node 1072 may 1nclude an access point for
an Ethernet/ WiF1 network rather than an end point and may

10

15

20

25

30

35

40

45

50

55

60

65

12

not be present on either the network 1056 or network 1058,
whichever 1s not the Ethernet/ WiF1 network. Accordingly, a
communication from node 1062 to node 1068 may be passed
through network 1056, network 1058, or some combination
thereof. In the illustrated embodiment, each node can com-
municate with any other node via any network using any
network desired. Accordingly, unlike the star network topol-
ogy of FIG. 5, the overlapping networks topology may com-
municate directly between nodes via any network without
using inter-network routing.

D. Fabric Network Connection to Services

In addition to communications between devices within the
home, a fabric (e.g., fabric 1000) may include services that
may be located physically near other devices 1n the fabric or
physically remote from such devices. The fabric connects to
these services through one or more service end points. F1G. 7
illustrates an embodiment of a service 1074 communicating
with fabrics 1076, 1078, and 1080. The service 1074 may
include various services that may be used by devices 1n fab-
rics 1076, 1078, and/or 1080. For example, 1n some embodi-
ments, the service 1074 may be a time of day service that
supplies a time of day to devices, a weather service to provide
various weather data (e.g., outside temperature, sunset, wind
information, weather forecast, etc.), an echo service that
“pings” each device, data management services, device man-
agement services, and/or other suitable services. As 1llus-
trated, the service 1074 may include a server 1082 (e.g., web
server) that stores/accesses relevant data and passes the infor-
mation through a service end point 1084 to one or more end
points 1086 1n a fabric, such as fabric 1076. Although the
illustrated embodiment only includes three fabrics with a
single server 1082, 1t should be appreciated that the service
1074 may connect to any number of fabrics and may include
servers 1n addition to the server 1082 and/or connections to
additional services.

In certain embodiments, the service 1074 may also connect
to a consumer device 1088, such as a phone, tablet, and/or
computer. The consumer device 1088 may be used to connect
to the service 1074 via a fabric, such as fabric 1076, an
Internet connection, and/or some other suitable connection
method. The consumer device 1088 may be used to access
data from one or more end points (e.g., electronic devices) 1n
a fabric erther directly through the fabric or via the service
1074. In other words, using the service 1074, the consumer
device 1088 may be used to access/manage devices 1n a fabric
remotely from the fabric.

E. Communication Between Devices 1n a Fabric

As discussed above, each electronic device or node may
communicate with any other node 1n the fabric, either directly
or indirectly depending upon fabric topology and network
connection types. Additionally, some devices (e.g., remote
devices) may communicate through a service to communi-
cate with other devices in the fabric. FIG. 8 illustrates an
embodiment of a communication 1090 between two devices
1092 and 1094. The communication 1090 may span one or
more networks either directly or indirectly through additional
devices and/or services, as described above. Additionally, the
communication 1090 may occur over an appropriate commus-
nication protocol, such as IPv6, using one or more transport
protocols. For example, 1n some embodiments the communi-
cation 1090 may include using the transmission control pro-
tocol (TCP) and/or the user datagram protocol (UDP). In
some embodiments, the device 1092 may transmit a first
signal 1096 to the device 1094 using a connectionless proto-
col (e.g., UDP). In certain embodiments, the device 1092 may
communicate with the device 1094 using a connection-ori-
ented protocol (e.g., TCP). Although the 1llustrated commu-

US 9,270,761 Bl

13

nication 1090 1s depicted as a bi-directional connection, in
some embodiments, the communication 1090 may be a uni-
directional broadcast.

1. Umique Local Address
As discussed above, data transmitted within a fabric

received by a node may be redirected or passed through the

node to another node depending on the desired target for the
communication. In some embodiments, the transmission of
the data may be intended to be broadcast to all devices. In
such embodiments, the data may be retransmitted without
turther processing to determine whether the data should be
passed along to another node. However, some data may be
directed to a specific endpoint. To enable addressed messages
to be transmitted to desired endpoints, nodes may be assigned
identification information.

Each node may be assigned a set of link-local addresses
(LLA), one assigned to each network interface. These LLAs
may be used to communicate with other nodes on the same
network. Additionally, the LLAs may be used for various
communication procedures, such as IPv6 Neighbor Discov-

ery Protocol. In addition to LLAs, each node 1s assigned a
unique local address (ULA).

FI1G. 9 1llustrates an embodiment of a unique local address
(ULA) 1098 that may be used to address each node in the
fabric. In certain embodiments, the ULA 1098 may be for-

matted as an IPv6 address format contaiming 128 bits divided
into a global ID 1100, a subnet ID 1102, and an interface 1D

1104. The global ID 1100 includes 40 bits and the subnet 11D
1102 includes 16 bits. The global ID 1100 and subnet 11D 1102
together form a fabric ID 1103 for the fabric.

The fabric ID 1103 1s a umique 64-bit identifier used to
identify a fabric. The fabric ID 1103 may be generated at
creation of the associated fabric using a pseudo-random algo-
rithm. For example, the pseudo-random algorithm may 1)
obtain the current time of day 1n 64-bit NTP format, 2) obtain
the interface 1D 1104 for the device, 3) concatenate the time
of day with the interface 1D 1104 to create a key, 4) compute
and SHA-1 digest on the key resulting in 160 bits, 5) use the
least significant 40 bits as the global ID 1100, and 6) concat-
cnate the ULA and set the least significant bit to 1 to create the
fabric ID 1103. In certain embodiments, once the fabric 1D
1103 1s created with the fabric, the fabric ID 1103 remains
until the fabric 1s dissolved.

The global ID 1100 identifies the fabric to which the node
belongs. The subnet ID 1102 identifies logical networks
within the fabric. The subnet ID 1102 may be assigned mono-
tonically starting at one with the addition of each new logical
network to the fabric. For example, a WiF1 network may be
identified with a hex value of 0x01, and a later connected
802.15.4 network may be identified with a hex value of 0x02
continuing on incrementally upon the connection of each new
network to the fabric.

Finally, the ULA 1098 includes an interface 1D 1104 that
includes 64 bits. The interface ID 1104 may be assigned using
a globally-unique 64-bit identifier according to the IEEE
EUI-64 standard. For example, devices with IEEE 802 net-
work interfaces may derive the interface 1D 1104 using a
burned-in MAC address for the devices “primary interface.”
In some embodiments, the designation of which interface 1s
the primary interface may be determined arbitrarily. In other
embodiments, an 1nterface type (e.g., WiF1) may be deemed
the pnmary 1nterface when present. If the MAC address for
the primary interface of a device 1s 48 bits rather than 64-bit,
the 48-bit MAC address may be converted to a EUI-64 value
via encapsulation (e.g., organizationally unique identifier
encapsulating). In consumer devices (e.g., phones or comput-

10

15

20

25

30

35

40

45

50

55

60

65

14

ers), the interface 1D 1104 may be assigned by the consumer
devices’ local operating systems.

11. Routing Transmissions Between Logical Networks

As discussed above 1n relation to a star network topology,
inter-network routing may occur in communication between
two devices across logical networks. In some embodiments,
inter-network routing 1s based on the subnet ID 1102. Each
inter-networking node (e.g., node 1034 of FIG. 5) may main-
tain a list of other routing nodes (e.g., node B 14 o1 FIG. 5) on
the hub network 1020 and their respective attached periphery
networks (e.g., periphery network 1024 of FIG. 5). When a
packet arrives addressed to a node other than the routing node
itself, the destination address (e.g., address for node 1052 of
FIG. 5) 1s compared to the list of network prefixes and a
routing node (e.g., node 1044) 1s selected that 1s attached to
the desired network (e.g., periphery network 1024). The
packet 1s then forwarded to the selected routing node. If
multiple nodes (e.g., 1034 and 1036) are attached to the same
periphery network, routing nodes are selected 1n an alternat-
ing fashion.

Additionally, mter-network routing nodes may regularly
transmit Neighbor Discovery Protocol (NDP) router adver-
tisement messages on the hub network to alert consumer
devices to the existence of the hub network and allow them to
acquire the subnet prefix. The router advertisements may
include one or more route information options to assist 1n
routing information in the fabric. For example, these route
information options may inform consumer devices of the
existence of the periphery networks and how to route packets
the periphery networks.

In addition to, or 1n place of route mformation options,
routing nodes may act as proxies to provide a connection
between consumer devices and devices in periphery net-
works, such as the process 1103 as illustrated 1n FIG. 10. As
illustrated, the process 1105 includes each periphery network
device being assigned a virtual address on the hub network by
combining the subnet ID 1102 with the iterface ID 1104 for
the device on the periphery network (block 1106). To proxy
using the virtual addresses, routing nodes maintain a list of all
periphery nodes 1n the fabric that are directly reachable via
one of its interfaces (block 1108). The routing nodes listen on
the hub network for neighbor solicitation messages request-
ing the link address of a periphery node using 1its virtual
address (block 1110). Upon recerving such a message, the
routing node attempts to assign the virtual address to its hub
interface after a period of time (block 1112). As part of the
assignment, the routing node performs duplicate address
detection so as to block proxying of the virtual address by
more than one routing node. After the assignment, the routing
node responds to the neighbor solicitation message and
receives the packet (block 1114). Upon receiving the packet,
the routing node rewrites the destination address to be the real
address of the periphery node (block 1116) and forwards the
message to the appropriate interface (block 1118).

111. Consumer Devices Connecting to a Fabric

To jomn a fabric, a consumer device may discover an
address of a node already 1n the fabric that the consumer
device wants to join. Additionally, 1f the consumer device has
been disconnected from a fabric for an extended period of
time may need to rediscover nodes on the network if the fabric
topology/layout has changed. To aid 1 discovery/rediscov-
ery, Tabric devices on the hub network may publish Domain
Name System-Service Discovery (DNS-SD) records via
mDNS that advertise the presence of the fabric and provide
addresses to the consumer device

US 9,270,761 Bl

15

III. Data Transmitted 1n the Fabric

After creation of a fabric and address creation for the
nodes, data may be transmitted through the fabric. Data
passed through the fabric may be arranged 1n a format com-

mon to all messages and/or common to specific types of 3

conversations 1n the fabric. In some embodiments, the mes-
sage format may enable one-to-one mapping to JavaScript
Object Notation (JSON) using a TLV senalization format
discussed below. Additionally, although the following data
frames are described as including specific sizes, 1t should be
noted that lengths of the data fields in the data frames may be
varied to other suitable bit-lengths.

It should be understood that each of the following data
frames, profiles, and/or formats discussed below may be
stored 1n memory (e.g., memory of the device 10) prior to
and/or after transmission of a message. In other words,
although the data frame, profiles, and formats may be gener-
ally discussed as transmissions of data, they may also be
physically stored (e.g., 1n a buifer) before, during, and/or after
transmission of the data frame, profiles, and/or formats.
Moreover, the following data frames, profiles, schemas, and/
or formats may be stored on a non-transitory, computer-read-
able medium that allows an electronic device to access the
data frames, profiles, schemas, and/or formats. For example,
instructions for formatting the data frames, profiles, schemas,
and/or formats may be stored in any suitable computer-read-
able medium, such as in memory for the device 10, memory
ol another device, a portable memory device (e.g., compact
disc, flash drive, etc.), or other suitable physical device suit-
able for storing the data frames, profiles, schemas, and/or
formats.

A. Security

Along with data intended to be transtierred, the fabric may
transier the data with additional security measures such as
encryption, message mtegrity checks, and digital signatures.
In some embodiments, a level of security supported for a
device may vary according to physical security of the device
and/or capabilities of the device. In certain embodiments,
messages sent between nodes 1n the fabric may be encrypted
using the Advanced Encryption Standard (AES) block cipher
operating 1n counter mode (AES-CTR) with a 128-bit key. As
discussed below, each message contains a 32-bit message 1d.
The message 1d may be combined with a sending nodes 1d to
form a nonce for the AES-CTR algorithm. The 32-bit counter
enables 4 billion messages to be encrypted and sent by each
node before a new key 1s negotiated.

In some embodiments, the fabric may insure message
integrity using a message authentication code, such as
HMAC-SHA-1, that may be included 1n each encrypted mes-
sage. In some embodiments, the message authentication code
may be generated using a 160-bit message integrity key that s
paired one-to-one with the encryption key. Additionally, each
node may check the message 1d of incoming messages against
a list of recently received 1ds maintained on a node-by-node
basis to block replay of the messages.

B. Tag Length Value (TLV) Formatting,

To reduce power consumption, it 1s desirable to send at
least a portion of the data sent over the fabric that compactly
while enabling the data containers to flexibly represents data
that accommodates skipping data that 1s not recognized or
understood by skipping to the next location of data that 1s
understood within a sernialization of the data. In certain
embodiments, tag-length-value (TLV) formatting may be
used to compactly and flexibly encode/decode data. By stor-
ing at least a portion of the transmitted data in TLV, the data
may be compactly and flexibly stored/sent along with low
encode/decode and memory overhead, as discussed below 1n

10

15

20

25

30

35

40

45

50

55

60

65

16

reference to Table 7. In certain embodiments, TLV may be
used for some data as flexible, extensible data, but other
portions of data that 1s not extensible may be stored and sent

in an understood standard protocol data unit (PDU).

