US009270609B2
a2y United States Patent (10) Patent No.: US 9,270,609 B2
Adiraju et al. 45) Date of Patent: Feb. 23, 2016
(54) TRANSMISSION CONTROL PROTOCOL USPC 370/515, 235, 231, 389, 466, 412;
WINDOW SIZE ADJUSTMENT FOR 710/36, 74, 105, 107, 314, 305, 315,
OUT-OF-ORDER PROTOCOL DATA UNIT 710/163;709/230, 238

REMOVAL See application file for complete search history.
(71) Applicant: Brocade Communications Systems, (56) Reterences Cited

Inc., San Jose, CA (US) U.S. PATENT DOCUMENTS

(72) Inventors: Siva Adiraju, Fremont, CA (US); Ryan 6.434.620 BL* 82002 Boucheretal. .o......... 709/230
Hegland, Champlin, MN (US); Isaac 6,560,243 BL* 5/2003 Mogul ...oocovoevverrerrenne. 370/468
Larson, Minneapolis, MN (US); Andy 6,563,821 B1* 5/2003 Hongetal. 370/389
Dooley, Rogers, MN (US) 2004/0042458 A1* 3/2004 EIZU ovovvoveeveeeeerereen, 370/394
2004/0143642 Al1* 7/2004 Beckmannetal. 700/213
: _ ‘ . 2005/0033878 Al* 2/2005 Pangaletal. 710/36
(73) ASSlgnee Brocade Communlcatlons SyStemS'J 2005/0063307 A S 3/2005 Samuels et 4':11 ************ 370/235
Inc., San Jose, CA (US) 2005/0135416 Al* 6/2005 Ketchumetal, ..o.......... 370/469
2005/0165985 Al* 7/2005 Vangaletal. 710/107
(*) Notice: Subject to any disclaimer, the term of this 2007/0076726 Al1* 4/2007 Westonetal. 370/401
paten‘t 18 extended Or adjusted under 35 2008/0126553 A o 5/2008 BouCher (-.‘:t al 709/230
u.S.C. 154(]2)) by 281 days. (Continued)
(21) Appl. No.: 13/678,032 Primary Examiner — Yemane Mesiin
. No.: .
Assistant Examiner — Peter Chen
(22) Filed: Nov. 15, 2012 (74) Attorney, Agent, or Firm — Blank Rome, LLP
(65) Prior Publication Data (57) ABSTRACT
US 2013/0315260 A1 Nov. 28, 2013 A system and method for sharing a WAN TCP tunnel between
multiple tlows without having head of the line blocking prob-
Related U.S. Application Data lem 1s disclosed. When a complete but out of order PDU 1s

o o stuck behind an incomplete PDU 1n a TCP tunnel, the com-
(60) Provisional application No. 61/567,288, filed on Dec. plete but out of order PDU 1s removed from the tunnel. To do
6, 2011. that, first the boundaries of the PDUs of the different flows are

preserved and the TCP receive window advertisement 1s

(51) Int. CL increased. The receive window 1s opened when initially

HO4L 12/563 (2013'();“) receiving out-of-order data. As out-of-order complete PDUs
HO4L 12/307 (2013'();) are pulled out of the receive queue, to address double count-
HO4L 29/06 (2006.01) ing, place holders are used in the receive queue to indicate
(52) US. CL data that was in the queue. As out-of-order data PDUs are
CPC ..o HO4L 47/62 (2013.01); HO4L 47/27 pulled out of the queue the window advertisement is
(2013.01); HO4L 69/161 (2013.01) increased. This keeps the sending side from running outof TX
(58) Field of Classification Search window and stopping transmission of new data.
CPC HO4L 47/62; HO4L 41/12; HO4L 47/10;
HO41L. 47/12 35 Claims, 33 Drawing Sheets
Initiating éReceivingé
~ TCP TCP
TCP RX
T Segt. Queue
"" T1 fjfﬁfﬁfﬁfﬁ‘ +
ox 1" T
- & Win Size w13 e 5.
o ,{j. 15008 ;:_.....L...L....J.....l....J.....t....t...;__
Seg 4 cfegeogayy PDUS ¢
o \iin Size ™ T4 “‘S' Seg4 E 2000B 1
e MO s 000
4 ACK 1 & Win Siz8 y 1?3{(}& 5o a.
Segfj‘ L 3 Segﬁ EE PDUSE
Crawnsze] 10 NN 20008 §
‘ AC 1‘ FET
T Seg2 > T7
ACK & & Win S1Z°

US 9,270,609 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2009/0006710 Al
2009/0080332 Al

2010/0232427 Al

3
3
S

1/2009 Danieletal. 710/315
3/2009 Mizrachietal. 370/236
0/2010 Matsushitaetal. 370/389

2010/0281195 Al
2010/0318700 Al
2011/0029734 Al

2012/0163396 Al

v S

* cited by examiner

11/201
12/201
2/201

6/201

b — OO

Daniel etal. 710/105
Rangan etal. 710/74
Popeetal. 711/118
Chengetal. 370/412

U.S. Patent Feb. 23, 2016 Sheet 1 of 33 US 9,270,609 B2

.,

/ 8_;-‘/
\ / ™
%—7-———————[———————-*'
~ D / y, %J
J — N
d < Y
4 i
> ¢ 4
(z
(z |& =
RN R I
NN YD
\ Q e v
: O A
|
\
\—'ﬁ
-’ A,
F
O
LL.

S o R A
e P S
i .* : .
s FE
o el
& 2 a.r“"-. s — - /

Hmmmmmmmmmmmmmmmmmm"’

US 9,270,609 B2

Sheet 2 of 33

Feb. 23, 2016

U.S. Patent

728 H41N104
ST T T T T T T T ~ 8¢8 441M0d AVMELYD
7Z8 < ozg Y \ AVMILYO \
g L1394V | _ |
< R | e g
dio- > A

¢8 SOA

O
L
=
L

)_

I8
d41IN4O VLIVQ T

A% |
d3INJO Vivd

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

S

p—

918 SOA

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

US 9,270,609 B2

Sheet 3 of 33

Feb. 23, 2016

U.S. Patent

4%

0l6

THEL

US 9,270,609 B2

Sheet 4 of 33

Feb. 23, 2016

U.S. Patent

d41N0Y
dl 4400

d1ld-OvIA

US 9,270,609 B2

Sheet 5 of 33

Feb. 23, 2016

U.S. Patent

G8d-OVIN

d41N0y
dl 94400

U.S. Patent Feb. 23, 2016 Sheet 6 of 33 US 9,270,609 B2

US 9,270,609 B2

Sheet 7 of 33

Feb. 23, 2016

U.S. Patent

—80¢1 —60c¢1 s 0LZ1
60Z 1 4
NUIT Aloway diyo
. buiyod
NVS 04 U DUHPENS O sayng diyd JO BUIOIMS T30
; 3
GOcl AJOWIOA;
diyn uo wajsA
9021 layng diyp up o IS
V‘C__QD o C.—HON_\ e U.VON& a\a_ Q._.MON_\ xaxx_. mw._vON—\
NY M 1 ,.
« undod <. cNdD cNdD lNdO
e
Ol —~
- SO|INPON 2JBMIO0S
a auibug uondAioul co_MM%M_MoO
aseg-mo
PeSEE-MO|] |)L
8Lz _-0zeLr o 8eel 4740 chel
SUBI (O11UO Juswabeue
SO d [04U0D SsaIDpy

juswabeue Jusabeuey Juswabeue
04 dlO4 T L
\ .,,f _.,,,,,.,
~—9¢cl 744} - ¢lll A
0021

AA)

>

274

U NV
Jouiaylg

U.S. Patent Feb. 23, 2016 Sheet 8 of 33 US 9,270,609 B2

7~ g ~
/ 5 S
o | Qo2 o0 2 ’
0) - L0
|5 L 2 Q O |
NS DO é:}' c &
4 & <) © |
AL o 5 |
| < je,
| 2 oL |
3
I 8 i l
| o |
-
| & P |
| ;
! A
o i
e
: c S g
,rf © ‘é P !
T © S
~ 3 =2 ® 7 '
) l o % <2 J
N I &
.
N . —— e
gt) GRS, NN TR TR TR, TR, R TR, (I, TR, — T—— T I, T IR, R e
/ \

Storage
Replication

x
|
|
. —
0 |
{J
= :
ALY
© |
L
o |
S s
O
& |
g
U |
- —
o |
z 2 '
3 2 |
Q 3
= © |
/
™~ ./

N O o o R A RN i R e DAY ol R ol D DA oD N ol A N N o ol A S

qg "bi4 o]

US 9,270,609 B2

(dnpaqyuoissaidwon) auibug uonoedwo) eje(

0LVl
o
o
&
: _ _
= _ _
g L qobl T4V/SOD
| _
-] _ dOL paziwndo Mg UbIH souessi|
y— A7)
= ve b4
) 90 | cL ossdl
N | 142174}
2 S T
- <« 99%]

