US009270647B2
a2y United States Patent (10) Patent No.: US 9,270,647 B2
Call 45) Date of Patent: *Feb. 23, 2016
(54) CLIENT/SERVER SECURITY BY AN (56) References Cited
INTERMEDIARY RENDERING MODIFIED
IN-MEMORY OBJECTS U.S. PATENT DOCUMENTS
5,003,596 A 3/1991 Wood
(71) Applicant: Shape Security, Inc., Mountain View, 5,315,657 A 5/1994 Abadi et al.
CA (US) (Continued)
(72) Inventor: Justin Call, Santa Clara, CA (US) FOREIGN PATENT DOCUMENTS
CN 101471818 A 7/2009
(73) Assignee: Shape Security, Inc., Mountain View, CN 101471818K2 5/2011
CA (US) (Continued)
OTHER PUBLICATIONS

*) Notice: Subject to any disclaimer, the term of this
J y
patent 1s extended or adjusted under 35 Soroush Sedaghat, Josef Pieprzyk, Ehsan Vossough; “On-the-fly web

U.S.C. 154(b) by 81 days. content integrity check boosts users’ confidence”; Nov. 2002; Com-
. : . . . munications of the ACM , vol. 45 Issue 11; Publisher: ACM; pp.
This patent 1s subject to a terminal dis- 1337
claimer. | _
(Continued)

21) Appl. No.: 14/099,437
(21) Appl. No Primary Examiner — Andrew Nalven

Assistant Examiner — Courtney Fields

(74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP

(22) Filed: Dec. 6, 2013

(65) Prior Publication Data

US 2015/0163201 A1 Jun. 11, 2015 (57) ABSTRACT

In an embodiment, a method comprises intercepting, from a
server computer, a first set of 1nstructions that define one or
(1) Int. CI. more objects and one or more operations that are based, at

HO4L 29/06 (2006-O;~) least in part, on the one or more objects; generating, in
GO6l 21/00 (2013-O:~) memory, one or more data structures that correspond to the
GOoL 97455 (2006.01) one or more objects; performing the one or more operations

(Continued) on the one or more data structures; updating the one or more
data structures, 1n response to performing the one or more
operations, to produce one or more updated data structures;
rendering a second set of 1nstructions, which when executed
63/0281 (2013.01): HO4L 63/1466 (2013.01) I[:)yaremote client computer cause the remote client computer
o generate the updated data structures 1n memory on the

HO4L 67/42 (2013.01) remote client computer, wherein the second set of mnstruc-

(58) Field of Classification Search tions are different than the first set of instructions; sending the
CPC . HO4L 63/04; HO4L 63/1466; HO4L 63/0281; second set of 1nstructions to the remote client computer.

HO4L 29/06972; GO6F 9/45529
See application file for complete search history. 20 Claims, 9 Drawing Sheets

(52) U.S.CL
CPC ... HO4L 63/04 (2013.01); GO6F 9/45529
(2013.01); HO4L 29/06972 (2013.01); HO4L

Browser 100

O8 Frantend s E o e e 05 System
AP Layer Browser Browser Backend 101 AP| Layer

Fronteng 150

160

| |
| |
| |
| |
\I— | 120 |
| — |
| | lrra
| - | 5¢
| | Rendering |, Extension ™ Parser
"H-J" Engine | Execution 108
122 : Environment,
| 116
—

Protocol

Module
102

55

i
I
I
I
I
I
I
I
I
I
| |
| |
| I
I |1
I |1
| i
| hteractivity | Parser
| Module : " DO 110
124 : :H Module
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DMNS
iWiodule

113
— HTML

|

|

|

| I

I |

I |

| User | §—a® Dyrser
% Interface 113

I 175 : 1avabcript

I | Execution

|

|

|

|

|

|

|

|

I

-

104

Local Storage
Module

106

114

Envi t
nwrf;gm en lavaScript
— Parser

US 9,270,647 B2

Page 2
(51) Int.CL 2011/0239113 Al 9/2011 Hung et al.
: 2011/0255689 Al 10/2011 Bolotov et al.
GOOL 9744 (2006.01) 2011/0296391 A1 12/2011 Gass et al.
GO6F 11/36 (2006.01) 2012/0011262 Al 1/2012 Cheng et al.
2012/0022942 Al 1/2012 Holloway et al.
2012/0030248 Al 2/2012 Blinnikka
U S PATENT DOCUMENTS 2012/0096116 Al 4/2012 Mislove et al.
2012/0117649 Al 5/2012 Holloway et al.
2012/0124372 Al 5/2012 Dilley et al.
oSl Ay Treund 2012/0173699 Al 7/2012 Niemela
654013077 Rl 62002 Gooden 2012/0174225 Al 7/2012 Shyamsunder
6038 170 Bl 217005 Kraft 2012/0198528 Al 8/2012 Baumbhof
7.103.180 Bl 9/2006 McGregor 2012/0255006 Al 1072012 Aly
7.117.429 B2 10/2006 Vedullapalli et al. 2013/0091582 Al 4/2013 Chen et al.
7180 895 B? 22007 Smith 2013/0198607 Al 8/2013 Mischook et al.
7,500,099 Bl 3/2009 McElwee et al. 2013/0227397 Al 8/2013 Ivorun et al.
7.580.521 Bl 8/2009 Spies et al. 2013/0232234 Al 9/2013 Kapur et al.
7,940,657 B2 5/2011 Perreault 20140165197 AL 62014 "He
7.061.879 Bl 6/2011 Spies et al. 2014/0189499 Al 7/2014 - Gigliotts
7.975308 Bl 7/2011 Satish et al 2014/0225290 Al 82014 Hathaway
8,020,193 B2 9/2011 Bhola etal. 2014/0281535 Al 972014 Kane
8.077.861 B2 12/2011 Damgaard et al 2014/0282872 Al 9/2014 " Hansen et al.
8,086,957 B2 12/2011 Bauchot et al. 2015/0039962 AL 2/2015 Fonseka et al.
8,170,020 B2 5/2012 Oliver et al. 20150067855 Al 32015 Amrutakar
8,225,401 B2 7/2012 Sobel et al.
8,266,202 Bl 9/2012 Colton et al. FOREIGN PATENT DOCUMENTS
8,260,243 Bl 9/2012 Carlson et al.
8,332,952 B2 12/2012 Zhang et al. GB 2443093 A 4/2008
8,347,396 B2 1/2013 Grnigsby et al. GB 2443093 A 4/2008
8,392,576 Bl 3/2013 Henderson WO W09964967 Al 12/1999
8,516,080 B2 8/2013 Chow WO WO00/72119 A2 11/2000
8,527,774 B2 9/2013 Fallows et al. WO W002/093369 Al 11/2002
8,533,480 B2 9/2013 Pravetz et al. WO WO002088951 Al 11/2002
8,548,998 B2 10/2013 Plotnik WO wW02004109532 A1 12/2004
8,584,233 B1 11/2013 Yang WO WO02008095018 A2 8/2008
8,601,064 B1 12/2013 Liao WO WO02008095031 Al 8/2008
8,627,479 B2 1/2014 Wittenstein et al. WO WO02008130946 A2 10/2008
8,762,705 B2 6/2014 He WO WO 2010046314 A1 * 4/2010
2003/0159063 Al 8/2003 Apfelbaum et al. WO WO02013091709 Al 6/2013
2004/0101142 Al 5/2004 Nasypny
2004/0162994 Al 8/2004 Cohen OI'HER PUBLICATIONS
2004/0249938 Al 12/2004 Bunch
2006/0015941 Al 1/2006 McKenna Anderson et al., “Measuring the Cost of Cybercrime,” 2012 Work-
2006/0034455 A; 2/2006 Damgaard et al. shop on the Economics of Information Security (WEIS), [retrieved
ggggﬁg?ggggg i %;3882 ﬁiﬁﬁ;ﬁiiﬁl' on Oct. 15, 2013]. Retrieved from the Internet: <URL: http://web.
2007/0011295 Al 1/2007 Hansen archive.org/web/20130623080604/http://wei1s2012.econinfosec.
2007/0064617 Al 3/2007 Reves org/papers/Anderson_ WEIS2012.pdf>, 31 pages , Jun. 2012.
2007/0074227 Al 3/2007 Naidu et al. CodeSealer, “CodeSealer,” codesealer.com [online] 2013 [captured
20080025496 Ai‘ 1/2008 Smuth et al. Aug. 29, 2013]. Retrieved from the Internet: <URL:http://web.
2008/0222736 Al 9/2008 Boodacl et al. .
2008/0770304 A 1 9/2008 Stering et al. archive.org/web/2013082916503 1/http://codesealer.com/technol-
2008/0320567 Al 12/2008 Shulman ogy-html>, 2 pages.
2009/0007243 Al 1/2009 Boodaei et al. Cova et al., “Detection and Analysis of Drive-by-Download Attacks
2009/0193497 Al 7/2009 Kikuchi and Malicious JavaScript Code,” World Wide Web Conference Com-
2009/0193513 Al 7/2009 Ag_anmal et al. mittee, Apr. 26-30, 2010. Retrieved from the Internet: <URL: http://
2009/0241174 Al 9/2009 Rajan et al. www.cs.ucsb.edu/~vigna/publications/2010_ cova_ kruegelvigna
2009/0254572 Al 10/2009 Redlich et al. Wepawet ndf>. 10 paces
2009/0282062 Al 11/2009 Husic pARELPET, - PEEE . .
7009/0292084 A1 11/2009 Bauchot et al. Egele et al., “Defending Browsers against Drive-by Downloads:
2010/0083072 Al 4/2010 Prasad et al. Mitigating Heap-spraying Code Injection Attacks,” Detection of
2010/0131512 Al 5/2010 Ben-Natan Intrusions and Malware, and Vulnerability Assessment Lecture Notes
2010/0172494 Al 7/2010 Henson et al. in Computer Science, 5587:88-106. Retrieved from the Internet:
2010/0186089 Al 7/2010 Fu et al. <URL: http://anubis.seclab.tuwien.ac.at/papers/driveby.pdf>, 19
2010/0235637 Al 9/2010 Lu et al. pages, 2000.
2010/0235910 Al 9/2010 Ku et al.,
5010/0262780 Al 10/2010 Mahan ef al. Entrust, “Defeating Man-in-the-Browser Malware,” Entrust.com
2011/0015917 Al 1/2011 Wang et al. [online] Sep. 2012 [retrieved Oct. 15, 2013]. Retrieved from the
7011/0022846 Al 1/2011 Ginter et al. Internet: <URL: http://download.entrust.com/resources/download.
2011/0047169 Al 2/2011 Leighton et al. cim/24002/>, 18 pages.
2011/0107077 Al 5/2011 Henderson et al. Oh, “Recent Java exploitation trends and malware,” Black Hat USA
2011/0131416 Al 6/2011 Schneider 2012, Retrieved from the Internet: <URL: https://media.blackhat.
2011/0154021 Al 6/2011 McCann et al. com/bh-us-12/Briefings/Oh/BH__US_12_ Oh_ Recent_ Java Ex-
2011/0178973 Al 7/2011 Lopez et al. ploitation_ Trends_ and Malware WP.pdf>, 27 pages.

US 9,270,647 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Marcus and Sherstobitoff, “Dissecting Operation High Roller,”
McAfee [online] 2012 [retrieved on Oct. 15, 2013]. Retrieved from
the Internet: <URL: http://www.mcafee.com/us/resources/reports/
rp-operation-high-roller.pdf>, 20 pages.

Rutkowska, “Rootkits vs. Stealth by Design Malware,” Black Hat
Europe, 2006. Retrieved from the Internet: <URL:http://www.
blackhat.com/presentations/bh-europe-06/bh-eu-06-Rutkowska.
pdi> 44 pages.

RSA, “RSA Offers Advanced Solutions to Help Combat Man-In-
The-Browser Attacks,” rsa.com [online] May 18, 2010 [captured
Nov. 11, 2011]. Retrieved from the Internet: <URL: http://web.
archive.org/web/20111111123108/http://rsa.com/press__release.
aspx?1d=10943>, 3 pages.

SafeNet, “Prevent Financial Fraud and Man-in-the-Browser
Attacks,” safenet-inc.com [online] [retrieved on Oct. 15, 2013].
Retrieved from the Internet: <URL: http://www.safenet-inc.com/so-
lutions/data-protection/financialservices/financial-fraud-man-in-
the-browser-attacks/>, 5 pages.

Sood and Enbody, “A Browser Malware Taxonomy,” Virus Bulletin,
Jun. 2011. Retrieved from the Internet: <URL:http://www.secniche.
org/released/ VB BRW__MAL_ TAX AKS RIE.pdf>, 5 pages.
Sood and Enbody, “Browser Exploit Packs—Exploitation Tactics,”
Virus Bulletin Conference, Oct. 2011, Retrieved from the Internet:
<URL: http://www.secniche.org/papers/VB_ 2011_BRW__EXP__
PACKS__AKS_ RIJE.pdf>, 9 pages.

Sood et al., “The Art of Stealing Banking Information—Form grab-
bing on Fire,” Virus Bulletin, Nov. 2011, Retrieved from the Internet:
<URL: http://www.virusbtn.com/virusbulletin/archive/2011/11/
vb201111-form-grabbing™>, “(pp. 19-23 of 24 pages)”.

Team Cymru, “Cybercrime—an Epidemic,” Queue, 4(9):24-35, Nov.
2006, Retrieved from the Internet: <URL: http://trygstad.rice.iit.
edu:8000/Articles/Cybercrime®020-%20An%20Epidemic%20-
%20ACM%20Queue.pdf>, 3 pages.

Trusteer, “Trusteer Rapport”, “Endpoint-centric Fraud Prevention”,
from the web http://www.trusteer.com/products/trusteer-rapport, last
accessed on Jan. 9, 2013, 2 pages.

Vasco, “Hardened Browser,” vasco.com [online] [retrieved on Oct.
15, 2013]. Retrieved from the Internet: <URL: http://www.vasco.
com/products/client_ products/pki_ digipass/hardened_ browser.
aspx-=, 2 pages.