Data formatted 1 a TLV format may be encoded as TLV
clements of various types, such as primitive types and con-
tamner types. Primitive types include data values 1n certain
formats, such as integers or strings. For example, the TLV
format may encode: 1, 2, 3, 4, or 8 byte signed/unsigned
integers, UTF-8 strings, byte strings, single/double-precision
floating numbers (e.g., IEEE 754-1985 format), boolean,
null, and other suitable data format types. Container types
include collections of elements that are then sub-classified as
container or primitive types. Container types may be classi-
fied 1nto various categories, such as dictionaries, arrays, paths
or other suitable types for grouping TLV elements, known as
members. A dictionary 1s a collection of members each hav-
ing distinct definitions and umique tags within the dictionary.
An array 1s an ordered collection of members with implied
definitions or no distinct definitions. A path 1s an ordered
collection of members that described how to traverse a tree of
TLV elements.

As 1llustrated in FI1G. 11, an embodiment of a TLV packet
1120 includes three data fields: a tag field 1122, a length field
1124, and a value field 1126. Although the 1illustrated fields
1122,1124, and 1126 are illustrated as approximately equiva-
lent 1n s1ze, the size of each field may be variable and vary 1n
size 1n relation to each other. In other embodiments, the TLV
packet 1120 may further include a control byte before the tag
field 1122.

In embodiments having the control byte, the control byte
may be sub-divided into an element type field and a tag
control field. In some embodiments, the element type field
includes 5 lower bits of the control byte and the tag control
field occupies the upper 3 bits. The element type field 1ndi-
cates the TLV element’s type as well as the how the length
field 1124 and value field 1126 are encoded. In certain
embodiments, the element type field also encodes Boolean
values and/or null values for the TLV. For example, an
embodiment of an enumeration of element type field 1s pro-

vided in Table 1 below.

TABL.

L1

1

Example element tvpe field values.

-
N
A
N
()
bo
H
-

0O 0 0 0 0 Signed Integer, 1 byte value
0O 0 0 0 1 Signed Integer, 2 byte value
0O 0 0 1 0 Signed Integer, 4 byte value
0 0 0 1 1 Signed Integer, 8 byte value
O 0 1 0 0 Unsigned Integer, 1 byte value
0O 0 1 0 1 Unsigned Integer, 2 byte value
o 0 1 1 O Unsigned Integer, 4 byte value
o 0 1 1 1 Unsigned Integer, 8 byte value
0 O O 0 Boolean False
0 O O 1 Boolean True
0 0O 1 0 Floating Point Number, 4 byte
value
0O 1 0 1 1 Floating Point Number, 8 byte
value
0 0 0 UTEF&-String, 1 byte length
0 1 0 1 UTF8-String, 2 byte length
0 1 1 0 UTF8-String, 4 byte length
0 1 1 1 UTFR-String, 8 byte length
] 0 0 0 0 ByteString, 1 byte length
0 0 O 1 ByteString, 2 byte length
0 0 1 0 ByteString, 4 byte length
0 0 1 1 ByteString, 8 byte length
0 1 0 0 Null

US 9,270,761 Bl

17
TABLE 1-continued

Example element tvpe field values.

7 0 5 4 3 2 1 0O

0 1 0 1 Dictionary

0 1 1 0 Array

0 1 1 1 Path

1 O ©O 0 Endof Container

The tag control field indicates a form of the tag in the tag field
1122 assigned to the TLV element (including a zero-length
tag). Examples, of tag control field values are provided in

Table 2 below.

TABL.

L1l

2

Example values for tag control field.

7 6 5 4 3 2 1 U

-
-
-

Anonymous, O bytes
Context-specific Tag, 1
byte

Core Profile Tag, 2 bytes
Core Profile Tag, 4 bytes
Implicit Profile Tag, 2
bytes

Implicit Profile Tag, 4
bytes

Fully-qualified Tag, 6
bytes

Fully-qualified Tag, 8
bytes

=
—_—
—_

In other words, 1n embodiments having a control byte, the
control byte may indicate a length of the tag.

In certain embodiments, the tag field 1122 may include
zero to eight bytes, such as eight, sixteen, thirty two, or sixty
four bits. In some embodiments, the tag of the tag field may be
classified as profile-specific tags or context-specific tags. Pro-
file-specific tags 1dentity elements globally using a vendor Id,
a profile Id, and/or tag number as discussed below. Context-
specific tags 1dentity TLV elements within a context of a
containing dictionary element and may include a single-byte
tag number. Since context-specific tags are defined 1n context
of their containers, a single context-specific tag may have
different interpretations when included in different contain-
ers. In some embodiments, the context may also be dertved
from nested containers.

In embodiments having the control byte, the tag length 1s
encoded 1n the tag control field and the tag field 1122 includes
a possible three fields: a vendor Id field, a profile 1d field, and
a tag number field. In the tully-qualified form, the encoded tag
field 1122 includes all three fields with the tag number field
including 16 or 32 bits determined by the tag control field. In
the 1mplicit form, the tag includes only the tag number, and
the vendor Id and profile number are inferred from the pro-
tocol context of the TLV element. The core profile form
includes profile-specific tags, as discussed above. Context-

specific tags are encoded as a single byte conveying the tag
number. Anonymous elements have zero-length tag fields
1122.

In some embodiments without a control byte, two bits may
indicate a length of the tag field 1122, two bits may indicate a
length of the length field 1124, and four bits may indicate a
type of information stored in the value field 1126. An example
of possible encoding for the upper 8 bits for the tag field 1s
illustrated below 1n Table 3.

10

15

20

25

30

35

40

45

50

55

60

65

18

TABLE 3
Tag field of a TLV packet
Byte

0

7 6 5 4 3 2 1 0 Description
0 0 — — — — — — Tagis 8 bits
0 1 — — — — — — Tagis16bits
1 0 — - — — — — Tagis 32bits
1 1 — — — — Tagis 64 bits

Length 1s & bits

Length 1s 16 bits
Length 1s 32 bits
Length 1s 64 bits

— — 0 0 0 0 Boolean

— — 0 0 0 1 Fixed 8-bit Unsigned
— — 0 0 1 0 Fixed 8-bit Signed

— — 0 0 1 1 Fixed 16-bit Unsigned
- - 0 1 0 0 Fixed 16-bit Signed
— — 0 1 0 1 Fixed 32-bit Unsigned
- - 0 1 1 0 Fixed 32-bit Signed
— — 0 1 1 1 Fixed 64-bit Unsigned
— — 1 0 0 0 Fixed 64-bit Signed
— — 1 0 0 1 32-bit Floating Point
— — 1 0 1 0 64-bit Floating Point
— — 0 1 1 UTF-8 String

- - 1 0 0 Opaque Data

— — 1 0 1 Container

As 1llustrated 1n Table 3, the upper 8 bits of the tag field 1122
may be used to encode information about the tag field 1122,
length field 1124, and the value field 1126, such that the tag
field 112 may be used to determine length for the tag field 122
and the length fields 1124. Remaining bits 1n the tag field
1122 may be made available for user-allocated and/or user-
assigned tag values.

The length field 1124 may include eight, sixteen, thirty
two, or sixty four bits as indicated by the tag field 1122 as
illustrated in Table 3 or the element field as 1llustrated 1n Table
2. Moreover, the length field 1124 may include an unsigned
integer that represents a length of the encoded 1n the value
field 1126. In some embodiments, the length may be selected
by a device sending the TLV element. The value field 1126
includes the payload data to be decoded, but interpretation of
the value field 1126 may depend upon the tag length fields,
and/or control byte. For example, a TLV packet without a
control byte including an 8 bit tag 1s 1llustrated 1n Table 4
below for illustration.

TABLE 4

Example of a TLV packet including an 8-bit tag

Tag Length Value Description
0x0d 0x24

0x09 0x04 0x42 95 00 00 74.5
0x09 0x04 0x42 98 66 66 76.2
0x09 0x04 0x42 94 99 9a 74.3
0x09 0x04 0x42 98 99 9a 76.3
0x09 0x04 O0x42 95 33 33 74.6
0x09 0x04 O0x42 98 33 33 76.1

As 1illustrated 1n Table 4, the first line indicates that the tag
field 1122 and the length field 1124 each have a length of 8
bits. Additionally, the tag field 1122 indicates that the tag type
1s for the first line 1s a container (e.g., the TLV packet). The tag
ficld 1124 for lines two through six indicate that each entry 1n
the TLV packet has a tag field 1122 and length field 1124
consisting of 8 bits each. Additionally, the tag field 1124
indicates that each entry in the TLV packet has a value field
1126 that includes a 32-bit tfloating point. Each entry 1n the
value field 1126 corresponds to a floating number that may be

US 9,270,761 Bl

19

decoded using the corresponding tag field 1122 and length
field 1124 information. As illustrated in this example, each
entry 1n the value field 1126 corresponds to a temperature 1n
Fahrenheit. As can be understood, by storing data in a TLV
packet as described above, data may be transferred compactly
while remaining flexible for varying lengths and information
as may beused by diflerent devices in the fabric. Moreover, 1n
some embodiments, multi-byte integer fields may be trans-

mitted 1n little-endian order or big-endian order.

By transmitting TLV packets 1n using an order protocol
(c.g., little-endian) that may be used by sending/receiving
device formats (e.g., JSON), data transferred between nodes
may be transmitted 1n the order protocol used by at least one
of the nodes (e.g., little endian). For example, 11 one or more
nodes include ARM or 1x86 processors, fransmissions
between the nodes may be transmitted using little-endian byte
ordering to reduce the use of byte reordering. By reducing the
inclusion of byte reordering, the TLV format enable devices
to communicate using less power than a transmission that
uses byte reordering on both ends of the transmission. Fur-
thermore, TLV formatting may be specified to provide a one-
to-one translation between other data storage techniques,
such as JISON+ Extensible Markup Language (XML). As an

example, the TLV format may be used to represent the fol-
lowing XML Property List:

<7xml version="1.0"encoding=""UTF-8"7 >
<IDOCTYPE plist PUBLIC *“-//Apple Computer//DTD PLIST 1.0//EN”
“http://www.apple.com/DTDs/PropertyList-1.0.dtd™>
<plist version="1.0"">
<dict>
<key>OftineMode</key>
<false/>
<key>Network</key>
<dict>
<key>IPv4d</key>
<dict>
<key>Method</key>
<string>dhcp</string>
</dict>
<key>IPvo</key>
<dict>
<key>Method</key>
<string>auto</string>
</dict>
</dict>
<key>Technologies</key>
<dict>
<key>wili</key>
<dict>
<key>Enabled</key>
<true/>
<key>Devices</key>
<dict>
<key>wifl_18b4300008b027</key>
<dict>
<key>Enabled</key>
<true/>
</dict>
</dict>
<key>Services</key>
<array~>
<string>will_18b4300008b027_3939382d33204 16
c70696e652054657 272616365</string>
</array>
</dict>
<key>802.15.4</key>
<dict>
<key>Enabled</key>
<true/>
<key>Devices</key>
<dict>
<key>802.15.4_18b43000000002facd</key>
<d1ct>
<key>Enabled</key>

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

<true/>
</dict>
</dict>
<key>Services</key>
<array->
<string>802.15.4_18b43000000002fac4_3 939382d332041
6¢70696e6520546572</string>
</array>
</dict>
</dict>
<key>Services</key>
<dict>
<key>wifl_18b4300008b027_3939382d3320416¢70696€65205465772
72616365</key>
<dict>
<key>Name</key>
<string>998-3 Alpine Terrace</string>
<key>SSID</key>
<data>3939382d3320416¢c70696e652054657272616365
</data>
<key>Frequency</key>
<integer>2462</integer>
<key>AutoConnect</key>
<true/>
<key>Favorite</key>
<true/>
<key>Error</key>
<string/>
<key>Network</key>
<dict>
<key>IPv4d</key>
<dict>
<key>DHCP</key>
<dict>
<key>LastAddress</key>
<data>0a02001e</data>
</dict>
</dict>
<key>IPvo</key>
<dict>
</dict>
</dict>
<key>802.15.4 18b43000000002facd 3939382d3320416¢70696¢
6520546572</key>
<dict>
<key>Name</key>
<string>99%8-3 Alpine Ter</string>
<key>EPANID</key>
<data>3939382d3320416¢c70696e6520546572</data>
<key>Frequency</key>
<integer>2412</integer>
<key>AutoConnect</key>
<true/>
<key>Favorite</key>
<true/>
<key>Error</key>
<string/>
<key>Network</key>
<dict>
</dict>
</dict>
</dict>
</plist

As an example, the above property list may be represented in
tags of the above described TLV format (without a control
byte) according to Table 5 below.