(YosuuooJBIU| |ENUIA PNOID) IND
NVM

U.S. Patent

g8 "bi4

US 9,270,609 B2

4!
'
NYS o
woiﬁur uoneuiwId | NYS
7 - iaai:ii:i:ii../
f 9L ,
| [zueferod | |
_ . H ~8EPL
e _ _ Buiyoreqeq/Buiyoreg _ _
= _ o |
— | Bunoy _
g - | _
7 _/ 3se|n 4 d0d _ NOOI |
N . / .
~_ _|_9vrl_ | vrvL ENHv_\\
\&
=
S _ PGPl
e} /
5 |
© |
ey
|
_

e

)
STAd
pEYL -~

#————_—————

(
——— e —— — F——-

dl

) Bunnoy 86p3 fenuiA | ol

doL-1edAH [seyssepdol |

AN

s

S$S900)d Emn _ Jabeue

A

(
|
|
|
| W] zews
_/ 18AB7 193008]

uonedldd
oGy — L PUIHE0 HORIIEY

I I Sl S

|
co_mmw_ “
|
|
|

o S

ddy Lo_mmzma\f

puiyoe

U.S. Patent

_ (dnpaqyjuoissaidion) auibug uonoedwo)) eje

]

vg ‘b4 o]

(_

SS830I14 9S00 UOISS3SS 4D 1 H

(Uo -
H40 U pgs 1y (LI

NIy

US 9,270,609 B2

Sheet 11 of 33

Feb. 23, 2016

NAS

AS

m .m_ m SS9201d 91891 U0ISSOS d) 1 H
JPAIRS usin SN Ty IBEHW
uonesiday d01-4edAH d01-1edAH uoneoljady

U.S. Patent

$S8901d Jajsuel |
ele(d 401H

US 9,270,609 B2

Sheet 12 of 33

Feb. 23, 2016

IETVETS INEH
uoieoi|ddy d0 1 -19dAH

U.S. Patent

12aAIBS
dO1-18dAH

Ui
uoneolddy

US 9,270,609 B2

u-c0.1

£-c0L1

Sheet 13 of 33

tddV

cddV
)
¢-¢c0Ll

lddV

Feb. 23, 2016

_ |
LddV _ .
ﬁ | 80/1 “ 19041, |

-0/ 1 \ dOl-1edAH

1-C0L1L

U.S. Patent

vel "bid

US 9,270,609 B2

N ’ B
=" ---r-

FE T e R
L . "......,,;.,.....,m.ww.
o, S ..“...r.,..w;".. N
W R
.?...ﬂfu.,.v,“... Jv...,.,..uﬁ,. :
ot [ACLL I

S
L

0161

A s
&Jﬁaﬂ&g w4 RIS . ,.uv.,.,....w{,...., .) .h.u.“.."“......”...mm;,.u..:x,“..".”.”.... . -

R

e e Rt e
IR b . Loh Lt R ..v;... - I e
done el BRI
T LT
Lot PR Cuhl
o

iy
R .

Sheet 14 of 33

Lty ., ...) . ; 2
. A S s - IRy
....amvw..,w.v.,..n{..rev“.a..fv e

L =

e .

e
by

AL o m.......;.
T by .._v.."..... S e,
T a..ﬁwg e Anias
R

e
:
i

......"...w. 5 . T L
Lo S ECTLA L=
5 R 20 i
S :

.n..r. e .
% T ——— S S S i S S e TSI

S
..ﬂ%ﬂ%

2
o
A
Lty
L

Feb. 23, 2016

00G1

U.S. Patent

gzl "bid

US 9,270,609 B2

916l

..N..“..,.....vw........ T ST ...”,,.,......w.,.,.,?{.um....
BT L F

. N
e K i
s el N,
e o,
(et} I
.r.r.r

....."....u.. ."....., Alnv...,us.m.

-
AL
N

S
o S HE

014l

et Jw.ﬂ.nuvmu.aﬁrhrrmw,ww.ﬁﬁr..P:...ﬂua#.a......"r..xﬂxwﬂ.mww..a .,.....n...........n. e
i %@ﬂﬁﬁm&hﬁvy @&}uﬂaﬁ %v}ﬁ}.wﬁm‘v?&ﬁt& e -
) s R e
e BT bR o XN LAt
.”..v.m,u.. .u......v......u..u..m.“.h.r.“..... . ..u.u.ﬁ......."u.ﬂ;. b
gy
T

Sheet 15 of 33

...-...:.J.
el ;ﬁﬁx T ty——
ks inns, Ford RN N P
...r.}..:mr...,ru.....".u.v,uhruve.. y . ..u.f,"u.".....v.u..u.s..u. L . "".n.""...,..u..”.....n..”...“ ”..“.r....".un..u”.."."...,u......
S
A
- b
A
e .
e,,...,.nv..,.v S - g v
. T
e o il _
! i SR i, .v....w.n,........w,.......v . Jf
= xﬁ»@%&x AR x,,me\ S
R i i
- B ...HM,...VH{... a&uwv ..U..r......nw..w.ﬂx ..f..;:w.,.,w..v.".. ...v....,. xf{%{ 2 . Ty
SR -y :
SR : :
TSR

R

S e

Feb. 23, 2016
<t
-
=

clal

001

U.S. Patent

US 9,270,609 B2

Sheet 16 of 33

Feb. 23, 2016

U.S. Patent

O

ozl "bid

916Gl

.o
R
X
s, -

0LGl

K oconimsimiiiiigs ﬁv;hﬁ&ﬁ%:éﬁ?««;
e TR e W TR R
R L 3ﬁ==r}sfmév.vxnwﬁ¢¥x
wE B i, e TR
g e
- ".....“..h..u..““.nﬂunﬁ.“ﬁ,m?

R
i X S .u..,.......v..,. .

xﬁ,ﬁ%ﬁﬁmﬁ?ff . BT o
ﬁ%%%ﬁégéu..u...”...“..;..._..”..“... . R o .
Y

PRV

e,
e
R
e, L,
N

.u.“...... T R AL, R AR R preate .

Tk
..........;. R ...“.......v....._,u....:..”....w.,..”..v........
Rt Sl
e T
e e
b L L
g
PR

R
) oy e
....."..."..u.“.,vr.. e
e e

e

s

T

T
.ﬂm%mw# i
exmwwwr :

0051

US 9,270,609 B2

Sheet 17 of 33

2016

b/

Feb. 23

U.S. Patent

I

e s
. EH T e..”.q.........wv..faﬂ.,.

. L
ERCH IS Ly - T

F

0LGl

e I B et
RAETLAR i, & Bt ety ;

i
TRt ity ..w,,.._."....m.w.

..--
SO

T

PPk

R
R

R
.nmw.. s ..“V..............“..v,.”u. ...u.nu..na.r H e
....n.u.u.............,... - e

R

&

e ..

W) S
i

=

.. A
pot
>

Rt ..,........,,._"..,..u...m....vnf..,......,.,.,..“. A e st
LT Y ixixﬁf,ﬁxbuhwwﬁﬁﬁ«w)
H . TN, ...ﬂrv.uxf,.ﬂ....um? H
B

RS

it eaeti i
et ﬁ..u.?myﬁ..v..}.ﬁ =
P e i) T
st w%w? %.,ﬁmv s m{%%

...
s

et
SR

A

; A
S
e N
.w....,m%...,r.w,#..rvs.}..v.n.. i %%ﬁ%{ Rk 2
.._m.wwu...ﬂ.......w,.v..w....“mv,. S A ..,,.P..,.nm,......f..f A
TREENR
% 3
RS
S .,.u..r.vﬂ..ﬁd.......f...

.u%. oy oot e
3, o . -
S
) i ..N.
s

S L e
7
.u..,:...

gk e
vwvbnwrﬂ.rmwvh..vfﬁ b

00G1

US 9,270,609 B2

Sheet 18 of 33

Feb. 23, 2016

U.S. Patent

321 'bi4

S s e

ey - e 5

e e " .,..,..,v”u.u.uw......-.(sM..r.wv...("
.”.”".u.“...u...”........._.w..,.,ﬂ

e {«WN%VI«#.\.JHM,V = ;

AR e . R T RCH PP R el R S R o TR e _—

Sk
Lt
"

e -"".?.....w

S
e
%

s i
¢v$;¢ww,mw,“ %y
R ,{xﬁqﬁnﬁvw !