Krebs on Security, In-depth security news and investigation, “A
Closer Look at Rapport from Trusteer”, dated Apr. 29, 2010, http://

krebsonsecurity.com/2010/04/a-closer-look-at-rapport-from-
trusteer/, last accessed on Jan. 9, 2014, 16 pages.

FEuropean Patent Office, “Search Report”’in application No. PCT/
US2014/023635, dated Jan. 21, 2015, 11 pages.

L1 et al., “WebShield: Enabling Various Web Defense Techniques
Without Client Side Modifications™, dated Aug. 15, 2009, 18 pages.
European Patent Office in application No. PCT/US2014/068133,
dated Apr. 7, 2015, 14 pages.

Claims in European Application No. PCT/US2014/068133, dated
Apr. 2015, 16 pages.

International Searching Authority, “Search Report™ in application
No. PCT/US15,12072, dated Jan. 20, 2015, 14 pages.

IP.com, “Search Results”, Patents and Applications, http://ip/com/
search/results.html, dated May 6, 2014, 2 pages.

Google Search, “Google Patents Search Results” dated May 21,
2014, 2 pages.

Rieck et al., “Cujo: Efficient Detection and Prevention of Drive-by-
Download Attacks”, ACSAC, Dated Dec. 2010, 9 pages.
Pattabiraman et al., “DoDOM: Leveraging DOM Invariants for Web
2.0 Application Robustness Testing” dated 2010, IEEE, 10 pages.
International Searching Authority, “Search Report™ in application
No. PCT/US2014/024232, dated Aug. 1, 2014, 52 pages.
International Searching Authority, “Search Report™ in application
No. PCT/2014/027805, dated Aug. 18, 2014, 14 pages.
International Searching Authority, “Search Report™ in application
No. PCT/2014/023897, dated Jul. 18, 2014, 15 pages.

U.S. Appl. No. 14/290,803, filed May 29, 2014, Office Action, Sep. 5,
2014.

U.S. Appl. No. 14/175,923, filed Feb. 7, 2014, Notice of Allowability,
Sep. 11, 2014.

International Searching Authority, “Search Report™ in application
No. PCT/2014/027805, dated Aug. 14, 2014, 14 pages.

Matsunaka et al., “Detecting and Preventing Drive-By Download
Attack via Participative Monitoriing of the Web”, Information Secu-
rity, dated Jul. 26, 2013, 8th Asia Joint Conference, pp. 48-55.
European Patent Office, “Search Report™” in application No. PCT/
US2015/031361, dated Jul. 28, 2015, 13 pages.

U.S. Appl. No. 61/788,250, filed Mar. 15, 2013, mailing date Oct. 28,
2015.

U.S. Appl. No. 14/679,596, filed Apr. 6, 2015, Office Action, mailing
date Nov. 4, 2015.

U.S. Appl. No. 14/481,835, filed Sep. 9, 2014, Office Action, mailing
date Oct. 28, 2015.

* cited by examiner

US 9,270,647 B2

Sheet 1 0of 9

Feb. 23, 2016

U.S. Patent

04671

13Ae7 |4V
WialsAS SO

o O B S B T O

vTT
90T 19s.ied
SINPOIN 1di1oSeARS

3821015 [B207

61T
JUBUILOIAU]

U01IN23X 3
1diioseAef

Lk

71T
1asied

TNLH

0T aTT

SINPOIA;
NOQ

IINPOIN
SNC

91T
JUBWILOIAUT

UOIIN29X3
LOISUaIX]

01
SINPOIA
10001014

d b

80T
1asied

3L}

10T puaydeg 1asmoug

001 198MO.Ig

9zZ1
chlABE]

1Bsn

veT
S{NPON
AYIAIDBIDIUY

443

oU1IdU3
duLIpUaY

07T
PUIIUOIS

19SM0Ig

EARRARARNNENET IR RA GARANA R EE T TSN R A A N

1 "Dl

091
JaAeT |dY
puallol4 SO

ovz
3381015
e1eq

US 9,270,647 B2

7€z uoneinsijuo)

A e

...H.._.H...H...H.._.H...H...H.._.H...H...”.._.H...”...H.._......._._....”...H...”...H...H...H...”...H...H...H...H...Hh
e N Nl kN o
[, o, oy, e e e e e e e e e e e e e e
.T.'..T.T.T.'..T.'..T.T.T.'..T.'..T.T.T.'..T.'..T.T.T.'..T.'..T.T.T.'..T.r..Tb..Tb..Tb..Tb..Tb..Tb..Tb..Tb..Tb..Tb..Tb.h
ol e b b M b M N

PO I I I R L

L3
X

.”b.H.:.Hb.H.:.H.'.”b.”b.H.:.Hb.”b.H.:.”b.H.:.H.:.Hb.”b.H.:.Hb.”.:.H.'.Hb.”b.H.:.Hb.”b.H#H#H*H#H#”#H#H#”#H#”#H#H
S g
N g g g
S kN el k)
e e e e e e U e e e e e e e e e e e e e e e
B e e A e P N N N
AN e i e

L
L LA .

L I R I
L L

Sheet 2 0of 9

Fh FFFFFF
LI
LI N
B bk bk b bk k kb kb bbb i od ik

1BInduion
Aleipouiialul

667
PINAWo) I0JISTA

Feb. 23, 2016

06 SSD
pue ‘1duodseaer TNLH
PolHPOA

0TT SSD
pue ‘1dudseses N LH

00T LI3}SAS

¢ 9l

U.S. Patent

US 9,270,647 B2

Sheet 3 of 9

Feb. 23, 2016

U.S. Patent

hL s

L s

DTN NN

Lok
Ll
NN

r

¥
)
P N)

ey

)
LS
¥

L]
L]

X koK

'r:Jr:Jr:Jr
P
X X
ey
a-:a-*a-*a-

¥

L
rdr ol i

dr o dr o Jr o dr e Jr o Jr b o Jr b 0o 0r O
E O N R e

e odr O b b b odr b A bk b

& &
& LI &
E E
L] L]
& &
4 2 a2 =2 a2 & =

F I I T T I R T I R I I R R)

.1-:-._-'.1#.1,.._-.._-,...J_-_-.__._-.-_-.-.--.-L-._.-_.-ﬁ-._-.._-.._-.._-.._-_.._-__-_-..-_-.t-.-_-_.-_._

.T.r..T.'..T.'..T.T.T.'..T.'..T.r..T.'..T.'..Tb..T.'..Tb..Tb..Tb..Tb..Tb.h

G(O7 2INONIISBIJUT GO AA

r Jr Jr Jr o Jr Jr b 0 b 0 b i Wi

r Jr Jr Jr o Jr Jr b 0 o Jr 0 o 0r 0 0 0 0
E " BAF B A R DA RN R NP R RN P RN R)

TR R I LN &

E I I O A R R

s & & & b bk L] E

b & & b &k ok & &

Lk b & A b A L]

E I DA RO R R) & L]
& & &

E I] &
LI B B BT B DO B RO R B R N R]
s & & & b b ks b ks kA Aok
TN B RO R R R B DO RN RO R R R
[& & & & & & & & &k bk kA

ar b o Jr
b & &
&

&

o g g g N N
N N Nl N

-
[,y e e e e e e e e e e e e e e e e e e e

A dr dr dp de dp e de dr ke A A

e g
e odr A oM dr A M S S b O S O N o ol b oS M o dr S M dr o o N
.'.Tb..T.T.T.:..T.T.T.'..T.T.T.:..T.T.T.:..T.T.T.'..T.T.Tb. .T... .Tb..Tb..T.T.T.:..T.T.T.:..T.T.T.T.T.'.T.:..T.T.T.:..T.T.Tb.h
S i Pt e e i - 3 .r.r i i it i e i e il

dr o dr Br o dr br o dr o obr o Jr 0 o 0r o 0r b O

dr o dr b b dr b S S b b 0 b S b S b 0 b S b 0 S e e)
e b Or b O b b b S b b e b S b b e b dr b b e b S e b b b b e b b e b e
b bk bk b h b h bk s b d b h bk N d b h b h s bk h s ra)
Br b b O b S b oS S 0 b W 0 b b b b W b b W b b b b b W b b W b e W d i
L I R T R U R N R N N T R DO T RN R N R O R N RO RN R

dr o dr o Jr o Jr o br dr o br O o dr b o 0r 0 0 o 0r 0 0 0
4 & & & b & & b bk s s ks s SN

& & A ko h N
L] L] b & & & & 3

L] L] E I E I B RS N R
& & L A & & b & 3

o E A b b S b N
L] E I b & & & & 3

L]

E I A & & b & &)
E A DO RO R R RS R I

E I IO T R R R RN R R R

&
E

-- e - - oW --a-m

ool D e e e el N O e e O D D D el DD e O

W
:
:
:
m
:
:

[O00104]

7S JUAD)

€7 uoneindijuo)

17223
puasoeg
13SMOog

A%

iojejsuel) |

3s19A3Y

9¢¢
lojejsuel |
0IemiOo

OvE

21018
LOIIDBeSuULL |

8€€
i3jpueH

|030310.44

Q€7 J8indwiod
Aleipawiialuj

:
m
m
m
:
m
;
;

m
:
;
;
:
m

€ 9ld

i dp dr e ey e e e dr i e e iy e e e e i e
R N N N NN N N N N N NN
EaE

nn

NN NN NN

o

NN

Tk

kb h kb

US 9,270,647 B2

_IllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH “ W - - . .“
| _ _ I
_ Ly I
_ “ _ “
| " —
| _ “ AR, “
| | |
| — _ “ o0Y . 195184 c1h “
“_ Oju] 931P1S “ “ S{NIPON JdLiosenef JUSWIUOIIAUT “
“ auidug “ | | ®8e403S {8307 UoINIax3g l
. _ _
| yduoseaer b 1dugeAss -
| _ | o “
_ I
-~ _ P 1asied I
| | I I
= 11 t 4| — TNLH S— i
- | | Wl vOY 8LV |
e . 3NPON -

P .._Ou.m_mc m(__n_l TRRARARIR,) .

— . s Salduagiaio sl 1ISINDO I
= plemio4 § 398 PO SN . INOQ _
2 S $SSOID g _

”m”wwww_wwm AR —
¢l P Y I
“_ A — “
\& e Sti¥
— _ | ;| oV N “
< _ 0St INOC . . JUSWILOJIAUT
S _ SINPON _
Y | oo UCI1IN23X3 I
& _ b |0203104d - I
?u _ : _ UOISUSIX] “
) | _ I
W | | I I
=~ | _ _ (o _
| UOeWIoU] Co “
_ Ayiedoud “ “ :
| I | | I
| 19410 B FEE puajdeg 1asSMOIg _
_ _ T I B B D D B DD D DD B B D B D B B B B D D B B D D B B D B B B B B B B B B B B D B B B B
| |
_ — |
| 00F seanionmg eje(] AIOWIN-U] _
| _

7 DI

U.S. Patent

US 9,270,647 B2

Sheet S of 9

Feb. 23, 2016

U.S. Patent

=

086 ¥3LNdWOD INJITO FLONW3H IHL OL
SNOILONYLSNI 40 L3S ANOD3S 'J3¥3ANIY IHL AN3S

0GG S103rd0 3IHL 40 FIHOW "0 INO ALIAON

'

A

0/G SNOILYY3IdO ANV S1O3r90 3HL 40 3LVLS INFHEND
AHL NO @35Vd SNOILONELSNI 40 135S ONODFS V J30N3Y

i

096G S103rd0 A3IAIJOW FHL HLIM J3LVIO0SSY
SNOILVddd0 FHOW dO ANO AJITOW

A

0PG SFUNLONYLS VLV FHOW HO INO
HLIM SNOILVE3d0 J50N J0 INO JLVIO0SSY

t

0€6 S103rga0 3HL NO 31vd3dO
HOIHM SNOILOOHLSNI JHONW d0 INO WHO1ddd

!

0¢S SNOILONYLSNI 3IHL NO d38ve
AHOWEIN NI SLO4M80 FH0W 0 INO 31V aNd9

!

016 ¥3LNdNOD INJIND FLOWIYH V OL ¥3LNdNOD ¥IAYFS
vV NOY¥4 SNOILOMNELSNI 0 L3S 15dl4 V Ld30d3ANI

US 9,270,647 B2

Sheet 6 of 9

Feb. 23, 2016

U.S. Patent

9 Ol

059 SNOILLONYLSN
40 13S 0340LS ATSNOIATYd IHL NVHL INIHI44Ia
IV LYHL SNOLLONMLSNI 40 13S MIN V 3LYHINTD

049
SNOILONHLSNI 40
135 434015 FHL
UN4S ANV T1vOdd

A
S3A

0€9 (Q3I4SILYS

SNOILIONOD
ON JHOW HO0 3NO

009 d3LNdINOD ¥IAYIS
dH1 NOd4 SNOILONHE1ISNI 40 L3SV Ld40d31NI

A

019 SNOILONYLSNI 40 L3S ANODIS V IHOILS |-

US 9,270,647 B2

Sheet 7 0of 9

Feb. 23, 2016

U.S. Patent

L Ol

092 431NdINCD
d3AY4S FHL OL LSIN0AY d3I4IAONW V ANJS

R S

09/ ONIddVYIN IHL
NO Q3SV8 Sd3IZ1INIA TVNIOIHO dHL HLIM Sa3IdI NIl
G313IAONW FHL DONIOV1d3d A9 1S3N03H 3HL A4IQON

I

0¥/ SY3IAILNIAl G3I4IAON FHL HLIM d3LNdINOD H¥3AY3S V
0L ¥3LNdNOD IN3INO F1L0N3Y V NOd4 1S3N03Y V 1d3043 LN

»

082 ¥3LNdNOD INZIMD JLONTY FHL OL SH3IFILNIJI
Q3AIJONW IHL HLIM SNOILLONHLSNI 40 L35 ONOOJ3S FHL ANS

!

0¢/ SYIIHILNIAI GIIIITOW FHL NV SHAIFILLNIAI
TVNIDIFO FHL N3IM LS8 SONIddVIN 340N 40 INO Jd01S

!