TABLE 5

L1l

Example representation of the
XML Property List in TLV format

XML Key Tag Type Tag Number
OfflineMode Boolean 1
IPv4 Container 3
IPv6 Container 4

US 9,270,761 Bl

21
TABLE 5-continued

22

The TLV format enables reference of properties that may also
be enumerated with XML, but does so with a smaller storage
s1ze. For example, Table 7 illustrates a comparison of data
s1zes of the XML Property List, a corresponding binary prop-

Example representation of the
XML Property List in TLV format

XML Key Tag Type Tag Number > erty list, and the TLV format.
Method String 5 _
Technologies Container 6 TABLE 7
WiF1 Container 7
R02.15 .4 Container R Comparison of the sizes of property list data sizes.
Enabled Boolean 9 10
Devices Container 10 List Type Size 1n Bytes Percentage of XML Size
ID String 11
Services Container 12 BXML 2 ’;gg 66—8'3”
Name String 13 Hiaty U070
SSID Data 14 TLV 450 -79.5%
EPANID Data 15 15
Frequency 1 6-bit Unsigned 16
AutoConnect Roolean 17 By reducing the amount of data used to transier data, the TLV
Favorite Boolean 18 format enables the fabric 1000 transter data to and/or from
brror String 13 devices having short duty cycles due to limited power (e.g.,
DHCP String 20 : :
I astAddress Data 21 battery supplied devices). In other words, the TLV format
Device Container 22 20 allows flexibility of transmission while increasing compact-
SErvice Container 23 ness of the data to be transmitted.

Similarly, Table 6 illustrates an example of literal tag, length,
and value representations for the example XML Property

C. General Message Protocol
In addition to sending particular entries of varying sizes,
data may be transmitted within the fabric using a general

List. message protocol that may incorporate TLV formatting. An

TABLE 6
Example of literal values for tag, length. and value fields for XML Property List

Tag Length Value Description

0x40 01 0x01 0 OfflineMode

0x4d 02 0x14 Network

Ox4d 03 0x07 Network.IPv4

Ox4b 05 0x04 “dhcp” Network.[Pv4.Method

Ox4d 04 0x07 Network.IPv6

0x4b 05 0x04 “auto” Network.[Pv6.Method

Ox4d 06 Oxd6 Technologies

0x4d 07 0x65 Technologies.wifl

0x40 09 0x01 1 Technologies.wifi.Enabled

0x4d Oa 0Ox5e Technologies.wifi.Devices

Ox4d 16 0Ox5b Technologies.wifi.Devices.Device. [0]

Ox4b Ob 0x13 “wifi_18b43 ...” Technologies.wifi.Devices.Device.[0].1D

0x40 09 0x01 1 Technologies.wifi.Devices.Device.[0].Enabled

Ox4d Oc 0x3e Technologies.wifl.Devices.Device.[0].Services

0x0b 0x 3¢ “wifl_18b43 ...” Technologies.wifi.Devices.Device.[O].Services.[0]

Ox4d 08 Ox6b Technologles.802.15.4

0x40 09 0x01 1 Technologies.802.15.4.Enabled

Ox4d Oa 0Ox64 Technologies.802.15.4.Devices

0x4d 16 0x61 Technologies.802.15.4.Devices.Device.[O]

Ox4b Ob Oxla “802.15.4_18 .. .7 Technologies.802.15.4.Devices.Device.[0].ID

0x40 09 0x01 1 Technologies.802.15.4.Devices.Device.[0].Enabled

0Ox4d Oc 0x3d Technologies.802.15.4.Devices.Device.[0].Services

0x0b 0x 3b “802.154_18 ...” Technologies.802.15.4.Devices.Device.[0].Services.[0]

0x4d Oc Oxcb Services

Ox4d 17 0x75 Services.Service. [0

Ox4b Ob 0x13 “wifl_18b43 ...” Services.Service.[0].ID

Ox4b 0d 0x14 “009%-3 Alp...” Services.Service.[0].Name

Oxdc Of Ox28 3939382d ... Services.Service.[0].SSID

0x45 10 0x02 2462 Services.Service.[0].Frequency

0x40 11 0x01 1 Services.Service.[0].AutoConnect

0x40 12 0x01 1 Services.Service.[0].Favorite

0x4d 02 0x0d Services.Service.[0].Network

0x4d 03 0Ox0Oa Services.Service.[0].Network.[Pv4

Ox4d 14 0x07 Services.Service.[0].Network. IPv4.DHCP

0x45 15 0x04 0x0a0200le Services.Service.[0].Network.IPv4.Last Address

Ox4d 17 0x50 Services.Service.[1

0x4b Ob 0Oxla “802.154_18 ...7 Services.Service.[1].ID

Ox4c 0d 0x10 “008-3 Alp..."7 Services.Service.[l].Name

Oxdc Of 0x10 3939382d ... Services.Service.[1].EPANID

0x45 10 0x02 2412 Services.Service.[1].Frequency

0x40 11 0x01 1 Services.Service.[1].AutoConnect

0x40 12 0x01 1 Services.Service.[1].Favorite

US 9,270,761 Bl

23

embodiment of a general message protocol (GMP) 1128 1s
illustrated 1n FIG. 12. In certain embodiments, the general
message protocol (GMP) 1128 may be used to transmit data
within the fabric. The GMP 1128 may be used to transmit data
via connectionless protocols (e.g., UDP) and/or connection-
oriented protocols (e.g., TCP). Accordingly, the GMP 1128
may flexibly accommodate information that is used 1n one
protocol while 1gnoring such information when using another
protocol. Moreover, the GMP 1226 may enable omission of
fields that are not used 1n a specific transmission. Data that
may be omitted from one or more GMP 1226 transiers 1s
generally indicated using grey borders around the data unaits.
In some embodiments, the multi-byte integer fields may be
transmitted in a little-endian order or a big-endian order.

1. Packet Length

In some embodiments, the GMP 1128 may include a
Packet Length field 1130. In some embodiments, the Packet
Length field 1130 includes 2 bytes. A value in the Packet
Length field 1130 corresponds to an unsigned integer indi-
cating an overall length of the message in bytes, excluding the
Packet Length field 1130 itself. The Packet Length field 1130
may be present when the GMP 1128 1s transmitted over a TCP
connection, but when the GMP 1128 1s transmitted over a
UDP connection, the message length may be equal to the
payload length of the underlying UDP packet obviating the
Packet Length field 1130.

11. Message Header

The GMP 1128 may also include a Message Header 1132
regardless of whether the GMP 1128 1s transmitted using TCP
or UDP connections. In some embodiments, the Message
Header 1132 includes two bytes of data arranged 1n the format
illustrated in FIG. 13. As illustrated 1n FI1G. 13, the Message
Header 1132 includes a Version field 1156. The Version field
1156 corresponds to a version of the GMP 1128 that 1s used to
encode the message. Accordingly, as the GMP 1128 is
updated, new versions of the GMP 1128 may be created, but
cach device 1n a fabric may be able to recerve a data packet 1n
any version ol GMP 1128 known to the device. In addition to
the Version field 1156, the Message Header 1132 may include
an S Flag field 1158 and a D Flag 1160. The S Flag 1158 1s a
single bit that indicates whether a Source Node Id (discussed
below) field 1s included in the transmitted packet. Similarly,
the D Flag 1160 1s a single bit that indicates whether a Des-
tination Node Id (discussed below) field 1s included in the
transmitted packet.

The Message Header 1132 also includes an Encryption
Type field 1162. The Encryption Type field 1162 includes
four bits that specily which type of encryption/integrity
checking applied to the message, 11 any. For example, 0x0
may indicate that no encryption or message integrity check-
ing 1s included, but a decimal Ox1 may indicate that AES-128-
CTR encryption with HMAC-SHA-1 message integrity
checking 1s included.

Finally, the Message Header 1132 further includes a Sig-
nature Type field 1164. The Signature Type field 1164
includes four bits that specily which type of digital signature
1s applied to the message, 1I any. For example, O0xO may
indicate that no digital signature 1s included in the message,
but Ox1 may indicate that the Elliptical Curve Digital Signa-
ture Algorithm (ECDSA) with Prime256v1 elliptical curve
parameters 1s included 1n the message.

111. Message Id

Returming to FIG. 12, the GMP 1128 also includes a Mes-
sage Id field 1134 that may be included in a transmitted
message regardless of whether the message 1s sent using TCP
or UDP. The Message 1d field 1134 includes four bytes that

correspond to an unsigned integer value that uniquely 1den-

10

15

20

25

30

35

40

45

50

55

60

65

24

tifies the message from the perspective of the sending node. In
some embodiments, nodes may assign increasing Message Id
1134 values to each message that they send returning to zero
after reaching 2°> messages.

1v. Source Node Id

In certain embodiments, the GMP 1128 may also include a
Source Node Id field 1136 that includes eight bytes. As dis-
cussed above, the Source Node Id field 1136 may be present
in a message when the single-bit S Flag 11358 1n the Message
Header 1132 1s set to 1. In some embodiments, the Source
Node Id field 1136 may contain the Interface 1D 1104 of the
ULA 1098 orthe entire ULA 1098. In some embodiments, the
bytes of the Source Node Id field 1136 are transmitted in an
ascending index-value order (e.g., EUI[0] then EUI[1] then
EUI| 2] then EUI[3], etc.).

v. Destination Node Id

The GMP 1128 may include a Destination Node Id field
1138 that includes eight bytes. The Destination Node Id field
1138 1s similar to the Source Node Id field 1136, but the
Destination Node Id field 1138 corresponds to a destination
node for the message. The Destination Node Id field 1138
may be present in a message when the single-bit D Flag 1160
in the Message Header 1132 1s set to 1. Also similar to the
Source Node Id field 1136, 1n some embodiments, bytes of the
Destination Node Id field 1138 may be transmitted 1n an
ascending index-value order (e.g., EUI[0] then EUI[1] then
EUI| 2] then EUI[3], etc.).

vi. Key Id

In some embodiments, the GMP 1128 may include a Key
Id field 1140. In certain embodiments, the Key Id field 1140
includes two bytes. The Key Id field 1140 includes an
unsigned integer value that identifies the encryption/message
integrity keys used to encrypt the message. The presence of
the Key Id field 1140 may be determined by the value of
Encryption Type field 1162 of the Message Header 1132. For
example, 1n some embodiments, when the value for the
Encryption Type field 1162 of the Message Header 1132 1s
0x0, the Key Id field 1140 may be omitted from the message.

An embodiment of the Key Id field 1140 1s presented 1n
FIG. 14. In the 1llustrated embodiment, the Key Id field 1140
includes a Key Type field 1166 and a Key Number field 1168.
In some embodiments, the Key Type field 1166 includes four
bits. The Key Type field 1166 corresponds to an unsigned
integer value that i1dentifies a type of encryption/message
integrity used to encrypt the message. For example, 1n some
embodiments, 11 the Key Type field 1166 15 0x0, the fabric key
1s shared by all or most of the nodes 1n the fabric. However, 1f
the Key Type field 1166 1s 0x1, the fabric key 1s shared by a
pair of nodes 1n the fabric.

The Key Id field 1140 also includes a Key Number field
1168 that includes twelve bits that correspond to an unsigned
integer value that 1dentifies a particular key used to encrypt
the message out of a set of available keys, either shared or
fabric keys.

vil. Payload Length

In some embodiments, the GMP 1128 may include a Pay-
load Length field 1142. The Payload Length field 1142, when
present, may include two bytes. The Payload Length field
1142 corresponds to an unsigned integer value that indicates
a size 1n bytes of the Application Payload field. The Payload
Length field 1142 may be present when the message 1s
encrypted using an algorithm that uses message padding, as
described below 1n relation to the Padding field.

viil. Initialization Vector

In some embodiments, the GMP 1128 may also include an
Initialization Vector (IV) field 1144. The IV field 1144, when

present, includes a variable number of bytes of data. The IV

US 9,270,761 Bl

25

field 1144 contains cryptographic IV values used to encrypt
the message. The IV field 1144 may be used when the mes-
sage 1s encrypted with an algorithm that uses an IV. The
length of the IV field 1144 may be derived by the type of
encryption used to encrypt the message.

1X. Application Payload
The GMP 1128 includes an Application Payload field
1146. The Application Payload field 1146 includes a variable
number ol bytes. The Application Payload field 1146 includes
application data conveyed in the message. The length of the
Application Payload field 1146 may be determined from the

Payload Length field 1142, when present. If the Payload
Length field 1142 1s not present, the length of the Application
Payload field 1146 may be determined by subtracting the
length of all other fields from the overall length of the mes-

sage and/or data values included within the Application Pay-
load 1146 (e.g., TLV).

An embodiment of the Application Payload field 1146 1s
illustrated 1n FIG. 15. The Application Payload field 1146

includes an APVersion field 1170. In some embodiments, the
APVersion field 1170 includes eight bits that indicate what
version of fabric software 1s supported by the sending device.
The Application Payload field 1146 also includes a Message
Type field 1172. The Message Type field 1172 may include
eight bits that correspond to a message operation code that
indicates the type of message being sent within a profile. For
example, 1n a software update profile, a 0x00 may indicate
that the message being sent 1s an 1mage announce. The Appli-
cation Payload field 1146 further includes an Exchange Id
ficld 1174 that includes sixteen bits that corresponds to an
exchange 1dentifier that 1s unique to the sending node for the
transaction.

