US009270646B2
a2y United States Patent (10) Patent No.: US 9,270,646 B2
Shelest 45) Date of Patent: Feb. 23, 2016
(54) SYSTEMS AND METHODS FOR 709/245
GENERATING A DNS QUERY TO IMPROVE 2010/0121981 Al* 5/2010 Drakocoooeeeeiiiinnn, 709/245
RESISTANCE AGAINST A DNS ATTACK 2011/0022675 Al1* 1/2011 Baylesccoooevviiininnnnnnn, 709/206
(75) Inventor: Art Shelest, Coral Springs, FL (US) FOREIGN PATENT DOCUMENTS
JP 2003208371 A * 7/2003
(73) Assignee: Citrix Systems, Inc., Fort Lauderdale,
FL (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Hubert Netherlabs Computer Consulting BV., R. van Mook Equinix.
patent is extended or adjusted under 35 O01CMeasures for Making DNS More Resilient against Forged
U.S.C. 154(b) by 1321 days. Answers,01D >, Internet Enginerering Task Force, IETF;
Standardworkingdraft, Internet Society (ISOC), Jan. 1, 2009,
(21) Appl. No.: 12/426,330 (Continued)
(22) Filed: Apr. 20, 2009
Primary Ixaminer — James A Reagan
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Christopher J. McKenna;
US 2010/0269174 A1 Oct. 21, 2010 Foley & Lardner LLP
(51) Int.CL (37) ABSTRACT
GOt 21/10 (2013.01) The present solution provides systems and methods for gen-
HO4L 29/06 (2006.01) erating DNS queries that are more resistant to being compro-
HO4L 29/12 (2006.01) mised by attackers. To generate the transaction identifier, the
HO4L 9/52 (2006.01) DNS resolver uses a cryptographic hash function. The inputs
(52) U.S. CL to the hash function may include a predetermined random
CPC HO4L 63/04 (2013.01); HO4L 9/3236 number, the destination IP address of the name server to be
(2013.01); HO4L 29/12066 (2013.01); HO4L queried, and the domain name to be queried. Because of the
61/1511 (2013.01); HO4L 63/14 (2013.01); inclusion of the name server’s IP address in the formula,
HO4L 2209/56 (2013.01) queries for the same domain name to different name servers
(58) Field of Classification Search may have different transaction identifiers, preventing an
CPC oot GOGF 21/10 attacker from observing a query and predicting the identifiers
USPC oo, 705/50-79; 726/26 for other queries. Additional entropy may be provided for
See application file for complete search history. generating transaction identifiers by including the port num-
ber of the name server and/or a portion of the domain name as
(56) References Cited inputs to the hash function. IT it 1s determined that the

U.S. PATENT DOCUMENTS

7,296,155 B1* 11/2007 Trostleetal. 713/170
2003/0135625 A1* 7/2003 Fontesccoeeeen... HO041. 63/12
709/228
2004/0083306 Al* 4/2004 Gloe HO4L 29/12066
N
Client 102a
Network

104

Cllent 102n

105

Appliance

responding server may preserve capitalization 1n its
responses, the upper and lower case characters may be salted
within the domain name to provide additional entropy in

generating transaction identifiers.

20 Claims, 6 Drawing Sheets

Network
104°

Server 106N

US 9,270,646 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

International Preliminary Report on Patentability on PCT/US2010/

027132 dated Feb. 16, 2012.

International Search Report on PCT/US2010/027132 dated Jan. 31,
2012.

Menezes A J et al., 01 CHandbook of Applied Cryptography, Chapter
5—Pseudorandom Bits and Sequences,01D Jan. 1, 1997.

Vixie P. et al., 01CUse of Bit 0x20 in DNS Labels to Improve
Transaction Identity,0 1D <ft-vixie-dnsext-dnsO0x20-00.txt>, Internet

Enginerering Task Force, IETF; Standardworkingdraft, Internet
Society (ISOC), Mar. 17, 2008.

Written Opinion on PCT/US2010/027132 dated Jan. 31, 2012.
Chinese Office Action for Chinese Application No. 201080026895.6
dated Aug. 12, 2014.

Hubert et al, Measures for Making DNS More Resilient against
Forged Answers, Netherlands Computer Consulting BV., Network
Work Group, Jan. 2009 (18 pages).

CN Office Action for Application No. 201080026895.6 dated Jan. 30,
2014.

* cited by examiner

US 9,270,646 B2

Sheet 1 of 6

Feb. 23, 2016

U.S. Patent

ugplL IE: Y WE: T

q90lL i19ai8g

Vi 9Ol uzoL 3ueld

HIOMION

ecoL 9o

qzol juad

dl Old

US 9,270,646 B2

¢0l 9D

0L JBAISS

Sheet 2 of 6
O

G61 021 Jusby JusiD

aulbu3g Aoljod4

A4 aouel|ddy
06T WalsAg 7 J0l
ISEYNIEYe A A1OMION

uoljeolddy 1))

X . .x.u_. .
\ poL

}40M)aN

H_1—H

S|l} Eje(

Feb. 23, 2016

uoneolddy
9|} Eled

L JUSWUOJIAUT
bunndwon

uoneolddy

U.S. Patent

=
2 Ol Ol
e
—
~
=N 321N (]
% BUNUIOA 4 DJEOgASY
814 944 var2i 71— s
99eJJa1U| 90IA3(]
YIOMION LoNe|[eIsul ($)801A8D
Ae|dsIq _
& &Ch
=
o
= 05}
abel01g AIOWBN
= UIB\ bn_o
= Jusby
“a 0c} Jusin NNh\\ 10}
)
M 4 91em}Jos

U.S. Patent

BN

8¢l

KQS‘

US 9,270,646 B2

Sheet 4 of 6

Feb. 23, 2016

U.S. Patent

DOIAJ(]

06}

O/1

qogL—"

dl Ol
DOTA(]
O/1
e0cs —
0,1 |°9PHd
£0/
AIOWIIN HOod | HOd|HOd
UIRN ATOWRIAL | O/1 | O/1
J0SS9001]

UIeN

0L —"

US 9,270,646 B2

Sheet Sof 6

Feb. 23, 2016

U.S. Patent

(ejep
leuonippe ‘adA)
‘SSe|o ‘aweu
‘| uoloesuel))

0l Z sbessaw
asuodsal SN

(adA)
‘sse|o ‘swel
‘| uoloesuel))

602 2bessaw
Alanb SNG

7 -

Alelpawiadlju] 1O ‘U9AIDS ‘JU3I|D

90 Jojelredwoo
1senbal/asuodsay

0¢ JBA|0Sa] SN

707 Jolelsushb
osuodsal

A

0z Jojesauab Alenb SNQ

J1aljuapl uoloesuel |

v0c
J0)elsusb Jaquinu WOpUEY

SNQ
B

v |

c0c Jojesaushb <

1L0Z J91uap| | <4
Aanb NG

Ssalppe
d| ‘sweu)

' 11 ¢ 9suodsal
“co_H:_OmmhmZD

‘'sse|o ‘sweu)

Q07 1senbal
uonnjossl SNQG

US 9,270,646 B2

JaAI9S SN 01 Atanb Nwsuel |

Jsljluapl uoloesuel)
pue sweu urewop buisn Alanb SN 81€81)

\&
= GO¢g
\&
~—
Qs
Qs
@nu I31JIJUBpI UoIjoBeSUER)] 8)Biausn)
v0€
\&
bt Jaljluapl uonoesuel)
~ 10} SWeU Urewop apodus ‘Jou si I JI pue ‘sasuodsa.
oy BuizijewJou 1o Builumal Jou sI JoAI8s SN JI sulws)a
3
= 0¢€
e

JaAI8S SN(Jo Mod d| pue ‘Aienb 0] J1oAI8S
SN(JO ssalppe 4| ‘sweu urewop pajsanbal Ajuap]

Q\

aYoed Ul UMouyun sweu

Uleiop SA|0Sal 0] }1sanbal aAl1809Y

00¢€

U.S. Patent
|

€0t

Jojelsuab
Lot} Jaquinu
Lopuel aAlIsoay

US 9,270,646 B2

1

SYSTEMS AND METHODS FOR
GENERATING A DNS QUERY TO IMPROVE
RESISTANCE AGAINST A DNS ATTACK

FIELD OF THE INVENTION

The present application generally relates to data commu-
nication networks. In particular, the present application
relates to systems and methods for generating a Domain

Name System [“DNS”’] query to improve resistance against a
DNS attack.

