12 United States Patent

Schmidt et al.

US009270617B2

US 9,270,617 B2
Feb. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(51)

(52)

(58)

LOAD CONTROLLER FRAMEWORK

Applicants: Olaf Schmidt, Walldort (DE); Martin P.
Fischer, Heidelberg (DE)

Inventors: Olaf Schmidt, Walldort (DE); Martin P.

Fischer, Heidelberg (DE)

Assignee: SAP SE, Walldort (DE)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 15 days.

Notice:

Appl. No.: 13/910,461

Filed: Jun. 5,2013

Prior Publication Data

US 2014/0365659 Al Dec. 11, 2014

Int. CI.
GO6F 15/173
HO4L 12/911
HO4L 12/863
HO4L 12/801
GO6EF 9/50

GO6F 17/30
HO4L 29/08
HO04L 12/803

U.S. CL
CPC

(2006.01
(2013.01
(2013.01
(2013.01
(2006.01
(2006.01
(2006.01
(2013.01

A

HO4L 47/821 (2013.01); HO4L 47/11
(2013.01); HO4L 47/627 (2013.01); HO4L
67/1002 (2013.01); GO6F 9/5083 (2013.01):
GOGF 17/30516 (2013.01); HO4L 47/125
(2013.01); HO4L 67/1008 (2013.01)

Field of Classification Search

CPC HO4L 47/125; HO4L 67/71008; GO6F
17/30516; GO6F 9/5083
USPC e 709/226

See application file for complete search history.

180

(56) References Cited

U.S. PATENT DOCUMENTS

7,222,142 B2 5/2007 Fischer et al.
7,457,933 B2 11/2008 Pferdekaemper et al.
7,653,667 B2 1/2010 Ptferdekaemper et al.
7,693,881 B2 4/2010 Fischer et al.
7,693,890 B2 4/2010 Fischer et al.
7,707,176 B2 4/2010 Schmdt
7,756,813 B2 7/2010 Pferdekamper et al.
7,756,814 B2 7/2010 Fischer et al.
7,827,160 B2 11/2010 Kuhr et al.
7,844,890 B2 11/2010 Schmdt
7,975,013 B2 7/2011 Schnmudt
8,090,754 B2 1/2012 Schmuidt et al.
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 13/543,254, filed Jul. 6, 2012, Olaf Schmudt.
(Continued)

Primary Examiner — Wing F Chan
Assistant Examiner — Joseph Maniwang
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

The present disclosure involves systems, software, and com-
puter-implemented methods for controlling service load 1n a
cloud-based system. An example method includes recerving a
first request for the network service from a client, evaluating
a load condition associated with the network service, the load
condition indicating an availability of the network service to
receive requests, returning a unmique token associated with the
first request to the client i response to the load condition
indicating that the network service 1s not available to recerve
the requests, recerving a second request for the network ser-
vice from the client, the second request including at least a
portion of the first request and the unique token, evaluating
the load condition associated with the network service, and
prioritizing the second request based on the unique token in
response to the load condition indicating that the network
service 1s available to receive the requests.

19 Claims, 4 Drawing Sheets

200

110
/

CLIENT 130~

GLOUD
SYSTEM

NETWORK
SERVICE

SEND REQUEST FOR
NETWORK SERVICE 110

{
202

YES

SERVICE 1

fia-
204
NETWORK
10 UNDER
LOAD?

NG

FORWARD REQUEST

=

RETURN TOKEN TO CLIENT

{
208

RE-SEND REQUEST FOR NETWORK
SERVICE 110 INCLUDING TOKEN -

4
212

YES

NETWORK

SERVICE 110 UNDER

LOAD?

b
208

246 PRIORITIZE REQUEST

FORWARD REQUEST

RETURN TOKEN TQ CLIENT

-

7
220

Y

‘\
218

US 9,270,617 B2

Page 2
(56) References Cited 2009/0150906 A1 6/2009 Schmidt et al.
2010/0287553 Al 11/2010 Schmidt et al.
U.S. PATENT DOCUMENTS 2011/0321058 Al 12/2011 Schmidt
2012/0030180 Al 2/2012 Klevenz et al.
8,219,974 B2 7/2012 Schmidt 2012/0030326 Al* 2/2012 Cassidyetal. 709/223
8,667,120 B2* 3/2014 Kurebayashi etal. 709/224 2012/0246130 Al 9/2012 Schmidt
2004/0177353 AL* 9/2004 RAO wovvvvveeeooeo, 717/171 2013/0018926 Al 1/2013 Schmidt et al.
2008/0154977 Al 6/2008 Schmidt 2013/0117289 Al 5/2013 Fischer et al.
2008/0154994 Al 6/2008 Fischer et al. 2014/0012906 Al* 1/2014 Tejaetal. ..ocoooeeveeen..... 709/204
2008/0243781 Al 10/2008 Kubhr et al.
2008/0263007 Al 10/2008 Schmidt OTHER PUBLICATIONS
2009/0138586 Al* 5/2009 Maschio-Esposit
VORI C00nys US. Appl. No. 13/575,158, filed Feb. 1, 2013, Olaf Schmidt et al
2009/0150168 Al 6/2009 Schmidt U.S. Appl. No. 13/738,686, filed Jan. 10, 2013, Olaf Schmidt.
2009/0150431 Al 6/2009 Schmidt et al. | |
2009/0150866 Al 6/2009 Schmidt * cited by examiner