04}

US 9,270,609 B2

Sheet 19 of 33

Feb. 23, 2016

U.S. Patent

o~ e

001

PcSl

Gl

S o

S ... ™
. I B, G .r.,...."...u..,.."....“,”... e L]
,..u.,,u.”.,.m.r..... ":..n. u.,“..,.,.u..n...,”u...,.r..ruh... . .”.m .vﬂ...,.?..v.,. v.cmeffwm.ﬁvmxhﬂva%vﬂi

i

ek

........“h.m,..,.,.,..m... ,..J”...;.,..u.,...,...”....n._.....".".. SR
) . v " .
e P L g -
i ."...v.nh..u?...v&.,..,. . B.v,.umum...,.u_,w,.
T A)
. .t L e
T s i

e st
i R
e ,ﬂwﬂwkv;% A e
{S,vfﬁfmcmwv I, -
......:.,:,J%,.....H..,,v..,.,......, el oo
N

US 9,270,609 B2

Sheet 20 of 33

Feb. 23, 2016

U.S. Patent

v0G1l

YA MM E

916l

PO
b -,

B

0LGl

e e e e B e ST e T s L
e R e L S LR
R SR N
B e Y KL
R T e .
e i o . ..”.....”.,.nf.“”..,.r.u......".u...“.“.“.w._.. "
W R

g

-,

L) | ...,........M,....;.... o

t
...v............. . e
. -, -.rr.-
s, e >
. i Pk
r e
- ..."H,..r.......,.......,.., '
.... .-...:.".-.. u. ; - ...u”....,....". 4
S
e |
R

R T
e

A
%&uﬁ%ﬁ»x%%&ch e
f;wu&ﬁww%v

a

5
B
@%&%ﬁ ,m.‘,m.,,»vf ,,Wﬁmﬁwmwv T
St e .
wwuwﬁu}%v%vw%ﬁ%m{%ﬁaﬁr .
RS ET e e
ﬁfﬁwﬁ%wi T T

R :)
ETEO H,."#........ AR R i mom v

00G1

.n..u.r...-....... . T
R S L e

. o By .
o ..h...,.u.@u? %

e “...umu...........“w,, i
R }vﬁﬁmﬁﬁwﬁ;
s e

US 9,270,609 B2

Sheet 21 of 33

Feb. 23, 2016

U.S. Patent

Hzl b1

e
. JRUEH 0 T
e

E L e“.: ...“...“.".

..

.:.n.
Ln AL e .
R L sy

L

e“....ﬁ.hu..v...... ﬁa&&%&%aﬂk}a .;..m. S ot
e Kmﬁwﬂgﬁﬁwﬁ{xﬁww J..mv“... i,.,.“.,,..W.ﬁ %}?@.ﬁ%?ﬂﬂg wrrenn
R Y RS e R S T

,.,,,.,W.v.n,.

b
o

Pt . -
: e LA
) e {.vxau.ﬁvmxw..uw.wﬂqfﬁc... i S e
e T S, A ?}fﬁwwwv:.& I
S B ..,.............. -,.......... ", -w."m..“...u...vv.... Rkt :

ke

R
,,uww{ i
avmﬁéwmﬁ;

0041

YA E

US 9,270,609 B2

916l

e e AT IS Ml
oI

R

-
“ -, L

s
,Hm..;w.. o i
...m....... . N - ""...u..wm..r.,.
....:“u. Lt e e, anl i“

o,
Preoe
b5

S S) T e L
A .- PR o T,nm..,v...;
d ' e - .. e i .u_,....".uﬂ.{.”....
B a ’ S
-.r-
S

016l

odessriri i e
. . ; T TR L TS
PR T ELA R e R o e R
L,...V..,u.,.v..,,.....v.....,.v,.,.,. ?ﬁvugium....v.ﬁ - ,..uvﬂ.,w. o .ﬂ..,.....mm.. W..WWWMW}?}?{ o
T BT A it L il «eﬂ{wv%,...u......... -,
- .Fx?ﬁxxﬁfm.wvﬁﬁ.m}

EHETu..u..m. ..

o

b

Sheet 22 of 33

..............:."
..f&ﬁmm,.aﬁ...
e,,.”uuwv.n.vn........

. Ry e L
e Ea RV Ao :u...m."my".”..... - u.............m....m..,m."......,...N,.......wwwv
A

i : TR, %,,
T . . . R

: RS
w %ﬁ%ﬂﬂw
o

iy
SIS
. e

i ..,M
b i
ey
i

.

A

Feb. 23, 2016

0051

U.S. Patent

US 9,270,609 B2

Sheet 23 of 33

Feb. 23, 2016

U.S. Patent

9LGl

0LG1

I B e e e R
. - -".. - e - R .."..w.\w?f\.”vmm.rwv.“.vef{.mrv”v...rh s
Tt - st

RS

2

=
peaEs

osi e .
o e e, i,
Ju:r.m....nu.?%”.v..u. ..”v.v..u. LRl . LT
et fxxawﬁ&.ﬁwv..v.wrw..}..... " LT e NI,
s A .?.5....&,..... . i, RSO

......."n.y. et e
T

chi

R R %.vév..f...n.....:. i
: S %ﬁ% S
RIS
P e SRR
VLT
L

. AT,

L
“........“.......”.W..:.. L

i fs%mwmmrfm.ﬁ.#&q,wux f...,,...."...wf?%
o
o

b
i
ﬁﬁﬁﬁﬁﬁv%ﬁ%ﬁﬁﬁé L e, L e e ey T et L. S e
s ;&ﬁfﬁh”x%ﬁxmﬂxﬁwv#{ﬁmwvﬁ% “,.,".u.“.......“.......... 2 L R e L I . . ST et RS T ;@»fﬁﬂ%@\vﬁxﬁ e !
- ST i

s
B S et T e L R T DRSS R R o

o magmensosoons . . —— . T - L . - e s Y

qu{ .
&ﬁf@%&@ B N R e .

LSl ¢Sl

0061

Mzl bi4

US 9,270,609 B2

N

T

0L4l

e s

.,..,.v............r..v....ﬂ:. Lvu..r........m.....v.. Lr...".u.."..u“..... . .nn.....:. ..”.....r.... ..n..u.n.......v.q?... ...%M.wv...{u.g..”m"ﬂ..}......)

o : T %xbv@wwﬁ%mﬁmiﬁ
SRR

i o e R T e e R T I e i e,
" Wmﬁaﬁ%mﬂhhﬁ? o L G g

RIS

Sheet 24 of 33

3 o

. e =)

e

S

b

- T i %\W}i,,...?,w“.m......wwqﬁ.......mw

R T ;wag% T
-HWMVW.WVU..,.;.

Feb. 23, 2016

L €41 ¢LGl

00G}

U.S. Patent

i
Shaan

: SRR
e xﬂ%ﬂ%ﬁﬁ;@yﬁ ..

2
; : S
ot ?xﬁ?ﬁ,,m@,vﬁwvx
o w&?ﬁ@?wﬂﬁx
o - .,..H#v,.{

o
- Qxﬁww?ﬁw ﬁﬂuﬂﬁ#f iR

rd
i

b ...,u.."...u..,vuw;........,...uv.... L i

.,...r...
fﬁ%ﬁﬁ%ﬁ%
Tk ...M.U.uv i

US 9,270,609 B2

0LG1

B L R R e
%@?ﬁbﬁ%&s%ﬁﬁﬂﬁ% s
At i i

. PR
Y
....,.........r...........u.

. et PR
..."."m..“h.u.vv. . o e o Hig, Qﬁﬁwﬂéﬁﬁ% .
i ..”.... ek e i ...n.....“......w T

Sheet 25 of 33

i, K T
B J;@%ﬁaxi<¥¢xﬁ§¢%$ i
St SR e
v, e . e e e LAY 1
S, L SRORU £ R .u...wv...,r....v..u.“v.....umm...v,..w,..n.. “.?J.ﬁs.., E......r..,...ﬂ,“..n,.w,.vw,v....ﬁ.....r.f... -
g, S T AR N
o, B R R
VL e . e e B et ’ e

Feb. 23, 2016

0051

U.S. Patent

2 il
RS B %

Nz "bid

US 9,270,609 B2

-...r
m _ e
A
T,
@ m me...n.“....w.

.m.r;;ﬂ.
W ?ﬁ?%?wv&%?ﬁmﬁﬁ

e
L

S
FE e e B R

015Gl

e e e e i .
o SRR O I s,

R WA .

o - iy . S . e
o T g W
e i".mwm....u:..

el ..-. ...- -
kS R
L

..""u..”...

QL
S,
T %?%ﬁ?\wﬁ%ﬂwwﬁﬁ%@ﬁu
o g,.c,.,,..,,.n”..w“w.““..n.ﬂ.fh.w.m.“..".,.....

I Y

Sheet 26 of 33

...."....,........m.v........_..ﬁ.“....,.....
PR L ...v{....",......mf ...U.M.f.ﬂ..mwv{........n.,."....”.
e |

s i

B
....,w..;wc&nw.“.m.... .

o u..............u.w....“.w...... L
: .,..wm..m..,...r -

e

et

e B . e
..."..“...“...............,.... . ."""" ”.". al .] . > m. éﬁm@@?

e e

Dy e i
S
e
i ;ﬁxﬁ&@ﬁxﬁ%w 5
; .w"ﬁwuwf.\wvvwﬁ...m“v @Wﬂ.ﬁﬁﬁ shuvw}%?,w..
............“...... SrEhah .v...p......v ...u.u. ek o
o PP —— SR

R %
Sl

i)

t\\cf/../../../../../../..,/»

Feb. 23, 2016

1257 ClGl -

0041

U.S. Patent

US 9,270,609 B2

Sheet 27 of 33

Feb. 23, 2016

U.S. Patent

FNLS
One

s

RER
P

ha

L

0041

il .“.u.u..“..,.