BACKGROUND OF THE INVENTION

The Domain Name System [“DNS”] allows human mean-
ingful names to be associated with the numerical internet
protocol [“IP”] addresses of clients, servers, or other
resources on the internet. For example, the domain name
www.example.com may be associated with 208.77.188.166.
Domain names are mapped and indexed by name servers.
Each name server 1s authoritative or responsible for indexing
clients, servers, or other resources within 1ts zone of authority.
When a user requests a resource by domain name, a DNS
resolver 1dentifies the request. If the IP address for the
requested resource 1s not available 1n 1ts cache, the resolver
initiates a query to a name server. The DNS resolver’s query
includes a transaction identifier. The name server’s reply may
also 1include the transaction identifier to 1dentity the response

as having come from the name server queried by the DNS
resolver. If a malicious attacker can respond to a DNS resolv-

er’s request before the real name server can, the malicious
attacker can direct the user to a different client, server, or

resource than was mtended. This opens possibilities of 1den-
tity or data thelt or other malicious activities.

BRIEF SUMMARY OF THE INVENTION

The present solution provides systems and methods for
generating DNS queries that are more resistant to being com-
promised by attackers. To generate the transaction 1dentifier,
the DNS resolver uses a cryptographic hash function. The
inputs to the hash function may include a predetermined
random number, the destination IP address of the name server
to be queried, and the domain name to be queried. Because of
the inclusion of the name server’s IP address 1n the formula,
queries for the same domain name to different name servers
may have different transaction identifiers, preventing an
attacker from observing a query and predicting the identifiers
for other queries. Additional entropy may be provided for
generating transaction identifiers by including the port num-
ber of the name server and/or a portion of the domain name as
inputs to the hash function. If it 1s determined that the
responding server may preserve capitalization in its
responses, the upper and lower case characters may be salted
within the domain name to provide additional entropy in
generating transaction identifiers.

In one aspect, the present invention features a method for
generating a DNS query to improve resistance against a DNS
attack. The method includes a DNS resolver receiving a
request to resolve a domain name. The method also includes
the DNS resolver identilying the domain name and an IP
address of a DNS server. The method further includes gener-
ating a transaction i1dentifier for a DNS query by applying a
one-way hash function to an input of a predetermined random
number, the IP address of the DNS server and the domain
name. The method also includes the DNS resolver transmit-

10

15

20

25

30

35

40

45

50

55

60

65

2

ting a DNS query for the domain name to the DNS server, the
DNS query 1dentified by the generated transaction 1dentifier.

In some embodiments, the method includes the DNS
resolver 1dentifying the IP port number of the DNS server. In
further embodiments, the method includes generating the
transaction 1dentifier for the DNS query by applying the one-
way hash function to the mput of a predetermined random
number, the IP address and the port of the DNS server, and the
domain name. In yet further embodiments, the domain name
input to the one-way hash function may comprise a portion of
the domain name to be resolved.

In one embodiment, the method includes changing the
predetermined random number mnput to the one-way hash
function at a predetermined frequency. In another embodi-
ment, the method includes changing the predetermined ran-
dom number in response to an event. In other embodiments,
the method includes generating the same transaction i1denti-
fier for DNS queries to resolve the same domain name trans-
mitted to the same DNS server. In still other embodiments, the
method 1ncludes encoding one or more fields of the DNS
request and using the encoded one or more fields as mput to
the one-way hash function to generate the transaction i1denti-
fier. In other embodiments, the method includes encoding the
domain name by capitalizing one or more characters of the
domain name and generating the transaction identifier by
using the encoded domain name as the mput of the domain
name to the one-way hash function. In still other embodi-
ments, the method further comprises encoding the domain
name input to the one-way hash function by using a punycode
or a RACE encoding scheme.

In another embodiment, the method further comprises the
DNS resolver determining that the DNS server rewrites or
normalizes responses. In response to the determination, the
DNS resolver may not encode a portion of the DNS query. In
other embodiments, the method further comprises the DNS
resolver determining that the destination 1s not rewriting
responses. In response to the determination, the DNS resolver
may encode a portion of the DNS query and include the
encoded portion 1n the transaction identifier. In yet other
embodiments, the method further includes the DNS resolver
communicating the input of the IP address of the destination
and the domain name to a transaction 1dentifier generator.

In another aspect, the present invention features a system
for generating a DNS query to improve resistance against a
DNS attack. The system includes a DNS resolver and a trans-
action 1dentifier generator. The DNS resolver receives a
request to resolve a domain name and 1dentifies the domain
name and an IP address of a destination of the request. The
transaction identifier generator that generates a transaction
identifier by applying a one-way hash function to an input of
a predetermined random number, the IP address of the desti-
nation and the domain name. The DNS resolver forms the
DNS query using the generated transaction identifier and
transmits the DNS query for the domain name to the destina-
tion.

In one embodiment, the DNS resolver identifies a port of
the destination of the request. In further embodiments, the
transaction 1dentifier generator may generate the transaction
identifier by applying the one-way hash function to the mput
of the predetermined random number, the 1nternet protocol
address and the port of the destination and the domain name.
In still further embodiments, the domain name input to the
one-way hash function may comprise a portion of the domain
name to be resolved.

In another embodiment, the transaction identifier generator
changes the predetermined random number at a predeter-
mined frequency. In yet another embodiment, the transaction

US 9,270,646 B2

3

identifier generator changes the predetermined random num-
ber 1n response to an event. In still another embodiment, the
transaction identifier generator generates the same transac-
tion 1dentifier for mputs 1dentifying the same domain name
and the same destination.

In other embodiments, the DNS resolver encodes one or
more fields of the DNS request and communicates the
encoded one or more fields as input to the transaction 1denti-
fier generator to generate the transaction identifier. In another
embodiment, the DNS resolver encodes the domain name by
capitalizing one or more characters of the domain name and
communicates the encoded domain name as the imput of the
domain name to the transaction identifier generator. In still
another embodiment, the DNS resolver encodes the domain
name by using a punycode or a RACE encoding scheme. In
other embodiments, the DNS resolver may determine that the
destination rewrites or normalizes responses, and 1n response
to the determination the DNS resolver may not encode a
portion of the DNS query. In yet other embodiments, the DNS
resolver may determine that the destination does not rewrite
responses, and in response to the determination the DNS
resolver may encode a portion of the DNS query and com-
municate the encoded portion as input to the transaction 1den-
tifier generator to generate the transaction identifier. In still
other embodiments, the DNS resolver may reside on a client,
a server, or an intermediary.

The details of various embodiments of the invention are set

forth 1n the accompanying drawings and the description
below.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
better understood by referring to the following description
taken 1n conjunction with the accompanying drawings, in
which:

FIG. 1A 1s a block diagram of an embodiment of a network
environment for a client to access a server via an appliance;

FIG. 1B 1s a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via;

FIGS. 1C and 1D are block diagrams of embodiments of a
computing device;

FI1G. 2 1s a block diagram of an embodiment of a domain
name resolver; and

FIG. 3 1s a flow diagram of an embodiment of steps of a
method for generating a DNS query with improved resistance
against a DNS attack.

The features and advantages of the present invention will
become more apparent from the detailed description set forth
below when taken in conjunction with the drawings, in which
like reference characters identily corresponding elements
throughout. In the drawings, like reference numbers gener-
ally 1indicate identical, functionally similar, and/or structur-
ally similar elements.

DETAILED DESCRIPTION OF THE INVENTION

For purposes of reading the description of the various
embodiments below, the following descriptions of the sec-
tions of the specification and their respective contents may be
helptul:

Section A describes a network environment and computing
environment which may be useful for practicing embodi-
ments described herein:

10

15

20

25

30

35

40

45

50

55

60

65

4

Section B describes embodiments of systems and methods
for responding to DNS name resolution requests, transmitting
requests to name servers, receiving responses from name
servers, and transmitting responses to DNS name resolution
requests; and

Section C describes embodiments of systems for and meth-
ods of generating DNS queries with improved resistance to
DNS attacks.