U.S. Patent

180

Feb. 23, 2016

100

"\

Sheet 1 of 4

US 9,270,617 B2

FI1G. 1

[

]
|
/
y 184
/
) /| [PRocESsOR_
\

134

132

140

PROCESSOR

LOAD CONTROLLER

FRAMEWORK

[—— CLENT
\ APPLICATION
\
\, 186

120
112
Sernons || 110
114

CLOUD
SYSTEM

MEMORY
188

SERVICE

LOAD
CONTROLLER

146
142

TOKEN
MANAGER

QUEUE
MANAGER

149

148

FLOW CONTROL
MANAGER

172

174

176

178

DATABASE

TOKEN DATA

PRIORITY
QUEUE DATA

APPLICATION
REGISTRY

LOAD
STATISTICS

INTERFACE

U.S. Patent Feb. 23, 2016 Sheet 2 of 4 US 9,270,617 B2

'2/00
L FIG. 2 e
CLIENT N gvsrem SERVICE
SEND REQUEST FOR
NETWORK SERVICE 110
202 204

NETWORK
SERVICE 110 UNDER
LOAD?

YES

NO FORWARD REQUEST
206
RETURN TOKEN TO CLIENT
/
208

RE-SEND REQUEST FOR NETWORK
SERVICE 110 INCLUDING TOKEN

212

NETWORK
SERVICE 110 UNDER
LOAD?

NO 214

YES

218 PRIORITIZE REQUEST
FORWARD REQUEST

218

RETURN TOKEN TO CLIENT

220

U.S. Patent Feb. 23, 2016 Sheet 3 of 4 US 9,270,617 B2

300

'

302 RECEIVE A FIRST REQUEST FOR THE
NETWORK SERVICE FROM A CLIENT

EVALUATE A LOAD CONDITION ASSOCIATED
304 WITH THE NETWORK SERVICE, THE LOAD
CONDITION INDICATING AN AVAILABILITY OF THE
NETWORK SERVICE TO RECEIVE REQUESTS

RETURN A UNIQUE TOKEN ASSOCIATED
WITH THE REQUEST TO THE CLIENT IN
306 RESPONSE TO THE LOAD CONDITION
INDICATING THAT THE NETWORK SERVICE
S NOT AVAILABLE TO RECEIVE REQUESTS

RECEIVE A SECOND REQUEST FOR THE

NETWORK SERVICE FROM THE CLIENT,

308 THE SECOND REQUEST INCLUDING THE
FIRST REQUEST AND THE UNIQUE TOKEN

EVALUATE THE LOAD CONDITION
310 ASSOCIATED WITH THE NETWORK SERVICE

PRIORITIZE THE SECOND REQUEST BASED ON
THE UNIQUE TOKEN IN RESPONSE TO THE LOAD

312 CONDITION INDICATING THAT THE NETWORK
SERVICE IS AVAILABLE TO RECEIVE REQUESTS

FIG. 3

U.S. Patent Feb. 23, 2016 Sheet 4 of 4 US 9,270,617 B2

400

s

402 ANALYZE STATISTICS ASSOCIATED WITH THE
AVAILABILITY OF THE NETWORK SERVICE

EVALUATE THE STATISTICS BASED AT LEAST

404 IN PART ON ONE OR MORE RULES, THE RULES
INCLUDING THRESHOLDS ASSOCIATED WITH

THE AVAILABILITY OF THE NETWORK SERVICE

RECEIVE AN INDICATION FROM THE NETWORK
406 SERVICE INDICATING THE AVAILABILITY OF THE
NETWORK SERVICE TO RECEIVE REQUESTS

FI1G. 4

US 9,270,617 B2

1
LOAD CONTROLLER FRAMEWORK

TECHNICAL FIELD

The present disclosure mvolves systems, software, and
computer-implemented methods for controlling service load
in a cloud-based system.

BACKGROUND

Cloud-based systems are generally distributed systems
including multiple components connected by a network.
Cloud-based systems may be used to implement network
services that receive requests from clients and provide
responses over a network. Load conditions associated with
the network services may cause the services to be unavailable
to process requests from clients.

SUMMARY

The present disclosure mvolves systems, software, and
computer-implemented methods for controlling application
load 1n a cloud-based system. In one general aspect, an
example method includes recetving a first request for the
network service from a client, evaluating a load condition
assoclated with the network service, the load condition indi-
cating an availability of the network service to receive
requests, returning a unique token associated with the first
request to the client 1n response to the load condition indicat-
ing that the network service 1s not available to receive the

requests, receiving a second request for the network service
from the client, the second request including at least a portion
of the first request and the unique token, evaluating the load
condition associated with the network service, and prioritiz-
ing the second request based on the unique token 1n response
to the load condition indicating that the network service 1s
available to receive the requests.

While generally described as computer-implemented soft-
ware embodied on non-transitory, tangible media that pro-
cesses and transtorms the respective data, some or all of the
aspects may be computer-implemented methods or further
included in respective systems or other devices for performs-
ing this described functionality. The details of these and other
aspects and implementations of the present disclosure are set
forth 1n the accompanying drawings and the description
below. Other features, objects, and advantages of the disclo-
sure will be apparent from the description and drawings, and
from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram 1llustrating an example system
for controlling service load 1n a cloud-based system.

FIG. 2 1s a message flow diagram showing example inter-
actions between a client, a cloud system, and a network ser-
vice for controlling service load.

FI1G. 3 1s a flowchart of an example method for controlling
service load 1n a cloud-based system.

FI1G. 4 1s a flowchart of an example method for evaluating
a load condition associated with a network service.