0161

e mﬁ?%@%%ﬁ%eaﬁa&é”v?afmﬁvc e
e e x e

..:......
Ny.m,.m.,........".“........

e hdere . i
PR

s

Peae

R e
e

AT

o,

it ﬂ”&.

Fo

3

-,

-
o

<

Ly

T
%x%xf .H.m,,,uw.v...«

N

T
!
2

.u..u.............”.....“....“.... .

S
R

ozl ‘bi4

US 9,270,609 B2

0LGl

...m:,,...:,.i,:
i e s e S LR S

i

Sheet 28 of 33

o

7
Lo
Ay
Lt e I
Mym%ﬁ

R
Lo
s
35

-
SR

g

Feb. 23, 2016

0051

U.S. Patent

U.S. Patent Feb. 23, 2016 Sheet 29 of 33 US 9,270,609 B2

1300
-

TCP Packet

Source Port Destination Port

Sequence Number

Acknowledgement Number

1308 —— —

1312
DR Res 8 5 % Ul—) E = Window Size /
Len 5 |<C |0 | | | B
. 1310
Urgent Pointer
TCP Checksum (0x20) K
TCP Data

1301
CVI Header K

(offsef Ox20 from start of TCP data)

Fig. 13

U.S. Patent Feb. 23, 2016 Sheet 30 of 33 US 9,270,609 B2

Y - "k . Iy . . I . . o " - . . Iy o .
- d & d & d S - - - - . - - & d & d S S - - - - - . d d
. - ok - N T r . - . K

B iy . o . . - " - . " I - - - . " ol . . " " 2 ="
HEE o x i -pF o i = =k, i - 2 g s H oy _ i - o % i T 5 -
. Sl Sl . i i o . d . . -3 ; d ; . g o o g - .
! e . o H B H
- o - = L - . . M
% O . - N . -

e T b I 5 - -

: b . P - N5 . . = A - B ;A g v 3 -
= - n* . - . = = - - - -l - "~ - : -
v " . H =¥, H - .
i - ¥ ., 4 3 .

-._.-E

e
e

Missing Segment Data - Missing Segment Data

oA E A
S ¥ = g
o " . W S
- i ik _at .
1" - W L
e A
. . . = Ay ., - ., 2o - = 7 0 — -
" - SR ot S - I S L T - R L R .-
M. - o - - e - - - . o T - o ~ = - -3
. . * L S L i i ; S

- N . .l ko N s K kd - - A i - . - ko o s K K ol - J d
. x n . .43 R o i . A = N3 " A -~ 5 o +F 5 . y
H. B B . A A 3 i g ~5 B B -, - = A Zh e ~ B o -,
d N o . % E ot i
5 - . - . .2
- il X o . 5 4 i
. L. E- " - - - = = - B -t
’ . g . o o _ K d e d - . . . - - KD g . - i m A i o
i vl d o ' ol - L . Fd -l ¥ o K n Fil . ol e H'n
o o = 5 - 5 . g NN k% SR A ¥ w3 H 3 t o b . N b, M b, -2 ;
o a o o : i o - I . i - = ¥ ¥ - = . ol F .
- M . i - N - . - = M. o Al < L AL . o - - ol . B
o 3 ¥ B i M 3 ol A ke, e b, 8 - T B Vr . -
" e - o - g A = - - o i B e - - % ol
- v 5 -

. e . " 5 [e - - ' K o s . . - " B o =0 i1 o A A o N
- o - - o H . H " - H - . - 5 -, - 3. - = - 3 -
[
- - ; . -ir, . - i iy > . - - - -ir, - 1 -1 k- . - H
d ko o - o F g - D F o o o) o - i E -l - . A 2" d
- K .y g . K- g ", o N . | g s o o ol A
- H H . . o i - o d -

PDUZ is complete ang. | "'pPU2 Placeholder
passed to upper layer

TCP Se g ment 3 |} .ff_};i;

, PDU3 Header | ——1 PDU3 Header |

ey TCP Segment 3 [

TCP PDU Placeholder

U.S. Patent Feb. 23, 2016 Sheet 31 of 33 US 9.270.609 B2

TCP Segment 1

—rars

FPDU 1 Header

Segment
Boundary PDU 2 (cont)

Segmented PDU Header

Fig. 15

U.S. Patent Feb. 23, 2016 Sheet 32 of 33 US 9,270,609 B2

Initiating Receliving
TCP TCP

h Nt i

ACK 1 & Win SiZ€ T

Seg 2
’ B v

@\
aa
&
~
M.., pousd |
~ JEEEBZSTLITLLEL 6 G L
0./-.,. NEENENEN s e e - o o e e wbawe.- e O
% 00001
dO L POZILUNAQ) e et (0008 m
dOL 0I1SSg|) === 0000 & 8l =
——- 0000V &
- 00005
m - 00009
e 0000/
'
b
W
-
¥ p,
o polad |
K 6€ LEGECE LEBZ LZSTEZLZBLLLGLELLL G L G € |
A.im.,, R FOUVU SN SOOI VU SR SOOI ORI SOOI SN SRS S0 NSO T S .1 SUUNURL SUUU SOUUUE SRV SUNR SO U SURIY: VU SPVON SOV SRR SR SOV SO SONE SO A .W%
P —~ 00001
w !,._._..__...
2 d DL POZIWIIA() e i;“{aér - 00002
dOLOISSE) === P 0000 @
! ol
+ ST 0000 &
1+ T - 00005
e % 0000/

U.S. Patent

Ll ‘B4

US 9,270,609 B2

1

TRANSMISSION CONTROL PROTOCOL
WINDOW SIZE ADJUSTMENT FOR
OUT-OF-ORDER PROTOCOL DATA UNIT
REMOVAL

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.C. §119
(e) of U.S. Provisional Patent Application Ser. No. 61/567,
288 entitled “Flow-based TCP,” filed Dec. 6, 2011, which 1s
hereby incorporated by reference.

This application 1s also related to U.S. patent application.
Serial Nos. 13/677,929 | entitled “Lossless Connection

Failover for Single Devices,” 13/677,909 , entitled “TCP
Connection Relocation,” 13/677,922, entitled “Lossless Con-
nection Failover for Mirrored Devices,” all three filed con-
currently herewith, which are hereby incorporated by refer-
ence.

TECHNICAL FIELD

The present invention relates to the field of computer net-
working, and 1n particular to long distance or Wide Area
Network (WAN) communications.

BACKGROUND

In WAN optimization products, and some other products,
there 1s a need to tunnel multiple flows 1n the same Transmis-

sion Control Protocol (TCP) tunnel. Carrying multiple local
area network (LAN) TCP connections over one WAN TCP
connection can cause head of line blocking. Head of line
blocking occurs 1f there 1s a frame loss for one of the data
flows. In this case, the flow with the missing frame gets stuck
in the TCP tunnel until the lost frame 1s retransmaitted. Flows
that follow the missing frame flow will be impacted by this as
they will also not be delivered until the first flow has passed
through the TCP tunnel. This results 1n unnecessary time
delays.

One way to avoid this problem 1s to establish a WAN TCP
connection for each LAN TCP connection. However, this
requires many resources and 1s very inefficient.

Thus, what 1s needed 1s an efficient method for carrying
multiple LAN TCP connections over one WAN TCP connec-
tion while avoiding a head of line blocking problem.

SUMMARY OF THE INVENTION

The preferred embodiment uses a method to share a TCP
tunnel between multiple tlows without having head ofthe line
blocking problem. When a complete but out of order protocol
data unit (PDU) 1s stuck behind an incomplete PDU 1na TCP
tunnel, the complete but out of order PDU 1s removed from
the tunnel. To do that, first, the boundaries of the PDUs of the
different flows are preserved and the TCP recerve window
advertisement 1s increased. The receive window 1s opened
when 1nitially recerving out-of-order data. As out-of-order
complete PDUs are pulled out of the recerve queue, to address
double counting, place holders are used in the receive queue
to indicate data that was 1n the queue. As out-of-order data
PDUs are pulled out of the queue the window advertisement
1s increased. This keeps the sending side from runmng out of
TX window and stopping transmission of new data.

BRIEF DESCRIPTION OF THE FIGURES

The accompanying drawings, which are incorporated in
and constitute a part of this specification, 1llustrate an imple-

10

15

20

25

30

35

40

45

50

55

60

65

2

mentation of apparatus and methods consistent with the
present invention and, together with the detailed description,

serve to explain advantages and principles consistent with the
invention.

FIG. 1 1s a block diagram of an embodiment two connected
data centers according to one embodiment of the present
ivention.