In addition, the Application Payload field 1146 includes a
Profile Id field 1176. The Profile Id 1176 indicates a “theme of
discussion” used to indicate what type ol communication
occurs 1n the message. The Profile Id 1176 may correspond to
one or more profiles that a device may be capable of commu-
nicating. For example, the Profile Id 1176 may indicate that
the message relates to a core profile, a software update profile,
a status update profile, a data management profile, a climate
and comifort profile, a security profile, a safety profile, and/or
other suitable profile types. Each device on the fabric may
include a list of profiles which are relevant to the device and
in which the device 1s capable of “participating in the discus-
sion.” For example, many devices 1n a fabric may include the
core profile, the software update profile, the status update
profile, and the data management profile, but only some
devices would 1nclude the climate and comiort profile. The
APVersion field 1170, Message Type field 1172, the
Exchange Id field, the Profile Id field 1176, and the Profile-
Specific Header field 1176, 1f present, may be referred to 1n
combination as the “Application Header.”

In some embodiments, an indication of the Profile Id via
the Profile Id field 1176 may provide sullicient information to
provide a schema for data transmitted for the profile. How-
ever, 1n some embodiments, additional information may be
used to determine further guidance for decoding the Applica-
tion Payload field 1146. In such embodiments, the Applica-
tion Payload field 1146 may include a Profile-Specific Header
field 1178. Some profiles may not use the Profile-Specific
Header field 1178 thereby enabling the Application Payload
ficld 1146 to omit the Profile-Specific Header field 1178.
Upon determination of a schema from the Profile Id field 1176
and/or the Profile-Specific Header field 1178, data may be
encoded/decoded 1n the Application Payload sub-field 1180.
The Application Payload sub-field 1180 includes the core

5

10

15

20

25

30

35

40

45

50

55

60

65

26

application data to be transmitted between devices and/or
services to be stored, rebroadcast, and/or acted upon by the
receiving device/service.

Xx. Message Integrity Check

Returning to FIG. 12, 1n some embodiments, the GMP
1128 may also include a Message Integrity Check (MIC) field
1148. The MIC field 1148, when present, includes a variable
length of bytes of data contaiming a MIC for the message. The
length and byte order of the field depends upon the integrity
check algorithm in use. For example i the message 1s
checked for message integrity using HMAC-SHA-1, the MIC
ficld 1148 includes twenty bytes 1n big-endian order Further-
more, the presence of the MIC field 1148 may be determined
by whether the Encryption Type field 1162 of the Message
Header 1132 includes any value other than 0x0.

x1. Padding

The GMP 1128 may also include a Padding field 1150. The
Padding field 1150, when present, includes a sequence of
bytes representing a cryptographic padding added to the mes-
sage to make the encrypted portion of the message evenly
divisible by the encryption block size. The presence of the
Padding field 1150 may be determined by whether the type of
encryption algorithm (e.g., block ciphers in cipher-block
chaining mode) indicated by the Encryption Type field 1162
in the Message Header 1132 uses cryptographic padding.

x11. Encryption

The Application Payload field 1146, the MIC field 1148,
and the Padding field 1150 together form an Encryption block
1152. The Encryption block 1152 includes the portions of the
message that are encrypted when the Encryption Type field
1162 1n the Message Header 1132 1s any value other than 0x0.

x111. Message Signature

The GMP 1128 may also include a Message Signature field
1154. The Message Signature field 1154, when present,
includes a sequence of bytes of variable length that contains a
cryptographic signature of the message. The length and the
contents of the Message Signature field may be determined
according to the type of signature algorithm in use and indi-
cated by the Signature Type field 1164 of the Message Header
1132. For example, 1f ECDSA using the Prime256v1 ellipti-
cal curve parameters 1s the algorithm 1n use, the Message
Signature field 1154 may include two thirty-two bit integers
encoded 1n little-endian order.

IV. Profiles and Protocols

As discussed above, one or more schemas of information
may be selected upon desired general discussion type for the
message. A profile may consist of one or more schemas. For
example, one set of schemas of information may be used to
encode/decode data in the Application Payload sub-field
1180 when one profile 1s indicated in the Profile Id field 1176
of the Application Payload 1146. However, a different set of
schemas may be used to encode/decode data 1n the Applica-
tion Payload sub-field 1180 when a different profile 1s 1ndi-
cated 1n the Profile Id field 1176 of the Application Payload
1146.

FIG. 16 illustrates a schematic view of a varniety of profiles
that may be used 1n various messages. For example, one or
more profile schemas may be stored in a profile library 300
that may be used by the devices to encode or decode messages
based onaprofile ID. The profile library 300 may organize the
profiles into groups. For example, an application- and vendor-
specific profile group 302 of profiles may be application- and
vendor-specific profiles, and a provisioning group 304 of
profiles may profiles used to provision networks, services,
and/or fabrics. The application- and vendor-specific profile
group 302 may include a software update profile 306, a locale
profile 308, a time profile 310, a sensor profile 312, an access

US 9,270,761 Bl

27

control profile 314, an alarm profile 316, and one or more
vendor unique profiles 318. The software update profile 306

may be used by the devices to update software within the
devices. The locale profile 308 may be used to specily a
location and/or language set as the active locale for the
device. The alarm profile 316 may be used to send, read, and
propagate alarms.

The profiles library 300 may also include a device control
profile 320, a network provisioning profile 322, a fabric pro-
visioning profile 324, and a service provisioning proiile 326.
The device control profile 320 allows one device to request
that another device exercise a specified device control (e.g.,
arm failsafe, etc.) capability. The network provisioning pro-
file 322 enables a device to be added to a new logical network
(e.g., WiF1 or 802.15.4). The fabric provisioning profile 324
allows the devices to j01n a pre-existing fabric or create a new
fabric. The service provisioning profile 326 enables the
devices to be paired to a service.

The profiles library 300 may also include a strings profile
328, a device description profile 330, a device profile 332,
device power extended profile 334, a device power profile
336, a device connectivity extended profile 338, a device
connectivity profile 340, a service directory profile 342, adata
management profile 344, an echo profile 346, a security pro-
file 348, and a core profile 350. The device description profile
330 may be used by a device to 1dentity one or more other
devices. The service directory profile 342 enables a device to
communicate with a service. The data management profile
344 enables devices to view and/or track data stored in
another device. The echo profile 346 enables a device to
determine whether the device 1s connected to a target device
and the latency 1n the connection. The security profile 348
enables the devices to communicate securely.

The core profile 350 includes a status reporting profile 352
that enables devices to report successes and failures of
requested actions. Additionally, in certain embodiments, each
device may include a set of methods used to process profiles.
For example, a core protocol may include the following pro-

10

15

20

25

30

35

28

schema. RequestEcho may send an arbitrary data payload to
a specified node which the node returns unmodified. Noti-

tyPropertyChange and NotifyPropertiesChanged may
respectively 1ssue a notification if a single/multiple value
pairs have changed for a profile schema.

To a1d 1n understanding profiles and schemas, a non-exclu-
stve list of profiles and schemas are provided below for 1llus-
trative purposes.

A. Status Reporting

A status reporting schema 1s presented as the status report-
ing frame 1182 i FI1G. 17. The status reporting schema may
be a separate profile or may be included in one or more
profiles (e.g., a core profile). In certain embodiments, the
status reporting frame 1182 includes a profile field 1184, a
status code field 1186, a next status field 1188, and may
include an additional status info field 1190.

1. Profile Field

In some embodiments, the profile field 1184 includes four
bytes of data that defines the profile under which the infor-
mation 1n the present status report 1s to be interpreted. An
embodiment of the profile field 1184 1s 1llustrated 1n FIG. 18
with two sub-fields. In the i1llustrated embodiment, the profile
field 1184 includes a profile Id sub-field 1192 that includes
sixteen bits that corresponds to a vendor-specific identifier for
the profile under which the value of the status code field 1186
1s defined. The profile field 1184 may also includes a vendor
Id sub-field 1194 that includes sixteen bits that identifies a
vendor providing the profile identified in the profile Id sub-
field 1192.

11. Status Code

In certain embodiments, the status code field 1186 includes
sixteen bits that encode the status that 1s being reported. The
values 1n the status code field 1186 are interpreted 1n relation
to values encoded 1n the vendor Id sub-field 1192 and the
profile Id sub-field 1194 provided in the profile field 1184.
Additionally, 1n some embodiments, the status code space
may be divided into four groups, as indicated in Table 8
below.

TABL.

L1

3

Status Code Range Table

Range

0x0000 ... 0x0010

0x0011 ...0x0020

0x0021 .. .0x0030

0x0031 .. .0x0040
55

files: GetProfiles, GetSchema, GetSchemas, GetProperty,
GetProperties, SetProperty, SetProperties, RemoveProperty,
RemoveProperties, RequestEcho, NotityPropertyChanged,
and/or NotityPropertiesChanged. The Get Profiles method

may return an array of profiles supported by a queried node.
The GetSchema and GetSchemas methods may respectively
return one or all schemas for a specific profile. GetProperty
and GetProperties may respectively return a value or all value
pairs for a profile schema. SetProperty and SetProperties may
respectively set single or multiple values for a profile schema.
RemoveProperty and RemoveProperties may respectively
attempt to remove a single or multiple values from a profile

60

65

Name Description
Success A request was successtully processed.
client error An error has or may have occurred on the client-side

of a client/server exchange. For example, the client
has made a badly-formed request.

An error has or may have occurred on the server side
of a client/server exchange. For example, the server
has failed to process a client request to an operating
system error.

Additional processing will be used, such as
redirection, to complete a particular exchange, but no
errors yet.

SCIVET CITOTI

continue/redirect

Although Table 8 identifies general status code ranges that
may be used separately assigned and used for each specific
profile Id, 1n some embodiments, some status codes may be
common to each of the profiles. For example, these profiles

may be 1dentified using a common profile (e.g., core profile)
identifier, such as 0x00000000.

111. Next Status

In some embodiments, the next status code field 1188
includes eight bits. The next status code field 1188 indicates
whether there 1s following status information after the cur-
rently reported status. I following status information 1s to be
included, the next status code field 1188 indicates what type

US 9,270,761 Bl

29

of status information 1s to be included. In some embodiments,
the next status code field 1188 may always be included,
thereby potentially increasing the size of the message. How-
ever, by providing an opportunity to chain status information
together, the potential for overall reduction of data sent may
be reduced. If the next status field 1186 1s 0x00, no following,
status information field 1190 1s included. However, non-zero
values may indicate that data may be included and indicate
the form 1n which the data 1s included (e.g., 1n a TLV packet).

1v. Additional Status Info

When the next status code field 1188 is non-zero, the addi-
tional status mifo field 1190 is included 1n the message. IT
present, the status 1tem field may contain status in a form that

may be determined by the value of the preceding status type
field (e.g., TLV format)

B. Software Update

The software update profile or protocol 1s a set of schemas
and a client/server protocol that enables clients to be made
aware ol or seek information about the presence of software
that they may download and install. Using the software
update protocol, a software 1mage may be provided to the
profile client in a format known to the client. The subsequent
processing ol the solftware 1image may be generic, device-
specific, or vendor-specific and determined by the software
update protocol and the devices.

1. General Application Headers for the Application Payload

In order to be recognized and handled properly, software
update profile frames may be 1dentified within the Applica-
tion Payload field 1146 of the GMP 1128. In some embodi-
ments, all software update profile frames may use a common
Profile Id 1176, such as O0x0000000C. Additionally, software
update profile frames may include a Message Type field 1172
that indicates additional information and may chosen accord-
ing to Table 9 below and the type of message being sent.

TABL.

9

(L]

Software update profile message types

Type Message

0x00 1IMage announce

0x01 1mage query

0x02 1mage query
response

0x03 download notify

0x04 notify response

0x035 update notify

0x06 ... Oxfl reserved

Additionally, as described below, the software update
sequence may be initiated by a server sending the update as an
image announce or a client receiving the update as an image
query. In either embodiment, an Exchange Id 1174 from the
initiating event 1s used for all messages used 1n relation to the
soltware update.

11. Protocol Sequence

FIG. 19 illustrates an embodiment of a protocol sequence
1196 for a software update between a soitware update client
1198 and a software update server 1200. In certain embodi-
ments, any device 1n the fabric may be the software update
client 1198 or the software update server 1200. Certain
embodiments of the protocol sequence 1196 may include
additional steps, such as those illustrated as dashed lines that
may be omitted in some software update transmissions.

1. Service Discovery

In some embodiments, the protocol sequence 1196 begins
with a soltware update profile server announcing a presence
of the update. However, 1n other embodiments, such as the

5

10

15

20

25

30

35

40

45

50

55

60

65

30

illustrated embodiment, the protocol sequence 1196 begins
with a service discovery 1202, as discussed above.

2. Image Announce

In some embodiments, an 1mage announce message 1204
may be multicast or unicast by the software update server
1200. The image announce message 1204 informs devices in

.

the fabric that the server 1200 has a software update to offer.
If the update 1s applicable to the client 1198, upon receipt of
the image announce message 1204, the software update client
1198 responds with an image query message 1206. In certain
embodiments, the image announce message 1204 may not be
included 1n the protocol sequence 1196. Instead, in such
embodiments, the software update client 1198 may use a
polling schedule to determine when to send the 1mage query
message 1206.