DETAILED DESCRIPTION

The present disclosure mvolves systems, software, and
computer-implemented methods for controlling service load
in a cloud-based system.

10

15

20

25

30

35

40

45

50

55

60

65

2

Many applications utilize cloud-based systems to retrieve
business data from network services. The network services
may be mtegrated 1nto the cloud system or implemented on
computing devices external to the cloud system. For example,
an enterprise resource planning (ERP) service associated
with a customer may be hosted on the customer premise (e.g.,
an “on-premise system’), where access to the service may be
brokered by the cloud system. By allowing network access to
services hosted on such on-premise systems, a high risk that
too many requests may overload the on-premise system
exists. For example, an on-premise system may not be able to
process as many requests as a cloud system due to lack of
processing power or network bandwidth. Such overloading
may lead to the network service responding slowly to requests
for data or may slow down company critical processes on the
on-premise systems. In addition to on-premise systems, com-
ponents and services within the cloud system may also be
subject to the same type of overloading.

The present solution provides a cloud-based solution that
protects network services from being overloaded by requests.
Client requests for network services are brokered by the cloud
system, which 1n turn controls the volume of requests being
sent to each network service. When a request for a certain
network service 1s recetved, a load condition associated with
the network service 1s evaluated to determine 11 the network
service can process the request. If 1t 1s determined that the
network service 1s not available to process requests at this
time due to load, a unique token 1s returned to the client. The
client may resubmit the request with this unique token to have
the resubmitted request prioritized over other requests (sub-
mitted without their own respective unique token) 11 the net-
work service 1s subsequently available. For example, 11 a
client submits a request for an ERP service, the cloud system
may evaluate a load condition associated with an ERP ser-
vice. IT 1t 1s determined that the ERP service 1s currently
handling a number of requests greater than a pre-defined or
dynamically determined load threshold, the cloud system
may return the unique token to the client. The client may then
resubmit the request with the unique token. If the ERP service
1s handling a number of requests less than the threshold when
the resubmitted request 1s recerved, the resubmitted request
may be prioritized above other requests that are currently
pending for the ERP service. This prioritization may be
implemented by inserting the resubmitted request into a pri-
ority queue containing the request for the ERP service 1n an
advanced position such that 1t will be processed sooner by the
ERP service than other non-prioritized requests.

In some cases, the load condition may be evaluated by
analyzing statistics associated with the network service to
determine whether the network service 1s available. The load
condition may also be evaluated by checking a status indica-
tion sent by the network service 1tself. For example, the net-
work service may send a message to the cloud system to
indicate that 1t 1s under load and cannot process anymore
requests currently.

The present solution may provide several potential advan-
tages. By providing a common framework through which
network service load can be managed, developers of network
services may be relieved of having to handle such load con-
ditions thus simplitying the process of developing network
services. Further, the token mechanism described above may
provide greater performance to clients requesting network
services that are under load than a standard retry algorithm, as
subsequent retransmissions will be given greater priority.

FIG. 1 1s a block diagram 1llustrating an example system
for controlling service load 1n a cloud-based system. As
shown, the example environment 100 includes a cloud system

US 9,270,617 B2

3

130, one or more clients 180 connected to the cloud system
130 by anetwork 120, and a network service 110 connected to
the cloud system 130 by the network 120. In operation, the
cloud system 130 may receive a request from the client 180
for the network service 110. The cloud system 130 may
evaluate a load condition associated with the network service
110 and, based on this evaluation, may return a token to the
client 180 11 the network service 1s currently under load.
When the client 180 resubmits the request with this token, the
cloud system 130 may analyze the token to determine how to
prioritize the resubmitted request.

In the illustrated implementation, the example environ-
ment 100 1ncludes a cloud system 130. At a high level, the
cloud system 130 comprises an electronic computing device
operable to broker requests between the client 180 and the
network services 110 based on load conditions associated
with the network services 110. The cloud system 130 may be
a distributed system including different servers and compo-
nents. In some implementations, the cloud system 130 may be
a combination of hardware components and soiftware com-
ponents executing the order to broker the request from the
client 180 for the network services 110. The cloud system 130
may also be the single computing device performing this
brokering.

In some 1implementations, the cloud system 130 may be a
web service that 1s accessible via standard web protocols,
such as, for example, Hypertext Transier Protocol (HTTP),
Simple Object Access Protocol (SOAP), or any other suitable
protocol or combination of protocols. In some cases, the
cloud system 130 may provide an Application Programming
Interface (API) through which one or more clients 180 may
submit requests to the network services 110. In some 1mple-
mentations, this protocol may be specific to the individual
network service, or maybe generalized for use with many
network services.

As used 1n the present disclosure, the term “computer” 1s
intended to encompass any suitable processing device. For
example, although FIG. 1 illustrates a cloud system 130,
environment 100 can be implemented using two or more
servers, as well as computers other than servers, including a
server pool. Indeed, cloud system 130 may be any computer
or processing device such as, for example, a blade server,
general-purpose personal computer (PC), Mac®, worksta-
tion, UNIX-based workstation, or any other suitable device.
In other words, the present disclosure contemplates comput-
ers other than general purpose computers, as well as comput-
ers without conventional operating systems. Further, 1llus-
trated cloud system 130 may be adapted to execute any
operating system, mcluding Linux, UNIX, Windows, Mac
OS®, Java™, Android™, 10S or any other suitable operating
system. According to one implementation, cloud system 130
may also include or be communicably coupled with an e-mail
server, a Web server, a caching server, a streaming data server,
and/or other suitable server.