FIG. 2 illustrates an exemplary network architecture which
includes CNE devices for facilitate cross-data-center com-
munications, in accordance with one embodiment of the
present invention.

FIG. 3 illustrates an exemplary implementation of CNE-
enabled VCSs, 1n accordance with one embodiment of the
present invention.

FIG. 4A presents a diagram 1llustrating how CNE devices
handle broadcast, unknown unicast, and multicast (BUM)
tratfic across data centers, 1n accordance with one embodi-
ment of the present invention.

FIG. 4B presents a diagram 1llustrating how CNE devices
handle unicast tratfic across data centers, 1n accordance with
one embodiment of the present invention.

FIG. 5 illustrates an example where two CNE devices are
used to construct a vLAG, 1n accordance with an embodiment
ol the present invention.

FIG. 6 1s a block diagram of an embodiment of an LDCM
appliance according to one embodiment of the present inven-
tion.

FIG. 7 1s a block diagram of the data centers of FIG. 1
modified to operate according to one embodiment of the

present 1nvention.
FIGS. 8A and 8B are block diagrams of the functional

blocks of the LDCM appliance of FIG. 6.

FIG. 91s aladder diagram of Hyper-TCP session create and
close processes according to one embodiment of the present
ivention.

FIG. 10 1s a ladder diagram of Hyper-TCP data transfer
operations according to one embodiment of the present mnven-
tion.

FIG. 11 1s a block diagram illustrating the operation of
Hyper-TCP according to one embodiment of the present
invention.

FIGS. 12A-120 1llustrate a flow of PDUs over a single
TCP connection in the WAN according to one embodiment of
the present invention.

FIG. 13 15 a representation of a TCP PDU {for reassembly
according to one embodiment of the present invention.

FIG. 14 1s a representation of a TCP PDU placeholder
according to one embodiment of the present invention.

FIG. 15 1s a representation of a segmented PDU header
according to one embodiment of the present invention.

FIG. 16 1s a representation of an example RX window
according to one embodiment of the present invention.

FIG. 17 1s a graph of the advertised window sizes for Table
3.

FIG. 18 1s a graph of bytes processed by the upper layer for

Table 3.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

(L]
=]

ERRED

Referring to FIG. 1, a network illustrating portions accord-
ing to the present invention 1s shown. A first data center 700 1s
shown having three separate internal networks, a Transparent
Interconnection of Lots of Links (TRILL) network 702, a
normal Fthernet spanming tree protocol (STP) network 704
and a storage area network (SAN) 706. Application servers
708 are connected to the TRILL network 702, while applica-

US 9,270,609 B2

3

tion servers 710 are connected to the STP network 704 and the
SAN 706. Storage 712 1s shown connected to the SAN 706.

Each of the networks 702, 704 and 706 has a converged
network extension (CNE) device 714 , 716, 718 connected to
it. The CNE devices 714 , 716, 718 are connected to a router
720, which 1n turn 1s connected to a WAN 722. A second data

center 750 1s similar, having a VCS Ethernet fabric network
752 and a SAN 754 . Application servers 756 are connected to
cach network 752 and 754 , with storage 758 connected to the

SAN 754. CNE devices 760 and 762 are each connected to a
network 752 and 754, respectively and to a router 764 , which

1s also connected to the WAN 722 to allow the data center

700 and 750 to commumnicate. The operation of the CN.
devices 714-718 and 760-762 result 1n an effective CN.

overlay network 766, with virtual links from each CN.
device to the CNE overlay network 766.
One goal of the embodiments of the present invention 1s to

extend a Virtual Cluster Switch (VCS) and TRILL network

across data centers and meet the scalability requirements
needed by the deployments. A CNE device can be imple-
mented 1n a two-box solution, wherein one box 1s capable of
layer 2/layer 3/Fibre Channel over Ethernet (L./L./FCoE)
switching and 1s part of the VCS, and the other facilitates the
WAN tunneling to transport Ethernet and/or Fibre Channel

(FCI) tratfic over WAN. The CNE device can also be imple-
mented 1n a one-box solution, wherein a single piece of net-

work equipment combines the tunctions of L, ,/FCoE
switching and WAN tunneling.

VCS as a layer-2 switch uses TRILL as 1ts inter-switch
connectivity and delivers a notion of single logical layer-2
switch. This single logical layer-2 switch delivers a transpar-
ent LAN service. All the edge ports of VCS support standard
protocols and features like Link Aggregation Control Proto-
col (LACP), Link Layer Discovery Protocol (LLDP), virtual
L.ANs (VLANs), media access control (MAC) learning, and
the like. VCS achieves a distributed MAC address database
using Ethernet Name Service (eNS) and attempts to avoid
flooding as much as possible. VCS also provides various
intelligent services, such as virtual link aggregation group
(VLAG), advance port profile management (APPM), End-to-
End FCoE, Edge-Loop-Detection, and the like. More details
on VCS are available in U.S. patent application Ser. Nos.
13/098,360, entitled “Converged Network Extension,” filed
Apr. 29, 2011, 12/725,249, entitled “Redundant Host Con-
nection 1n a Routed Network,” filed 16 Mar. 2010;13/087,
239, entitled “Virtual Cluster Switchung,” filed 14 Apr. 2011;
13/092,724, entitled “Fabric Formation for Virtual Cluster
Switching,” filed 22 Apr. 2011;13/092,580, entitled “Dastrib-
uted Configuration Management for Virtual Cluster Switch-
ing,” filed 22 Apr. 2011;13/042,259, entitled “Port Profile
Management for Virtual Cluster Switching,” filed 07Mar.
2011; 13/092,460, entitled “Advanced Link Tracking for Vir-
tual Cluster Switching,” filed 22 Apr. 2011; No. 13/092,701,
entitled “Virtual Port Grouping for Virtual Cluster Switch-
ing,” filed 22 Apr. 2011; 13/092,7352, entitled “Name Services
for Virtual Cluster Switching,” filed 22 Apr. 2011;13/092,
877, entitled “Iraffic Management for Virtual Cluster
Switching,” filed 22 Apr. 2011; and 13/092,864, entitled
“Method and System for Link Aggregation Across Multiple
Switches,” filed 22 Apr. 2011, all hereby incorporated by
reference.

In embodiments of the present invention, for the purpose of
cross-data-center communication, each data center 1s repre-
sented as a single logical RBridge. This logical RBridge can
be assigned a virtual RBridge ID or use the RBridge ID of the

CNE device that performs the WAN tunneling.

Ll L

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates an exemplary network architecture which
includes CNE devices for facilitating cross-data-center com-
munications, 1n accordance with one embodiment of the
present invention. In this example, two data centers 844 and
846 are coupled to a WAN 826 via gateway routers 824 and
828, respectively. Data center 844 includes a VCS 816, which
couples to anumber of hosts, such as host 801, via 1ts member
switches, such as switch 810. Host 801 includes two VMs 802
and 804 , which are coupled to virtual switches 806 and 808
in a dual-homing configuration. In one embodiment, virtual
switches 806 and 808 reside on two network interface cards
on host 801. Virtual switches 806 and 808 are coupled to VCS
member switch 810. Also included in VCS 816 1s a CNE
device 818. CNE device 818 1s configured to receive both
Ethernet (or TRILL) traffic from member switch 810 via an
Ethernet (or TRILL) link 812, and FC traffic via FC link 814
. Also coupled to CNE device 818 1s a target storage device
820, and a cloned target storage device 822 (denoted by
dotted lines). CNE device 818 maintains a Fibre Channel over
IP (FCIP) tunnel to data center 846 across WAN 826 via
gateway routers 824 and 828.

Similar to the data center 844 , data center 846 includes a
VCS 842, which in turn includes a member switch 832. Mem-
ber switch 832 1s coupled to a host 841, which includes virtual
machines (VMs) 834 and 836, both of which are coupled to
virtual switches 838 and 840. Also included 1n VCS 842 1s a
CNE device 830. CNE device 830 1s coupled to member
switch 832 via an Ethernet (TRILL) link and an FC link. CNE
device 830 1s also coupled to a target storage device 822 and
a clone of target storage device 820.

In previous embodiments, moving VM 802 of the network
architecture of FIG. 2 from host 801 to host 841 would not
have been possible, because virtual machines are generally
only visible within the same layer-2 network domain. Once
the layer-2 network domain 1s terminated by a layer-3 device,
such as gateway router 824, all the identifying information for
a particular virtual machine (which 1s carried 1n layer-2 head-
ers) would be lost. However, in embodiments of the present
invention, because the CNE device extends the layer-2
domain from VCS 816 to VCS 842, the movement ot VM 802
from data center 844 to data center 846 1s now possible.

When forwarding TRILL frames from data center 844 to
data center 846, CNE device 818 modifies the egress TRILL
frames’ header so that the destination RBridge identifier 1s the
RBridge identifier assigned to data center 846. CNE device
818 then uses the FCIP tunnel to deliver these TRILL frames
to CNE device 830, which 1n turn forwards these TRILL
frames to their respective layer-2 destinations.