3. Image Query

In certain embodiments, the 1mage query message 1206
may be unicast from the software update client 1198 either in
response to an 1mage announce message 1204 or according to
a polling schedule, as discussed above. The 1mage query
message 1206 includes information from the client 1198
about 1tself. An embodiment of a frame of the 1image query
message 1206 1s 1llustrated 1n FIG. 20. As illustrated in FIG.
20, certain embodiments of the image query message 1206
may include a frame control field 1218, a product specifica-
tion field 1220, a vendor specific data field 1222, a version
specification field 1224, a locale specification field 1226, an
integrity type supported field 1228, and an update schemes
supported field 1230.

a. Frame Control

The frame control field 1218 includes 1 byte and indicates
various information about the image query message 1204. An
example of the frame control field 128 1s 1llustrated in FIG.
21. As 1llustrated, the frame control field 1218 may include
three sub-fields: vendor specific tlag 1232, locale specifica-
tion tlag 1234, and a reserved field S3. The vendor specific
flag 1232 indicates whether the vendor specific data field
1222 1s 1included 1n the message image query message. For
example, when the vendor specific tlag 1232 1s 0 no vendor
specific data field 1222 may be present 1n the 1mage query
message, but when the vendor specific flag 1232 1s 1 the
vendor specific data field 1222 may be present in the image
query message. Similarly, a 1 value 1n the locale specification
flag 1234 indicates that a locale specification field 1226 1s
present 1n the 1image query message, and a 0 value indicates
that the locale specification field 1226 1n not present in the
Image query message.

b. Product Specification

The product specification field 1220 1s a six byte field. An
embodiment of the product specification field 1220 1s 1llus-
trated 1n FI1G. 22. As illustrated, the product specification field
1220 may 1nclude three sub-fields: a vendor Id field 1236, a
product Id field 1238, and a product revision field 1240. The
vendor Id field 1236 includes sixteen bits that indicate a
vendor for the software update client 1198. The product Id
field 1238 includes sixteen bits that indicate the device prod-
uct that 1s sending the image query message 1206 as the
soltware update client 1198. The product revision field 1240
includes sixteen bits that indicate a revision attribute of the
software update client 1198.

c. Vendor Specific Data

The vendor specific data field 1222, when present in the
image query message 1206, has a length of a variable number
of bytes. The presence of the vendor specific data field 1222
may be determined from the vendor specific flag 1232 of the
frame control field 1218. When present, the vendor specific

US 9,270,761 Bl

31

data field 1222 encodes vendor specific information about the
software update client 1198 1n a TLV format, as described
above.

d. Version Specification

An embodiment of the version specification field 1224 1s
illustrated 1n FIG. 23. The version specification field 1224
includes a variable number of bytes sub-divided into two
sub-fields: a version length field 1242 and a version string
ficld 1244. The version length field 1242 includes eight bits
that indicate a length of the version string field 1244. The
version string field 1244 1s variable 1n length and determined
by the version length field 1242. In some embodiments, the
version string field 1244 may be capped at 255 UTF-8 char-
acters 1n length. The value encoded 1n the version string field
1244 indicates a software version attribute for the software
update client 1198.

¢. Locale Specification

In certain embodiments, the locale specification field 1226
may be included 1n the image query message 1206 when the
locale specification flag 1234 of the frame control 1218 1s 1.
An embodiment of the locale specification field 1226 1s 1llus-
trated 1n FIG. 24. The illustrated embodiment of the locale
specification field 1226 includes a variable number of bytes
divided 1nto two sub-fields: a locale string length field 1246
and a locale string field 1248. The locale string length field
1246 1ncludes eight bits that indicate a length of the locale
string field 1248. The locale string field 1248 of the locale
specification field 1226 may be variable 1n length and contain
a string of UTF-8 characters encoding a local description
based on Portable Operating System Interface (POSIX)
locale codes. The standard format for POSIX locale codes 1s
[language| _territory][.codeset][@modifier]] For example,
the POSIX representation for Australian English 1s en_
AU.UTFS.

f. Integrity Types Supported

An embodiment of the integrity types field 1228 1s 1llus-
trated 1n FIG. 25. The mtegnty types supported field 1228
includes two to four bytes of data divided into two sub-fields:
a type list length field 1250 and an integrity type list field
1252. The type list length field 1250 includes eight bits that
indicate the length in bytes of the integrity type list field 1252.
The integrity type list field 1252 indicates the value of the
software update integrity type attribute of the software update

client 1198. In some embodiments, the integrity type may be
derived from Table 10 below.

TABLE 10

Example integrity types

Value Integrity Type
0x00 SHA-160
0x01 SHA-256
0x02 SHA-512

The mtegrity type list field 1252 may contain at least one
clement from Table 10 or other additional values not
included.

g. Update Schemes Supported

An embodiment of the schemes supported field 1230 1s
illustrated 1 FIG. 26. The schemes supported field 1230
includes a variable number of bytes divided into two sub-
fields: a scheme list length field 1254 and an update scheme
list field 1256. The scheme list length field 1254 includes
cight bits that indicate a length of the update scheme list field
in bytes. The update scheme list field 1256 of the update
schemes supported field 1222 1s variable 1n length determined

10

15

20

25

30

35

40

45

50

55

60

65

32

by the scheme list length field 1254. The update scheme list
field 1256 represents an update schemes attributes of the

soltware update profile of the software update client 1198. An
embodiment of example values 1s shown 1n Table 11 below.

TABLE 11

Example update schemes

Value Update Scheme

0x00 HTTP

0x01 HTTPS

0x02 SEFTP

0x03 Fabric-specific File Transfer Protocol

(e.g., Bulk Data Transfer discussed
below)

Upon recerving the image query message 1206, the software
update server 1200 uses the transmitted information to deter-
mine whether the software update server 1200 has an update
tor the software update client 1198 and how best to deliver the
update to the software update client 1198.

4. Image Query Response

Returning to FIG. 19, after the software update server 1200
receives the 1mage query message 1206 from the software
update client 1198, the software update server 1200 responds
with an i1mage query response 1208. The image query
response 1208 includes either information detailing why an
update 1mage 1s not available to the software update client
1198 or information about the available image update to
enable to software update client 1198 to download and install
the update.

An embodiment of a frame of the 1mage query response
1208 1s 1llustrated 1n FIG. 27. As 1llustrated, the image query
response 1208 includes five possible sub-fields: a query status
field 1258, a uniform resource 1dentifier (URI) field 1260, an
integrity specification field 1262, an update scheme field
1264, and an update options ficld 1266.

a. Query Status

The query status field 1258 includes a variable number of
bytes and contains status reporting formatted data, as dis-
cussed above 1n reference to status reporting. For example,

the query status field 1258 may include image query response
status codes, such as those 1llustrated below 1n Table 12.

TABLE 12

Example image query response status codes

Profile Code Description

0x00000000 0x0000 The server has processed the 1image
query message 1206 and has an update
for the software update client 1198.

The server has processed the image query
message 1206, but the server does not
have an update for the software update
client 119%.

The server could not process the request
because of improper form for the request.
The server could not process the request

due to an internal error

Ux0000000C Ux0001

Ux00000000 Ux0010

Ux00000000 Ux0020

b. URI

The URI field 1260 includes a variable number of bytes.
The presence of the URI field 1260 may be determined by the
query status field 1258. If the query status field 1258 indicates
that an update 1s available, the URI field 1260 may be
included. An embodiment of the URI field 1260 1s 1llustrated
in F1G. 28. The URI field 1260 includes two sub-fields: a URI

US 9,270,761 Bl

33

length field 1268 and a URI string field 1270. The URI length
field 1268 includes sixteen bits that indicates the length of the
URI string field 1270 1n UTF-8 characters. The URI string,
field 1270 and indicates the URI attribute of the software
image update being presented, such that the software update
client 1198 may be able to locate, download, and 1install a
soltware 1mage update, when present.

c. Integrity Specification

The integrity specification field 1262 may variable in
length and present when the query status field 1258 indicates
that an update 1s available from the software update server
1198 to the software update client 1198. An embodiment of
the integrity specification field 1262 is illustrated 1in FIG. 29.
As 1llustrated, the integrity specification field 1262 includes
two sub-fields: an mtegrity type field 1272 and an integrity
value field 1274. The integrity type field 1272 includes eight
bits that indicates an 1ntegrity type attribute for the software
image update and may be populated using a list similar to that
illustrated 1n Table 10 above. The integrity value field 1274
includes the integrity value that 1s used to verily that the
image update message has maintained integrity during the
transmission.

d. Update Scheme

The update scheme field 1264 includes eight bits and 1s
present when the query status field 1238 indicates that an
update 1s available from the software update server 1198 to
the software update client 1198. If present, the update scheme
field 1264 indicates a scheme attribute for the software update
image being presented to the software update server 1198.

¢. Update Options

The update options field 1266 includes eight bits and 1s
present when the query status field 1258 indicates that an
update 1s available from the software update server 1198 to
the software update chient 1198. The update options field
1266 may be sub-divided as 1llustrated in FIG. 30. As 1llus-
trated, the update options field 1266 includes four sub-fields:
an update prionty field 1276, an update condition field 1278,
a report status flag 1280, and a reserved field 1282. In some
embodiments, the update prionty field 1276 includes two
bits. The update prionity field 1276 indicates a priority
attribute of the update and may be determined using values
such as those 1llustrated 1n Table 13 below.

TABLE 13

Example update priority values

Value Description
00 Normal - update during a
period of low network traffic
01 Critical - update as quickly

as possible

The update condition field 1278 includes three bits that may
be used to determine conditional factors to determine when or
if to update. For example, values 1n the update condition field

1278 may be decoded using the Table 14 below.

TABLE 14

Example update conditions

Value Decryption
0 Update without conditions
1 Update if the version of the software

running on the update client software
does not match the update version.

10

15

20

25

30

35

40

45

50

55

60

65

34
TABLE 14-continued

Example update conditions

Value Decryption

2 Update 1f the version of the software
running on the update client software
is older than the update version.

3 Update 1f the user opts into an
update with a user interface

The report status flag 1280 1s a single bit that indicates
whether the software update client 1198 should respond with
a download notily message 1210. If the report status flag 1280
1s set to 1 the software update server 1198 1s requesting a
download notify message 1210 to be sent after the software
update 1s downloaded by the software update client 1200.

I1 the image query response 1208 1ndicates that an update
1s available. The software update client 1198 downloads 1210
the update using the information included 1n the image query
response 1208 at a time indicated in the image query response

1208.

5. Download Notity

After the update download 1210 1s successtully completed
or failed and the report status flag 1280 value 1s 1, the software
update client 1198 may respond with the download notify
message 1212. The download notify message 1210 may be
formatted 1n accordance with the status reporting format dis-
cussed above. An example of status codes used 1n the down-
load notity message 1212 is 1llustrated 1n Table 15 below.

TABLE 15

Example download notify status codes

Profile Code Description

0x00000000 0x0000 The download has been completed,
and integrity verified

0x0000000C 0x0020 The download could not be
completed due to faulty download
instructions.

0x0000000C 0x0021 The image query response
message 1208 appears proper, but
the download or integrity
verification failed.

0x0000000C 0x0022 The integrity of the download could

not be verified.

In addition to the status reporting described above, the down-
load notity message 1208 may include additional status infor-
mation that may be relevant to the download and/or failure to
download.

6. Notily Response

The software update server 1200 may respond with a noti:
response message 1214 1n response to the download not:
message 1212 or an update notify message 1216. The notily
response message 1214 may include the status reporting for-
mat, as described above. For example, the notify response

message 1214 may include status codes as enumerated in
Table 16 below.

Y
Y

TABLE 16

Example notity response status codes

Profile Code Description

Continue - the notification is
acknowledged, but the update

0Ox00000000 0x0030

US 9,270,761 Bl

35
TABLE 16-continued

Example notify response status codes

Profile Code Description

has not completed, such as
download notify message
1214 recerved but update
notify message 1216 has not.
Success - the notification is
acknowledged, and the update
has completed.

Abort - the notification is
acknowledged, but the server
cannot continue the update.
Retry query - the notification
1s acknowledged, and the
software update client 1198 1s
directed to retry the update by
submitting another 1image
query message 1206.

0x00000000 0x0000

0x0000000C 0x0023

0Ox0000000C 0x0031

In addition to the status reporting described above, the notily
response message 1214 may include additional status infor-
mation that may be relevant to the download, update, and/or
failure to download/update the sotftware update.

7. Update Notily

After the update 1s successtully completed or failed and the
report status tlag 1280 value 1s 1, the software update client
1198 may respond with the update notify message 1216. The
update notily message 1216 may use the status reporting
format described above. For example, the update notify mes-
sage 1216 may include status codes as enumerated 1n Table 17
below.

TABLE 17

Example update notify status codes

Profile Code Description

0x00000000 0x0000 Success - the update has been
completed.

0x0000000C 0x0010 Client error - the update failed

due to a problem 1n the
software update client 1198.

In addition to the status reporting described above, the update
notily message 1216 may include additional status informa-
tion that may be relevant to the update and/or failure to
update.