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the
systems and methods of an appliance and/or client, 1t may be
helptul to discuss the network and computing environments
in which such embodiments may be deployed. Referring now
to FIG. 1A, an embodiment of a network environment 1s
depicted. In brief overview, the network environment com-
prises one or more clients 102a-102#7 (also generally referred
to as local machine(s) 102, or client(s) 102) in communica-
tion with one or more servers 106a-1067n (also generally
referred to as server(s) 106, or remote machine(s) 106) via
one or more networks 104, 104" (generally referred to as
network 104). In some embodiments, a client 102 communi-
cates with a server 106 via an appliance 105.

Although FI1G. 1A shows a network 104 and a network 104
between the clients 102 and the servers 106, the clients 102
and the servers 106 may be on the same network 104. The
networks 104 and 104' can be the same type of network or
different types of networks. The network 104 and/or the net-
work 104' can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World
Wide Web. In one embodiment, network 104' may be a private
network and network 104 may be a public network. In some
embodiments, network 104 may be a private network and
network 104" a public network. In another embodiment, net-
works 104 and 104' may both be private networks. In some
embodiments, clients 102 may be located at a branch office of
a corporate enterprise communicating viaa WAN connection
over the network 104 to the servers 106 located at a corporate
data center.

The network 104 and/or 104' be any type and/or form of
network and may include any of the following: a point to point
network, a broadcast network, a wide area network, a local
area network, a telecommunications network, a data commu-
nication network, a computer network, an ATM (Asynchro-
nous Transier Mode) network, a SONET (Synchronous Opti-
cal Network) network, a SDH (Synchronous Digital
Hierarchy) network, a wireless network and a wireline net-

work. In some embodiments, the network 104 may comprise
a wireless link, such as an infrared channel or satellite band.
The topology of the network 104 and/or 104' may be a bus,
star, or ring network topology. The network 104 and/or 104’
and network topology may be of any such network or network
topology as known to those ordinarily skilled in the art
capable of supporting the operations described herein.

As shownin FIG. 1A, the appliance 105, which also may be
referred to as an interface unit 105 or gateway 105, 1s shown
between the networks 104 and 104'. In some embodiments,
the appliance 105 may be located on network 104. For
example, a branch oflice of a corporate enterprise may deploy
an appliance 105 at the branch office. In other embodiments,
the appliance 105 may be located on network 104'. For
example, an appliance 105 may be located at a corporate data
center. In yet another embodiment, a plurality of appliances
105 may be deployed on network 104. In some embodiments,
a plurality of appliances 105 may be deployed on network
104'. In other embodiments, a plurality of appliances 105 may
be deployed on both networks 104 and 104'. In other embodi-

US 9,270,646 B2

S

ments, the appliance 103 could be a part of any client 102 or
server 106 on the same or different network 104, 104" as the
client 102. One or more appliances 105 may be located at any
point 1n the network or network communications path
between a client 102 and a server 106.

In some embodiments, the appliance 105 comprises any of
the network devices manufactured by Citrix Systems, Inc. of
Ft. Lauderdale Fla., such as the Citrix NetScaler™, Citrix
WANScaler™, Citrix Repeater™, Citrix Branch Repeater™,
or Citrix Branch Repeater™ with Windows Server®. In other
embodiments, the appliance 105 includes any of the product
embodiments referred to as Web Accelerator and BigIP manu-
factured by F5 Networks, Inc. of Seattle, Wash. In yet another
embodiment, the appliance 105 includes any application
acceleration and/or security related appliances and/or sofit-
ware manufactured by Cisco Systems, Inc. of San Jose, Calif.,
such as the Cisco ACE Application Control Engine Module
service software and network modules, and Cisco AVS Series
Application Velocity System.

In one embodiment, the system may include multiple, logi-
cally-grouped servers 106. In these embodiments, the logical
group ol servers may be referred to as a server farm 38. In
some of these embodiments, the servers 106 may be geo-
graphically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. Inone
embodiment, the server farm executes one or more applica-
tions on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous.
One or more of the servers 106 can operate according to one
type of operating system platform (e.g., WINDOWS NT,
manufactured by Microsoit Corp. of Redmond, Wash.), while
one or more of the other servers 106 can operate on according
to another type of operating system platform (e.g., Umx or
Linux). The servers 106 of each farm 38 do not need to be
physically proximate to another server 106 1n the same farm
38. Thus, the group of servers 106 logically grouped as a farm
38 may be interconnected using a wide-area network (WAN)
connection or medium-area network (MAN) connection. For
example, a farm 38 may include servers 106 physically
located 1n different continents or different regions of a conti-
nent, country, state, city, campus, or room. Data transmission
speeds between servers 106 1n the farm 38 can be increased 1f
the servers 106 are connected using a local-area network
(LAN) connection or some form of direct connection.

Servers 106 may be referred to as a file server, application
server, web server, proxy server, or gateway server. In some
embodiments, a server 106 may have the capacity to function
as erther an application server or as a master application
server. In one embodiment, a server 106 may include an
Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102
has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102x.

In some embodiments, a client 102 communicates with a
server 106. In one embodiment, the client 102 communicates
directly with one of the servers 106 in a farm 38. In another
embodiment, the client 102 executes a program neighbor-
hood application to communicate with a server 106 1n a farm
38. In still another embodiment, the server 106 provides the
functionality of a master node. In some embodiments, the
client 102 communicates with the server 106 1n the farm 38
through a network 104. Over the network 104, the client 102
can, for example, request execution of various applications
hosted by the servers 106a-106% 1n the farm 38 and receive

5

10

15

20

25

30

35

40

45

50

55

60

65

6

output of the results of the application execution for display.
In some embodiments, only the master node provides the
functionality required to 1dentily and provide address infor-
mation associated with a server 106' hosting a requested
application.

In one embodiment, the server 106 provides functionality
of a web server. In another embodiment, the server 106a
receives requests Irom the client 102, forwards the requests to
a second server 1065 and responds to the request by the client
102 with a response to the request from the server 1065. In
still another embodiment, the server 106 acquires an enu-
meration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
such as display data, generated by an execution of the 1den-
tified application on the server 106.

Referring now to FIG. 1B, a network environment for
delivering and/or operating a computing environment on a
client 102 1s depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 102 1s 1n
communication with a server 106 via network 104, 104' and
appliance 105. For example, the client 102 may reside 1n a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing environ-
ment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 105 and/or the server
106.

In some embodiments, the appliance 105 accelerates deliv-
ery ol a computing environment 15, or any portion thereof, to
a client 102. In one embodiment, the appliance 105 acceler-
ates the delivery of the computing environment 15 by the
application delivery system 190. For example, the embodi-
ments described herein may be used to accelerate delivery of
a streaming application and data file processable by the appli-
cation from a central corporate data center to a remote user
location, such as a branch oflice of the company. In another
embodiment, the appliance 105 accelerates transport layer
traffic between a client 102 and a server 106. The appliance
105 may provide acceleration techniques for accelerating any
transport layer payload from a server 106 to a client 102, such
as: 1) transport layer connection pooling, 2) transport layer
connection multiplexing, 3) transport control protocol buil-
ering, 4) compression and 5) cachuing. In some embodiments,
the appliance 105 provides load balancing of servers 106 in
responding to requests from clients 102. In other embodi-
ments, the appliance 105 acts as a proxy or access server 1o
provide access to the one or more servers 106. In another
embodiment, the appliance 105 provides a secure virtual pri-
vate network connection from a first network 104 of the client
102 to the second network 104' of the server 106, such as an
SSL VPN connection. In yvet other embodiments, the appli-
ance 105 provides application firewall security, control and
management of the connection and communications between
a client 102 and a server 106.

In some embodiments, the application delivery manage-
ment system 190 provides application delivery techniques to
deliver a computing environment to a desktop of a user,

US 9,270,646 B2

7

remote or otherwise, based on a plurality of execution meth-
ods and based on any authentication and authorization poli-
cies applied via a policy engine 195. With these techniques, a
remote user may obtain a computing environment and access
to server stored applications and data files from any network
connected device 100. In one embodiment, the application
delivery system 190 may reside or execute on a server 106. In
another embodiment, the application delivery system 190
may reside or execute on a plurality of servers 106a-106#. In
some embodiments, the application delivery system 190 may
execute 1n a server farm 38. In one embodiment, the server
106 executing the application delivery system 190 may also
store or provide the application and data file. In another
embodiment, a first set of one or more servers 106 may
execute the application delivery system 190, and a different
server 10672 may store or provide the application and data file.
In some embodiments, each of the application delivery sys-
tem 190, the application, and data file may reside or be located
on different servers. In yet another embodiment, any portion
of the application delivery system 190 may reside, execute or
be stored on or distributed to the appliance 200, or a plurality
of appliances.