01Z SNOILONYLSNI 40 L3S TYNIOINO "d31d30H3LINI NV NI
J3ANIZ30 510370 FHON JO INO 40 SHAIFIANIAI AH4IQON

US 9,270,647 B2

Sheet 8 0f 9

Feb. 23, 2016

U.S. Patent

8 Ol

098 H31NdINOD HIAYIS
daM FHL OL 1S3N0IY Q3LVISNVHL FHL ANFS

!

0£8 AHOW3N

G78 LSINDIY A3 LYISNYHL M3IN ¥V 30NA0¥d Ol
ONIddVYIN WOU FHL NO ddSY8 1S3N04d dHL J1VISNYYL

0¥8 WOQ G3141G0NW IHL NO d3sva d3.LNdNOD
INTITD FHL NOYd 1S3N0IY VY Ld30HILNI

| »

NI L3380 dHL 40 31VLS INJHHN0 JHL NO ddJSVd
SNOILONYLSNI LdIFIOSVAVE NV 'SSO TNLH M3IN H3AN3H

!

G¢8 ONIddVIN WOQ V SFLVHINID
ANV S104r80 40N &0 INO AJITOW

!

0Z8 SNOILONYLSNI 1dIMOSYAYS
UNVY SSO U3AIZ03d 3HL A9 GINIZ30 SNOILVEAdO
J40ONW J0O INO NO d48VE S36NL0NYLS VIVA JHL 3LvAdN

A

G18 SFUNLONYLS VLVA IHL HLIM SNOILONYLSNI LdIFOSVYAVF
ANV SSO NI G3NI43d SNOILVYEIdO ANV S3LNAIHLlV J1VIO0SSY

Ge8 ¥ LNANOD INIIND FLONIY FHL OL SNOILLONYLSNI
LdIMOSYAVI ANV 'SSO TINLH M3N "‘d343AN3Y IHL AN3S

A

018 ANFMIOVE ¥ISMOYE YV ONISN TWLH T3Ld30H3INI FHL
WO¥4 AJOWIIN NI S103f80 d40N 0 INO dLVEANID

e

G08 ¥3SMOYG 93M V ONINNNY ¥3LNdINOD
INANO d10WdE V OL diliH d4A0 dd1NdNOD d3AHAS
HIM Y NOHH LdIYOSYAVE ANV 'SSO "TALH Ld30H3LNI

US 9,270,647 B2

Sheet 9 of 9

Feb. 23, 2016

U.S. Patent

026
ém@wmz bl
SHOMLAN
WOOT m
026
976 0¢6
MIAYIS

J0V4d44N
NOILVOINANNODS

016

J3IAL0
JOVEOLS

SNg

llllllllllllllllllllllll

706
d0SS300dd

906

AHOWIN
NIVIN

916

10dINQD
dOSHND

716

S0IA=30 LNdN

Vﬁ.m

AV 1dSI(

6 Ol

US 9,270,647 B2

1

CLIENT/SERVER SECURITY BY AN
INTERMEDIARY RENDERING MODIFIED
IN-MEMORY OBJECTS

FIELD OF THE DISCLOSUR.

(L]

The present disclosure generally relates security tech-
niques applicable to client/server systems, and relates more
specifically to techniques for improving the security of web
applications and data sent and/or received between web serv-
ers hosting the web applications and browser programs and/or
components of browsers.

BACKGROUND

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously concerved or pursued. Therefore, unless
otherwise indicated, 1t should not be assumed that any of the
approaches described m this section qualify as prior art
merely by virtue of their inclusion 1n this section.

Computer fraud performed by obtaining information in
non-secure communications transmissions between browser
programs and server computers 1s big business for fraudsters.
Fraud can be perpetrated by obtaining financial or personally
identifying information that end users provide while using a
browser to communicate with an application server computer.
For example, 1n an exploit commonly termed “Man in the
Browser”, a user’s computer can be provided with malicious
code that collects data from legitimate communications, such
as communications with the user’s bank. After the commu-
nications have been decrypted, for example, by a web browser
on the user’s computer, the malicious code may gather data
that 1s displayed in particular fields or sections in the
decrypted web page and provide the data to a malicious user
Or computer.

Malicious code may also gather data that 1s entered by a
user belore the user’s data i1s encrypted and sent to the
intended recipient. For example, a user may enter account
information nto a web browser that 1s displaying a web page
from the user’s bank. The web page may be a login page to
access the user’s account information and funds. The mali-
cious code may scan particular fields 1n the web page for the
user’s account information before the user’s account infor-
mation 1s encrypted and sent to the user’s bank, and then send
data obtained from those fields to a malicious user or com-
puter. Web browsers were {irst developed and deployed 1n the
carly 1990’s, and thus there has been a need to improve

browser security, web server security, web-based application
security, and data security at and/or between end points.

SUMMARY

The appended claims may serve as a summary of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates functional units of a web browser, 1n an
example embodiment.

FI1G. 2 1llustrates a computer system comprising a server
security and re-rendering system, in an example embodiment.

FIG. 3 illustrates an intermediary computer and a web
infrastructure 1 an example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1llustrates objects and operations stored 1n memory
by a browser backend, or headless browser, 1n an example
embodiment.

FIG. 5 1llustrates a process for intercepting instructions for
a server computer, rendering new 1instructions, and sending
the new instructions to the intended client, 1n an example
embodiment.

FIG. 6 illustrates a process for storing and refreshing ren-
dered instructions 1n response recerving the same original
istructions from a web server, 1n an example embodiment.

FIG. 7 illustrates a process for intercepting and modiiying
a request based on one or more stored attribute maps and/or
DOM maps, 1n an example embodiment.

FI1G. 8 1llustrates a process for intercepting instructions and
requests between a Hyperlext Transter Protocol (“HTTP”)
server and an HTTP-based web browser over HI'TP, 1n an
example embodiment.

FIG. 9 illustrates a computer system upon which an
embodiment may be implemented.

While each of the drawing figures 1llustrates a particular
embodiment for purposes of illustrating a clear example,
other embodiments may omit, add to, reorder, and/or modity
any of the elements shown 1n the drawing figures.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present ivention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form 1n order to avoid unnecessarily obscuring the present
ivention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 Terms

2.0 General Overview

3.0 Network Topology

3.1 Visitor Browser
3.1.1 Browser Frontend
3.1.2 Browser Backend
3.2 Web Infrastructure
3.3 Intermediary
3.3.1 Protocol Client
3.3.2 Browser Backend
3.3.3 Forward Translator
3.3 .4 Protocol Handler
3.3.5 Transaction Store
3.3.6 Reverse Translator
4.0 Process Overview
4.1 Intercepting Instructions from a Content Server
Computer and Generating New Instructions
4.2 Caching Rendered Instructions
4.3 Intercept a Request from a Client Computer and
Translate the Request into a New Request based on a
Stored Mapping
4.4 Methods for an HTTP-based System
5.0 Implementation Mechamsms—Hardware Overview
6.0 Other Aspects of Disclosure

1.0 TERMS

In certain embodiments:

A “computer” may be one or more physical computers,
virtual computers, and/or computing devices. As an example,
a computer may be one or more server computers, cloud-

US 9,270,647 B2

3

based computers, cloud-based cluster of computers, virtual
machine 1nstances or virtual machine computing elements
such as virtual processors, storage and memory, data centers,
storage devices, desktop computers, laptop computers,
mobile devices, and/or any other special-purpose computing,
devices. Any reference to “a computer’” herein may mean one
or more computers, unless expressly stated otherwise.

An “object” may be a data structure that can be identified
by an 1dentifier and/or a relationship with another object. For
example, an object may have a unique 1dentifier that 1s a
string, such as a document, customer number, or username.
Accordingly, the object may be referenced and/or retrieved
using the 1dentifier. Also for example, 11 a particular object 1s
the first child object of a parent object, then the particular
object may be referenced and/or retrieved using a pointer to
the parent object and then retrieving a pointer to the first child
object. A method of referencing objects by identifier and/or
relationships 1s called XPath. An object may be a particular
type of object. For example, one object may be a button,

another object may be an 1nput, or specifically a text field, and
another object may be an 1image.

An “attribute” may be data that identifies and/or describes
the appearance, behavior, and/or content of an object. For
example, an attribute may be a umique identifier, such as a
name. An attribute may indicate that an object 1s a type of
input, such as a text field, text area, checkbox, and/or radio
button. An attribute may indicate that an object 1s a password
text field; accordingly, a client application rendering the text
field object on a monitor need not cause the characters that are
entered into the field object to be displayed. An attribute
associated with the text field object may be updated to include
the value entered 1n the text field. Other attributes may define
or describe dimension, position, color, visibility, value, and
any other functional or visual aspect of an object.

A “document object model” (*DOM”) may be a cross-
platform and language-independent representation of one or
more objects that are interrelated. For example, a DOM may
represent one or more objects 1n an object tree and/or hierar-
chy. An object within the hierarchy may be a parent object,
which has one or more child objects. A child object may also
have one or more child objects.

“Creating, updating, and/or removing an object” may
mean creating, updating, and/or removing a data structure in
memory that represents an object, an object’s attributes, and/
or relationships between an object and one or more other
objects; because these processes directly or indirectly involve
changing the state of registers or other structures 1n electronic
digital memory circuits, the processes necessarily involve
using a computer to transform the state of tangible things.

An “operation” may be any function, method, script, and/
or any other code, which when executed operates on an
object.

“Operating on an object” may mean creating, removing,
and/or updating an object. Additionally, “operating on an
object” may mean performing one or more operations that use
an object, attribute, and/or relationship between an object and
one or more other objects as input.

“Instructions” may mean one or more codes that define one
or more objects and/or one or more operations. For example,
istructions may comprise Hyperlext Markup Language
(“HTML”), eXtensible Markup Language (“XML”), cascad-
ing style sheets (“CSS™), JavaScript, and/or any other stan-
dard or proprietary languages or codes that define objects,
attributes, relationships between objects, and/or operations.

“Performing instructions” or “executing mstructions” may
mean creating one or more objects and/or performing one or
more operations defined by the instructions.

10

15

20

25

30

35

40

45

50

55

60

65

4

“Rendering mstructions” may mean generating one or
more mstructions based on objects and/or operations stored in
memory, such that when the generated one or more 1nstruc-
tions are executed the same objects and/or same operations
are created 1n memory.

A first object may be the “same” as a second object 11 the
first object maintains the same one or more values, attributes,
and/or relationships as the second object. The underlying
representation of the first object in memory need not be the
same as the underlying representation of the second object 1n
memory. For purposes of illustrating a clear example, assume
that a first program 1s allocated a first memory segment; a
second program 1s allocated a second segment; the first pro-
gram maintains a first object in the first memory segment; the
second program maintains a second object in the second
memory segment; the first object comprises a value: six; the
second object comprises a value: six. In this situation, the first
object and the second object may be the same object because
the first object maintains the same value as the second object,
even though the first object and the second object are located
in different memory segments.

I1 the value stored 1n the first memory segment 1s stored as
an 8-bit integer and the value stored in the second memory
segment 1s stored as an American Standard Code for Infor-
mation Interchange (“ASCII”) string, then the first object and
the second object may be the same object because the first
object maintains the same value as the second object, even
though the underlying representation of the value in the first
memory segment 1s stored differently than the representation
of the value 1n the second memory segment.

As another example, assume that the first program 1s run-
ning on a first computer that comprises a 32-bit processor and
addresses memory using 32-bit addresses; the second pro-
gram 1S running on a second computer that comprises a 64-bit
processor and addresses memory using 64-bit addresses; the
first object 1s a parent object and comprises a pointer to a child
object stored 1n the first memory segment; the second object
1s a parent object and comprises a pointer to a child object
stored 1n the second memory segment. In this situation, the
first object and the second object may be the same object
because the first object maintains the same values and rela-
tionships as the second object, even though the pointer to the
chuld stored in the first memory segment may be a 32-bit
pointer and the pointer in the second memory segment may be
a 64-bit pointer.

I1 the first program stores the data that represents the first
object contiguously in the first memory segment and the
second program stores the data that represents the second
object scattered throughout the second memory segment,
then the first object and the second object may be the same
object, even though the underlying data structure that repre-
sents the first object 1s stored differently than the underlying
data structure that represents the second object.

Or, for example, assume the first program 1s a first HTTP
browser; the second program i1s a second, different HT'TP
browser; the first object may have an attribute, “1d”; the sec-
ond object may have an attribute, “1d”’; the value for the “1d”
attribute 1s “MyObject” for both the first object and the sec-
ond object 1s. In this situation, the underlying representation
of the first object 1n the first browser may be drastically
different than the underlying representation of the second
object 1n the second browser. However, the operations that
operate on the two objects may be programmatically identi-
cal. For example, the same JavaScript executed by the first
HTTP browser and the second HI'TP browser may retrieve

US 9,270,647 B2

S

the first object maintained by the first HT'TP browser and the
second object, respectively: document.getElementByld
(“MyObject™).

Other factors that may result in a different underlying
representation of the same object may include the endianness
ol a processor, amount of memory available, different appli-
cations, and/or any other different hardware and/or software
configurations.

“Data” may mean any data and/or instructions in electronic
digital memory.

An “attribute map” may be a map from one attribute name
and/or value to one or more other names and/or values. For
example, assume an object has an attribute, “1d”, which
defines a unique identifier: “MyObject”. An attribute map
may associate “MyObject” with a different unique 1dentifier,
such as “tceibOyM”. Additionally, an attribute map may be
used to map a modified attribute name and/or value to an
original name and/or value. An attribute map may be an
operation, hash map, and/or any other method or associative
data structure.

A “DOM map” may be amap from a first DOM to a second,
different DOM. For example, a DOM map may be a collec-
tion of attribute maps. Each attribute map 1n the DOM map
may be an attribute map for an attribute of an object 1n a first
DOM with a modified attribute 1n a second DOM. Addition-
ally or alternatively, a DOM map may map one hierarchy to
another, different hierarchy, and back again. For example, a
DOM map may modily a relationship between a {irst object
and a second object, such that a first object 1s not related to a
second object 1 a first DOM, and the {irst object 1s a parent
object to the second object 1n the second DOM.