C. Bulk Transter

In some embodiments, 1t may be desirable to transfer bulk
data files (e.g., sensor data, logs, or update 1images) between
nodes/services 1n the fabric 1000. To enable transier of bulk
data, a separate profile or protocol may be incorporated into
one or more profiles and made available to the nodes/services
in the nodes. The bulk data transfer protocol may model data
files as collections of data with metadata attachments. In
certain embodiments, the data may be opaque, but the meta-
data may be used to determine whether to proceed with a
requested file transfter.

Devices participating in a bulk transfer may be generally
divided according to the bulk transfer communication and
event creation. As 1llustrated in FIG. 31, each communication
1400 1n a bulk transier includes a sender 1402 that 1s a node/
service that sends the bulk data 1404 to areceiver 1406 that 1s
a node/service that receives the bulk data 1404. In some
embodiments, the recetver may send status information 1408
to the sender 1402 indicating a status of the bulk transfer.
Additionally, a bulk transfer event may be imitiated by either

10

15

20

25

30

35

40

45

50

55

60

65

36

the sender 1402 (e.g., upload) or the recetver 1406 (e.g.,
download) as the initiator. A node/service that responds to the
initiator may be referred to as the responder 1n the bulk data
transier.

Bulk data transfer may occur using either synchronous or
asynchronous modes. The mode in which the data 1s trans-
terred may be determined using a variety of factors, such as
the underlying protocol (e.g., UDP or TCP) on which the bulk
data 1s sent. In connectionless protocols (e.g., UDP), bulk
datamay be transierred using a synchronous mode that allows
one of the nodes/services (“the driver”) to control a rate at
which the transier proceeds. In certain embodiments, after
cach message 1n a synchronous mode bulk data transfer, an
acknowledgment may be sent before sending the next mes-
sage 1n the bulk data transfer. The driver may be the sender
1402 or the receiver 1406. In some embodiments, the driver
may toggle between an online state and an offline mode while
sending messages to advance the transter when in the online
state. In bulk data transfers using connection-oriented proto-
cols (e.g., TCP), bulk data may be transierred using an asyn-
chronous mode that does not use an acknowledgment belore
sending successive messages or a single driver.

Regardless of whether the bulk data transfer 1s performed
using a synchronous or asynchronous mode, a type of mes-
sage may be determined using a Message Type 1172 1n the
Application Payload 1146 according the Profile Id 1176 1n the
Application Payload. Table 18 includes an example of mes-

sage types that may be used in relation to a bulk data transfer
profile value 1n the Profile 1d 1176.

TABLE 18

Examples of message types
for bulk data transter profiles

Message Type Message
0x01 SendInit
0Ox02 Send Accept
0x03 SendReject
0x04 Receivelnit
0x05 ReceiveAccept
0x06 ReceiveReject
0x07 BlockQuery
0x08 Block
0x09 BlockFEOF
Ox0A Ack
0x0B Block EOF
0x0C Error

1. SendInit

An embodiment of a SendInit message 1420 1s 1llustrated
in FIG. 32. The SendInit message 1420 may 1nclude seven
fields: a transfer control field 1422, a range control ficld 1424,
a file designator length field 1426, a proposed max block size
field 1428, a start ofiset field 1430, length field 1432, and afile
designator field 1434.

The transfer control field 1422 includes a byte of data
illustrated in FIG. 33. The transfer control field includes at
least four fields: an Asynch flag 1450, an RDrive tlag 1452, an
SDrive flag 1454, and a version field 1456. The Asynch tlag
1450 indicates whether the proposed transier may be per-
formed using a synchronous or an asynchronous mode. The
RDrive flag 1452 and the SDrive flag 1454 each respectively
indicates whether the receiver 1406 1s capable of transferring
data with the recerver 1402 or the sender 1408 driving a
synchronous mode transier.

Therange control field 1424 includes a byte of data such as
the range control field 1424 illustrated 1n FIG. 34. In the

illustrated embodiment, the range control field 1424 includes

US 9,270,761 Bl

37

at least three fields: a BigExtent flag 1470, a start offset flag
1472, and a definite length flag 1474. The definite length tlag
14’74 indicates whether the transier has a definite length. The
definite length flag 1474 indicates whether the length field
1432 1s present in the SendImit message 1420, and the Big-
Extent flag 1470 indicates a size for the length field 1432. For
example, 1n some embodiments, a value of 1 1n the BigExtent
flag 1470 indicates that the length field 1432 1s eight bytes.
Otherwise, the length field 1432 1s four bytes, when present.
I1 the transfer has a definite length, the start offset flag 1472
indicates whether a start offset 1s present. If a start offset 1s
present, the BigExtent flag 1470 indicates a length for the
start offset field 1430. For example, in some embodiments, a
value of 1 in the BigExtent tlag 1470 indicates that the start
olffset field 1430 1s e1ght bytes. Otherwise, the start offset field
1430 1s four bytes, when present.

Returming to FIG. 32, the file designator length field 1426
includes two bytes that indicate a length of the file designator
ficld 1434. The file designator field 1434 which 1s a variable
length field dependent upon the file designator length field
1426. The max block size field 1428 proposes a maximum
s1ze of block that may be transferred in a single transfer.

The start offset field 1430, when present, has a length
indicated by the BigExtent tlag 1470. The value of the start
offset field 1430 indicates a location within the file to be
transierred from which the sender 1402 may start the transfer,
essentially allowing large file transters to be segmented 1nto
multiple bulk transter sessions.

The length field 1432, when present, indicates a length of
the file to be transierred if the defimite length field 1474
indicates that the file has a definite length. In some embodi-
ments, 1f the receiver 1402 receives a final block before the
length 1s achieved, the receiver may consider the transfer
failed and report an error as discussed below.

The file designator field 1434 1s a variable length 1dentifier
chosen by the sender 1402 to identify the file to be sent. In
some embodiments, the sender 1402 and the receirver 1406
may negotiate the identifier for the file prior to transmattal. In
other embodiments, the recerver 1406 may use metadata
along with the file designator field 1434 to determine whether
to accept the transter and how to handle the data. The length
of the file designator field 1434 may be determined from the
file designator length field 1426. In some embodiments, the
SendInit message 1420 may also include a metadata field
1480 of a variable length encoded 1n a TLV format. The
metadata field 1480 enables the initiator to send additional
information, such as application-specific information about
the file to be transierred. In some embodiments, the metadata
ficld 1480 may be used to avoid negotiating the file designator
ficld 1434 prior to the bulk data transter.

1. SendAccept

A send accept message 1s transmitted from the responder to
indicate the transfer mode chosen for the transter. An embodi-
ment of a SendAccept message 1500 1s presented 1n FIG. 35.
The SendAccept message 1500 includes a transfer control
field 1502 similar to the transfer control field 1422 of the
SendInit message 1420. However, in some embodiments,
only the RDnive flag 1452 or the SDrive 1454 may have a
nonzero value in the transier control field 1502 to identily the
sender 1402 or the receiver 1406 as the driver of a synchro-
nous mode transier. The SendAccept message 1500 also
includes a max block size field 1504 that indicates a maxi-
mum block size for the transier. The block size field 1504 may
be equal to the value of the max block field 1428 of the
SendInit message 1420, but the value of the max block size
field 1504 may be smaller than the value proposed in the max
block field 1428. Finally, the SendAccept message 1500 may

10

15

20

25

30

35

40

45

50

55

60

65

38

include a metadata field 1506 that indicates information that
the recerver 1506 may pass to the sender 1402 about the
transfer.

111. SendReject

When the receiver 1206 rejects a transier atter a SendInit
message, the receiver 1206 may send a SendReject message

that indicates that one or more 1ssues exist regarding the bulk
data transier between the sender 1202 and the recerver 1206.
The send reject message may be formatted according to the
status reporting format described above and illustrated 1n
FIG. 36. A send reject frame 1520 may include a status code
field 1522 that includes two bytes that indicate a reason for
rejecting the transfer. The status code field 1522 may be
decoded using values similar to those enumerated as 1ndi-

cated 1in the Table 19 below.

TABLE 19

Example status codes for send reject message

Status Code Description
0x0020 Transfer method not supported
0x0021 File designator unknown
0x0022 Start offset not supported
0x0011 Length required
0x0012 Length too large
0x002F Unknown error

In some embodiments, the send reject message 1520 may
include a next status field 1524. The next status field 1524,
when present, may be formatted and encoded as discussed
above 1n regard to the next status field 1188 of a status report
frame. In certain embodiments, the send reject message 1520
may include an additional information field 1526. The addi-
tional information field 1526, when present, may store infor-
mation about an additional status and may be encoded using
the TLV format discussed above.

1v. Recetvelnit

A Receivelnit message may be transmitted by the recerver
1206 as the initiator. The Receivelmit message may be for-
matted and encoded similar to the SendInit message 1480
illustrated 1n FIG. 32, but the BigExtent field 1470 may be
referred to as a maximum length field that specifies the maxi-
mum file size that the recerver 1206 can handle.

v. RecerveAccept

When the sender 1202 receives a Receivelnit message, the
sender 1202 may respond with a ReceiveAccept message.
The RecerveAccept message may be formatted and encoded
as the RecerveAccept message 1540 illustrated in FIG. 37.

The Receive Accept message 1540 may include four fields: a
transier control field 1542, a range control field 1544, a max
block size field 1546, and sometimes a length field 1548. The
ReceiveAccept message 1540 may be formatted similar to the
SendAccept message 1502 of FIG. 35 with the second byte
indicating the range control field 1544. Furthermore, the
range control field 1544 may be formatted and encoded using
the same methods discussed above regarding the range con-
trol field 1424 of FIG. 34.

v1. RecetveReject

I1 the sender 1202 encounters an issue with transierring the
file to the recerver 1206, the sender 1202 may send a Receiv-
cReject message formatted and encoded similar to a Sen-
dReject message 48 using the status reporting format, both
discussed above. However, the status code field 1522 may be
encoded/decoded using values similar to those enumerated as

indicated in the Table 20 below.

US 9,270,761 Bl

39
TABLE 20

Example status codes for receive reject message

Status Code Description
0x0020 Transfer method not supported
0x0021 File designator unknown
0x0022 Start offset not supported
0x0013 Length too short
0x002F Unknown error

vil. BlockQuery

A BlockQuery message may be sent by a driving receiver
1202 1n a synchronous mode bulk data transfer to request the
next block of data. A BlockQuery impliedly acknowledges
receipt of a previous block of data if not explicit Acknowl-
edgement has been sent. In embodiments using asynchronous
transiers, a BlockQQuery message may be omitted from the
transmission process.

viil. Block

Blocks of data transmitted in a bulk data transfer may
include any length greater than O and less than a max block
s1ze agreed upon by the sender 1202 and the recerver 1206.

1X. BlockEOF

A final block 1n a data transier may be presented as a Block
end of file (BlockEOF). The BlockEOF may have a length
between 0 and the max block size. It the recerver 1206 finds
a discrepancy between a pre-negotiated file size (e.g., length
ficld 1432) and the amount of data actually transferred, the
receiver 1206 may send an Error message indicating the fail-
ure, as discussed below.

x. Ack

If the sender 1202 1s driving a synchronous mode transfer,
the sender 1202 may wait until recerving an acknowledgment
(Ack) after sending a Block before sending the next Block. It
the recetver 1s driving a synchronous mode transier, the
receiver 1206 may send either an explicit Ack or a Block-
Query to acknowledge receipt of the previous block. Further-

more, 1n asynchronous mode bulk transfers, the Ack message
may be omitted from the transmission process altogether.

x1. ACKEOF

An acknowledgement of an end of file (AckEOF) may be
sent 1n bulk transiers sent in synchronous mode or asynchro-
nous mode. Using the AckEOF the recerver 1206 indicates
that all data 1n the transfer has been recerved and signals the
end of the bulk data transfer session.

x11. Brror

In the occurrence of certain 1ssues 1n the communication,
the sender 1202 or the recerver 1206 may send an error
message to prematurely end the bulk data transfer session.
Error messages may be formatted and encoded according to
the status reporting format discussed above. For example, an
error message may be formatted similar to the SendReject
frame 1520 of FIG. 36. However, the status codes may be
encoded/decoded with values including and/or similar to
those enumerated 1n Table 21 below.

TABLE 21

Example status codes for an error
messagce 1n a bulk data transfer profile

Status code Description
Ox001F Transter failed unknown error
Ox0011 Overtlow error

10

15

20

25

30

35

40

45

50

55

60

65

40

D. Device Control Profile

Device Control Profile interactions may vary by device
control capability but includes some controls that are com-
mon to all devices and/or specific to different device types.
However, each interaction includes a device control server
and a device control client. Device control clients 1nitiate
protocol interactions with device control servers. In some
embodiments, each device control server may not be capable
to implement all described capabilities. If the device control
server recerves a message requesting a capability which it
does not support, the device control server may return a core
profile status report with the request’s exchange 1D and an
“unsupported message™ status code. For example, the com-
missioner 482 may use a Status Report scheme that 1s part of

a Core Profile as described in U.S. Provisional Patent Appli-
cation No. 62/061,593, titled “Fabric Network,” which was
filed on Oct. 8, 2014, and which 1s incorporated by reference

in 1ts enftirety. Devices which act as device control servers
may also act as device control clients, and vice-versa.

a. Reset Configuration

FIG. 38 1llustrates a sequence diagram for a reset configu-
ration request. A device control client 620 may instruct a
device control server 622 to reset any combination of the
server’s network, fabric, or service configurations to a known
state. This 1s a single request-response 1nteraction. First, the
client 620 may send the server a reset configuration request
624 whose body contains flags (e.g., service tlag, fabric tlag,
network tlag) indicating which configurations to reset. The
server 622 may then prepare to reset the specified configura-
tions, and send the client 620 a core profile status report 626
to 1ndicate success or a device control profile “unsupported
failsate mode” status report to indicate failure.