The cloud system 130 also includes an mterface 132, a
processor 134, and a memory 150. The interface 132 1s used
by the cloud system 130 for communicating with other sys-
tems 1n a distributed environment—including within the envi-
ronment 100—connected to the network 120; for example,
the clients 180, as well as other systems communicably
coupled to the network 120 (not illustrated). Generally, the
interface 132 comprises logic encoded in soitware and/or
hardware 1n a suitable combination and operable to commu-
nicate with the network 120. More specifically, the interface
132 may comprise software supporting one or more commu-
nication protocols associated with communications such that

10

15

20

25

30

35

40

45

50

55

60

65

4

the network 120 or interface’s hardware 1s operable to com-
municate physical signals within and outside of the illustrated
environment 100.

As 1illustrated i FIG. 1, the cloud system 130 includes a
processor 134. Although illustrated as a single processor 134
in FIG. 1, two or more processors may be used according to
particular needs, desires, or particular implementations of
environment 100. Each processor 134 may be a central pro-
cessing unit (CPU), a blade, an application specific integrated
circuit (ASIC), a field-programmable gate array (FPGA), or
another suitable component. Generally, the processor 134
executes 1nstructions and manipulates data to perform the
operations of the cloud system 130. Specifically, the proces-
sor 134 may execute the functionality required to receive and
respond to requests from the clients 180.

In the illustrated implementation, the cloud system 130
includes a load controller framework 140. In some implemen-
tations, the load controller framework 140 may be a software
program or set of software programs operable to evaluate and
control load conditions associated with the network services
110. The load controller framework 140 may also be any
combination of hardware and software components operable
to perform the described load control. The various compo-
nents included in the load controller framework 140 and
described below may also be software, hardware, or any
combination of software and hardware components.

The load controller framework 140 may include a load
controller 142. In operation, the load controller 142 may
receive arequest from the client 180 via the network 120. The
load controller 142 may determine the network service 110
associated with the request and evaluate the current load
condition of the network service 110. For example, the load
controller 142 may analyze statistics associated with the net-
work service 110 indicating a number of requests sent to the
network service 1n a recent time period, a total amount of data
sent to the network service 110 1n the time period, a total
number of outstanding requests that the network service 110
1s currently processing, or any other suitable statistic. The
load controller 142 may further analyze rules 170 to deter-
mine whether any of the statistics associated with the network
service 110 are above thresholds specified by the rules 170
and thus 1indicate that the network service 110 1s unavailable
to process requests. For example, a rule 170 may indicate that
the network service 110 may have a maximum of ten requests
pending at any time. If the load controller 142 receives a
request for the network service 110 while the network service
110 has ten requests pending, the load controller 142 may
reject the request and 1ssue a token to the requesting client.

In some cases, the load controller 142 may be operable to
issue tokens for requests that cannot be processed at the
current time by the network service 110. In some implemen-
tations, these tokens include a globally unique identifier
(GUID) that uniquely 1dentifies the token on the cloud system
130. When a client resubmits a request with a token, load
controller 142 may consult the token manager 146 to deter-
mine how to handle the request. The token manager 146 may
consult the token data 172 1n the database 160 to determine
statistics associated with the submitted token and may cause
the request to be treated differently based on the statistics. For
example, 11 the token data 172 indicates that a token has been
resubmitted fifteen times and the network service 110 has
been unavailable each time, such a request may be prioritized
by the token manager 146 above a request associated with the
token that has only been resubmitted once. By performing
this prioritization, older requests are processed first when the
network service 110 becomes available to process requests.

US 9,270,617 B2

S

In some implementations, the load controller 142 may
refuse requests for the network service 110 for an amount of
time configured in the rules 170 11 a load condition 1s
observed. For example, a rule 170 may state that the network
service 110 should not have any requests sent to 1t for one
second after load condition 1s observed in order to give the
condition time to clear.

In some 1mmplementations, the load controller 142 may
examine a current load state of the network service 110 as
indicated by the network service 110 itself, such as, for
example, by sending flow control indications to the cloud
system 130. Such a flow control indication may be processed
by the flow control manager 149 and stored in the database
160 for use by the load controller 142.

In the illustrated implementation, the load controller
framework 140 also includes a queue manager 148. In some
implementations, requests sent by the client 180 for the net-
work service 110 may be entered into the priority queue and
processed 1n order according to the queue. The queue man-
ager 148 may be operable to push and pop requests onto and
off of the priority queue based on the prioritization data
generated by the load controller 142 and the token manager
146. For example, the load controller 142 may instruct the
queue manager 148 that a certain request be prioritized. The
queue manager 148 may then insert the prioritized request at
the front of the priority queue, such that 1t will be processed
betfore all other pending requests.

The queue manager 148 may also be operable to clear all
requests from the priority queue when a load condition asso-
ciated with the network service 110 1s detected. For example,
if a flow control indication 1s recerved from the network
service 110, the queue manager 148 may remove all requests
that are currently pending in the priority queue for the net-
work service 110 and cause the load controller 142 to 1ssue
tokens for each request.

The load controller framework 140 may also include a tlow
control manager 149. In some implementations, the flow
control manager 149 1s operable to recerve a tlow control
indication from the network service 110 indicating that the
network service 110 1s currently unavailable due to load. For
example, the network service 110 may detect that 1ts proces-
sor 1s running at one hundred percent utilization and may
generate a flow control indication 1n order to prevent addi-
tional requests from being sent to the network service 110.
The tlow control manager 149 may receive this indication and
may store an indication that the network service 110 1s cur-
rently unavailable in the database 160, such as 1n the load
statistics 178.