The client 102 may include a computing environment 15
for executing an application that uses or processes a data file.
The client 102 via networks 104, 104" and appliance 1035 may
request an application and data file from the server 106. In one
embodiment, the appliance 105 may forward a request from
the client 102 to the server 106. For example, the client 102
may not have the application and data file stored or accessible
locally. In response to the request, the application delivery
system 190 and/or server 106 may deliver the application and
data file to the client 102. For example, 1n one embodiment,
the server 106 may transmit the application as an application
stream to operate in computing environment 135 on client 102.

In some embodiments, the application delivery system 190
comprises any portion of the Citrix Access Suite™ by Citrix
Systems, Inc., such as the MetaFrame or Citrix Presentation
Server™; any portion of the Citrix Delivery Center™ by
Citrix Systems, Inc., such as the XenDesktop™, XenApp™,
XenServer™, or NetScaler™; and/or any of the Microsoft®
Windows Terminal Services manufactured by the Microsoft
Corporation. In one embodiment, the application delivery
system 190 may deliver one or more applications to clients
102 or users via a remote-display protocol or otherwise via
remote-based or server-based computing. In another embodi-
ment, the application delivery system 190 may deliver one or
more applications to clients or users via steaming of the
application.

In one embodiment, the application delivery system 190
includes a policy engine 195 for controlling and managing the
access to, selection of application execution methods and the
delivery of applications. In some embodiments, the policy
engine 1935 determines the one or more applications a user or
client 102 may access. In another embodiment, the policy
engine 1935 determines how the application should be deliv-
ered to the user or client 102, e.g., the method of execution. In
some embodiments, the application delivery system 190 pro-
vides a plurality of delivery techniques from which to select a
method of application execution, such as a server-based com-
puting, streaming or delivering the application locally to the
client 120 for local execution.

In one embodiment, a client 102 requests execution of an
application program and the application delivery system 190
comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi-
ment, the server 106 receives a request for an enumeration of

10

15

20

25

30

35

40

45

50

55

60

65

8

available applications from the client 102. In one embodi-
ment, 1n response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of
application programs available to the client 102. The appli-
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system 190
selects one of a predetermined number of methods for execut-
ing the enumerated application, for example, responsive to a
policy of a policy engine. The application delivery system
190 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 190 may select a
method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the appli-
cation. In yet another embodiment, the application delivery
system 190 may select a method of execution of the applica-
tion to stream the application via the network 104 to the client
102.

A client 102 may execute, operate or otherwise provide an
application, which can be any type and/or form of soitware,
program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server appli-
cation, a thin-client computing client, an ActiveX control, or
a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some
embodiments, the application may be a server-based or a
remote-based application executed on behalf of the client 102
on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol, such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoit Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HI'TP client, an F'TP
client, an Oscar client, or a Telnet client. In other embodi-
ments, the application comprises any type of software related
to VoIP communications, such as a soit IP telephone. In
turther embodiments, the application comprises any applica-
tion related to real-time data communications, such as appli-
cations for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38
may be running one or more applications, such as an appli-
cation providing a thin-client computing or remote display
presentation application. In one embodiment, the server 106
or server farm 38 executes as an application, any portion of
the Citrix Access Suite™ by Citrix Systems, Inc., such as the
MetaFrame or Citrix Presentation Server™; any portion of
the Citrix Delivery Center™ by Citrix Systems, Inc., such as
the XenDesktop™, XenApp™, XenServer™, or
NetScaler™; and/or any of the Microsoit® Windows Termi-
nal Services manufactured by the Microsoft Corporation. In
one embodiment, the application 1s an ICA client, developed
by Citrix Systems, Inc. of Fort Lauderdale, Fla. In other
embodiments, the application includes a Remote Desktop
(RDP) client, developed by Microsoit Corporation of Red-
mond, Wash. Also, the server 106 may run an application,
which for example, may be an application server providing
email services such as Microsoit Exchange manufactured by
the Microsoft Corporation of Redmond, Wash., a web or
Internet server, or a desktop sharing server, or a collaboration
server. In some embodiments, any of the applications may
comprise any type ol hosted service or products, such as
GoToMeeting™, GoloWebmar™, GoToMyPC™, or

GoToAssist™ provided by Citrix Online Division, Inc. of

US 9,270,646 B2

9

Santa Barbara, Calif., WebEx™ provided by WebEXx, Inc. of
Santa Clara, Calif., or Microsoit Office Live Meeting pro-
vided by Microsoit Corporation of Redmond, Wash.

The client 102, server 106, and appliance 105 may be
deployed as and/or executed on any type and form of com-
puting device, such as a computer, network device or appli-
ance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1C and 1D depict block diagrams of a computing
device 100 usetul for practicing an embodiment of the client
102, server 106 or appliance 105. As shown in FIGS. 1C and
1D, each computing device 100 includes a central processing
unit 101, and a main memory unit 122. As shown in FIG. 1C,
a computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a
mouse. Each computing device 100 may also include addi-
tional optional elements, such as one or more mput/output
devices 130a-1306 (generally referred to using reference
numeral 130), and a cache memory 140 1n commumnication
with the central processing unit 101.

The central processing unit 101 1s any logic circuitry that
responds to and processes mstructions fetched from the main
memory unit 122. In many embodiments, the central process-
ing unit 1s provided by a microprocessor unit, such as: those
manufactured by Intel Corporation of Mountain View, Calif.;
those manufactured by Motorola Corporation of Schaum-
burg, Ill.; those manufactured by Transmeta Corporation of
Santa Clara, Calif.; the RS/6000 processor, those manutac-
tured by International Business Machines of White Plains,
N.Y.; or those manufactured by Advanced Micro Devices of
Sunnyvale, Calif. The computing device 100 may be based on
any ol these processors, or any other processor capable of
operating as described herein.

Main memory unit 122 may be one or more memory chips
capable of storing data and allowing any storage location to
be directly accessed by the microprocessor 101, such as Static
random access memory (SRAM), Burst SRAM or Synch-
Burst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced
DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst
Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR
SDRAM), Enhanced SDRAM (ESDRAM), SyncLink
DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM). The main memory 122 may be
based on any of the above described memory chips, or any
other available memory chips capable of operating as
described herein. In the embodiment shown 1n FIG. 1C, the
processor 101 communicates with main memory 122 via a
system bus 150 (described 1n more detail below). FIG. 1C
depicts an embodiment of a computing device 100 in which
the processor communicates directly with main memory 122
via a memory port 103. For example, in FIG. 1D the main
memory 122 may be DRDRAM.

FIG. 1D depicts an embodiment in which the main proces-
sor 101 communicates directly with cache memory 140 via a
secondary bus, sometimes referred to as a backside bus. In
other embodiments, the main processor 101 communicates
with cache memory 140 using the system bus 150. Cache

memory 140 typically has a faster response time than main
memory 122 and 1s typically provided by SRAM, BSRAM, or

EDRAM. In the embodiment shown in FI1G. 1C, the processor
101 communicates with various I/O devices 130 via a local
system bus 150. Various busses may be used to connect the
central processing unit 101 to any of the I/O devices 130,

5

10

15

20

25

30

35

40

45

50

55

60

65

10

including a VESA VL bus, an ISA bus, an EISA bus, a
MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X
bus, a PCI-Express bus, or a NuBus. For embodiments in
which the I/O device 1s a video display 124, the processor 101
may use an Advanced Graphics Port (AGP) to communicate
with the display 124. FIG. 1D depicts an embodiment of a
computer 100 1n which the main processor 101 communi-
cates directly with I/O device 130 via HyperTransport, Rapid
I/O, or InfimBand. FIG. 1D also depicts an embodiment 1n
which local busses and direct communication are mixed: the
processor 101 communicates with 1/O device 130 using a
local interconnect bus while communicating with I/O device
130 directly.