VCS uses the FC control plane to automatically form a
fabric and assign RBridge 1dentifiers to each member switch.
In one embodiment, the CNE architecture keeps the TRILL
and SAN {fabrics separate between data centers. From a
TRILL point of view, each VCS (which corresponds to a
respective data center) 1s represented as a single virtual

RBrisdge. In addition, the CNE device can be coupled to a
VCS member switch with both a TRILL link and an FC link.

However, since the CNE devices keeps the TRILL VCS fabric
and SAN (FC) fabrics separate, the FC link between the CNE
device and the member switch 1s generally configured for FC
multi-fabric.

As 1llustrated 1n FIG. 3, a data center 908 1s coupled to a
WAN via a gateway router 910, and a data center 920 1is
coupled to the WAN via a gateway router 912. Data center 908

includes a VCS 906, which includes a member switch 904.
Also 1included 1n data center 908 1s a CNE device 902. CNE

device 902 1s coupled to VCS member switch 904 via a
TRILL link and an FC link. CNE device 902 can join the VCS

US 9,270,609 B2

S

via the TRILL link. However, the FC link allows CNE device
902 to maintain a separate FC fabric with VCS member
switch 904 to carry FC tratfic. In one embodiment, the FC port
on CNE device 902 1s an FC EX_port. The corresponding port
on member switch 904 1s an FC E_port. The port on CNE
device 902 on the WAN side (coupling to gateway router 910)
1s an FCIP VE_port. The data center 920 has a similar con-
figuration to that of data center 908.

In one embodiment, each data center’s VCS 1includes a
node designated as the ROOT RBridge for multicast pur-
poses. During the initial setup, the CNE devices 1n the VCSs
exchange each VCS’s ROOT RBridge identifier. In addition,
the CNE devices also exchange each data center’s RBridge
identifier. Note that this RBridge identifier represents the
entire data center. Information related to data-center RBridge
identifiers 1s distributed as a static route to all the nodes 1n the
local VCS.

FIG. 4A represents a diagram illustrating how CNE
devices handle broadcast, unknown unicast, and multicast
(BUM) traffic across data centers, in accordance with one
embodiment of the present invention. In this example, two
data centers, DC-1 and DC-2, are coupled to an IP WAN wvia
core IP routers. The CNE device 1n DC-1 has an RBridge
identifier of RB4, and the CNFE device in DC-2 has an
RBridge 1dentifier of RB6. Furthermore, in the VCS 1n DC-1,
a member switch RB1 is coupled to a host A. In the VCS 1n
DC-2, a member switch RB5 1s coupled to a host 7.

Assume that host A needs to send multicast traffic to host Z.,
and that host A already has the knowledge of host Z”s MAC
address. During operation, host A assembles an Ethernet
frame 1002, which has host Z’s MAC address (denoted as
MAC-7) as 1ts destination address (DA), and host A’s MAC
address (denoted as MAC-A) as its source address (SA).
Based on frame 1002, member switch RB1 assembles a
TRILL frame 1003, whose TRILL header 1006 includes the
RBridge identifier of data center DC-1"s root RBridge (de-
noted as “DC1-ROOT™) as the destination RBridge, and RB1
as the source RBridge. (That 1s, within DC-1, the multicast
traffic 1s distributed on the local multicast tree.) The outer
Ethernet header 1004 of frame 1003 has CNE device RB4’s
MAC address (denoted as MAC-RB4) as the destination
address, and member switch RB1’s MAC address (denoted as
MAC-RB1) as the source address.

When frame 1003 reaches CNE device RB4, 1t further
modifies the frame’s TRILL header to produce frame 1005.
CNE device RB4 replaces the destination RBridge 1dentifier
in the TRILL header 1010 with data center DC-2’s root
RBridge identifier DC2-ROOT. The source RBridge identi-
fier 1s changed to data center DC-1’s virtual RBridge 1identi-
fier, DC1-RB (which allows data center DC-2 to learn data
center DC-1’s RBridge identifier). Outer Ethernet header
1008 has the core router’s MAC address (MAC-RTR) as 1ts
destination address, and CNE device RB4’s MAC address
(MAC-DC-1) as 1ts source address.

Frame 1005 1s subsequently transported across the IP WAN
in an FCIP tunnel and reaches CNE device RB6. Correspond-
ingly, CNE device RB6 updates the header to produce frame
1007. Frame 1007°s TRILL header 1014 remains the same as
frame 1005. The outer Ethernet header 1012 now has member
switch RB5’s MAC address, MAC-RBS, as 1ts destination
address, and CNE device RB6’s MAC address, MAC-RBS®,
as 1ts source address. Once frame 1007 reaches member
switch RBS, the TRILL header 1s removed, and the inner
Ethernet frame 1s delivered to host Z.

In various embodiments, a CNE device can be configured
to allow or disallow unknown umicast, broadcast (e.g.,
Address Resolution Protocol (ARP)), or multicast (e.g., Inter-

10

15

20

25

30

35

40

45

50

55

60

65

6

net Group Management Protocol (IGMP) snooped) traffic to
cross data center boundaries. By having these options, one
can limit the amount of BUM trailic across data centers. Note
that all TRILL encapsulated BUM traffic between data cen-
ters can be sent with the remote data center’s root RBridge
identifier. This translation 1s done at the terminating point of
the FCIP tunnel.

Additional mechanisms can be implemented to minimize
BUM traffic across data centers. For instance, the TRILL
ports between the CNE device and any VCS member switch
can be configured to not participate 1n any of the VLAN
multicast group IDs (MGIDs). In addition, the eNS on both
VC(CSs can be configured to synchronize their learned MAC
address database to minimize traffic with unknown MAC
destination address. In one embodiment, before the learned
MAC address databases are synchronized in different VCSs,
frames with unknown MAC destination addresses are tlooded
within the local data center only.

To further mimimize BUM traffic, broadcast traffic such as
ARP ftraffic can be reduced by snooping ARP responses to
build ARP databases on VCS member switches. The learned
ARP databases are then exchanged and synchronized across
different data centers using eNS. Proxy-based ARP 1s used to
respond to all known ARP requests 1n a VCS. Furthermore,
multicast traffic across data centers can be reduced by distrib-
uting the multicast group membership across data canters
through sharing the IGMP snooping information via eNS.

The process of forwarding unicast traffic between data
centers 1s as follows. During the FCIP tunnel formation, the
logical RBridge i1dentifiers representing data centers are
exchanged. When a TRILL frame arrives at the entry node of
the FCIP tunnel, wherein the TRILL destination RBridge 1s
set as the RBridge 1dentifier of the remote data center, the
source RBridge 1n the TRILL header 1s translated to the
logical RBridge identifier assigned to the local data center.
When the frame exits the FCIP tunnel, the destination
RBridge field in the TRILL header 1s set as the local (1.e., the
destination) data center’s virtual RBridge identifier. The
MAC DA and VLAN ID 1n the inner Ethernet header are then
used to look up the corresponding destination RBridge (1.e.,
the RBridge 1dentifier of the member switch to which the
destination host 1s attached), and the destination RBridge
field 1in the TRILL header 1s updated accordingly.

In the destination data center, based on an 1ngress frame, all
the VCS member switches learn the mapping between the
MAC SA (in the inner Ethernet header of the frame) and the
TRILL source RBridge (which 1s the virtual RBridge 1denti-
fier assigned to the source data center). This allows future
egress frames destined to that MAC address to be sent to the
right remote data center. Because the RBridge identifier
assigned to a given data center does not correspond to a
physical RBridge, 1n one embodiment, a static route 1s used to
map a remote data-center RBridge identifier to the local CNE
device.

FIG. 4B represents a diagram illustrating how CNE
devices handle unicast traffic across data centers, in accor-
dance with one embodiment of the present invention. Assum-
ing that host A needs to send unicast traflic to host Z, and that
host A already has the knowledge of host Z°s MAC address,
during operation, host A assembles an Fthernet frame 1002,
which has host Z’s MAC address (MAC-Z) as its DA, and
host A’s MAC address (MAC-A) as 1ts SA. Based on frame
1002, member switch RB1 assembles a TRILL frame 1003,
whose TRILL header 1009 includes the RBridge 1dentifier of
data center DC-2’s virtual Rbridge (denoted as “D(C2-RB”)
as the destination RBridge, and RB1 as the source RBridge.
The outer Ethernet header 1004 of frame 1003 has CNE

US 9,270,609 B2

7

device RB4’s MAC address (MAC-RB4) as the DA, and
member switch RB1’s MAC address (MAC-RB1) as the SA.

When frame 1003 reaches CNE device RB4, it further
modifies the frame’s TRILL header to produce frame 1005.
CNE device RB4 replaces the source RBridge identifier in the
TRILL header 1011 with data center DC-1"s virtual RBridge
identifier DC1-RB (which allows data center DC-2 to learn
data center DC-1’s RBridge identifier). Outer Ethernet
header 1008 has the core router’s MAC address (MAC-RTR)
as 1ts DA, and CNE device RB4’s MAC address (MAC-DC-
1) as 1ts SA.