Regardless of the particular implementation, “software”™
may include computer-readable instructions, firmware, wired
and/or programmed hardware, or any combination thereol on
a tangible medium (transitory or non-transitory, as appropri-
ate) operable when executed to perform at least the processes
and operations described herein. Indeed, each software com-
ponent may be fully or partially written or described 1n any
appropriate computer language including C, C++, Java™,
Visual Basic, assembler, Perl®, any suitable version ot 4GL,
as well as others. While portions of the soitware illustrated 1n
FIG. 1 are shown as individual modules that implement the
various features and functionality through various objects,
methods, or other processes, the soltware may instead include
a number of sub-modules, third-party services, components,
libraries, and such, as appropriate. Conversely, the features
and functionality of various components can be combined
into single components as appropriate.

The cloud system 130 also includes a memory 150 or
multiple memories 150. The memory 150 may include any

10

15

20

25

30

35

40

45

50

55

60

65

6

type of memory or database module and may take the form of
volatile and/or non-volatile memory including, without limi-
tation, magnetic media, optical media, random access
memory (RAM), read-only memory (ROM), removable
media, or any other suitable local or remote memory compo-
nent. The memory 150 may store various objects or data,
including caches, classes, frameworks, applications, backup
data, business objects, jobs, web pages, web page templates,
database tables, repositories storing business and/or dynamic
information, and any other appropriate information including
any parameters, variables, algorithms, instructions, rules,
constraints, or references thereto associated with the pur-
poses of the cloud system 130. Additionally, the memory 150
may include any other appropriate data, such as VPN appli-
cations, firmware logs and policies, firewall policies, a secu-
rity or access log, print or other reporting files, as well as
others.

As illustrated in FI1G. 1, memory 150 includes or references
data and information associated with and/or related to pro-
viding the network service load control. As illustrated,
memory 150 includes a database 160. The database 160 may
be one of or a combination of several commercially available
database and non-database products. Acceptable products

include, but are not limited to, SAPR® HANA DB, SAP®
MaxDB, Sybase® ASE, Oracle® databases, IBM® Infor-
mix® databases, DB2, MySQL, Microsoit SQL Server®,
Ingres®, PostgreSQL, Teradata, Amazon SimpleDB, and
Microsoft® Excel, as well as other suitable database and
non-database products. Further, database 160 may be oper-
able to process queries specified 1n any structured or other
query language such as, for example, Structured Query Lan-
guage (SQL).

As shown, the database 160 includes one or more rules 170.
In some implementations, the rules 170 may specity thresh-
olds for various statistics associated with the network service
110. For example, a rule 170 may specily that more than ten
pending requests for a certain network service indicates that
the network service 1s unavailable. The rules 170 may also
specily actions to take when a network service 110 1s
observed to be under load. These actions may include, but are
not limited to, 1ssuing tokens for all requests until the load
condition passes, 1ssuing tokens for all requests for a certain
amount of time, resetting the network service 110, or any
other suitable action. As discussed previously, the rules 170
may be interpreted by the load controller 142 1n order to
determine how to broker requests. In some implementations,
cach rule 170 may be associated with one of the network
services 110. Each rule 170 may also be associated with two
or more network services 110.

In some implementations, the one or more rules 170 may
be statically defined such that the rules 170 specily numeric
values for various statistical thresholds associated with the
network service 110. The one or more rules 170 may also be
determined dynamically based on runtime conditions associ-
ated with the network service 110. For example, the one or
more rules 170 may state that the network service 110 can
have ten pending requests if a server associated with the
network service 110 has a central processing unit (CPU)
utilization less than ninety percent.

The database 160 also includes token data 172. The token
data 172 may include a record for each token that has been
issued for a request. In some implementations, the token data
172 may include a record for both pending tokens and tokens
that have already been used to resubmit a request. Each record
included 1n the token data 172 may include the GUID asso-
ciated with the token, as well as an indication of the client to
whom the token has been i1ssued. The token data 172 may

US 9,270,617 B2

7

include statistics associated with tokens issued by the load
controller 142 for requests that cannot be processed due to
load. For example, the token data 172 may indicate the num-
ber of times the token has been resubmitted which indicates
the number of times the associated request has failed.

In the illustrated implementation, the database 160
includes priority queue data 174. In some cases, the priority
queue data 174 includes an ordered list of pending requests
for each network service 110. The priority queue data 174
may be updated by the queue manager 148 1n order to atfect
prioritization of requests.

The illustrated database 160 includes an application regis-
try 176. In some implementations, the application registry
176 1includes information about the network services 110 that
registered with the cloud system 130 to have requests bro-
kered by the load controller framework 140. In some cases,
the application registry 176 may be populated according to a
request received from the network services 110, such as
through an API. Where a request 1s recetved by the cloud
system 130, the load controller framework 140 may check the
application registry 176 to determine whether 1t should broker
the request for the particular network service 110.

As shown, the database 160 includes load statistics 178. In
some 1mplementations, the load statistics 178 may include
current load statistics associated with each of the network
services 110. The load controller 142 may consult the load
statistics 178 to determine whether the each of the network
services 110 1s currently under load. In some cases, the load
statistics 178 may include historical load statistics for each of
the network services 110, such that previous load behavior
may be analyzed.

The environment 100 may also include one or more net-
work services 110. In some implementations, the network
services 110 may be services connected to the cloud system
130 by the network 120. In operation, the network services
110 may recerve requests from the clients 180 via the cloud
system 130 and may provide responses to these requests to the
clients 180 via the cloud system 130. In some cases, the
network services 110 may provide responses directly to the
clients 180, such that the cloud system 130 does not broker the
responses.