After the server 622 responds with a core profile status
report 620 to indicate success, the server may reset the speci-
fied configurations. In some embodiments, the server 622
cannot reset 1ts configurations before it responds to the cli-
ent’s request, as to do so may render 1t unable to communicate
turther with the client.

b. Arm Failsafe

FIG. 39 1llustrates a sequence diagram for a new arm fail-
safe request. A device control client 620 may request that a
device control server 622 arm 1ts configuration failsafe. This
1s a single request-response interaction. As discussed below
in relation to data frames, an arm request 628 may include an
8-bi1t arm mode enumeration value and a 32-bit failsafe token.
The failsatfe token may be unmique to each fabric provisioning
attempt, and indicate to new device control clients whether
another client has already armed that server’s failsafe as part
ol an 1n-progress provisioning process.

The failsate arm modes include New, Reset, and Resume
Existing. A New arm request 628 may arm the server’s fail-
safe and set 1ts failsafe token to the value provided 1n the
client’s request 11 the failsafe 1s not already armed, and {fail
otherwise. If a New arm request 628 succeeds, the server 622
may send the client 620 a core profile status report 630 to
indicate success. If a New arm request 628 fails because the
server’s failsafe 1s already active, the server 622 may send the
client 620 a device control profile “failsate already active”
status report 630. If a New arm request 628 fails for some
other reason, the server 622 may send the client an appropri-
ate core profile status report 630.

FIG. 40 1llustrates a sequence diagram for a Reset arm
request. A Reset arm request 632 may reset the server’s net-
work, fabric, and/or service configurations, arm the failsate
regardless of its prior state or any existing failsafe token,
and/or set the failsate token to the value provided in the
client’s request. If a Reset arm request 632 succeeds, the
server 622 may send the client 620 a core profile status report

US 9,270,761 Bl

41

634 to indicate success. I a Reset arm request 632 fails, the
server 622 may send the client 620 an appropriate core profile
status report 634.

FI1G. 41 1llustrates a sequence diagram for a Resume Exist-
ing arm failsafe request. A Resume Existing arm request 636
may arm the failsafe and set the failsate token to the value
provided 1n the client’s request 1f the failsafe 1s not already
armed, or succeed if the failsafe i1s already armed with the
specified failsafe token, and fail otherwise. If a Resume Exist-
ing arm request 636 succeeds, the server 622 may send the
client 620 a core profile status report 638 to indicate success.
If a Resume Existing arm request 636 fails because the serv-
er’s failsafe 1s already armed with a failsafe token other than
that provided by the client 620, the server 622 may send the
client 620 a device control profile “no matching failsafe
active” status report 638. If a Resume Existing arm request
636 fails for some other reason, the server 622 may send the
client 620 an appropriate core profile status report 638.

A device control client 620 may use the Resume Existing
arm mode 1n the case where 1t reconnects to a new, partially
provisioned device after a period of network disconnection. IT
the Resume Existing request succeeds with the client’s earlier
tailsate token, the client 620 may assume that no other device
has taken over the new device’s provisioning process. It the
Resume Existing request fails, the client 620 may assume that
another device has taken over the new device’s provisioning
process, and that the client 620 device should not attempt to
provision the new device unless 1ts failsate becomes disarmed
and 1t remains unprovisioned.

If the server 622 recerves an arm failsate message with an
unknown arm mode, 1t may send the client 620 a device
control profile “unsupported failsate mode™ status report.

¢. Disarm Failsafe

FI1G. 42 illustrates a sequence diagram for a disarm failsafe
request. A device control client 620 may request that a device
control server 622 disable 1ts configuration failsafe. In some
embodiments, this 1s a single request-response interaction.
The client 620 sends the server 622 a disarm failsafe request
640. If the server’s failsate 1s armed, the server 622 disarms
the failsafe, clears the failsafe token, and sends the client 620
a core profile status report 642 message to indicate success. If
the server’s failsate 1s disarmed, 1t sends a device control
profile “no failsafe active™ status report 642.

d. Enable/Disable Connection Monitor

FIG. 43 1llustrates a sequence diagram for a connection
monitor. A device control client 620 may request 644 that a
device control server 622 enables a fabric echo-based con-
nection liveness monitor on a TCP (or UDP) connection
between the server 622 and the client 620. The client’s request
644 to enable connection monitoring may specily the interval
in milliseconds between each of the server’s attempts to send
echo requests, as well as the response timeout to be used by
the server for each echo request sent. The response timeout 1s
defined as the threshold duration during which no communi-
cation occurs across the monitored connection before either
side may consider the connection closed. For proper opera-
tion of the connection monitor, the fabric echo send interval
must be smaller than the response timeout. The connection to
be monitored 1s that over which the client sends the enable
connection monitor request.

If the server 622 accepts the client’s request 644 to enable
connection monitoring, 1t may respond with a core profile
status report 646 to indicate success, and create a new
exchange 1D for fabric echo messages sent over the moni-
tored connection. Fabric echo requests 648 from the server
622 to the client 620, as well as fabric echo responses from
650 the client 620 to the server 622, may be sent with the new

10

15

20

25

30

35

40

45

50

55

60

65

42

exchange ID. If the server 622 fails to enable connection
monitoring, the server 622 may respond with an appropriate
core profile status report 646 to indicate failure.

After the server 622 accepts the client’s request 644 to
enable connection monitoring, 1t may start a timer with a
duration of the send interval from the client’s request 644.
When this timer expires, the server 622 may send a fabric
echo request 648 to the client over the momitored connection
using the new exchange ID created for this purpose. This echo
request 648 may be sent with the response timeout recerved
by the server 622 as part of the client’s 1nitial request 644. IT
this timeout expires, the server 622 may consider the moni-
tored connection terminated and close 1ts side of the connec-
tion. If there 1s already one echo request outstanding when the
send timer expires, the server 622 may refrain from sending
another.

After the client 620 recerves a successiul status report 646
from the server 1n response to 1ts request 644 to enable con-
nection monitoring, the client 620 may start a timer with a
duration of the response timeout sent to the server 622. If this
timer expires, the client 620 may consider the monitored
connection terminated and close 1ts side of the connection.

When the client 620 wishes to disable connection moni-
toring on a given connection, it may send the server 622 a
disable connection monitor request 6352 over that connection.
The server 622 may then disable the monitor for this connec-
tion 1f enabled, cancel all timers for this connection monitor
and send the client 620 a core profile status report 654 to
indicate success or failure. The server 622 may respond to a
disable connection monitor request 652 with a core profile
success status report 6354 11 no connection monitor 1s enabled
on the specified connection.

¢. Remote Passive Rendezvous Request

FI1G. 44 1llustrates a sequence diagram for a remote passive
rendezvous request. A device control client 620 may struct
a device control server 622 to create a TCP-layer tunnel
between the client 620 and a rendezvoused device 656 to
rendezvous with the server 622 on 1ts unsecured fabric port.
The unsecured fabric port 1s a predefined port over which all
tabric protocol traflic 1s treated as unsecured at the network
layer. The tunnel between the client 620 and rendezvoused
device 656 may consist of two TCP connections: one from the
client 620 to the server 622, and one from the server 622 to the
rendezvoused device 656. The server 622 may send all data
that comes 1n over one connection out over the other, and
similarly mirror connection closures and half-closures.

The client 620 to perform a remote passive rendezvous
may {irst send the server an RPR request 658 over an estab-
lished TCP connection. The request 658 may contain a tim-
cout value which indicates how long the server 622, 1if 1t
accepts the client’s request, may listen for a rendezvous con-
nection on the unsecured fabric port. The request 658 may
also 1nclude an mactivity timeout which indicates how long
the server 622 may watit to terminate the tunnel atter recerving
no data over 1ts connection to either the client 622 or rendez-
voused device 656. If the rendezvous timeout expires before
the server 622 accepts an unsecured rendezvous connection
662, the server 622 may stop listening for such a connection
on the client’s behalf and close the connection over which the
client sent 1ts RPR request 658. Finally, the request 658 may
also contain a fabric node ID value which the server 622 may
use to filter unsecured rendezvous connections using a filter
address. The filtering 1s transparent from the client’s perspec-
tive (1.e. the server will not connect the client 620 to a ren-
dezvoused device 656 with an incorrect node ID). In some
embodiments, a null value indicates that the server should not
use node ID filtering. I the server 622 accepts the client’s

US 9,270,761 Bl

43

RPR request 656, the TCP connection over which this request
658 was sent may eventually become the connection over
which the server 622 forwards traific between the client 620
and the rendezvoused device 656.

When the server 622 receives the client’s RPR request 638,
it may register the client 620 as its RPR listener and respond
with a core profile status report 660 to indicate success if the
server 622 1s already listening for rendezvous connections on
the unsecured fabric port and/or another client 622 1s not
already registered with the server as its RPR listener. Other-
wise the server 622 may respond with a core profile status
report 660 to indicate failure. The server 622 may have only
one registered RPR listener at a time.

In some embodiments, the device control profile does not
include a method to instruct the device control server 622 to
listen for rendezvous connections on the unsecured Fabric
port. Instead, 1n such embodiments, that functionality is pro-
vided by the Network Provisioning Profile.

When the client 620 recerves a successiul status report 660
in response to an RPR request 638, 1t may keep open the TCP
(or UDP) connection over which 1t sent this request 658 until
either the rendezvous timeout expires or the server 622 closes
this connection. The client 620 may send no further fabric
message or other data over this connection until it recerves a
remote connection complete message 664 from the server
622. If the client 620 detects that the rendezvous timeout from
its RPR request 658 has expired, it may close 1ts connection to
the server 622.

If the rendezvous timeout specified in the client’s RPR
request 658 expires before the server 622 accepts a rendez-
vous connection on behalf of the client 620, the server 622
may stop listening for such a connection on the client’s behalf
and close the connection over which the client sent its RPR
request 658. If the server 622 recerves a rendezvous connec-
tion before the rendezvous timeout expires, 1t may cancel this
timeout. The server 622 may discard any data recerved from
the client 620 over the RPR connection after a successiul
status report 660 has been sent 1n response to the client’s RPR
request and before the server 622 has sent the client 620 a
remote connection complete message.

If the server 622 accepts a rendezvous connection on the
unsecured fabric port while 1t listens for such connections on
the client’s behall, the server 622 first compares the rendez-
voused device’s fabric node ID to that specified in the client’s
RPR request 658, if any. If the IDs match or the client-
specified node ID 1s null, the server 622 may deregister the
client 620 as an RPR listener and send the client 620 a remote
connection complete message 664 via the same TCP connec-
tion over which it received the client’s RPR request 658. If the
client-specified node ID 1s non-null and does not match that of
the rendezvoused device 656, the server 622 may immedi-
ately close 1ts connection with the rendezvoused device 656
and resume listening for unsecured rendezvouses on the cli-
ent’s behalf

The remote connection complete message 664 indicates
that the client 620 may now send and receive data over this
connection to and from the rendezvoused device 658. Once
this message 664 has been sent, the tunnel between the client
620 and rendezvoused device 656 1s considered to have been
established.

The server 622 sends the remote connection complete mes-
sage 664 belore 1t starts forwarding data 666 between the
client 620 and rendezvoused device 656. I the rendezvoused
device 656 sends data over its connection to the server 622
betfore the remote connection complete message 664 has been
sent to the client 620, the server 622 buifers the data from the
rendezvoused device 656 and sends it to the client 620 1mme-

10

15

20

25

30

35

40

45

50

55

60

65

44

diately after it sends the remote connection complete message
664. In some embodiments, once the server 622 has sent the
remote connection complete message 664, 1t may no longer
send non-forwarded data (1.e. data of its own origin over its
connections to the client 620 and rendezvoused device 656).

The rendezvoused device 656 1s agnostic of whether the
device with whom it exchanges packets over the rendez-
voused TCP connection differs from the fabric node with
whom 1t actually exchanges messages over this connection.

After the tunnel has been established, 11 the server 622 does
not receive data from either side of the tunnel within the
mactivity timeout period specified in the client’s RPR
request, the server 622 may consider the tunnel terminated
and close 1ts connections to both the client 620 and the ren-
dezvoused device 636. To avoid unwanted tunnel termination
as the result of this timeout, the client 620 and rendezvoused
device 656 may enable active connection monitoring between
them.

When the client 620 or rendezvoused device 656 closes
their connection with the server 622, the server 622 may close
its connection with the other tunnel participant and consider
the tunnel terminated. If the client 620 or rendezvoused
device 656 closes only the read or write side of their connec-
tion to the server, the server 622 may close only the read or
write side of 1ts connection to the other tunnel participant, and
consider the tunnel alive until either 1t times out due to 1nac-
tivity or the remaining open side of the connection 1s closed.