Frame 10035 1s subsequently transported across the IP WAN
in an FCIP tunnel and reaches CNE device RB6. Correspond-
ingly, CNE device RB6 updates the header to produce frame
1007. Frame 1007°s TRILL header 1015 has an updated
destination RBridge 1dentifier, which 1s RBS, the VCS mem-
ber switch in DC-2 that couples to host Z. The outer

Ethernet
header 1012 now has member switch RB5’s MAC address,
MAC-RBS, as its DA, and CNE device RB6’s MAC address,
MAC-RB6, as 1ts SA. Once frame 1007 reaches member
switch RB5, the TRILL header 1s removed, and the inner
Ethernet frame 1s delivered to host Z.

Flooding across data centers of frames with unknown
MAC DAs 1s one way for the data centers to learn the MAC
address 1n another data center. All unknown SAs are learned
as MACs behind an RBridge and it 1s no exception for the
CNE device. In one embodiment, eNS can be used to distrib-
ute learned MAC address database, which reduces the
amount of flooding across data centers.

In order to optimize flushes, even though MAC addresses
are learned behind RBridges, the actual VCS edge port asso-
ciated with a MAC address can be present in the eNS MAC
updates. However, the edge port IDs might no longer be
unique across data-centers. To resolve this problem, all eNS
updates across data centers will quality the MAC entry with
the data-center’s RBridge identifier. This configuration
allows propagation of port flushes across data centers.

In the embodiments described herein, VCSs 1n different
data-centers do not join each other and thus the distributed
configurations are kept separate. However, 1n order to allow
virtual machines to move across data-centers, there maybe
some configuration data that needs to be synchronized across
data-centers. In one embodiment, a special module (1n either
software or hardware) 1s created for CNE purposes. This
module 1s configured to retrieve the configuration informa-
tion needed to facilitate moving of virtual machines across
data centers and it 1s synchronized between two or more
VCSs.

In one embodiment, the learned MAC address databases
are distributed across data centers. Additionally, edge port
state change notifications (SCNs) may be distributed across
data centers. When a physical RBridge 1s going down, the
SCN 1s converted to multiple port SCNs on the inter-data-
center FCIP link.

In order to protect the inter-data-center connectivity, a VCS
can form a vLAG between two or more CNE devices. In this
model, the vLAG RBridge 1identifier 1s used as the data-center
RBridge 1dentifier. The FCIP control plane 1s configured to be
aware of this arrangement and exchange the vLAG RBridge
identifiers 1n such cases.

FIG. 5 1llustrates an example where two CNE devices are
used to construct a vLLAG, 1n accordance with an embodiment
of the present invention. In this example, a VCS 1100 includes

two CNE devices 1106 and 1108. Both CNE devices 1106
and 1106 form a vLAG 1100 which 1s coupled to a core IP
router. vVLAG 1110 1s assigned a virtual RBridge identifier,
which 1s also used as the data-center RBridge 1dentifier for

10

15

20

25

30

35

40

45

50

55

60

65

8

VCS 1100. Furthermore, vLAG 1110 can facilitate both
ingress and egress load balancing (e.g., based on equal-cost
multi-pathing (ECMP)) for any member switch within VCS
1100.

FIG. 6 1llustrates a CNE/LDCM device 1200, in which the
LDCM f{features are preferably added to a CNE device to
create a single device. A system on chip (SOC) 1202 provides
the primary processing capabilities, having a plurality of
CPUs 1204 and an amount of on chip butler memory 1205 to
be used as needed. A number of Ethernet connections 1206
are preferably included on the SOC 1202 to act as the WAN
link, though a separate Ethernet device could be used 1if
desired. An FC switching chip 1208 1s connected to the SOC
1202 to provide connections to FC SANs. A Converged
Enhanced Ethernet (CEE) switching chip 1210 1s connected
to the SOC 1202 to allow attachment to the VCS or to an
Ethernet LAN. Off chip buffer memory 1209 which 1s gen-
crally much larger than the on chip bufier memory 1205 1s
provided for additional buller space as needed. A compres-
sion engine 1212 1s provided with the SOC 1202 to provide
compression and deduplication capabilities to reduce tratfic
over the WAN links. An encryption engine 1214 1s provided
for security purposes, as preferably the FLIP tunnel 1is
encrypted for security.

Various software modules 1216 are present in the CNE/
LDCM device 1200. These include an underlying operating
system 1218, a control plane module 1220 to manage inter-
action with the VCS, a TRILL management module 1222 for
TRILL functions above the control plane, an FCIP manage-
ment module 1224 to manage the FCIP tunnels over the
WAN, an FC management module 1226 to interact with the
FC SAN and an address management module 1228. An addi-
tional module 1s a high availability (HA) module 1230, which
in turn includes a flow-based TCP submodule 1232. The
soltware 1n the connection flow-based TCP submodule 1232
1s executed 1in the CPUs 1204 to perform the flow-based TCP
operations described below relating to FIGS. 12A-16.

FI1G. 7 1llustrates the addition of CNE/LDCM devices 1302
and 1352. The CNE/LDCM devices 1302 and 1352 create a
cloud virtual interconnect (CVI) 1304 between themselves,
elifectively an FCIP tunnel through the WAN 1306. The CVI
1304 1s used for VM mobility, application load balancing and
storage replication between the data centers 100 and 150.

The cloud virtual interconnect 1304 preferably includes
the following components: an FCIP trunk, as more fully
described 1n U.S. patent application Ser. No. 12/880,495,
entitled “FCIP Communications with Load Sharing and
Failover”, filed Sep. 13, 2010, which 1s hereby incorporated
by reference, and aggregates multiple TCP connections to
support wide WAN bandwidth ranges from 100 Mbps up to
20 Gbps. It also supports multi-homing and enables transpar-
ent faillover between redundant network paths.

Adaptive rate limiting (ARL) 1s performed on the TCP
connections to change the rate at which data 1s transmitted
through the TCP connections. ARL uses the information from
the TCP connections to determine and adjust the rate limit for
the TCP connections dynamically. This will allow the TCP
connections to utilize the maximum available bandwidth. It
also provides a flexible number of priorities for defining
policies and the users are provisioned to define the priorities
needed.

High bandwidth TCP (HBTCP) 1s designed to be used for
high throughput applications, such as virtual machine and
storage migration, over long fat networks. It overcomes the
challenge of the negative effect of traditional TCP/IP 1n
WAN. In order to optimize the performance, the following
changes can be made.

US 9,270,609 B2

9

1) Scaled Windows: In HBTCP, scaled windows are used to
support WAN latencies of up to 350 ms or more. Maximum
consumable memory will be allocated per session to maintain
the line rate.

2) Optimized reorder resistance: HBTCP has more resis-
tance to duplicate acknowledgements and requires more
duplicate ACK’s to trigger the fast retransmiut.

3) Optimized fast recovery: In HBTCP, instead of reducing
the cwnd by half, it 1s reduced by substantially less than 50%
in order to make provision for the cases where extensive
network reordering 1s done.

4) Quick Start: The slow start phase 1s modified to quick
start where the 1nitial throughput 1s set to a substantial value
and throughput 1s only minimally reduced when compared to
the throughput betfore the congestion event.

5) Congestion Avoidance: By carefully matching the
amount of data sent to the network speed, congestion 1is
avolded 1nstead of pumping more traflic and causing a con-
gestion event so that congestion avoidance can be disabled.

6) Optimized slow recovery: The retransmission timer 1n
HBTCP (15 ms) expires much quicker than in traditional TCP
and 1s used when fast retransmit cannot provide recovery.
This triggers the slow start phase earlier when a congestion
event occurs.

7) Lost packet continuous retry: Instead of waiting on an
ACK for a SACK retransmitted packet, continuously retrans-
mit the packet to improve the slow recovery, as described 1n
more detail in U.S. patent application Ser. No. 12/972,713,
entitled “Repeated Lost Packet Retransmission 1in a TCP/IP
Network™, filed Dec. 20, 2010, which 1s hereby incorporated
by reference.

The vMotion migration data used in VM mobility for
VMware systems enters the CNE/LDCM device 1302

through the LAN Ethernet links of the CEE switching chip
1210 and the compressed, encrypted data 1s sent over the
WAN 1nfrastructure using the WAN uplink using the Ethernet
ports 1206 of the SOC 1202. Similarly for storage migration,
the data from the SAN FC link provided by the FC switching
chup 1208 1s migrated using the WAN uplink to migrate
storage. The control plane module 1220 takes care of estab-
lishing, maintaining and terminating TCP sessions with the
application servers and the destination LDCM servers.