In some 1mplementations, the one or more network ser-
vices 110 may be on-premise services implemented at a cus-
tomer premise site separate from the cloud system 130. The
one or more network services 110 may also be an integrated
component within the cloud system 130.

As shown, the one or more network services 110 include
one or more applications 114. In some cases, the applications
114 may be soltware programs executed by the network ser-
vice 110 and operable to perform analysis associated with the
network service 110. The one or more network services 110
may also iclude a load monitor 112 operable to analyze the
current state of the network service 110 and send a flow
control indication to the cloud system 130 if the network
service 110 1s under load. For example, the load monitor 112
may track the current bandwidth used by the network service
110 and send a tlow control indication to the cloud system 130
if the current bandwidth used exceeds a configured threshold.
In some implementations, at least a portion of the load moni-
tor 112 may be located remotely from the network service
110. In such a case, an agent or client of the load monitor 112
may monitor locally and share gathered information related
to the network service 110 with a corresponding component
located remotely from the network service 110, such as, for
example, 1 the cloud system 130.

[lustrated client 180 1s intended to encompass any com-
puting device, such as a desktop computer, laptop/notebook

10

15

20

25

30

35

40

45

50

55

60

65

8

computer, wireless data port, smart phone, personal data
assistant (PDA), tablet computing device, one or more pro-
cessors within these devices, or any other suitable processing
device. For example, client 180 may comprise a computer
that includes an mput device, such as a keypad, touch screen,
or other device that can accept user information and an output
device that conveys information associated with the operation
of the cloud system 130 or client 180 1tself, including digital
data, visual information, or a graphical user interface (GUI).
Client 180 may include an interface 189, a processor 184, a
memory 188 and a client application 186. Client 180 may be
used by a user to access the cloud system 130 to view or
change 1tems in the database 160, such as rules 170.

FIG. 2 1s a message flow diagram showing an example
interaction 200 between a client and a cloud system for con-
trolling service load. For clarity of presentation, the descrip-
tion that follows generally describes interaction 200 1n the
context of FIG. 1, and specifically, client 180, cloud system
130, and network service 110. However, interaction 200 may
be performed, for example, by any other suitable system,
environment, software, and hardware, or a combination of
systems, environments, software, and hardware, as appropri-
ate. For example, one or more of the cloud system, the client,
or other computing device (not illustrated) can be used to
execute iteraction 200 and obtain any data from the memory
of the client, the cloud system, or the other computing device
(not illustrated).

At 202, the client 180 sends a request for the network
service 110 to the cloud system 130. In some 1implementa-
tions, the client 180 may send the request to the cloud system
130 over the network 120. In some cases, the client 180 may
send the request according to an API specific to the cloud
system 130.

At 204, cloud system 130 determines 11 the network service
110 1s under load. In some cases, the cloud system 130 make
this determination by examining load statistics associated
with the network service 110 as discussed relative to FIG. 1.
If the cloud system 130 determines the network service 110 1s
not under load, the flow continues to 206, where the cloud
system 130 forwards the request to the network service 110.
If the cloud system 130 determines at 204 that the network
service 110 1s under load, the flow continues to 208, where the
cloud system 130 returns the token to the client 180.

At 212, the client 180 resends the request for the network
service 110 including the token returned by the cloud system
130 at 208. In some implementations, the client 180 may wait
for a certain amount of time before resending the request. The
client 180 may also resend the request immediately upon
receiving the token from the cloud system 130.

At 214, the cloud system 130 determines whether the net-
work service 110 1s under load. For example, the cloud sys-
tem 130 may determine that the network service 110 1s under
load by examining the current statistics associated with the
network service 110, such as a number of pending requests,
an average response time for recent requests, or any other
suitable statistic. The cloud system 130 may also determine
that the network service 110 1s under load based on a flow
control indication previously received from the network ser-
vice 110, as discussed relative to FIG. 1.

It the network service 110 1s not under load, the flow
continues to 216, where the resubmitted request is prioritized.
In some 1mplementations, prioritizing the request includes
analyzing token data associated with the token to determine
how to prioritize the request. For example, the cloud system
130 may examine the token data 172 to determine anumber of
times the token has been resubmitted and prioritize the
request accordingly. At 218, the request 1s forwarded to the

US 9,270,617 B2

9

network service 110. Forwarding the request may occur
immediately or may occur after a certain amount of time 1f
other higher priority requests are already pending.

If the network service 110 1s determined to be under load at
214, the tflow continues to 220 where the token 1s again
returned to the client. In some 1mplementations, the token
returned to the client at 220 1s 1dentical to the token returned
at 208. The token may also be updated to be different with
cach subsequent retransmission. The cloud system 130 may
also update the token data associated with the token 1n the
database 160 to reflect that the token has been resubmitted.

FIG. 3 1s a flowchart of an example method 300 for con-
trolling service load 1n a cloud-based system. For clarity of
presentation, the description that follows generally describes
method 300 1n the context of FIG. 1. However, method 300
may be performed, for example, by any other suitable system,
environment, software, and hardware, or a combination of
systems, environments, software, and hardware, as appropri-
ate. For example, one or more of the cloud system, the client,
or other computing device (not illustrated) can be used to
execute method 300 and obtain any data from the memory of
the client, the cloud system, or the other computing device
(not illustrated).