The computing device 100 may support any suitable instal-

lation device 116, such as a floppy disk drive for receiving
floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a

CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape
drives of various formats, USB device, hard-drive or any
other device suitable for installing software and programs
such as any client agent 120, or portion thereof. The comput-
ing device 100 may further comprise a storage device 128,
such as one or more hard disk drives or redundant arrays of
independent disks, for storing an operating system and other
related software, and for storing application software pro-
grams such as any program related to the client agent 120.
Optionally, any of the mstallation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIX®, a bootable
CD for GNU/Linux that 1s available as a GNU/Linux distri-
bution from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., 802.11, T1,13, 56
kb, X.25), broadband connections (e.g., ISDN, Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. The network interface 118 may comprise a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device
suitable for interfacing the computing device 100 to any type
of network capable of communication and performing the
operations described herein.

A wide variety o I/O devices 130a-1302 may be present 1n
the computing device 100. Input devices 1include keyboards,
mice, trackpads, trackballs, microphones, and drawing tab-
lets. Output devices include video displays, speakers, inkjet
printers, laser printers, and dye-sublimation printers. The I/O
devices 130 may be controlled by an I/O controller 123 as
shown in FIG. 1C. The I/O controller may control one or more
I/O devices such as a keyboard 126 and a pointing device 127,
¢.g., a mouse or optical pen. Furthermore, an I/O device may
also provide storage 128 and/or an installation medium 116
for the computing device 100. In still other embodiments, the
computing device 100 may provide USB connections to
receive handheld USB storage devices such as the USB Flash
Drive line of devices manufactured by Twintech Industry, Inc.
of Los Alamitos, Calif.

In some embodiments, the computing device 100 may
comprise or be connected to multiple display devices 124a-
1247, which each may be of the same or different type and/or
form. As such, any of the I/O devices 130a-130% and/or the
I/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and

US 9,270,646 B2

11

use of multiple display devices 124a-124n by the computing,
device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124#%. In one embodi-
ment, a video adapter may comprise multiple connectors to
interface to multiple display devices 124a-124n. In other
embodiments, the computing device 100 may include mul-
tiple video adapters, with each video adapter connected to one
or more of the display devices 124a-124%. In some embodi-
ments, any portion of the operating system of the computing,
device 100 may be configured for using multiple displays
124a-124n. In other embodiments, one or more of the display
devices 124a-124n may be provided by one or more other
computing devices, such as computing devices 100a and
1006 connected to the computing device 100, for example,
via a network. These embodiments may include any type of
soltware designed and constructed to use another computer’s
display device as a second display device 124a for the com-
puting device 100. One ordinarily skilled 1n the art will rec-
ognize and appreciate the various ways and embodiments that
a computing device 100 may be configured to have multiple
display devices 124a-124n.

In further embodiments, an I/0 device 130 may be a bridge
170 between the system bus 150 and an external communi-
cation bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalk bus, a Giga-
bit Ethernet bus, an Asynchronous Transier Mode bus, a
HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system 1nterface bus.

A computing device 100 of the sort depicted in FIGS. 1C
and 1D typically operate under the control of operating sys-
tems, which control scheduling of tasks and access to system
resources. The computing device 100 can be running any
operating system such as any of the versions of the
Microsolt® Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OS® for Macintosh computers, any embedded
operating system, any real-time operating system, any open
source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi-
cal operating systems include: WINDOWS 3.x, WINDOWS
05, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, WINDOWS XP, WIN-
DOWS VISTA, and WINDOWS 7, all of which are manufac-
tured by Microsoit Corporation of Redmond, Wash.; MacOS,
manufactured by Apple Computer of Cupertino, Calif.; OS/2,
manufactured by International Business Machines of
Armonk, N.Y.; and Linux, a freely-available operating sys-
tem distributed by Caldera Corp. of Salt Lake City, Utah, or
any type and/or form of a Unix operating system, among
others.

In other embodiments, the computing device 100 may have
different processors, operating systems, and mput devices
consistent with the device. For example, 1n one embodiment
the computer 100 1s a Treo 180, 270, 1060, 600 or 650 smart
phone manufactured by Palm, Inc. In this embodiment, the
Treo smart phone 1s operated under the control of the PalmOS
operating system and includes a stylus input device as well as
a five-way navigator device. In another embodiment, the
computer 100 1s an 1Phone smart phone manufactured by
Apple Computers, Inc. In this embodiment, the 1Phone 1s
operated under the control of the 1IPhone OS operating system

10

15

20

25

30

35

40

45

50

55

60

65

12

and 1ncludes a multi-touch screen intertace. Moreover, the
computing device 100 can be any workstation, desktop com-
puter, laptop or notebook computer, server, handheld com-
puter, mobile telephone, any other computer, or other form of
computing or telecommunications device that 1s capable of
communication and that has suificient processor power and
memory capacity to perform the operations described herein.

B. DNS Resolver Architecture

FIG. 2 describes an embodiment of a DNS resolver 200
residing on a server, client, or intermediary. As shown 1n FIG.
2, the DNS resolver 200 includes a DNS query identifier 201,
a memory cache 202, a transaction 1dentifier generator 203, a
DNS query generator 205, a comparator 206 for comparing
requests and responses, and a DNS response generator 207.
The DNS resolver 200 may also receive input numbers from
a random number generator 204. The DNS resolver 200
receives DNS resolution requests 208 from hardware or soft-
ware on the client, server, or intermediary, or from any hard-
ware or software on another client, server, or intermediary.
The DNS resolver 200 transmits DNS query messages 209 to
DNS name servers, and 1n turn DNS recetves response mes-
sages 210. The DNS response messages 210 can also arrive
from different sources than the name servers. The DNS
resolver 200 also transmits DNS resolution responses 211 to
the hardware or software on the same or different client,
server, or intermediary that sent the DNS resolution request
208. The simplified architecture shown 1s provided for 1llus-
tration purposes only and 1s not intended to be limiting.

A DNS resolver 200 comprises any type or form of logic,
operations or functions to resolve a domain name. The DNS
resolver 200 may comprise any combination of software and
hardware. The DNS resolver 200 may comprise a library,
service, daemon, process, function, or subroutine. Although
the random number generator 204 shown 1n FIG. 2 1s external
to the DNS resolver 200, 1n some embodiments the DNS
resolver 200 may also include the random number generator
204. In other embodiments, the random number generator
204 may be on another software or hardware system. The
DNS resolver 200 may include functionality for transmitting
and recerving data 1in any format or protocol, such as Internet
Protocol. As such, in some embodiments, the DNS resolver
200 may include hardware or communicate with hardware
capable of performing this functionality. In other embodi-
ments, the DNS resolver 200 may operate within a virtual
machine and may include or communicate with virtual hard-
ware.

The DNS query identifier 201 comprises one or more pro-
grams, tasks, services, processes or executable imstructions to
provide logic, rules, functions, or operations for recerving and
handling a DNS resolution request 208. The DNS query 1den-
tifier 201 checks the resolver cache 202 to determine 1f a
previously-recerved DNS response message corresponding
to the DNS resolution request 208 has been stored in the
resolver cache 202. If so, the DNS response generator 207
transmits a DNS resolution response 211 to the requester
using the previously-received DNS response message in the
resolver cache 202. If the answer 1s unknown, the DNS query
identifier 201 checks that the DNS resolution request 208 1s a
tully qualified domain name query or unqualified multi-label
domain name query. If the DNS query identifier 201 deter-
mines that the DNS resolution request 208 1s not a fully
qualified domain name query or unqualified multi-label
query, the DNS query identifier 201 consults the cache 202
for a suflix search list. If a sulfix search list does not reside 1n
the cache 202, the DNS query 1dentifier 201 appends a global
DNS suifix to the DNS resolution request 208. If a suffix

search list does reside 1n the cache 202, the DNS query

US 9,270,646 B2

13

identifier 201 appends a primary DNS suilix to the DNS
resolution request 208. The DNS query identifier 201 con-
sults the cache 202 to determine the IP address or addresses of
a domain name server or servers from which to request an
answer. In some embodiments, the DNS query identifier 201
consults the cache 202 to determine the port or ports of the
domain name server or servers.

In some embodiments, the domain name requested 1s an
ASCII name. In other embodiments, the domain name
requested 1s part of the international domain name system and
1s encoded 1 Row-based ASCII Compatible Encoding
(RACE) or punycode. The international domain name may be
encoded by the DNS resolver 200 or may be already encoded
when recerved by the DNS query identifier 201. In some
embodiments, the DNS query identifier 201 consults the
cache 202 to determine 1f each domain name server to be
contacted 1s compliant with IETF RFC 4343 (Domain Name
System Case Insensitivity Clarification). In some embodi-
ments 1f a domain name server 1s RFC 4343 compliant, the
DNS query identifier 201 may retain mixed capitalization of
the domain name as received in the DNS resolution request
208. In other embodiments where a domain name server 1s
RFC 4343 compliant, the DNS query identifier 201 may
encode random capitalization in the domain name.