A “browser” may be one or more computer programs or
other software elements stored in electronic digital memory
and running on a computer that receives mstructions from a
server computer, performs one or more ol the received
instructions, causes to display content, provides a user inter-
tace (“UI”) to receive user inputs, and/or receives and
responds to one or more mputs from a user based on or
according to the one or more performed instructions. A
browser and/or components of a browser may be imple-
mented 1nto an application. For example, a browser and/or
components of a browser may be implemented 1nto a mobile
application as part of a web view, and/or web view controller,
to send and/or receive data over HT'TP and/or other protocol.
A user may use a browser to send data to a server computer.
The server computer may respond with additional instruc-
tions.

A “headless browser’” may be a browser that does not cause
visually displaying or rendering graphical images of objects
that are defined 1n a set of recerved 1nstructions according to
the recerved set of mstructions. Additionally or alternatively,
a “headless browser” may be a browser that does not respond
to user inputs according to a set of recerved 1nstructions.

“Sending and/or receiving data over HI'TP” may mean
sending and/or receiving data and/or 1nstructions using
HyperText Transier Protocol. Additionally or alternatively,
“sending and/or recerving data over HI'TP” may mean send-
ing and/or recerving data and/or istructions using a subset of
the HT'TP, such as secure HI'TP (HTTPS). Additionally or

alternatively, one or more other protocols may be used, such
as SPDY.

A “web browser” may be a browser that receives instruc-
tions comprising HITML, CSS, and/or JavaScript over HT'TP
or some derivative thereof, such as HT'TPS.

A “bot” may mean a computer and/or soltware executed by
a computer that automates sending and/or receiving data. For
example, a bot may be a web scraper, web crawler, automatic

10

15

20

25

30

35

40

45

50

55

60

65

6

web browser, and/or any other tool designed to submit and/or
receive data from one or more web servers. A bot may com-

prise complex logic designed to respond to datarecerved from
one or more web servers.

2.0 GENERAL OVERVIEW

In an embodiment, performing one or more of the methods
discussed herein may prevent, and/or reduce the effectiveness
of, one or more various attacks, such as a demal of service
(“DOS”) attack, credential stuifing, fake account creation,
ratings or results mampulation, man in the browser attacks,
reserving rival goods or services, scanning for vulnerabilities,
and/or exploitation of vulnerabilities. For example, 1if an
intermediary computer intercepts an improper request from a
visitor browser, such as a request that does not include one or
more 1dentifiers that match one or more attribute map 1denti-
fiers, DOM map identifiers, and/or transaction identifiers,
then the intermediary computer need not reverse translate
and/or forward the improper request on to the targeted web
server computer. Thus, the targeted web server computer, or
an application running on the targeted web server computer,
need not be burdened with processing improper and/or mali-
cious requests that are part of an attack.

In an embodiment, after an intermediary computer inter-
cepts arequest with a particular identifier, based on arendered
set of instructions by the intermediary computer, the particu-
lar 1dentifier may no longer be valid. Accordingly, if the same
visitor browser and/or a different visitor browser uses the
same particular 1dentifier 1n an additional request, the inter-
mediary computer need not reverse translate and/or forward
the 1mproper request to the targeted web server computer.
Thus, the targeted web server computer, or an application
running on the targeted web server computer, need not be
alfected by one or more attacks, such as a DOS attack and/or
cross-site request forgery.

In an embodiment, each time a web page 1s requested, such
as an account creation page, order page, voting page, and/or
other page from a web server computer, the intermediary
computer may modily the identifiers in the returned page.
Thus, a bot may receive a different set of instructions after
cach request and may not observe the same one or more field
identifiers twice. Without recerving the same one or more
identifiers, the bot may be incapable of determining what data
should be entered 1n and/or associated with each field to
create a fake account, order and/or reserve one or more goods
or services, vote, inject malicious SQL, and/or submit any
other malicious content.

In an embodiment, the DOM hierarchy, a portion of the
DOM hierarchy, and/or one or more particular identifiers are
modified each time a web page 1s requested. For example, a
container that stores the definition of a word or phrase may, 1n
the originally intercepted mstructions, be in a particular spot
in the DOM hierarchy and/or include a particular 1dentifier:
“definition”. However, the intermediary computer may
mampulate the DOM hierarchy and/or identifier each time the
page or a similar page 1s served. Thus, a bot may not be able
to determine which container holds the target content. Fur-
thermore, an automated vulnerability bot may not be able to
determine whether target content was inserted and/or
changed. For example, 11 a bot submits content designed to
employ SQL, HTML, JavaScript, and/or any other code injec-
tion, the bot may not be able to determine which container 1s
supposed to contain content generated by a successiul attack.

In an embodiment, a bot, such as a website scraper may be
whitelisted. It the bot includes a particular password or other
code, then the intermediary computer may send the original

US 9,270,647 B2

7

instructions and/or a portion of the original instructions to the
bot. Thus, the intermediary computer may allow the autho-
rized bot to perform an automated task on an entire page
and/or a portion of the page. Otherwise, the intermediary
computer may use one or more of the methods discussed
herein.

In an embodiment, a method comprises intercepting, from
a server computer, a first set of instructions that define one or
more objects and one or more operations that are based, at
least 1n part, on the one or more objects; generating, 1n
memory, one or more data structures that correspond to the
one or more objects; performing the one or more operations
on the one or more data structures; updating the one or more
data structures, 1n response to performing the one or more
operations, to produce one or more updated data structures;
rendering a second set of mstructions, which when executed
by aremote client computer cause the remote client computer
to generate the one or more updated data structures in
memory on the remote client computer, wherein the second
set of 1nstructions are different than the first set of instruc-
tions; sending the second set of istructions to the remote
client computer.

In an embodiment, wherein each object of the one or more
objects includes an original identifier, the method comprises
generating a data structure, for each object of the one or more
objects, wherein the data structure corresponds to the object
and includes the original identifier included in the object;
updating the original identifier included 1n the data structure
for each object to produce amodified identifier and a modified
data structure of the one or more updated data structures.

In an embodiment, the method comprises storing a map-
ping between the modified identifier and the original 1denti-
fier for each object; intercepting, {rom the remote client com-
puter, arequest that includes one or more modified identifiers;
determining the original identifier for each modified identifier
included in the request; replacing each modified 1dentifier 1n
the request with the original identifier to produce a modified
request; sending the modified request to the server computer.

In an embodiment, a method comprises intercepting, from
a web server computer, over HI'TP, an original HTML docu-
ment, a set of original CSS codes, and a set of original Java-
Script codes that define one or more objects 1n an original
DOM and one or more operations that are based, at least 1n
part, on the one or more objects 1n the original DOM; gener-
ating one or more data structures that correspond with the one
or more objects in the original DOM; processing the set of
original CSS codes and the set of original JavaScript codes on
the one or more data structures; updating the one or more data
structures, 1n response to processing the set of original CSS
codes and the set of original JavaScript codes, to produce one
or more updated data structures; rendering a modified HTML
document, a set of modified CSS codes, and a set of modified
JavaScript codes, which when processed by a remote client
computer cause the remote client computer to generate the
one or more updated data structures 1n memory on the remote
client computer; wherein the modified HIML document
defines a modified DOM that 1s different than the original
DOM:; wherein the modified HITML document, the set of
modified CSS codes, and the set of modified JavaScript codes
are different than the original HTML document, the set of
original CSS codes, and the set of original JavaScript codes;
generating a DOM mapping between the modified DOM and
the original DOM; storing the DOM mapping; sending the
modified HI'ML document, the set of modified CSS codes,
and the set of modified JavaScript codes to the remote client
computer; mtercepting, from the remote client computer, a
request based on the modified DOM; translating the request

10

15

20

25

30

35

40

45

50

55

60

65

8

based, at least in part, on the DOM mapping to produce a
translated request based on the original DOM; sending the
translated request to the web server computer.

3.0 NETWORK TOPOLOGY

FIG. 1 1llustrates functional units of a web browser, 1n an
example embodiment. FIG. 2 illustrates a system comprising
a server security and a re-rendering system, 1n an example
embodiment. Referring first to FIG. 2, system 200 1ncludes
web infrastructure 205, visitor computer 299, intermediary
computer 230, and data storage 240, distributed across a
plurality of interconnected networks. While each of the com-
ponents listed above are 1llustrated as 1f running on a separate,
remote computer from each other, one or more of the com-
ponents listed above may be part of and/or executed on the
same computer. For example, HI'TP mtermediary computer
230, data storage 240, and/or web infrastructure 205 may be
executed on the same computer, local area, and/or wide area
network. Additionally or alternatively, intermediary com-
puter 230 1s a proxy server for web infrastructure 205. Addi-
tionally or alternatively, intermediary computer 230 may be
in line between a router and web infrastructure 205, such that
all network data sent to, and/or sent from, web infrastructure
203 over one or more protocols may be intercepted by inter-
mediary computer 230.

3.1 Visitor Browser

Visitor browser 295 may be a browser that 1s executed on
visitor computer 299 and operated by a user using visitor
computer 299. For example, visitor browser 295 may be a
web browser. FIG. 1 illustrates a more detailed view of a web
browser, 1n an example embodiment. In this context, “visitor”
refers to any user who 1s using the computer 299 to contact,
communicate with or otherwise conceptually visit the web
inirastructure 205. Furthermore, visitor browser 295 may be
described with reference to browser 100 1n FIG. 1, but using
the particular arrangement illustrated in FIG. 1 1s not required
in other embodiments.

Referring now to FIG. 1, browser 100 includes browser
backend 101, browser frontend 120, operating system (“OS™)
system application programming interface (“API”) layer 150,
and OS frontend API layer 160.

3.1.1 Browser Frontend

Browser frontend 120 comprises rendering engine 122,
interactivity module 124, and user interface 126. Each of the
components may cause, through OS frontend API layer 160,
one or more objects to be presented and/or updated visually
and/or audibly to a user using visitor computer 299.

Rendering engine 122 may determine how objects are pre-
sented to a user. For example, rendering engine 122 may
determine the color, shape, orientation, position, and/or any
other visual and/or audio attribute of an 1mage, text field,
button, and/or any other object defined by a set of recerved
instructions. Furthermore, rendering engine 122 may cause a
button to be displayed on a monitor coupled to visitor com-
puter 299 through OS frontend API layer 160.

User interface 126 may determine what may be presented
to a user. For example, user interface 126 may determine that
a “submit” button should be hidden until data has been
entered 1n one or more text fields. After data has been entered
in the one or more text fields, user interface 126 may notily
rendering engine 122 to render the “submit™ button accord-
ingly.

Interactivity module 124 may recetve one or more mnputs
through OS Frontend API layer 160. For example, inresponse
to a user pressing a button on a mouse coupled to visitor
computer 299, the operating system running on visitor coms-

US 9,270,647 B2

9

puter 299 may send a message to mteractivity module 124,
through OS frontend API layer 160, to indicate that a user
pressed a button on a mouse. Interactivity module 124 may
determine that a user selected a particular button currently
presented on a monitor. Interactively module 124 may notify
user 1terface 126 and/or rendering engine 122 to update to
update the Ul accordingly.

3.1.2 Browser Backend

Browser backend 101 comprises protocol module 102,
domain name server (“DNS”) module 104, local storage
module 106, 1image parser 108, CSS parser 110, HITML parser
112, JavaScript parser 114, extension execution environment
116, document object model (“DOM”) module 118, and Java-
Script execution environment 119. Other embodiments may
use other protocols, modules, and/or parsers. A browser that
includes a browser backend, but does not include a browser
frontend, may be a headless browser.

Protocol module 102, DNS module 104, and local storage
module 106 may send and/or recerve data through OS System
API layer 150. For example, protocol module 102 may send
and/or recerve data over any protocol, such as HT'TP, to/from
intermediary computer 230 and/or web infrastructure 203
through OS system API layer 150. Data received through
protocol module 102 may reference data sources by one or
more domain names. DNS module 104 may resolve the one or
more domain names referenced by interfacing with one or
more remote domain name servers through OS system API
layer 150. Local storage module may store and/or recall data
from memory through OS system API layer 150.

Image parser 108, CSS Parser 110, HTML parser 112, and
JavaScript parser 114 may parse data recerved through pro-
tocol module 102. HI'ML parser 112 may parse HIML data.
CSS parser 110 may parse CSS data. JavaScript parser 114
may parse JavaScript data. Image parser 108 may parse image
data. Each parser may generate and/or update objects 1n a
DOM maintained by DOM module 118.

Browser backend 101 may comprise one or more program-
mable engines, such as extension execution environment 116
and JavaScript execution environment 119. Extensions may
be written one or more programming languages include Java-
Script, Python, Ruby, and/or any other language. Each pro-
grammable engine may have access to DOM module 118 and
may operate on one or more objects from a DOM maintained
by DOM module 118. For example, JavaScript execution
environment 119 may execute JavaScript parsed by JavaS-
cript parser 114 and in response, create, update, and/or delete
one or more objects managed by DOM module 118.

3.2 Web Infrastructure

Referring again to FIG. 2, web infrastructure 205 may be
one or more server computers that recerve requests for data
from users, such as a user using visitor browser 295, through
intermediary computer 230. In response, web infrastructure
205 may send data to visitor browser 295, through interme-
diary computer 230. As 1llustrated in FIG. 2 the data sent from
web imfrastructure 205 may include instructions: HITML,
JavaScript, and CSS 210.

FIG. 3 illustrates a web infrastructure in an example
embodiment. The web infrastructure 205 may be described
with reference to original web server computer 302 and third
party web server computers 306 in FIG. 3, but using the
particular arrangement illustrated 1n FIG. 3 1s not required in
other embodiments.

Original web server computer 302 may be a server com-
puter that receives requests for data and responds with data.
For example, original web server computer 302 may be an
HTTP-based web server that recerves HI'TP requests and
responds with data comprising HTML, CSS, and/or JavaS-

10

15

20

25

30

35

40

45

50

55

60

65

10

cript imstructions. Additionally or alternatively, original web
server computer 302 may respond with data that references
data on other server computers, such as third party web server
computers 306.

Third party web server computers 306 may be one or more
server computers that store additional data referenced by
instructions sent from original web server computer 302. For
example, data from original web server computer 302 may
include a reference to a JavaScript {ile stored on third party
web server computers 306. Accordingly, a browser backend,
such as a browser backend 101, may request the referenced
JavaScript file from third party web server computers 306.
Also for example, data from original web server computer
302 may include a reference to an image stored on third party
web server computers 306. Accordingly, a browser backend,
such as browser backend 101, may request the referenced
image irom third party web server computers 306.