. Fabric Application Header

In order for a device control profile frame to be properly
recognized and handled, the fabric application header identi-
fies the frame as such. For example, messages using the
device control profile may include a fabric application header
(e.g., 0x00000006) for device control profile frames. All mes-
sages 1n reset configuration, arm/disarm failsafe, and enable/
disable connection monitor protocol interactions may share
an exchange ID of the message sent by the device control
client to 1mnitiate the interaction illustrating that the commu-
nications are all related. Fabric echo requests and responses
used to determine connection liveness may share the
exchange 1D selected for this purpose by the device control
server Tor each echo message sent. The exchange ID of the
remote connection complete message sent to the device con-
trol client by the device control server as part ol a remote
passive rendezvous interaction 1s undefined, as the client does
not send any message to the device control server in response.
In some embodiments, at least some data frames may have no
message body and purely rely upon information in the head-
ers of the applications.

A message type field of the fabric application header may
have one of the following set of values for Device Control
Profile frames:

TABLE 22

Device Control Profile message types

Value Message Type

0x01 reset configuration

0x02 arm failsafe

0x03 disarm failsafe

0x04 enable connection monitor

0x05 disable connection monitor

0Ox06 remote passive rendezvous request
0x07 remote connection complete
0x08-0xit reserved

US 9,270,761 Bl

45

Table 23 1llustrates status codes that may be used related to
failsate messages:

TABLE 23

Status codes

Value Status Code

0x0001 Failsafe already active

0x0002 No failsafe active

0x0003 No matching failsafe active

0x0004 Unsupported failsafe mode

0x0003 Success, but expect connection to close

g. Device Control Profile Data Frames

1. Reset Configuration Frame

FIG. 45 illustrates a data frame for a reset configuration
data frame. As 1llustrated, the reset configuration data frame
668 includes 2 bytes of data that 1s used as flags to indicate
which targets are to be reset and may be similar to those
values 1llustrated in Table 24 below:

TABLE 24

Reset configuration values

Value Flag
OxOOFF reset all configurations
0x0001 reset network configuration
0x0002 reset fabric configuration
0x0004 reset service configuration
0x8000 full factory reset

11. Arm Failsafe Frame

FIG. 46 illustrates a data frame for an arm failsaie data
frame. As 1llustrated, the arm failsafe data frame 670 includes
an arm mode field 672 that includes 1 byte of data that 1s used
as flags to indicate which failsate mode 1s to be used and may
be similar to those values 1llustrated in Table 25 below:

TABLE 25
Arm failsafe values
Value Arm mode
Ox01 New
Ox02 Reset
0x03 Resume Existing

The arm failsafe frame 670 also includes a failsate token
674 that may be used to 1dentity the arm failsafe request and
validate it. The failsate token 674 may be a 4-byte arbitrary
value unique to each fabric provisioning attempt.

111. Enable Connection Monitor Frame

FI1G. 47 illustrates a data frame for an enable connection
monitor frame. As 1llustrated, the enable connection monitor
frame 676 1ncludes a connection monitor timeout 678 and a
connection monitor interval 680. In some embodiments, both
the connection monitor timeout 678 and the connection moni-
tor interval 680 include 2 bytes of data. The connection moni-
tor timeout 678 1indicates how long a connection can remain
idle before timing out. The connection momitor interval 680
indicates how often echo requests are sent.

1v. Remote Passive Rendezvous Request Frame

FIG. 48 illustrates a remote passive rendezvous request
frame. The remote passive rendezvous request frame 682
includes a rendezvous timeout field 684 and an inactivity
timeout field 686. The rendezvous and inactivity timeouts

10

15

20

25

30

35

40

45

50

55

60

65

46

may be 16-bit unsigned integer values 1n seconds. The ren-
dezvous timeout field 684 indicates how long the attempt may
remain open, and the mactivity timeout field 686 indicates
how long mactivity may occur on the RPR connection before
closing the connection. The remote passive rendezvous
request frame 682 also 1includes a filter address 688. In some
embodiments, the filter address 688 includes 8 bytes that may
be used to verily that the rendezvoused joining device is the
correct device.

The specific embodiments described above have been
shown by way of example, and 1t should be understood that
these embodiments may be susceptible to various modifica-
tions and alternative forms. It should be further understood
that the claims are not intended to be limited to the particular
forms disclosed, but rather to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of
this disclosure.

What 1s claimed 1s:

1. A non-transitory, computer-readable medium having
stored thereon instructions for remotely passively rendez-
vousing with a device joining a network, wherein the mnstruc-
tions are configured to cause a processor to:

recerve, at an assisting device, a remote passive rendezvous

request from a commissioning device, wherein the com-

missioning device manages access to a fabric on which
the assisting device resides, and the assisting device 1s
configured to assist a joining device that 1s remote from
the commissioning device 1n joining the network, and, 1n
response to receiving the remote passive rendezvous
request, the assisting device passively waits for a con-
nection from the joining device through a network inter-
face, the passive waiting including enabling the network
interface of the assisting device to receive a connection

from the joining device for the purpose of facilitating a

communication tunnel between the commissioning

device and the joining device, and wherein the remote
passive rendezvous request comprises:

a rendezvous timeout field that indicates how long the
network interface of the assisting device 1s to be
enabled to receive the connection from the joining
device; and

a filter address that identifies the joining device for
which the assisting device 1s to communicate with via
the communication tunnel.

2. The non-transitory, computer-readable medium of claim
1, wherein the remote passive rendezvous request comprises
an 1nactivity timeout field that indicates a period of time of
iactivity after which the assisting device 1s to disable the
network interface of the assisting device to recerve the con-
nection from the joining device as having been inactive for an
impermissible amount of time.

3. The non-transitory, computer-readable medium of claim
2, wherein the nstructions are configured to cause the pro-
cessor to:

terminate the remote passive rendezvous request if a period

ol mactivity exceeds the permissible period of time for

iactivity indicated in the remote passive rendezvous

request; and

send an indication of termination of the remote passive

rendezvous request to the commissioning device.

4. The non-transitory, computer-readable medium of claim
2, wherein:

the rendezvous timeout field comprises an allocation of 2

bytes of data;

the mactivity timeout field comprises an allocation of 2

bytes of data; and

US 9,270,761 Bl

47

the filter mode 1dentifier comprises an allocation of 8 bytes

of data.

5. The non-transitory, computer-readable medium of claim
1, wherein the instructions are configured to cause the pro-
cessor to:

terminate the remote passive rendezvous request 1f the

remote passive rendezvous request beyond an amount of

time indicated in the rendezvous timeout field of the
remote passive rendezvous request; and

send an indication of termination of the remote passive

rendezvous attempt to the commissioning device.

6. The non-transitory, computer-readable medium of claim
1, wherein the filter address comprises a media access control
address for the joining device, and wherein the instructions
are confligured to cause the processor to deny a rendezvous
with a device attempting to rendezvous with the assisting
device with a media access control address that does not
match the filter address.

7. The non-transitory, computer-readable medium of claim
1, wherein the instructions are configured to cause the pro-
Cessor 1o:

respond to the remote passive rendezvous request with a

status report;

establish a transmission control protocol connection with

the joining device via an unsecure port; and

send an indication to the commissioning device that the

transmission control protocol connection with the join-

ing device has been established.

8. The non-transitory, computer-readable medium of claim
7, wherein the mstructions are configured to cause the pro-
cessor to:

receive data from the commissioning device intended for

the joining device;

forward the data from the commissioning device to the

jomning device via the TCP connection;

receive data from the joining device via the TCP connec-

tion intended for the commissioning device; and

forward the data from the joining device to the commis-
stoning device.

9. A method for remotely passively rendezvousing with a
device joining a network, comprising:

receiving, at an assisting device, a remote passive rendez-

vous request from a commissioning device that 1s remote
from the joining device, wherein the commissioning
device manages access to a fabric on which the assisting
device resides, and, 1n response to receiving the remote
passive rendezvous request, the assisting device pas-
stvely waits for a connection from the joining device
through a network interface, the passive waiting includ-
ing enabling the network interface of the assisting device
to recerve a connection from the joining device for the
purpose of facilitating a communication tunnel between
the commaissioning device and the joining device, and
wherein the remote passive rendezvous request coms-
prises:

a rendezvous timeout field that indicates how long the
network interface of the assisting device 1s to be
enabled to recerve the connection from the joining
device; and

a filter address that identifies the joining device for
which the assisting device 1s to communicate with via
the communication tunnel.

10. The method of claim 9, comprising receiving, at the
network interface from a remote device, a reset configuration
request, wherein the reset configuration request comprises a
request to reset configuration data stored relating to a fabric,
a local area network, or service to which the network interface

5

10

15

20

25

30

35

40

45

50

55

60

65

48

connects, wherein resetting configuration data comprises
deleting credentials and 1dentifiers for the fabric, the local
area network, or the service.

11. The method of claim 10, wherein the reset configura-
tion request comprises:

a service tlag that indicates whether service configuration

data should be reset;

a local area network flag that indicates whether service
configuration data for the local area network should be
reset; and

a fabric flag that indicates whether the fabric configuration
data should be reset, wherein the reset configuration
request comprises a data allocation of 2 bytes.

12. The method of claim 10, comprising receiving an arm
failsate request having an arm mode field that indicates a
failsate mode type for a failsafe that 1s to be used to indicate
a type of failsate mode to be armed for a fabric provisioning
attempt, wherein the failsafe mode type comprises:

a new arm mode, wherein the new arm mode sets a new

failsafe;

a reset arm mode, wherein the reset arm mode resets a timer
for an existing failsafe and continues the arm; and

a resume existing arm mode, wherein the resume existing,
arm mode starts the existing failsafe where 1t has previ-
ously halted.

13. The method of claim 12, wherein the arm mode field 1s

allocated 1 byte of data, wherein:

a value of 0x01 indicates that the arm mode type 1s the new
arm mode;

a value of 0x02 indicates that the arm mode type 1s the reset
arm mode; and

a value of 0x03 indicates that the arm mode type is the
resume existing arm mode.

14. The method of claim 12, wherein the arm failsafe
request comprises a failsafe token that 1s configured to 1den-
tify the arm failsate request and enable validation of the arm
failsate request, wherein the failsate token comprises a 4-byte
arbitrary value that 1s generated uniquely for each arm failsafe
request and configured to uniquely identify the arm failsafe
request as corresponding to the remote passive rendezvous
request.

15. An electronic device, comprising:

a network interface:

memory; and

a processor, wherein the processor 1s configured to:
receive, via the network interface, a remote passive ren-

dezvous request from a commissioning device,
wherein the commissioning device manages access to
a fabric on which the assisting device resides, and the
assisting device 1s configured to assist a joining device
that 1s remote from the assisting device 1n joining the
network, and, 1n response to receirving the remote
passive rendezvous request, the assisting device pas-
stvely waits for a connection from the joiming device
remotely through a network interface, the passive
waiting including enabling the network interface of
the assisting device to recerve a connection from the
joimng device for the purpose of facilitating a com-
munication tunnel between the commissioning device
and the joming device, and wherein the remote pas-
stve rendezvous request comprises:

a rendezvous timeout field that indicates how long the
network interface of the assisting device 1s to be
enabled to receive the connection from the joining
device; and

US 9,270,761 Bl

49

a filter address that 1dentifies the joining device for
which the assisting device 1s to communicate with
via the communication tunnel.

16. The electronic device of claim 15, wherein the proces-

sor 1s configured to:

recerve, via the network interface, an enable connection
monitor request that 1s configured to enable a fabric
echo-based connection liveness monitor on a transmis-
s1on control protocol or uniform datagram protocol con-
nection monitoring between the commissioning device
and the assisting device; and

send, via the network interface, a status report indicating
whether the connection monitor has successtully been

cnabled.

17. The electronic device of claim 16, wherein the enable
connection monitor request comprises:

a connection monitor timeout field that indicates how long

a connection momtor can remain 1dle before the connec-
tion monitor 1s terminated; and

a connection monitor interval field that indicates how fre-

quently an update 1s sent to commissioning device.

18. The electronic device of claim 17, wherein the connec-
tion momtor field 1s allocated 2 bytes of data, and the con-
nection monitor interval field 1s allocated 2 bytes of data, and
wherein the processor 1s configured to:

10

15

20

50

recerve, via the network interface, an echo request with an
exchange identifier; and

send, via the network interface, an echo response with the
exchange 1dentifier, wherein the exchange identifier 1s
configured to indicate that the echo response corre-
sponds to the echo request.

19. The electronic device of claim 15, wherein the proces-
sor 1s configured to:

send, via the network interface, a disable connection moni-

tor to terminate the connection monitor; and

recerve, via the network interface, a status report indicating

whether the commissioning device has received the dis-
able connection monitor and disabled the connection
monitor.

20. The electronic device of claim 16, wherein the proces-
sor 1s configured to receive, via the network interface, a reset
configuration request, wherein the reset configuration request
comprises a request to reset configuration data stored relating
to a fabric, a local area network, or service to which the
network interface connects, wherein resetting configuration

data comprises deleting credentials and identifiers for the
fabric, the local area network, or the service.

% o *H % ex

	Front Page
	Drawings
	Specification
	Claims