At 302, a first request for the network service 1s received
from a client. In some 1implementations, the first request may
be a request that has not been previously submitted by the
client. In some cases, the first request may be recerved over a
network from the client. The first request may be recerved
according to an API associated with the method 300 or the
associated network service.

At 304, a load condition associated with the network ser-
vice 1s evaluated, the load condition indicating an availability
of the network service to receive requests. In some implemen-
tations, the load condition 1s evaluated according to the tech-
niques previously described relative to FIG. 1. At 306, a
unique token associated with the request 1s returned to the
client 1 response to the load condition indicating that the
network service 1s not available to receiwve requests. The
unique token may include a GUID to distinguish 1t from other
tokens and may have a record associated with 1t stored 1n a
database (e.g., 160).

At 308, a second request for the network service 1s received
from the client, where the second request includes at least a
portion of the first request and the unique token. In some
implementations, the second request includes the first request
in 1ts entirety with the umique token nserted into the body of
the request. The second request may also include a container
message including a field for the first request and the unique
token. In some mmplementations, the second request may
include any suitable portion of the first request or a reference
to the first request.

At 310, the load condition associated with the network
service 1s evaluated. At 312, the second request 1s prioritized
based on the unique token 1n response to the load condition
indicating that the network service 1s available to receive
requests. In some implementations, the prioritization 1s per-
formed as described relative to FIG. 1

FIG. 4 1s a flowchart of an example method 400 for evalu-
ating a load condition associated with a network service. For
clarnity of presentation, the description that follows generally
describes method 400 1n the context of FIG. 1. However,
method 400 may be performed, for example, by any other
suitable system, environment, software, and hardware, or a
combination of systems, environments, soltware, and hard-
ware, as appropriate. For example, one or more of the cloud
system, the client, or other computing device (not illustrated)
can be used to execute method 400 and obtain any data from

10

15

20

25

30

35

40

45

50

55

60

65

10

the memory of the client, the cloud system, or the other
computing device (not i1llustrated).

At 402, statistics associated with the availability of the
network service are analyzed. At 404, the statistics are evalu-
ated based at least 1n part on one or more rules, the rules
including thresholds associated with the availability of the
network service. In some implementations, the one or more
rules are statically defined. The one or more rules may also be
dynamically specified based on runtime conditions associ-
ated with the network service, as discussed relative to FIG. 1.
At 406, an indication 1s received from the network service
indicating the availability of the network service to receive
requests.

The preceding figures and accompanying description 1llus-
trate example processes and computer implementable tech-
niques. Environment 100 (or 1ts software or other compo-
nents) contemplates using, implementing, or executing any
suitable techmique for performing these and other tasks.
These processes are for illustration purposes only and that the
described or similar techniques may be performed at any
appropriate time, including concurrently, individually, or 1n
combination. In addition, many of the steps in these processes
may take place simultaneously, concurrently, and/or in dif-
terent order than as shown. Moreover, environment 100 may
use processes with additional steps, fewer steps, and/or dif-
ferent steps, so long as the methods remain appropnate.

In other words, although this disclosure has been described
in terms of certain implementations and generally associated
methods, alterations and permutations of these implementa-
tions and methods will be apparent to those skilled in the art.
Accordingly, the above description of example implementa-
tions does not define or constrain this disclosure. Other
changes, substitutions, and alterations are also possible with-
out departing from the spirit and scope of this disclosure.

What 1s claimed 1s:

1. A computer-implemented method executed by one or
more processors, the method performed at a load controller of
a cloud-based network system, the method comprising:

recerving a first request for a network service from a client,

wherein the load controller 1s separate from the network
service;
evaluating a load condition associated with the network
service, the load condition indicating an availability of
the network service to receive requests, based at least 1n
part on a determination of whether a flow control indi-
cation 1s received by the load controller from the net-
work service indicating that the network service 1s cur-
rently unavailable to receive the requests due to load;

returning a unique token associated with the first request to
the client in response to the load condition 1indicating
that the network service i1s not available to receive the
requests, wherein the unique token 1s associated with a
unique 1dentifier and wherein an entry to a token data-
base at the load controller associated with the unique
token 1s entered, the entry at the token database 1includ-
ing a set of statistics associated with the token including
a number of times the unique token has been submitted
to the load controller;

alter returning the umique token to the client, recerving a

second request for the network service from the client,
the second request including at least a portion of the first
request and the unique token;

re-evaluating the load condition associated with the net-

work service inresponse to recerving the second request;
prioritizing the second request based on the unique token 1n
response to the load condition 1indicating that the net-
work service 1s available to recerve the requests, wherein

US 9,270,617 B2

11

prioritizing the second request includes placing the sec-
ond request into a queue with a plurality of other
requests; and

in response to recewving a flow control indication after

prioritizing the second request and prior to fulfilling the
second request, removing at least the second request
from the queue and returning the unique token to the
client.

2. The method of claim 1, where prionitizing the second
request based on the unique token includes sending the sec-
ond request to the network service before a third request that
was recerved prior to the second request.

3. The method of claim 1, wherein evaluating the load
condition associated with the network service further com-
Prises:

analyzing current statistics associated with the availability

of the network service; and

evaluating the statistics based at least in part on one or more

rules, the one or more rules including thresholds associ-
ated with the availability of the network service.

4. The method of claim 3, wherein the one or more rules
cach include one or more actions to be taken when the statis-
tics associated with the availability of the network service
indicate that the network service 1s not available.

5. The method of claim 4, wherein the one or more actions
include at least one of: reducing a rate that requests are sent to
the network service for a period of time or blocking access to
the network service for a period of time.