3.3 Intermediary

Returning now to FIG. 2, intermediary computer 230 may
intercept mstructions sent from web infrastructure 205, gen-
erate new 1nstructions, and send the new 1nstructions to visitor

browser 295. For example, mtermediary computer 230 may
intercept HIML, JavaScript, and CSS 210, generate HTML,

JavaScript, and CSS 290 (which may be different than
HTML, JavaScript, and CSS 210), and send HTML, JavaS-
cript, and CSS 290 to visitor browser 295. Additionally, inter-
mediary computer 230 may intercept a request from visitor
browser 295, generate a new, modified request, and send the
new, modified request to web infrastructure 205.

In FIG. 2, mntermediary computer 230 may be an HTTP
intermediary that intercepts and modifies HITML, JavaScript,
CSS, and HTTP requests for HT'TP web browsers. However,
intermediary computer 230 may be an intermediary for any
other standard and/or proprietary protocol. Furthermore, each
of the components discussed, which intermediary computer
230 1s comprised of, may be configured to perform any of the
processes and/or methods discussed herein for any standard
and/or proprietary protocol.

Intermediary computer 230 may be a server computer that
1s located on the same network as web inirastructure 205.
Additionally or alternatively, intermediary computer 230
may be topologically located between a public-facing router
and web infrastructure 205. Accordingly, requests from visi-
tor browser 295 to web 1infrastructure 205 may be passed
through and/or modified by intermediary computer 230. Fur-
thermore, instructions from web infrastructure 203 to visitor
browser 295 may be passed through and/or modified by inter-
mediary computer 230. Additionally or alternatively, inter-
mediary computer 230 may be a proxy server and/or router.
Additionally or alternatively, intermediary computer 230
and/or components of mtermediary computer 230 may be a
software layer, executed on one or more computers 1 web
infrastructure 205. Additionally or alternatively, intermediary
computer 230 may be a server computer that one or more
domain name servers list as a destination IP address. Accord-
ingly, intermediary computer 230 may receive requests sent
to the one or more domains from visitor browser 295. Based
on the domain name in a request, intermediary computer 230
may forward the request, or a modified request, to a server
computer in web infrastructure 205, such as original web
server computer 302.

FIG. 3 1llustrates, among other things, a more detailed view
of mtermediary computer 230, 1n an example embodiment.
The intermediary computer 230 may be described with ret-
erence to several components 1llustrated 1n FIG. 3 and dis-
cussed 1n detail below, but using the particular arrangement
illustrated 1n FIG. 3 1s not required in other embodiments.

US 9,270,647 B2

11

Turning now to FIG. 3, intermediary computer 230 may com-
prise protocol client 332, browser backend 334, forward
translator 336, protocol handler 338, transaction store 340,
and reverse translator 342. In an embodiment, each of the
functional units of mntermediary computer 230 may be imple-
mented using any of the techmques further described herein
in connection with FIG. 9; for example, the intermediary
computer may comprise a general-purpose computer config-
ured with one or more stored programs which when executed
cause performing the functions described herein for the inter-
mediary computer, or a special-purpose computer with digital
logic that 1s configured to execute the functions, or digital
logic that 1s used 1n other computing devices.

3.3.1 Protocol Client

Protocol client 332 may intercept data over any standard or
proprietary protocol. For example, protocol client 332 may
intercept data over HI'TP. Accordingly, protocol client 332
may be communicatively coupled with web infrastructure
205, orniginal web server computer 302, and third party web

server computers 306.
3.3.2 Browser Backend

Browser backend 334 may be an HITP-based headless
browser similar to browser backend 101. Additionally or
alternatively, browser backend 334 may be a headless
browser based on one or more other standard and/or propri-
etary protocols.

Browser backend 334 may perform instructions inter-
cepted by protocol client 332. After performing the instruc-
tions, browser backend 334 may notify forward translator 336
to begin rendering instructions based on the objects created
by browser backend 334 that are currently in memory.
Accordingly, browser backend 334 and forward translator
336 may be communicatively coupled.

Browser backend 334 may make requests for additional
data. For example, if istructions received from Protocol
client 332 reference additional instructions stored on a third
party web server, browser backend 334 may request the addi-
tional mstructions through protocol client 332. Accordingly,
browser backend 334 and protocol client 332 are communi-
catively coupled.

3.3.3 Forward Translator

Forward translator 336 may operate on the objects created
by browser backend 334 and generate one or more attribute
maps and/or DOM maps. Additionally or alternatively, for-
ward translator 336 may render a new set of instructions
based on the one or more objects and/or operations in
memory. Forward translator 336 may operate on objects and/
or render instructions based on one or more configurations
specified 1n configuration 232. Accordingly, forward transla-
tor 336 may be communicatively coupled to configuration
232. Forward translator 336 may send the rendered instruc-
tions to protocol handler 338. Accordingly, forward translator

336 may be communicatively coupled to protocol handler
338.

3.3.4 Protocol Handler

Protocol handler 338 may receive the instructions gener-
ated by forward translator 336 and send the generated instruc-
tions to visitor browser 195. Additionally or alternatively,
protocol handler 338 may intercept requests from visitor
browser 195 and forward the requests to transaction store 340.
Accordingly, protocol handler 338 may be communicatively

coupled to visitor browser 195, forward translator 336, and
transaction store 340.

3.3.5 Transaction Store

Transaction store 340 may receive requests intercepted by
protocol handler 338 from visitor browser 295. Transaction
store 340 may retrieve one or more attribute maps and/or

10

15

20

25

30

35

40

45

50

55

60

65

12

DOM maps, based on data in the request, and forward the
request with the retrieved one or more attribute maps and/or

DOM maps to reverse translator 342. Accordingly, transac-
tion store 340 may be communicatively coupled with reverse
translator 342.

3.3.6 Reverse Translator

Reverse translator 342 may translate requests intercepted
by protocol handler 338, which are based on instructions
generated by forward translator 336, 1nto requests that would
have been generated by visitor browser 195 had wvisitor
browser 195 recetved the original instructions sent from
original web server computer 302. Reverse translator 342
may translate requests based on the one or more attribute
maps and/or DOM maps retrieved by transaction store 340.
Reverse translator 342 may send the translated request to
original web server computer 302 through protocol client
332. Accordingly, reverse translator 342 may be communica-
tively coupled with protocol client 332.

4.0 PROCESS OVERVIEW

In an embodiment, a data processing method may be con-
figured to intercept instructions from a server computer and
generate new, different instructions based on the intercepted
instructions. In an embodiment, a data processing method
may be configured for caching new instructions, intercepting
client requests to a server computer, translating the request to
produce a new request, and/or sending the new request to a
server computer. Various embodiments may use HI'TP and/or
specialized web-based instructions, such as HITML, CSS,
and/or JavaScript, and/or standard and/or proprietary proto-
col(s) and/or 1nstructions.

4.1 Intercepting Instructions from a Content Server Com-
puter and Generating New Instructions

FIG. 5 illustrates a process for intercepting instructions for
a server computer, rendering new instructions, and sending
the new 1instructions to the intended client, 1n an example
embodiment. For purposes of illustrating a clear example,
FIG. 5 may be described with reference to FIG. 3 and FIG. 4,
but using the particular arrangements 1llustrated in FIG. 3 or
FIG. 4 are not required 1n other embodiments.

Turning now to step 510, in FIG. 5, an intermediary com-
puter intercepts a first set of 1instructions from a remote server
computer. For example, protocol client 332 may recerve
instructions from original web server computer 302, 1n
response to a request from visitor browser 295. The nstruc-
tions may comprise HITML, CSS, and/or JavaScript.

In step 520, the mtermediary computer generates one or
more objects 1n memory based on the instructions. For
example, protocol client 332 may send the HIML, CSS,
and/or JavaScript to browser backend 334. Browser backend
334 may generate a DOM in memory containing objects
defined in the instructions. FIG. 4 illustrates objects and
operations stored 1n memory by browser backend 334, 1n an

example embodiment. HIML parser 412 may parse the
HTML recetved by browser backend 334. Based on the

parsed HTML, DOM module 418 may create DOM 450 an
objects in DOM 450: object 452 and object 454. Furthermore,
based on the parsed HTML, DOM module 418 may define
object 452 to be the parent object of object 454 1n DOM 450.
Additionally, one or more objects in DOM 450 may comprise
one or more attributes based on the parsed HTML.

In step 3530, the mtermediary computer performs one or
more 1nstructions which operate on the objects. For purposes
of illustrating a clear example, assume object 452 comprises
an attribute that 1s a unique identifier. Also assume one or
more CSS instructions 1dentity object 452 by 1ts unique 1den-

US 9,270,647 B2

13

tifier and define one or more attributes to assign to, and/or
associate with, object 452. Accordingly, CSS parser 410 may
parse the CSS recetved by browser backend 334. DOM mod-

ule 418 may create and/or update other property information
430 to 1include the one or more attributes defined 1n the CSS
istructions. DOM module 418 may associate other property
information 430, and/or one or more attributes 1n other prop-
erty information 430, to object 452.

As an example, the JavaScript instructions define one or
more operations, which when performed operate on one or
more objects defined 1n the HTML instructions. One or more
JavaScript instructions may indicate that the one or more
operations may be performed after the objects defined 1n the
HTML instructions are loaded in memory and/or after the
CSS 1nstructions have been performed without additional
user input. The JavaScript parser 414 may parse the JavaS-
cript recerved by browser backend 334. JavaScript execution
environment 419 may execute the one or more operations,
which operate on the one or more the objects, one or more
attributes of objects, and/or relationships between the objects
in DOM 450.

Instructions performed after the objects defined in the
HTML instructions are loaded 1n memory may drastically
change the DOM and/or the objects in the DOM. For
example, one or more JavaScript operations may change
object 452 to a different type of object. Also for example, one
or more JavaScript operations may create, update, and/or
delete object 452. Additionally or alternatively, one or more
JavaScript operations may create, update, and/or delete data
included and/or associated with object 452. Additionally or
alternatively, one or more JavaScript operations may create,
update, and/or remove associations between objects. For
example, one or more JavaScript operations may associate
object 452 with object 454, such that object 452 may become
a parent object of object 454, as illustrated by the dashed line
between object 452 and object 454.

In step 540, the intermediary computer associates one or
more operations with one or more objects. As an example, the
JavaScript instructions may define an operation, which when
performed, operate on one or more objects defined 1n DOM
450; the operation references object 454 by an 1dentifier;
object 454 1s the second child of object 452; object 454 15 a
particular type of object, which 1s different than the other
objects that are children objects of object 452; and one or
more JavaScript instructions indicate that the operation may
be performed upon some event, such as a user selecting button
and/or entering an input.

JavaScript parser 414 may parse the JavaScript received by
browser backend 334, which defines the operation. JavaScript
parser 414, DOM module 418, and/or JavaScript execution
environment 419 may generate JavaScript engine state inifo
440 included 1n m-memory data structures 400. JavaScript
parser 414, DOM module 418, and/or JavaScript execution
environment 419 may generate a representation of the opera-
tion that references object 454 1n JavaScript engine state info
440. The representation of the operation 1n JavaScript engine
state info 440 may include a cross reference to an identifier for
object454. Additionally or alternatively, the representation of
the operation 1n JavaScript engine state info 440 may include
a cross reference to an i1dentifier for object 454 based on the
topology of object 454 1n DOM 450: second child of object
452 and/or first child of object 452 that 1s the particular type,
which 1s a different type than the type(s) of other child objects
of object 452. JavaScript engine state info 440 may include
one or more other operations and/or representations of one or
more other operations.

10

15

20

25

30

35

40

45

50

55

60

65

14

In step 550, the intermediary computer modifies one or
more of the objects. For example, forward translator 336 may
create, update, and/or delete 1dentifiers for one or more of the
objects 1n DOM 450, such as the names of the one or more
objects. Forward translator 336 may implement one or more
methods to modily identifiers, such as generating random
identifiers.

In step 560, the mtermediary computer modifies one or
more operations associated with the modified objects. For
example, forward translator 336 may update the references 1n
JavaScript engine state info 440 to use the new identifiers
from step 550.

In step 570, the intermediary computer renders a second set
ol instructions based on the current state of the objects and
operations. As discussed earlier, the originally recerved
instructions need not be HIML, CSS, and/or JavaScript
instructions. Furthermore, the rendered instructions need not
be HTML, CSS, and/or JavaScript instructions. However, for
purposes of illustrating a clear example, assume that the origi-
nally received instructions in step 310 comprise HITML, CSS,
and JavaScript mstructions. Furthermore, assume that for-
ward translator 336 1s configured to generate HITML, CSS,
and/or JavaScript instructions. The forward translator 336
may render instructions, which when executed, generate the
same objects and/or operations as currently existing in 1n-
memory data structures 400. However, the rendered instruc-
tions may comprise different HITML, CSS, and/or JavaScript
codes that the originally recerve HTML, CSS, and JavaScript
instructions. For example, the rendered instructions may use
different i1dentifiers for the objects defined 1n the rendered
instructions than the original mstructions.

Additionally or alternatively, the original instructions may
comprise HITML, CSS, and/or JavaScript instructions and the
rendered 1nstructions may have one or more of the object
attributes originally defined 1n the CSS instructions inte-
grated into the HTML instructions and/or the JavaScript
instructions. Accordingly, 1n an embodiment, the rendered
instructions may comprise HIML and JavaScript instruc-
tions, but not CSS 1nstructions. However, the new, rendered
HTML and JavaScript instructions, when executed, may gen-
erate objects and/or operations that are the same as the objects
and/or operations 1n in-memory data structures 400 when the
new HITML and JavaScript instructions were rendered.

Additionally or alternatively, the rendered instructions
may comprise HITML and/or CSS instruction that define
fewer objects than defined 1n 1n-memory data structures 400.
However, the rendered JavaScript instructions may define

operations, which when executed generate objects that were
not defined 1n the rendered HTML and/or CSS 1nstructions.
Theretfore, the new, rendered HI'ML, CSS, and JavaScript
instructions, when executed, may generate objects and/or
operations that are the same as the objects and/or operations
in in-memory data structures 400 when the new instructions
were rendered.