The cache 202 may comprise any type and form of data
structure, implemented 1n any combination of hardware and
soltware. In some embodiments, the cache 202 may comprise
a database, a flat file, dictionary, registry, index, lookup table,
or any other repository capable of storing DNS resource
records in any format. The cache 202 may include any asso-
ciated logic and control functions for recording and obtaining
DNS resource records. Once DNS resource records are stored
in the cache 202, the DNS resolver 200 can use the cached
copy rather than re-transmitting a DNS query message for the
resource, thereby reducing access time and use of network
bandwidth. In some embodiments, the cache 202 may include
an associated memory eclement, including RAM, Flash
memory, or a portion of a disk drive. In other embodiments,
the cache 202 may comprise a data object 1n main memory
unit 122 or cache memory 140, discussed above in connection
with FIGS. 1C and 1D, or any combination thereof. In still
other embodiments, the cache 202 may comprise any type of
integrated circuit, such as a Field Programmable Gate Array
(FPGA) or a Programmable Logic Device (PLD). In some
embodiments, the cache 202 may have a fixed maximum size.
In other embodiments, there may be no such limitation. Fur-
thermore, the cache 202 may include logic or functionality for
invalidating or removing cached DNS resource records based
on the expiration of a time period or upon receipt of an
invalidation command from the DNS resolver 200. The logic
or Tunctionality may allow invalidation or removal of single
records, groups of records, or all records residing in the cache
202.

The random number generator 204 may comprise any type
and form of software or hardware, or any combinations
thereot, for generating random or pseudo-random numbers.
In some embodiments, the random number generator 204 1s
within the DNS resolver 200. In other embodiments, the
random number generator 204 1s 1n the same client, server, or
intermediary as the DNS resolver 200. In still other embodi-
ments, the random number generator 204 1s separate from the
client, server, or intermediary that includes the DNS resolver
200. In these embodiments, the random number generator
204 may communicates with the DNS resolver over any type
and form of network or communications device or protocol.
The random number generator 204 generates and transmits
random or pseudo-random numbers to the transaction iden-

10

15

20

25

30

35

40

45

50

55

60

65

14

tifier generator 203 1n the DNS resolver 200. The random or
pseudo-random numbers can be of any length. In some
embodiments, the number length 1s at least as long as the
length of the requested domain name. For example, under
IETF RFC 1034, the maximum length of a fully qualified
domain name 1s 255 octets, or 2040 bits. In other embodi-
ments, the random or pseudo-random number may be shorter
or longer. In some embodiments, the random number genera-
tor 204 may generate a new random or pseudo-random num-
ber for each new DNS resolution request received by the DNS
resolver 200. In other embodiments, the same random or
pseudo-random number may be used for multiple transaction
identifiers, reducing the need for new random or pseudo-
random numbers for each request. In some embodiments, the
random number generator 204 may generate a new random or
pseudo-random number at a predetermined Ifrequency.
Higher frequencies may result 1n higher computation costs,
while lower frequencies may result 1 less resistance to
attack. In other embodiments, the random number generator
204 may generate a new random or pseudo-random number 1n
response to an event. For example, the random number gen-
erator 204 may generate a new random number in response to
every fifth or tenth DNS resolution request 208 received by
the DNS resolver 200. For another example, the random
number generator 204 may generate a new random number in
response to every invalidation of a DNS response record in the
cache 202. In these embodiments, the event that causes the
random number generator 204 to generate a new random or
pseudo-random number may be any event capable of trigger-
ing such functionality within the random number generator
204, such as closing or opening a switch, changing a value 1n
a memory register, executing a function call, or accessing a
memory location.

The transaction i1dentifier generator 203 comprises a pro-
cess, logic, function, service, task, subroutine, or executable
instructions for creating or providing a transaction 1dentifier,
such as for a DNS query. As defined by IETF RFC 1033, the
DNS transaction 1dentifier 1s a 16-bit field 1n the header of
DNS query message 209. However, 1n other protocols, the
transaction 1dentifier may be of different lengths or formats.
In some embodiments, the queried domain name server
responds to a DNS query message 209 with a DNS response
message 210 including an 1dentical DNS transaction 1denti-
fier, associating the response with the query. In some embodi-
ments, however, there may be multiple DNS query messages
209 sent by the DNS resolver 200 1n response to multiple
DNS resolution requests 208 before any DNS response mes-
sage 210 1s recewved. The transaction i1dentifier allows the
DNS resolver 200 to identity which outstanding request 1s
associated with which response. The sent and recerved trans-
action identifiers are compared by the response/request com-
parator 206, and 11 the received transaction 1identifier matches
no outstanding DNS query message 209, the DNS response
message 210 1s discarded by the DNS resolver 200. It the
received transaction identifier does match an outstanding
DNS query message 209, the DNS response message 210 1s
passed to the DNS response generator 207. To generate a
transaction identifier, the transaction identifier generator 203
may perform a cryptographic hashing function using imputs
comprising the random or pseudo-random number recerved
from the random number generator 204, the IP address of the
domain name server to be queried, and the domain name or a
portion of the domain name requested. In some embodiments,
the mputs to the transaction identifier generator 203 hash
function may include the port number of the domain name
server to be queried. In further embodiments, the mputs to the
hash function may include the domain name encoded with

US 9,270,646 B2

15

capitalization. In yet further embodiments, the inputs to the
hash function may include the domain name encoded in puny-
code or RACE. The cryptographic hash function used to
create the transaction identifier may be any hash function,
with or without collision resistance, such as MD5, SHA-1,
SHA-256, or any other known or currently unknown hash
function or combination of hash functions. In some embodi-
ments, the output of the cryptographic hash function may be
compressed to 16 bits. In other embodiments, the output may
be truncated or shortened through any other means to 16 bits.
In still other embodiments, the output of the cryptographic
hash function may be shortened, truncated, or extended 1n any
means to achieve the length of the transaction identifier
required by the protocol format of the DNS query message
209. In further embodiments, the cryptographic hashing func-
tion may be collision resistant or collision free.

The DNS query generator 205 comprises a process, logic,
function, service, task, subroutine, or executable instructions
for creating any type and form of DNS query message 209.
The DNS query message 209 may be created in Comphance
with the standard DNS query message format defined in IETF
RFC 1035, or may be created in any other desired format. The
DNS query message 209 may include a transaction 1dentifier
received from the transaction i1dentifier generator 203. The
DNS query message 209 may include a question entry of the
domain name queried received from the DNS query identifier
201. The question entry may include a domain name, class,
and type, as described 1n RFC 10335, or may contain more or
fewer information as dictated by the query message format.
The DNS query message 209 may be transmitted by the DNS
resolver 200 to the address or addresses of the domain name
server or servers selected by the DNS query identifier 201
from the cache 202. In some embodiments, the DNS query
message 209 may be stored in a memory element associated
with the response/request comparator 206. In other embodi-
ments, the DNS query message 209 may be stored 1mn a
memory element associated with the DNS query generator
205, the cache 202, or any other memory element associated
with or accessible by the DNS resolver 200. The stored DNS
query message may be marked, flagged or recorded 1n such a
way as to 1dentily the query as an outstanding query. In such
embodiments, the DNS resolver 200 may include function-
ality for invalidating or removing markings or flags or delet-
ing the stored DNS query once 1t 1s no longer outstanding. In
some embodiments, the DNS query message 209 may be
transmitted by the DNS resolver 200 multiple times, such as
in response to expiration of a time-to-live period.