6. The method of claim 3, wherein the thresholds each
include a time value indicating a period of time that the
threshold 1s to be used in evaluating the statistics.

7. The method of claim 3, wherein the current statistics
associated with the availability of the network service include
at least one of anumber of requests sent to the network service
in a recent time period, a total amount of data sent to the
network service 1n the recent time period, and a total number
of outstanding requests that the network service 1s currently
processing.

8. The method of claim 1, wherein evaluating the load
condition associated with the network service further com-
prises recerving an indication from the network service indi-
cating the availability of the network service to receive
requests.

9. The method of claim 1, wherein the network service 1s a
network service 1n the cloud-based network system.

10. The method of claim 1, wherein the network service 1s
a customer-premise network service separate from the cloud-
based network system.

11. A computer program product encoded on a tangible,
non-transitory storage medium, the product comprising com-
puter readable 1nstructions for causing one or more proces-
sors to perform operations comprising:

receiving, at a load controller of a cloud-based network

system, a first request for a network service from a client,
wherein the load controller 1s separate from the network
service;

evaluating a load condition associated with the network

service, the load condition indicating an availability of
the network service to receive requests, based at least in
part on a determination of whether a flow control 1ndi-
cation 1s received by the load controller from the net-
work service indicating that the network service 1s cur-
rently unavailable to receive the requests due to load;
returning a unique token associated with the first request to
the client in response to the load condition indicating
that the network service 1s currently unavailable to
receive the requests, wherein the unique token 1s asso-

10

15

20

25

30

35

40

45

50

55

60

65

12

ciated with a unique identifier and wherein an entry to a
token database at the load controller associated with the
unique token 1s entered, the entry at the token database
including a set of statistics associated with the token
including a number of times the unique token has been
submitted to the load controller;

alter returning the umique token to the client, recetving a

second request for the network service from the client,
the second request including at least a portion of the first
request and the unique token;

re-evaluating the load condition associated with the net-

work service inresponse to recerving the second request;
and

prioritizing the second request based on the unique token 1n

response to the load condition indicating that the net-
work service 1s available to recerve the requests, wherein
prioritizing the second request includes placing the sec-
ond request into a priority queue, the priority queue
separate from a standard queue used for requests
received without an included unique token, and wherein
the priority queue is prioritized over the standard queue;
and

in response to recerving a flow control indication after

prioritizing the second request and prior to fulfilling the
second request, removing at least the second request
from the priority queue and returning the unique token to
the client.

12. The computer program product of claim 11, where
prioritizing the second request based on the unique token
includes sending the second request to the network service
betfore a third request that was recetved prior to the second
request.

13. The computer program product of claim 11, wherein in
response to determining that the network service 1s currently
unavailable to receive the requests due to load, one or more
rules are evaluated to determine one or more actions to be
taken when the network service 1s currently unavailable,
wherein the one or more actions include at least one of:
reducing arate that requests are sent to the network service for
a period of time or blocking access to the network service for
a period of time.

14. The computer program product of claim 11, wherein
the network service 1s a network service in the cloud-based
network system.

15. The computer program product of claim 11, wherein
the network service 1s a customer-premise network service
separate from the cloud-based network system.

16. A system, comprising:

memory for storing data; and

one or more processors operable to perform operations

comprising:

receiving, at a load controller of a cloud-based network
system, a first request for a network service from a
client, wherein the load controller 1s separate from the
network service:

evaluating a load condition associated with the network
service, the load condition indicating an availability
of the network service to receive requests, based at
least 1n part on a determination of whether a flow
control 1ndication 1s received by the load controller
from the network service indicating that the network
service 1s currently unavailable to recerve the requests
due to load:;

returning a unique token associated with the first request
to the client 1n response to the load condition indicat-
ing that the network service 1s not available to receive
the requests, wherein the unique token 1s associated

US 9,270,617 B2

13

with a unique identifier and wherein an entry to a
token database at the load controller associated with
the unique token 1s entered, the entry at the token
database including a set of statistics associated with
the token including a number of times the unique

token has been submitted to the load controller;

alter returning the unique token to the client, receiving a

second request for the network service from the client,
the second request including at least a portion of the
first request and the umque token;

re-evaluating the load condition associated with the net-

work service in response to recewving the second
request;

prioritizing the second request based on the unique

token 1n response to the load condition indicating that
the network service 1s available to receiwve the
requests, wherein prioritizing the second request
includes placing the second request into a priority
queue, the priority queue separate from a standard
queue used for requests received without an included
unique token, and wherein the priority queue 1s pri-
oritized over the standard queue; and

in response to receiving a flow control indication after

prioritizing the second request and prior to fulfilling

5

10

15

20

14

the second request, removing at least the second
request from the priority queue and returning the
unique token to the client.

17. The system of claim 16, where prioritizing the second
request based on the unique token includes sending the sec-
ond request to the network service before a third request that
was recerved prior to the second request.

18. The system of claim 16, further comprising prioritizing
the second request among at least one other request recerved
with an 1included unique token 1n the priority queue.

19. The system of claim 16, wherein prioritizing the second
request based on the unique token includes accessing the set
ol statistics associated with the unique token included with
the second request and comparing those statistics to statistics
associated with at least one other request received with an
included unique token, wherein the second request 1s priori-
tized over the at least one other request based on a higher
number of times the unique token included with the second
request has been submitted to the load controller as compared
to the number of times the unique token including with the at
least one other request has been submitted to the load con-
troller.

	Front Page
	Drawings
	Specification
	Claims