Additionally or alternatively, the rendered instructions
may comprise one or more HI'ML documents, which com-
prise the original CSS 1nstructions and/or JavaScript instruc-
tions embedded into the one or more HIML documents.
Accordingly, the new, rendered HI'ML 1nstructions, when
executed, may generate objects and/or operations as currently
existing 1n in-memory data structures 400 when the new
HTML instructions were rendered.

Additionally or alternatively, the rendered CSS and/or
JavaScript instructions may reference objects by XPath com-
mands 1nstead of by one or more unique 1dentifiers, or vice
versa. XPath commands may be used to identily objects 1n a

DOM and/or hierarchy by the topology of the DOM and/or

US 9,270,647 B2

15

hierarchy. Accordingly, the new, rendered HIML, CSS, and
JavaScript instructions, when executed, may generate objects
and/or operations that are the same as the objects and/or
operations 1 m-memory data structures 400 when the new
instructions were rendered.

Additionally or alternatively, the rendered HITML instruc-
tions may define objects 1n 1n-memory data structures 400,
but without one or more attributes. However, the rendered
CSS 1nstructions and/or JavaScript instructions may define
operations, which when executed, update the objects to
include the missing attributes. Accordingly, the new, rendered
HTML, CSS, and JavaScript instructions, when executed,
may generate objects and/or operations that are the same as
the objects and/or operations 1n in-memory data structures
400 when the new instructions were rendered.

Additionally or alternatively, the rendered HITML 1nstruc-
tions may define the objects in mn-memory data structures
400, but in a different hierarchy, such as the relationship
between object 452 and object 454 1s not defined. However,
the rendered JavaScript instructions may define operations,
which when executed may update and/or re-organize the rela-
tionships between the objects such that object 452 is the
parent object of object 454.

Additionally or alternatively, the rendered instructions
need not comprise the same programming language(s),
scripting language(s), and/or data interchange format(s) as
the original instructions intercepted in step 510. For example,
the rendered instructions may comprise one or more other
standard and/or proprietary languages, formats, and/or codes
that are not included 1n the originally 1intercepted instructions:
Dynamic HIML, XML, eXtensible Stylesheet Language,
VBScript, Lua, YAML Ain’t Markup Language (“YAML”),
JavaScript Object Notation (“JSON”), shell script, Java,
Ruby, Python, and/or Lisp.

Additionally or alternatively, the rendered instructions
may reference the IP address and/or domain name of inter-
mediary computer 230. For example, a link defined 1n the
original 1nstructions may include the IP address of original
web server computer 302. Accordingly, forward translator
may replace the IP address of original web server computer
302, with the address of intermediary computer 230. IT a user
selects the link through a user interface (for example through
visitor browser 195), then a request may be sent to the IP
address of intermediary computer 230 instead of the IP
address of original web server computer 302.

Forward translator 336 may use configuration 232 to deter-
mine which method(s) to use to perform step 560 and/or step
570. Accordingly, one or more of the methods discussed
herein, alone or 1n combination, may be a polymorphic pro-
tocol defined 1n configuration 232. Additionally or alterna-
tively, configuration 232 may define which objects and/or
types of objects may be modified based on one or more of the
methods discussed herein. Additionally or alternatively, con-
figuration 232 may define which objects and/or or types of
objects need not be modified based on one or more of the
methods discussed herein. Configuration 232 may be a data-
base, a configuration file, and/or any other method of storing
preferences. Configuration 232 may store more than one con-
figuration for one or more web servers 1n web infrastructure
205. Intermediary computer 230 may select a configuration in
configuration 232 based on any number of factors. For
example, intermediary computer 230 may select a configura-
tion in configuration 232 based on a domain associated with
the server computer that the instructions were intercepted
from. Additionally or alternatively, intermediary computer
230 may select a configuration 1n configuration 232 based on
a random variable seeded by time. Additionally or alterna-

10

15

20

25

30

35

40

45

50

55

60

65

16

tively, intermediary computer 230 may select a configuration
in configuration 232 based on attributes and/or properties of
visitor browser 295. For example, intermediary computer 230
may select a configuration based on what types of instructions
visitor browser 295 1s capable of interpreting and/or process-
ng.

In step 380, the intermediary computer sends the rendered,
second set of mstructions to the remote client computer. For
example, forward translator 336 sends the rendered 1nstruc-
tions to protocol handler 338. Protocol handler 338 sends the
rendered instructions to visitor browser 295, which was the
originally intended recipient of the data intercepted 1n step
510.

4.2 Caching Rendered Instructions

Intermediary computer 230 may render different instruc-
tions each time it receives instructions from web 1nfrastruc-
ture 205 and/or original web server computer 302, regardless
of whether the intercepted instructions are the same as a
previous set of instructions. However, rendering instructions
may be processor and/or memory intensive and take a sub-
stantial amount of time. Accordingly, intermediary computer
230 may cache mstructions rendered by intermediary com-
puter 230 in data storage 240. In response to receiving the
same mstructions from web infrastructure 2035 and/or original
web server computer 302, intermediary computer 230 may
send the rendered instructions already cached 1n data storage
240, instead of re-rendering the intercepted instructions.
While intermediary computer 230 may reduce its processing
load by sending cached, rendered instructions, bots may be
updated based on the cached, rendered istructions. Accord-
ingly, intermediary computer 230 may refresh the cached
instructions periodically and/or in response to one or more
conditions.

FIG. 6 illustrates a process for storing and refreshing ren-
dered instructions 1n response recerving the same original
instructions from a web server, 1n an example embodiment.
For purposes of illustrating a clear example, FIG. 6 may be
described with reference to FIG. 2 and FIG. 3, but using the
particular arrangements illustrated 1n FIG. 2 and/or FIG. 3 1s
not required 1n other embodiments.

Turning now to step 610, in FI1G. 6, subsequent to rendering,
a set of 1nstructions 1n response to 1ntercepting an original set
ol 1nstructions, the intermediary computer may store the set
of instructions. Additionally, the mtermediary computer may
store a timestamp. For example, forward translator 336 may
store a set of rendered instructions and a timestamp in data
storage 240. Additionally, intermediary computer 230, or a
component of therein, may store a key associated with the
stored, rendered set of instructions. The key may be based on
the original set of 1instructions recerved. For example, the key
may be based on a hashing algorithm using the original set of
instructions as a parameter. Also for example, the original set
of instructions may include the key.

In step 620, the intermediary computer intercepts a set of
instructions from the server computer and determines that the
cached, rendered set of instructions 1s based on the newly
intercepted instructions. For example, browser backend 334
may generate a new key based on the newly intercepted
instruction. Browser backend 334 may search the stored keys
for a matching key. For purposes of illustrating a clear
example, assume that browser backend 334 finds a matching
key stored from step 610.

In step 630, the intermediary computer determines whether
one or more conditions trigger a new set of istructions to be
rendered. For example, the intermediary computer may deter-
mine that the time elapsed since the rendered instructions
were stored 1s greater than a threshold amount. Browser back-

[l

US 9,270,647 B2

17

end 334 may compare a current timestamp, to the timestamp
stored 1n data storage 240 1n step 610. In response to deter-
mimng that the elapsed time 1s greater than a threshold, con-
trol proceeds to step 640; otherwise, control proceeds to step
650. Additionally or alternatively, the intermediary computer
may determine that a particular subset of the intercepted
instructions changed. In response to determining that the
particular subset of the mstructions has changed, control may
proceed to step 640; otherwise, control may proceed to step
650. The conditions under which intermediary computer 230
may render a new, different set of instructions may be stored
in configuration 232.

In step 640, the intermediary computer generates a new set
of instructions that 1s different than the set of instructions

previously stored. For example, browser backend 334 and/or

forward translator 336 performs step 520 through step 580
and renders a new, different set of instructions. Control then
returns to step 610. For example, forward translator 336 may
store the new set of rendered 1nstructions and a current times-
tamp 1n data storage 240. Browser backend 334 and/or for-
ward translator 336 may associate the stored key with the new
stored set of rendered instructions. Forward translator 336
may, but need not, generate a new key.

In step 650, the intermediary computer recalls and sends
the stored set of instructions to the intended client computer.
For example, browser backend 334 may instruct forward
translator 336 to send the previously stored set of rendered
instructions to the intended client computer: visitor browser
295,

4.3 Intercept a Request from a Client Computer and Trans-
late the Request into a New Request Based on a Stored Map-
ping

Intermediary computer 230 may intercept and modify
requests from a client computer based on one or more stored
attribute maps and/or DOM maps. F1G. 7 1llustrates a process
for intercepting and modifying a request based on one or more
stored attribute maps and/or DOM maps, 1 an example
embodiment. For purposes of illustrating a clear example,
FIG. 7 may be described with reference to FIG. 2 and/or FIG.
3, but using the particular arrangements 1llustrated 1n FIG. 2
and/or FI1G. 3 are not required 1n other embodiments. Turning
now to step 710, in FIG. 7, an intermediary computer modifies
identifiers of one or more objects defined 1n an 1ntercepted,
original set of instructions. For purposes of illustrating a clear
example, assume that intermediary computer 230 intercepted
an original set of instructions from original web server com-
puter 302 to be sent to visitor browser 195; browser backend
334 generated in-memory data structures 400 based on the
original set of 1instructions; object 452 has an attribute that 1s
a unique 1dentifier: “452”; and forward translator 336 trans-
lates an 1dentifier of object 452 identifier to “ABC”.

In step 720, the intermediary computer stores one or more
mappings between the original identifiers and the modified
identifiers. Additionally or alternatively, forward translator
336 may store a transaction identifier. Forward translator 336
may associate the transaction 1dentifier with each mapping.
The transaction 1dentifier may be used to recall the mappings
associated with the set of original instructions and/or a ren-
dered set of instructions. The transaction identifier may be a
modified identifier, such as the 1dentifier of a form object in
DOM 450. For purposes of illustrating a clear example,
assume that forward translator 336 stores a mapping between
“452” and “ABC”, 1n transaction store 340 and/or data stor-
age 240 and that forward translator 336 generates a transac-
tion i1dentifier, “I'1”°, and associates the transaction identifier

“T1” with the mapping between “452” and “ABC”.

10

15

20

25

30

35

40

45

50

55

60

65

18

Accordingly, forward translator 336 may send the mapping
between “452” and “ABC” and the transaction identifier,
“T1”, to transaction store 340. Additionally or alternatively,
forward translator 336 and/or transaction store 340 may store
the mapping and the transaction identifier in data storage 240.

In step 730, the intermediary computer sends the second set
ol mstructions with the modified i1dentifiers to the remote
client computer. For purposes of 1llustrating a clear example,
assume forward translator 336 renders a second set of 1nstruc-
tions based on the current state of the data structures and the
operations, using one or more of the methods discussed
herein. Accordingly, forward translator 336 may send the
rendered, second set of instructions to visitor browser 295
through protocol handler 338.

In step 740, the intermediary computer intercepts a request
from a remote client computer to a server computer with the
modified identifiers. For purposes of illustrating a clear
example, assume the following: Visitor browser 295 receives
the rendered, second set of 1nstructions; visitor browser 295
executes the rendered, second set of instructions and gener-
ates the same objects in memory as were stored 1in in-memory
data structures 400 to render the second set of instructions;
visitor browser 295 generates a user interface based on the
objects 1n memory; a user using visitor browser 295, enters
data into a field with an i1dentifier, ABC, and selects a “sub-
mit” button, through the user intertace generated from the
rendered, second set of instructions; and visitor browser 295

sends a request to original web server computer 302 with the
identifier “ABC”, data associated with “ABC”, and the 1den-

tifier ““T1”.

Accordingly, intermediary computer 230 may intercept the
request. For example, protocol handler 338 may recerve the
request. Protocol handler 338 may send the request to trans-
action store 340.

Additionally or alternatively, 11 a request 1s recerved for
which there 1s no stored attribute maps and/or DOM maps,
then the mntermediary computer 230 may determine that the
request 1s not an authorized request to be sent to original web
server computer 302. Accordingly, the mtermediary com-
puter may not forward the request to original web server
computer 302 for which the request was 1intended. Addition-
ally or alternatively, intermediary computer 230 may return
an error code, such as HT'TP error 500, to the client computer
that made the request. Additionally or alternatively, interme-
diary computer 230 may return a success code, such as HI'TP
error 200, to the client computer that made the request.

In step 750, the intermediary computer modifies the
request by replacing the modified identifiers with the original
identifiers based on the mapping. For example, based on the
identifier ““I'1”, transaction store 340 may recall the mapping
between “452” and “ABC”. Transaction store 340 may send
the request and the mapping between “452” and “ABC” to
reverse translator 342. Reverse translator 342 may modity the
request based on the mapping: reverse translator 342 may
associate the data associated with identifier “ABC” 1n the
request, with 1dentifier “452” defined in the original set of
instructions. Additionally or alternatively, reverse translator
342 may modily the request causing a response to the modi-
fied request from original web server computer 302 to be sent
to and intercepted by intermediary computer 320, instead of
visitor browser 295.

In step 760, the intermediary computer sends a modified
request to the server computer. For example, reverse transla-
tor 342 may send the modified request to original web server
computer 302 through protocol client 332. Original web
server computer 302 may send a set of instructions in

US 9,270,647 B2

19

response to the received request to visitor browser 2935, which
in turn may be mtercepted by intermediary computer 230.

4.4 Methods for an HTTP-Based System

The processes and methods discussed herein may be used
for any protocol(s) and/or type(s) of instructions. However, to
illustrate a clear example of one or more of the methods
discussed above, FIG. 8 illustrates a process for intercepting
istructions and requests between an HI'TP server and an
HTTP-based web browser over HI'TP, 1n an example embodi-
ment. For purposes of illustrating a clear example, FIG. 8 may
be described with reference to FIG. 2 and/or FI1G. 3, but using,
the particular arrangements illustrated in FI1G. 2 and/or FIG. 3
are not required 1n other embodiments. Turning now to step
805, in FIG. 8, an intermediary computer intercepts HTML,
CSS, and JavaScript from a web server computer over HT'TP
to a remote client computer running a web browser. For
purposes of illustrating a clear example, assume the follow-
ng:

Original web server computer 302 hosts a website that
sends and recerves content through HTTP.