The response/request comparator 206 comprises a process,
logic, function, service, task, subroutine, or executable
instructions for comparing a DNS response message 210 with
a DNS query message 209. For example, the response/request
comparator 206 may compare a DNS response message 210
received by the DNS resolver 200 with a DNS query message
209 sent by the DNS resolver 200. In some embodiments, the
response/request comparator 206 may compare a received
DNS response message 210 with a DNS query message
marked as an outstanding query as discussed above. The
response/request comparator 206 may check i1t the DNS
response message 210 has apparently come from the same IP
address and port of the domain name server to whom the DNS
query message 209 was sent. Furthermore, 1n some embodi-
ments, the response/request comparator 206 may check 1t the
DNS response message 210 has the same transaction ident-
fier as the DNS query message 209 that was sent. In these
embodiments, 11 the response/request comparator 206 deter-
mines that the DNS response message 210 does not match the
DNS query message 209, the comparator 206 disregards the

10

15

20

25

30

35

40

45

50

55

60

65

16

DNS response message 210. In further embodiments, where
the domain name server queried 1s RFC 4343 compliant, the
response/request comparator 206 may compare capitaliza-
tion of the domain name 1in the transmitted DNS query mes-
sage 209 and recerved DNS response message 210. In these
embodiments, the response/request comparator 206 may
instruct the DNS resolver 200 to disregard the DNS response
message 210, responsive to a determination that the capitali-
zation does not match. If the response/request comparator
206 1dentifies the DNS response message 210 as matching an
outstanding DNS query message 209, 1t may, in some
embodiments, pass the DNS response message 210 as a vali-
dated response to the DNS response generator 207. The
response/request comparator 206 may also invalidate or
remove markings or flags or delete memory entries 1dentify-
ing the DNS query message 209 as outstanding, or instruct
another process to do so.

The DNS response generator 207 comprises a process,
logic, function, service, task, subroutine, or executable
instructions for generating and/or sending a DNS resolution
response 211. The DNS response generator 207 may receive
a validated DNS response message 210 from the response/
request comparator 206. In some embodiments, the DNS
response generator 207 may 1spect the DNS response mes-
sage 210 to determine 11 1t 1s fully responsive to the DNS
resolution request 208. A fully responsive message contains
the final address sought. For example, a request for the
address of www.example.com may return a response that the
domamn name www.example.com 1s located at
208.77.188.166. A non-fully responsive message to the query
for the address of www.example.com may return a response
that the domain name server for example.com 1s located at
208.77.188.1, but be silent on the address of www.example-
com. In some embodiments, 1f the DNS response message
210 1s not fully responsive to the DNS resolution request 208,
the DNS response generator 207 may record any partial
response or additional name server information in the cache
202. Furthermore, the DNS query 1dentifier 201 may create a
new 1teration of the query using the partial response or addi-
tional name server information. In some embodiments, 1f the
DNS response message 210 1s fully responsive to the DNS
resolution request 208, the DNS response generator 207 may
record the response in the cache 202. The DNS response
generator 207 may send a DNS resolution response 211 to the
originally requesting software or hardware on the same or
different client, server, or intermediary.

The DNS resolution request 208 1s a data packet or packets
comprising a DNS name to be resolved. The DNS resolution
request 208 may include a fully qualified domain name or a
portion of a domain name; a DNS query type; and a DNS
query class. In some embodiments, the DNS resolution
request 208 comes from a software or hardware system on the
same client, server, or intermediary. In other embodiments,
the DNS resolution request 208 comes from a soiftware or
hardware system on another client, server, or intermediary.

The DNS query message 209 1s a data packet or packets
comprising a request to a name server to 1dentity a domain
name. The DNS query message 209 may include a transaction
identifier and a question entry, as discussed above 1n connec-
tion with the DNS query generator 205. The DNS query
message 209 may be transmitted over TCP, UDP, or any other
protocol known or currently unknown for allowing commu-
nication over a network.

The DNS response message 210 1s a data packet or packets
comprising a response to a DNS query message 210. The
DNS query message 210 may include a transaction identifier.
The transaction 1dentifier may be i1dentical, similar, or differ-

US 9,270,646 B2

17

ent from the transaction identifier of an outstanding DNS
query message 209. The DNS query message 210 may
include a response entry. The response entry may include a
domainname, class, or type as described in RFC 1035, ormay
contain more or fewer iformation as dictated by the query
message format. The response entry may also include addi-
tional information, such as the address of an authoritative
name server for the domain name requested. The DNS query
message 210 may be transmitted over TCP, UDP, or any other
type and form of protocol for allowing communication over a
network.

The DNS resolution response 211 1s a data packet or pack-
ets comprising a response to a DNS resolution request 208.
The DNS resolution response 211 may include a domain
name and IP address corresponding to the domain name
requested 1 the DNS resolution request 208. In some
embodiments, the DNS resolution response 211 may 1nclude
a message that the domain name could not be located.

C. DNS Query Generation

FIG. 3 describes an embodiment of steps for a method of
generating a transaction identifier for a DNS query message.
In brief overview, at step 300, a request 1s recerved to resolve
a domain name. At step 301, the request 1s parsed and the IP
address and port of a domain name server with the domain 1n
its zone of authority or a delegated zone 1s determined. At step
302, the cache 1s consulted to determine if the domain name
server to be queried rewrites or normalizes mixed-capitaliza-
tion domain names; 11 the domain name server does not do so,
capitalization shifts may be made in the characters of the
requested domain name. At step 303, a random or pseudo-
random number 1s generated for a salt input to a cryptographic
hashing function. At step 304, a transaction 1dentifier 1s cre-
ated as an output of the cryptographic hashing function. At
step 305, the DNS query message 1s created. At step 306, the
DNS query message 1s transmitted to the domain name server
to be queried. In some embodiments, this process may be
repeated multiple times for the same request to query multiple
domain name servers. In further embodiments, this process
may be repeated iteratively or recursively where DNS
answers fail to fully answer the DNS request, but indicate a
more authoritative name server to query.

In further details, at step 300, the DNS resolver may receive
a request to resolve a domain name. In some embodiments,
this request may come from a web browser or similar appli-
cation. In other embodiments, this request may come from a
kernel service, function, daemon, or other executable code
residing in hardware, software, or any combination thereof.
In some embodiments, the source of the request may be onthe
same client, server, or intermediary as the DNS resolver. In
other embodiments, the source of the request may be from a
different client, server, or intermediary on the same or a
different network. The DNS request may be for a full or
partial domain name. The DNS request may include a domain
class and domain type. In some embodiments, the DNS
request may include wildcard characters 1n the name or class
or type, signitying that all records relevant to a domain name
or partial domain name or class or type are being requested. If
a relevant fully-responsive DNS record resides in the DNS
resolver’s cache, a response contaiming the information 1n the
DNS record may be returned to the requestor. In such a case,
no further steps of generating a DNS query may need to be
taken.

At step 301, the DNS resolver may select a domain name
server to query from the index of name servers in the cache. In
some embodiments, the DNS resolver may select a preferred
name server. In other embodiments, the DNS resolver may
select the name server with the narrowest zone of authority

10

15

20

25

30

35

40

45

50

55

60

65

18

containing the requested domain listed 1n the index of name
servers 1n the cache. In further embodiments, the DNS
resolver may select the name server for the root zone. Once a
name server to be queried has been selected, the DNS resolver
retrieves the name server’s IP address and port number from
the index of name servers 1n the cache.

At step 302, the DNS resolver may consult the cache to
determine 1 the domain name server to be queried rewrites or
normalizes responses. In some embodiments, the DNS
resolver may determine that the name server rewrites
responses by the presence and content of additional data
fields 1n the cached resource record. In other embodiments,
the DNS resolver may determine that the name server
rewrites responses by comparing prior mixed capitalization
domain name queries to the name server with responses from
the same name server for preservation of capitalization. It the
domain name server to be queried does not rewrite or normal-
1ze responses, 1n some embodiments the DNS resolver may
shift any or all of the characters of the domain name between
upper and lower case.

At step 303, the random number generator generates a
random or pseudo-random number. In one embodiment, the
random number generator passes the random or pseudo-ran-
dom number to the transaction identifier generator. In other
embodiments, the transaction 1dentifier generator obtains or
retrieves the random or pseudo-random number from a
memory element associated with the random number genera-
tor. In some embodiments, a new random or pseudo-random
number 1s passed to the cryptographic hashing function for
cach new DNS query. In other embodiments, a random or
pseudo-random number may be reused for multiple DNS
queries. In further embodiments, the random or pseudo-ran-
dom number may be updated at a predetermined frequency. In
other embodiments, the random or pseudo-random number
may be updated in response to an event, as discussed above in
connection the random number generator 204 and FIG. 2.