Visitor computer 299 is a remote client computer that
executes visitor browser 295, which a web browser, that
receives and processes HIML, CSS, and/or JavaScript
instructions, and sends requests, over H1'TP.

Visitor browser 295 generates a DOM maintained 1n
memory on visitor computer 299, based on the received
HTML, CSS, and/or JavaScript instructions.

Visitor browser causes a user interface to be displayed on a
monitor connected to visitor computer 299 based on the
DOM maintained 1n memory on visitor computer 299,

Intermediary computer 230 1s an in-line computer between
original web server computer 302 and visitor computer 299,
such that all data sent and/or received between original web
server computer 302 and visitor computer 299 1s sent and/or
received through intermediary computer 230.

Protocol client 332 1s an HTTP protocol client.

Protocol handler 338 1s an HI'TP protocol handler.

In response to a request for data from a user, through visitor
browser 295, original web server computer 302 sends a first
set of mstructions comprising HIML, CSS, and JavaScript
instructions.

The HTML i1nstructions comprise the following text:
<form 1d="452"><anput type="text” 1d="454" name=
“454”/></form>.

The CSS instructions comprise the following text:
#452{width: 52px;}.

The JavaScript mstructions comprise a first function that
references the object with an 1identifier attribute of “454” and
sets the value of the object to a key “12345”.

The JavaScript instructions comprise an instruction that
causes the first function to be executed after each of the
objects defined 1n the HI' ML have been loaded, regardless of
user mteraction.

The JavaScript instructions comprise a second function
that submits the value of the field identified as “434” to
original web server computer 302.

Accordingly, intermediary computer 230, through proto-
col client 332 may receive the HTML, CSS, and JavaScript
instructions intended to be sent to visitor computer 299. Pro-
tocol client 332 may send the HTML, CSS, and JavaScript
instructions to browser backend 334.

In step 810, the mntermediary computer generates one or
more objects in memory from the mtercepted HIML using a
browser backend. For purposes of illustrating a clear
example, assume browser backend 334 1s a headless, HT'TP,
web browser backend that process HITML, CSS, and/or Java-
Script instructions and generates objects in memory based on

10

15

20

25

30

35

40

45

50

55

60

65

20

the HTML, CSS, and JavaScript instructions recerved.
Accordingly, browser backend 334 may generate object 452,
which represents a form with the identifier 452 1n DOM 4350
stored 1n in-memory data structures 400, from the received
HTML instructions. Furthermore, browser backend 334 may
generate object 454, which represents an input with the 1den-
tifier “434” which 1s a child of object 452, 1n DOM 450,
in-memory data structures 400 from the recerved HI'ML.

In step 815, the intermediary computer associates
attributes and operations defined i CSS and JavaScript
instructions with the data structures. For example, browser
backend 334 may generate other property information 430,
which comprises an attribute named “width™, with a value
“352px”. Browser backend 334 may associate the attribute
named “width” with object 452. Also for example, browser
backend 334 may generate JavaScript engine state info 440
which comprises a representation of the first operation and a
representation of the second operation. Browser backend 334
may associate {irst operation and the second operation with
object 454.

In step 820, the intermediary computer updates the data
structures based on one or more operations defined by the
received CSS and JavaScript instructions. For example,
browser backend 334 may store the attribute named “width™,
and the attribute’s value, 1 object 452. Also for example,
browser backend 334 may perform the first operation repre-
sented 1 JavaScript engine state info 440. Accordingly,
object 454 may include the value “12345”. Since no instruc-
tion 1ndicates that the second operation should be executed
alter the objects defined 1n the HITML are loaded, browser
backend 334 need not perform the second operation.

Since the CSS attribute name “width” has already been
integrated 1nto the associated object, the attribute may be
deleted from other property information 430. Similarly, since
the first operation has already been performed, the represen-
tation of the first operation in JavaScript engine state info may
be deleted. However, for purposes of illustrating a clear
example, assume that attribute named “width™ and the first
operation have not been deleted.

In step 825, the intermediary computer modifies one or
more objects and generates a DOM mapping. For example,
forward translator 336 may modify the i1dentifier for object
452 to “ABC” and the identifier for object 454 to “DEF” to
produce a modified DOM. Accordingly, forward translator
336 may generate a mapping from the original DOM to the
modified DOM to produce a DOM mapping, which includes
two attribute mappings: “452” with “ABC”, and “454” with
“DEF”.

Forward translator 336 may select the new identifier,
“ABC”, to be the transaction identifier for the DOM mapping.
Forward translator 336 may select the identifier “ABC”
because 1t 1s the identifier of a form; accordingly, forward
translator 336 may associate all mappings of identifiers 1n the
form with the transaction identifier “ABC”: the mapping of
“452” with “ABC”” and/or the mapping of “454” with “DEF”’.
Additionally or alternatively, forward translator may generate
a transaction identifier for each form and/or link defined in the
original and/or modified DOM. Each mapping may be asso-
ciated with each transaction identifier. Additionally or alter-
natively, forward translator 336 may select an i1dentifier for
any other reason as the transaction identifier. Additionally or
alternatively, forward translator 336 may generate a transac-
tion 1dentifier that 1s not based on any identifier. Forward
translator 336 may store the DOM mapping 1n data storage
240 and/or transaction store 340.

In step 830, the intermediary computer renders new
HTML, CSS, and JavaScript instructions based on the current

US 9,270,647 B2

21

state of the objects 1n memory. For purposes of illustrating a
clear example, assume the following: The rendered HTML

comprises the following text: <form 1d="ABC”><input
type="text” 1d="DEF” name="“DEF” value="*12345"/></
form>; the rendered CSS comprises the following text:
#ABC{width: 52px;}; the rendered JavaScript instructions
comprise an operation that submits the value of the field
identified as “DEF” to original web server computer 302.

In step 835, the intermediary computer sends the rendered,
new HITML, CSS, and JavaScript instructions to the remote
client computer. For example, forward translator 336 may
send visitor browser 295 the new HI ML, CSS, and JavaScript
instructions rendered 1n step 830, through protocol handler
338, over HI'TP. Upon executing the new HTML, CSS, and
JavaScript istructions, visitor browser 295 may generate the
same objects and/or operations 1n memory as existed 1n 1n-
memory data structures 400 when the new instructions were
rendered with the modified DOM.

In step 840, the intermediary computer intercepts a request
from the remote client computer based on the modified DOM.
For purposes of 1llustrating a clear example, assume the fol-
lowing: The user using visitor computer 299 input text mnto
visitor browser 295, which was associated with object DEF in
visitor computer’s memory; the user using visitor computer
299 selected a submit button, which caused visitor browser to
execute the operation defined by the rendered JavaScript
instructions, which submits a request that includes the value
of the field 1dentified as “DEF”’, associated with the 1dentifier
“DEF”; the submitted request includes that associates the
value of the field identified as “DEF” and/or the identifier
“DEF” with 1dentifier “ABC”.

Accordingly, protocol handler 338 intercepts the request
and sends the request to transaction store 340. Transaction
store 340 may recall the DOM mapping associated with
“ABC” from transaction store 340 and/or data storage 240.
Transaction store 340 may send the DOM mapping and the
request to reverse translator 342.

In step 845, the intermediary computer translates the
request based on the DOM mapping to produce a new, trans-
lated request. For example, reverse translator 342 recerves the
request and the DOM mapping. Reverse translator 342 trans-
lates the request into a new request based on the original
DOM, using the DOM mapping. Accordingly, the new
request may include the value from the recerved request asso-
ciated with the identifier “454”°, instead of identifier “DEF".
Additionally, the new request may include data associating,
the value and/or the 1dentifier 454 with the identifier “452”.
The new request may be the request visitor browser 293
would have sent 1n response to the same user input in step 840
had the original instructions, not the modified instructions,
been sent to visitor browser 295.

In step 850, the intermediary computer sends the translated
request to the web server computer. For example, reverse
translator 342 sends the translated, new request to original
web server computer 302 through protocol client 332.
Accordingly, original web server computer 302 may respond
to the new request and respond with HTML, CSS, and/or
JavaScript instruction, at which point intermediary computer
230 may revisit step 805.

5.0 HARDWARE OVERVIEW

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-

10

15

20

25

30

35

40

45

50

55

60

65

22

specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 9 1s a block diagram that illustrates a
computer system 900 upon which an embodiment of the
invention may be implemented. Computer system 900
includes a bus 902 or other communication mechanism for
communicating information, and a hardware processor 904
coupled with bus 902 for processing information. Hardware
processor 904 may be, for example, a general purpose micro-
Processor.

Computer system 900 also includes a main memory 906,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 902 for storing information and
instructions to be executed by processor 904. Main memory
906 also may be used for storing temporary variables or other
intermediate mformation during execution of nstructions to
be executed by processor 904. Such instructions, when stored
in non-transitory storage media accessible to processor 904,
render computer system 900 into a special-purpose machine
that 1s customized to perform the operations specified 1n the
instructions.

Computer system 900 further includes a read only memory
(ROM) 908 or other static storage device coupled to bus 902
for storing static information and instructions for processor
904. A storage device 910, such as a magnetic disk or optical
disk, 1s provided and coupled to bus 902 for storing informa-
tion and instructions.

Computer system 900 may be coupled via bus 902 to a
display 912, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 914, includ-
ing alphanumeric and other keys, 1s coupled to bus 902 for
communicating information and command selections to pro-
cessor 904. Another type of user input device 1s cursor control
916, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 904 and for controlling cursor movement
on display 912. This input device typically has two degrees of
freedom 1n two axes, a first axis (e.g., X) and a second axis
(e.g.,y), that allows the device to specily positions in a plane.

Computer system 900 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 900 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 900 in response to processor
904 executing one or more sequences ol one or more 1nstruc-
tions contained in main memory 906. Such instructions may
be read into main memory 906 from another storage medium,
such as storage device 910. Execution of the sequences of
instructions contained 1n main memory 906 causes processor
904 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “‘storage media” as used herein refers to any
non-transitory media that store data and/or instructions that

US 9,270,647 B2

23

cause a machine to operation 1 a specific fashion. Such
storage media may comprise non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 910. Volatile media
includes dynamic memory, such as main memory 906. Com-
mon forms of storage media include, for example, a floppy
disk, a flexible disk, hard disk, solid state drive, magnetic
tape, or any other magnetic data storage medium, a CD-ROM,
any other optical data storage medium, any physical medium

with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or car-
tridge.

Storage media 1s distinct from but may be used 1n conjunc-
tion with transmission media. Transmission media partici-
pates 1n transierring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
902. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved 1n carrying one or
more sequences ol one or more istructions to processor 904
for execution. For example, the instructions may nitially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 900 can recerve the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector canreceive the data carried in the
inira-red signal and appropriate circuitry can place the data
on bus 902. Bus 902 carries the data to main memory 906,
from which processor 904 retrieves and executes the mstruc-
tions. The istructions recerved by main memory 906 may
optionally be stored on storage device 910 eirther before or
alter execution by processor 904.

Computer system 900 also includes a communication
interface 918 coupled to bus 902. Communication interface
918 provides a two-way data communication coupling to a
network link 920 that 1s connected to a local network 922. For
example, communication interface 918 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 918 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 918 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types ol information.

Network link 920 typically provides data communication
through one or more networks to other data devices. For
example, network link 920 may provide a connection through
local network 922 to a host computer 924 or to data equip-
ment operated by an Internet Service Provider (ISP) 926. ISP
926 1n turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 928. Local network 922
and Internet 928 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 920 and
through communication interface 918, which carry the digital
data to and from computer system 900, are example forms of
transmission media.

Computer system 900 can send messages and receive data,
including program code, through the network(s), network

10

15

20

25

30

35

40

45

50

55

60

65

24

link 920 and communication interface 918. In the Internet
example, a server 930 might transmit a requested code for an
application program through Internet 928, ISP 926, local
network 922 and communication interface 918.

The received code may be executed by processor 904 as it
1s recerved, and/or stored in storage device 910, or other
non-volatile storage for later execution.

6.0 OTHER ASPECTS OF DISCLOSUR

L1

Using the networked computer arrangements, intermedi-
ary computer, and/or processing methods described herein,
security in client-server data processing may be significantly
increased. In particular, the use of browser programs becomes
significantly more secure. Forward translating and reverse
translating techniques herein effectively permit obfuscating
data field and/or container identifiers and DOM modification
for data that 1s financial, personal, or otherwise sensitive so
that attackers cannot determine which fields and/or contain-
ers 1n a web page include the sensitive data. Consequently,
one or more various attacks, such as a denial of service
(“DOS”) attack, credential stuffing, fake account creation,
ratings or results mampulation, man in the browser attacks,
reserving rival goods or services, scanmng for vulnerabilities,
and/or exploitation of vulnerabilities, are frustrated because
all fields and/or containers appear to the attacker to be gib-
berish, or at least cannot be identified as indicating credit card
data, bank account numbers, personally identiiying informa-
tion, confidential data, sensitive data, proprietary data, and/or
other data.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what 1s intended by the applicants to be the scope of the
invention, 1s the literal and equivalent scope of the set of
claims that 1ssue from this application, 1n the specific form 1n
which such claims issue, including any subsequent correc-
tion.

What 1s claimed 1s:

1. A method comprising:

intercepting, from a server computer, a first set of instruc-
tions that define one or more objects;

executing, by a headless browser, the first set of instruc-
tions to produce one or more data structures 1n memory
that correspond to the one or more objects;

updating the one or more data structures based, at least 1n
part, on a configuration to produce one or more updated
data structures;

rendering a second set of instructions that are configured to
cause a remote client computer, when executed by the
remote client computer, to generate the one or more
updated data structures 1n memory on the remote client
computer, wherein the second set of instructions are
different than the first set of instructions;

sending the second set of 1nstructions to the remote client
computer;

caching the second set of instructions;

intercepting a third set of instructions;

determining the first set of instructions and the third set of
istructions are equivalent;

in response to determining the first set of instructions and
the third set of 1nstructions are equivalent;

sending the second set of instructions to a second remote
client computer;

US 9,270,647 B2

25

wherein the method 1s performed by one or more comput-

ing devices.