At step 304, the transaction identifier generator performs a
cryptographic hashing function on inputs comprising the ran-
dom or pseudo-random number, the IP address of the domain
name server to be queried, and the domain name or a portion
of the domain name requested. The cryptographic hashing
function may be any hash function or combination of hash
functions, including MDS5, SHA-1, SHA-256, or any other
hash function or functions currently known or unknown. For
example, 1n one embodiment, the transaction 1dentifier gen-
crator may append the mnput bits of the random number, the IP
address of the domain name server and the domain name to
create a string of bits. In this example embodiment, the trans-
action identifier generator may use a combination of addition,
exclusive-or (XOR), and constant rotations of adjacent bits or
groups ol bits to convert the string of bits 1nto a cryptographic
hash of length specified by the size of the transaction i1denti-
fier field of the protocol. For mnstance, the IETF RFC 1035
standard specifies a 16-bit transaction identifier for DNS que-
rics. However, the transaction identifier generator may be
configured to output a hash of any length required by the
network protocol in use. Although the illustrative example
describes appending the input bits to create a string, the
transaction 1dentifier generator may use appending, multiply-
ing, adding, subtracting, XORing, or any other method
known to those skilled in the art.

At step 305, the DNS query generator creates a DNS query
using the requested domain name, domain class and/or
domain type received at step 300, and the transaction 1denti-
fier generated at step 304. As mentioned above at step 300, the
DNS request may be for a full or partial domain name, and
wildcard characters may be present in the name or class or

US 9,270,646 B2

19

type, signifying that all records relevant to a domain name or
partial domain name or classes or types are being requested.
In one embodiment, the DNS query generator may create an
RFC 1035 standard DNS query, comprising a header fol-
lowed by a question. In this embodiment, the header may
include the transaction identifier generated at step 304, a
query tlag, an opcode specitying the type of query, and a
recursion tlag. The question may include the domain name,
the domain type and domain class. In some embodiments, the
DNS query generator may also create a message compliant
with the relevant protocol, such as TCP or UDP, with the DNS
query as a payload. In other embodiments, the DNS query
generator may pass the query as a payload to another process
or service acting at the application or transport layer.

At step 306, the DNS resolver transmits the DNS query to
the domain name server selected at step 301. The domain
name server may be on the same network as the DNS resolver
or on a different network. In some embodiments, the DNS
resolver transmits the DNS query directly. In other embodi-
ments, the DNS resolver passes the DNS query to another
process or service responsible for handling network commu-
nications, such as a network driver.

In many embodiments, the DNS query generated at step
305 complies with IETF standard DNS protocol. In these
embodiments, the domain name server may recognize the
generated DNS query as a standard DNS query. In such
embodiments, the functionality of DNS name resolution may
be performed without alteration to hardware or software on
the domain name server, client, or intermediary. In some
embodiments, the DNS protocol used or supported by the
client and/or server do not need to change to support any of
the functionality or operations described herein. Such com-
pliance with DNS protocols, such as with IETF standards,
may prevent compatibility 1ssues between the client, server,
and intermediary. In other embodiments, the DNS query may
be generated to comply with other standards, including
Extended DNS (described in RFC 2671) and DNS Security
Extensions (described in RFC 2535). In yet other embodi-
ments, the DNS query may be encrypted. In one such embodi-
ment, the encryption protocol may be DNSCurve. In other
such embodiments, any other encryption protocol or combi-
nations of protocols may be used. In still other embodiments,
the DNS query may be generated 1n a proprietary format, and
may require hardware or soltware changes to the client,
server, or mtermediary.

While the invention has been particularly shown and
described with reference to specific embodiments, 1t should
be understood by those skilled in the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the mnvention as defined by the
tollowing claims.

What 1s claimed:

1. A method for generating a Domain Name Service (DNS)
query to improve resistance against a DNS attack, the method
comprising:

a) recerving, by a DNS resolver configured on a device, a

request to resolve a domain name;

b) 1dentifying, by the DNS resolver, the domain name, an
internet protocol address of a DNS server, and a port of
the DNS server;

¢) generating a transaction identifier for a DNS query by
applying a one-way hash function to an mput of a pre-
determined random number, the internet protocol
address of the DNS server, the port of the DNS server,
and the domain name, the mput of the domain name
comprising a portion of the domain name to be resolved;
and

5

10

15

20

25

30

35

40

45

50

55

60

65

20

d) transmitting, by the DNS resolver, the DNS query for the
domain name to the DNS server, the DNS query 1denti-
fied by the generated transaction identifier.
2. The method of claim 1, wherein step (¢) turther com-
prises changing the predetermined random number at a pre-
determined frequency.
3. The method of claim 1, wherein step (c) further com-
prises changing the predetermined random number in
response to an event.
4. The method of claim 1, wherein step (c) further com-
prises generating by the one-way hash function the same
transaction identifier for DNS queries to resolve the same
domain name transmitted to the same DNS server.
5. The method of claim 1, wherein step (¢) turther com-
prises encoding one or more fields of the DNS request and
using the encoded one or more fields as imput to the one-way
hash function to generate the transaction 1dentifier.
6. The method of claim 1, wherein step (¢) further com-
prises encoding the domain name by capitalizing one or more
characters of the domain name and generating the transaction
identifier by using the encoded domain name as the input of
the domain name to the one-way hash function.
7. The method of claim 1, wherein step (¢) further com-
prises encoding the domain name by using one of a punycode
and a RACE encoding scheme.
8. The method of claim 1, further comprising determining,
by the DNS resolver, that the DNS server 1s one of rewriting
or normalizing responses and in response to the determina-
tion not encoding a portion of the DNS query.
9. The method of claim 1, further comprising determining,
by the DNS resolver, that the destination i1s not rewriting
responses and 1n response to the determination encoding a
portion of the DNS query and including the encoded portion
in the transaction i1dentifier.
10. The method of claim 1, wherein step (¢) further com-
prises communicating by the DNS resolver the iput of the
internet protocol address of the destination and the domain
name to a transaction identifier generator.
11. A system for generating a Domain Name Service
(DNS) query to improve resistance against a DNS attack, the
system comprising;:
a computing device, comprising a processor executing a
DNS resolver and a transaction 1dentifier generator,
wherein the DNS resolver 1s configured to receive a
request to resolve a domain name and identity the
domain name, an internet protocol address of a desti-
nation of the request, and a port of the destination of
the request;

wherein the transaction i1dentifier generator 1s config-
ured to generate a transaction identifier by applying a
one-way hash function to an input of a predetermined
random number, the mternet protocol address of the
destination, the port of the destination, and the
domain name, the input of the domain name compris-
ing a portion of the domain name to be solved; and

wherein the DNS resolver 1s further configured to form
the DNS query using the generated transaction i1den-
tifier and transmit the DNS query for the domain
name to the destination.

12. The system of claim 11, wherein the transaction i1den-
tifier generator 1s further configured to change the predeter-
mined random number at a predetermined frequency.

13. The system of claim 11, wherein the transaction i1den-
tifier generator 1s further configured to change the predeter-
mined random number in response to an event.

14. The system of claim 11, wherein the transaction i1den-
tifier generator 1s further configured to generate the same

US 9,270,646 B2

21

transaction 1dentifier for mputs 1dentifying the same domain
name and the same destination.

15. The system of claim 11, wherein the DNS resolver 1s
turther configured to encode one or more fields of the DNS
request and communicate the encoded one or more fields as
input to the transaction i1dentifier generator to generate the
transaction i1dentifier.

16. The system of claim 11, wherein the DNS resolver 1s
turther configured to encode the domain name by capitalizing
one or more characters of the domain name and communicate
the encoded domain name as the input of the domain name to
the transaction 1dentifier generator.

17. The system of claim 11, wherein the DNS resolver 1s
turther configured to encode the domain name by using one of
a punycode and a RACE encoding scheme.

18. The system of claim 11, wherein the DNS resolver 1s
turther configured to determine that the destination 1s one of
rewriting or normalizing responses and in response to the
determination does not encode a portion of the DNS query.

19. The system of claim 11, wherein the DNS resolver 1s
turther configured to determine that the destination 1s not
rewriting responses and in response to the determination
encodes a portion of the DNS query and communicate the
encoded portion as input to the transaction identifier genera-
tor to generate the transaction 1dentifier.

20. The system of claim 11, wherein the computing device
executing the DNS resolver 1s one of a client, a server and an
intermediary.

10

15

20

25

22

	Front Page
	Drawings
	Specification
	Claims