2. The method of claim 1 comprising:

selecting a particular data structure of the one or more data

structures based, at least 1n part, on the configuration;
updating the particular data structure.
3. The method of claim 1 comprising:
selecting a particular data structure of the one or more data
structures based, at least on part, on the configuration;

rendering the second set of instructions, which are config-
ured to cause the remote client computer, when executed
by the remote client computer, to generate the particular
data structure, which 1s not updated, 1n memory on the
remote client computer.

4. The method of claim 1 comprising;:

determining to use one or more polymorphic operations

that implement a polymorphic protocol based, at least in
part, on the configuration;

performing the one or more polymorphic operations on the

one or more data structures to produce the one or more
updated data structures.

5. The method of claim 1, wherein each object of the one or
more objects imncludes an original identifier, and the method
comprising;

generating a data structure for each object of the one or

more objects, wherein the data structure corresponds to

the object and includes the original 1dentifier included 1n
the object;

updating the original identifier included 1n the data struc-

ture for each object selected by the configuration to
produce a modified 1dentifier and a modified data struc-
ture of the one or more updated data structures.

6. The method of claim 5 comprising:

storing mapping data that maps the modified identifier to

the original 1dentifier for each object;

intercepting, from the remote client computer, a request

that includes one or more modified identifiers;

based on the mapping data, determiming the original 1den-

tifier for each modified identifier included 1n the request;
replacing each modified identifier in the request with the

original 1dentifier to produce a modified request;
sending the modified request to the server computer.

7. The method of claim 1 comprising;:

generating a data structure that corresponds to an object of

the one or more objects that includes an attribute,
wherein the object 1s 1dentified 1n the configuration;

removing the attribute from the data structure to produce a

modified data structure:

generating a new operation, which when performed adds

the attribute to the modified data structure:
rendering one or more instructions that are configured to
cause the remote client computer to generate, when
executed by the remote client computer, the modified
data structure and subsequently performs the new opera-
tion, which adds the attribute to the modified data struc-
ture.
8. The method of claim 1, wherein the one or more updated
data structures define an updated plurality of objects 1n a first
hierarchy;
intercepting, from the server computer,
wherein rendering the second set of instructions com-
Prises:

rendering a first document with instructions, which when
executed by the remote client computer cause the remote
client computer to generate the one or more updated data
structures that define the updated plurality of objects

10

15

20

25

30

35

40

45

50

55

60

65

26

associated with each other in a second hierarchy,
wherein the second hierarchy 1s different than the first
hierarchy; and

rendering a second document with instructions that are

configured to cause the remote client computer, when
executed by the remote client computer, to associate the
updated plurality of objects with each other according to
the first hierarchy;

wherein the second set of instructions comprises the first

document and the second document.

9. A method comprising:

intercepting, from a web server computer, over HI'TP, an

original HITML document, a set of original Cascading,
Style Sheets (CSS) codes, and a set of original JavaS-
cript codes that define one or more objects 1n an original
Document Object Model (DOM) and one or more opera-
tions that are based, at least 1n part, on the one or more
objects 1n the original DOM;

executing the original HI'ML document, the set of original

CSS codes, and the set of original JavaScript codes by a
headless browser to produce one or more data structures
in memory that correspond to the one or more objects 1n
the original DOM;

updating the one or more data structures based, at least 1n

part, on a configuration to produce one or more updated
data structures;
rendering a modified HIML document, a set of modified
CSS codes, and a set of modified JavaScript codes,
which are configured to cause a remote client computer,
when processed by the remote client computer, to gen-
crate the one or more updated data structures 1n memory
on the remote client computer;
wherein the modified HTML document defines a modified
DOM that 1s different than the original DOM;

wherein the modified HTML document, the set of modified
CSS codes, and the set of modified JavaScript codes are
different than the original HTML document, the set of
original CSS codes, and the set of original JavaScript
codes;

generating a DOM mapping between the modified DOM

and the original DOM;

storing the DOM mapping;

sending the modified HTML document, the set of modified

CSS codes, and the set of modified JavaScript codes to
the remote client computer;

intercepting, from the remote client computer, a request

based on the modified DOM;

translating the request based, at least in part, on the DOM

mapping to produce a translated request based on the
original DOM;

sending the translated request to the web server computer;

wherein the method 1s performed by one or more comput-

ing devices.

10. The method of claim 9, wherein the original HIML
document, the set of original CSS codes, and the set of origi-
nal JavaScript codes 1s generated by the web server computer
in response to recerving a first request, and the method com-
Prises:

intercepting, from the web server computer, the original

HTML document, the set of original CSS codes, and the
set of original JavaScript codes 1n response to a second
request;

executing the original HI'ML document, the set of original

CSS codes, and the set of original JavaScript codes by
the headless browser to produce one or more new data
structures 1n memory that correspond to the one or more
objects 1n the original DOM;

US 9,270,647 B2

27

updating the one or more new data structures based, at least
in part, on the configuration to produce one or more new
updated data structures;

rendering a new modified HITML document, a set of new
modified CSS codes, and a set of new modified JavaS-
cript codes that are configured to cause the remote client
computer that sent the second request, when processed
by that remote client computer, to generate the one or
more new updated data structures in memory on the
remote client computer;

wherein the new modified HTMIL document defines a new
modified DOM that 1s different than the modified DOM

and the original DOM;

wherein the new modified HTML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes are dlfferent than the modified HITML
document, the set of modified CSS codes, and the set of
modified JavaScript codes;

wherein the new modified HTML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes are different than the original HITML docu-
ment, the set of original CSS codes, and the set of origi-
nal JavaScript codes;

generating a new DOM mapping between the new modi-
fied DOM and the original DOM;

storing the new DOM mapping;

sending the new modified HIML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes to the remote client computer that sent the
second request;

intercepting, from the remote client computer that sent the
second request, a new request based on the new modified
DOM;

translating the new request based, at least 1n part, on the
new DOM mapping to produce a new translated request
based on the original DOM.

11. A computer system comprising:

a server computer configured to receive requests from a
browser executed on a remote client computer and to
send data to the browser in response to recerved requests;

an intermediary computer communicatively coupled the
server computer and comprising:

a memory;

a browser backend module configured to mtercept, from
the server computer, a {irst set of nstructions that define
one or more objects and to execute the first set of mnstruc-
tions to produce one or more data structures in the
memory that correspond to the one or more objects;

a forward translation module configured to update the one
or more data structures based, at least 1n part, on a
coniiguration to produce one or more updated data struc-
tures; to render a second set of instructions that are
configured to cause the remote client computer, when
executed by the remote client computer, to generate the
one or more updated data structures 1n memory on the
remote client computer, wherein the second set of
instructions are different than the first set of instructions;
to send the second set of 1nstructions to the remote client
computer;

wherein the browser backend module 1s further configured
to: mtercept a third set of mstructions; to determine the
first set of instructions and the third set of instructions
are a same set of instructions;

wherein the forward translation module 1s further config-
ured to: cache the second set of instructions; in response
to determiming the first set of mnstructions and the third
set of instructions are the same set of instructions, send-

5

28

ing the second set of instructions that 1s cached to a

second remote client computer.

12. The system of claim 11 wherein the forward translation

module 1s configured to select a particular data structure of t.
one or more data structures based, at least in part, on t.

configuration and to update the particular data structure.

1C

1C

13. The system of claim 11 wherein the forward translation

module 1s configured to select a particular data structure of t.
one or more data structures based, at least on part, on t

1C

1C

10 configuration, and to render the second set of instructions that
are configured to cause the remote client computer, when
executed by the remote client computer, to generate the par-
ticular data structure, which 1s not updated, in memory on the

15

20

25

30

35

40

45

50

55

60

65

remote client computer.

14. The system of claim 11 wherein the forward translation
module 1s configured to determine to use one or more poly-
morphic operations, which implement a polymorphic proto-
col based, at least 1n part, on the configuration and to perform
the one or more polymorphic operations on the one or more
data structures to produce the one or more updated data struc-

fures.

15. The system of claim 11, wherein each object of the one

or more objects includes an original 1dentifier;

wherein the browser backend module 1s configured to gen-
erate a data structure for each object of the one or more
objects, wherein the data structure corresponds to the

object and includes the original identifier included in the
object;

wherein the forward translation module 1s configured to
update the original identifier included 1n the data struc-
ture for each object selected by the configuration to
produce a modified 1dentifier and a modified data struc-
ture of the one or more updated data structures.

16. The system of claim 135, comprising a transaction store

and a reverse translation module;

wherein the forward translation module 1s configured to
store, 1n the transaction store, a mapping between the
modified identifier and the original i1dentifier for each
object;

wherein the reverse translation module 1s configured to
intercept, from the remote client computer, a request that
includes one or more modified 1dentifiers; to determine
the oniginal 1dentifier for each modified identifier
included 1n the request; to replace each modified 1denti-
fier 1n the request with the original 1dentifier to produce
a modified request; to send the modified request to the
server computer.

17. The system of claim 11, wherein an object of the one or

more objects includes an attribute;

wherein the browser backend module 1s configured to gen-
crate a data structure that corresponds to the object that
includes the attribute, wherein the object 1s 1dentified 1n
the configuration;

wherein the forward translation module 1s configured to
remove the attribute from the data structure to produce a
modified data structure; to generate a new operation,
which when performed adds the attribute to the modified
data structure; to render one or more instructions, which
when executed by the remote client computer generates
the modified data structure and subsequently performs
the new operation, which adds the attribute to the modi-
fied data structure.

18. The system of claim 11,

wherein the one or more updated data structures define an
updated plurality of objects 1n a first hierarchy;

wherein the forward translation module 1s configured to
render a first document with istructions that are config-

US 9,270,647 B2

29

ured to cause the remote client computer, when executed
by the remote client computer, to generate the one or
more updated data structures that define the updated
plurality of objects associated with each other 1n a sec-
ond hierarchy, wherein the second hierarchy 1s different
than a first hierarchy; and to render a second document
with instructions, which when executed by the remote
client computer cause the remote client computer to
associate the updated plurality of objects with each other
according to the first hierarchy;

wherein the second set of 1nstructions comprises the first
document and the second document.

19. A computer system comprising;

a web server computer configured to receive requests from
a web browser executed on a first remote client com-
puter; to send HTML, Cascading Style Sheets (CSS),
and JavaScript codes over HT'TP to the web browser 1n
response to recerved requests;

an mtermediary computer communicatively coupled the
web server computer and comprising;

a memory;

a browser backend module configured to intercept, from
the web server computer, over HI'TP, an original HIML
document, a set of original CSS codes, and a set of
original JavaScript codes that define one or more objects
in an original Document Object Model (DOM) and one
or more operations that are based, at least 1n part, on the
one or more objects 1n the original DOM; to execute the
original HTML document, the set of original CSS codes,
and the set of onginal JavaScript codes by a headless
browser to produce one or more data structures in
memory that correspond to the one or more objects in the
original DOM;

a forward translation module configured to update the one
or more data structures based, at least 1n part, on a
configuration to produce one or more updated data struc-
tures; to render a modified HTML document, a set of
modified CSS codes, and a set of modified JavaScript
codes, which when processed by a remote client com-
puter cause the remote client computer to generate the
one or more updated data structures 1n memory on the

remote client computer; to generate a DOM mapping
between a modified DOM and the original DOM; to

send the modified HTML document, the set of modified
CSS codes, and the set of modified JavaScript codes to
the first remote client computer;

wherein the modified HTML document defines the modi-
fied DOM, which 1s different than the original DOM;

wherein the modified HI ML document, the set of modified
CSS codes, and the set of modified JavaScript codes are
different than the original HTML document, the set of
original CSS codes, and the set of original JavaScript
codes;

10

15

20

25

30

35

40

45

50

30

a transaction store configured to store the DOM mapping;
a reverse translation module configured to intercept, from
the remote client computer, a request based on the modi-
fied DOM; to translate the request based, at least 1n part,
on the DOM mapping to produce a translated request
based on the oniginal DOM; to send the translated

request to the web server computer.
20. The computer system of claim 19, wherein the browser

backend module 1s configured to intercept, from the web
server computer, the original HTML document, the set of
original CSS codes, and the set of original JavaScript codes 1n
response to a second request; to execute the original HIML
document, the set of original CSS codes, and the set of origi-
nal JavaScript codes by the headless browser to produce one
or more new data structures in memory that correspond to the
one or more objects 1n the original DOM;

wherein the forward translation module 1s configured to
update the one or more new data structures based, at least
in part, on the configuration to produce one or more new
updated data structures; to render anew modified HITML
document, a set of new modified CSS codes, and a set of
new modified JavaScript codes, which when processed
by the remote client computer that sent the second
request cause the remote client computer to generate the
one or more new updated data structures 1n memory on
the remote client computer; to generate a new DOM
mapping between a new modified DOM and the original
DOM; to store the new DOM mapping in the transaction
store; to send the new modified HIML document, the set
of new modified CSS codes, and the set of new modified
JavaScript codes to the remote client computer that sent
the second request;

wherein the new modified HTML document defines the
new modified DOM as different than the modified DOM
and the original DOM;

wherein the new modified HITML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes are different than the modified HTML
document, the set of modified CSS codes, and the set of
modified JavaScript codes;

wherein the new modified HTML document, the set of new
modified CSS codes, and the set of new modified Java-
Script codes are different than the original HTML docu-
ment, the set of original CSS codes, and the set of origi-
nal JavaScript codes;

wherein the reverse translation module 1s configured to
intercept, from the remote client computer that sent the
second request, anew request based on the new modified
DOM; to translate the new request based, at least in part,
on the new DOM mapping to produce a new translated
request based on the original DOM.

¥ o # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 9,270,647 B2 Page 1 of 1
APPLICATION NO. . 14/099437

DATED . February 23, 2016

INVENTOR(S) - Justin Call

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims:

Claim 8, column 25, line 60, Delete “intercepting, from the server computer,”

Signed and Sealed this
Sixth Day of September, 2016

e cbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