FIGS. 8A and 8B illustrate the functional blocks and mod-
ules of a preferred embodiment of the CNE/LDCM device.
LLAN termination 1402 and SAN termination 1404 are inter-
connected to the CVI 1406 through an application module
1408, the data compaction engine 1410 and a high reliability
delivery application (HRDA) layer 1412.

LAN termination 1402 has a layer 2, Ethernet or CEE,
module 1420 connected to the LAN ports. An IP virtual edge
routing module 1422 connects the layer 2 module 1420 to a
Hyper-TCP module 1424. The Hyper-TCP module 1424
operation 1s described in more detail below and includes a
TCP classifier 1426 connected to the virtual edge routing
module 1422. The TCP classifier 1426 1s connected to a data
process module 1428 and a session manager 1430. An event
manager 1432 1s connected to the data process module 1428
and the session manager 1430. The event manager 1432, the
data process module 1428 and the session manager 1430 are
all connected to a socket layer 1434, which acts as the inter-
tace for the Hyper-TCP module 1424 and the LAN termina-
tion 1402 to the application module 1408.

SAN termination 1404 has an FC layer 2 module 1436
connected to the SAN ports. A batching/debatching module
1438 connects the FC layer 2 module 1436 to a routing
module 1440. Separate modules are provided for Fibre con-

nection (FICON) traific 1442, FCP traffic 1444 and F_Class

10

15

20

25

30

35

40

45

50

55

60

65

10

traffic 1446, with each module connected to the routing mod-
ule 1440 and acting as interfaces between the SAN termina-
tion 1404 and the application module 1408.

The application module 1408 has three primary applica-
tions, hypervisor 1448, web/security 1452 and storage 1454.
The hypervisor application 1448 cooperates with the various
hypervisor motion functions, such vMotion, Xenmotion and
MS Live Migration. A caching subsystem 1450 1s provided
with the hypervisor application 1448 for caching of data
during the motion operations. The web/security application
1452 cooperates with virtual private networks (VPNSs), fire-
walls and intrusion systems. The storage application 1454
handles 1SCSI, network attached storage (NAS) and SAN
traffic and has an accompanying cache 1456.

The data compaction engine 1410 uses the compression
engine 1212 to handle compression/decompression and
deduplicaton operations to allow improved efficiency of the
WAN links.

The main function of the HRDA layer 1412 1s to ensure the
communication reliability at the network level and also at the
transport level. As shown, the data centers are consolidated by
extending the L2 TRILL network over IP through the WAN
infrastructure. The redundant links are provisioned to act as
back up paths. The HRDA layer 1412 performs a seamless
switchover to the backup path 1n case the primary path fails.
HBTCP sessions running over the primary path are prevented
from experiencing any congestion event by retransmitting
any unacknowledged segments over the backup path. The
acknowledgements for the unacknowledged segments and
the unacknowledged segments themselves are assumed to be
lost. The HRDA layer 1412 also ensures reliability for TCP
sessions within a single path. In case a HBTCP session fails,
any migration application using the HBTCP session will also

fail. In order to prevent the applications from failing, the
HRDA layer 1412 transparently switches to a backup HBTCP

SesS101.

The CVI11406 includes an IP module 1466 connected to the
WAN links. An IPSEC module 1464 1s provided for link
security. A HBTCP module 1462 1s provided to allow the
HBTCP operations as described above and to perform the out
of order delivery of PDUs to the upper layer and advertised
receive window changes as described below. A quality of

service (QoS)/ARL module 1460 handles the QoS and the
ARL function described above. A trunk module 1458 handles
trunking operations.

Hyper-TCP 1s acomponent in accelerating the migration of
live services and applications over long distance networks.
Simply, a TCP session between the application client and
server 1s locally terminated and by leveraging the high band-
width transmission techniques between the data centers,
application migration 1s accelerated.

Hyper-TCP primarily supports two modes of operation:

1) Data Termination Mode (DTM): In data termination
mode, the end device TCP sessions are not altered but the data
1s locally acknowledged and data sequence integrity 1s main-
tained.

2) Complete Termination Mode (CTM): In the complete
termination mode, end device TCP sessions are completely
terminated by the LDCM. Data sequence 1s not maintained
between end devices but data integrity 1s guaranteed.

There are primarily three phases in Hyper-TCP. They are
Session Establishment, Data Transfer and Session Termina-
tion. These three phases are explained below.

1) Session Establishment: During this phase, the connec-
tion establishment packets are snooped and the TCP session
data, like connection end points, Window size, MTU and
sequence numbers, are cached. The Layer 2 information like

US 9,270,609 B2

11

the MAC addresses 1s also cached. The TCP session state on
the Hyper-TCP server 1s the same as that of the application
server and the TCP session state of the Hyper-TCP client 1s
the same as application client. With the cached TCP state
information, the Hyper-TCP devices can locally terminate the
TCP connection between the application client and server and
locally acknowledge the receipt of data packets. Hence, the
round trip times (RT1’s) calculated by the application will be
masked from including the WAN latency, which results in
better performance.

The session create process 1s 1illustrated 1n FIG. 9. The
application client transmits a SYN, which 1s snooped by the
Hyper-TCP server. The Hyper-TCP server forwards the SYN
to the Hyper-TCP client, potentially with a seed value 1n the
TCP header options field. The seed value can indicate
whether this 1s a Hyper-TCP session, a termination mode, the
Hyper-TCP version and the like. The seed value 1s used by the
various modules, such as the data compaction engine 1410
and the CVI 1406, to determine the need for and level of
acceleration of the session. The Hyper-TCP client snoops and
torwards the SYN to the application server. The application
server responds with a SYN+ACK, which the Hyper-TCP
client snoops and forwards to the Hyper-TCP server. The
Hyper-TCP server snoops the SYN+ACK and forwards 1t to
the application client. The application client responds with an
ACK, which the Hyper-TCP server forwards to the Hyper-
TCP client, which 1n turn provides 1t to the application server.
This results 1n a created TCP session.

2) Data Transter Process: Once the session has been estab-
lished, the data transfer 1s always locally handled between a
Hyper-TCP device and the end device. A Hyper-TCP server
acting as a proxy destination server for the application client
locally acknowledges the data packets and the TCP session
state 1s updated. The data 1s handed over to the HBTCP
session between the Hyper-TCP client and server. HBTCP
session compresses and forwards the data to the Hyper-TCP
client. This reduces the R1T1’s seen by the application client
and the source as it masks the latencies incurred on the net-
work. The data recerved at the Hyper-TCP client 1s treated as
if the data has been generated by the Hyper-TCP chient and
the data 1s handed to the Hyper-TCP process running between
the Hyper-TCP client and the application server. Upon con-
gestion 1n the network, the amount of data fetched from the
Hyper-TCP sockets 1s controlled.

This process 1s 1llustrated 1n FIG. 10. Data 1s provided from
the application client to the Hyper-TCP server, with the
Hyper-TCP server ACKing the data as desired, thus terminat-
ing the connection locally at the Hyper-TCP server. The
LDCM device aggregates and compacts the recerved data to
reduce WAN traffic and sends it to the Hyper-TCP client in the
other LDCM device. The recerving LDCM device uncom-
pacts and deaggregates the data and provides 1t to the Hyper-
TCP client, which in turn provides 1t to the application server,
which periodically ACKs the data. Should the application
server need to send data to the application client, the process
1s essentially reversed. By having the Hyper-TCP server and
client locally respond to the recerved data, thus locally termi-
nating the connections, the application server and client are
not aware of the delays resulting from the WAN link between
the Hyper-TCP server and client.

3) Session Termination: A received FIN/RST 1s transpar-
ently sent across like the session establishment packets. This
1s done to ensure the data integrity and consistency between
the two end devices. The FIN/RST recerved atthe Hyper-TCP
server will be transparently sent across only when all the
packets recetved prior to recerving a FIN have been locally

acknowledged and sent to the Hyper-TCP client. If a FIN/

5

10

15

20

25

30

35

40

45

50

55

60

65

12

RST packet has been received on the Hyper-TCP client, the
packet will be transparently forwarded after all the enqueued
data has been sent and acknowledged by the application
server. In either direction, once the FIN has been receirved and
forwarded, the further transfer of packets 1s done transpar-
ently and 1s not locally terminated.

This 1s shown in more detail 1n FIG. 9. The application
client provides a FIN to the Hyper-TCP server. If any data has
not been received by the Hyper-TCP server, the Hyper-TCP
server will recover the data from the application client and
provide 1t to the Hyper-TCP client. The Hyper-TCP server
then forwards the FIN to the Hyper-TCP client, which flushes
any remaining data in the Hyper-TCP client and then for-
wards the FIN to the application server. The application
server replies with an ACK for the flushed data and then a
FIN. The Hyper-TCP client then recerves any outstanding
data from the application server and recovers data to the
application server. The ACK and the data are forwarded to the
Hyper-TCP server. After the data is transferred, the Hyper-
TCP client forwards the FIN to the Hyper-TCP server. The
Hyper-TCP server forwards the ACK when received and
flushes any remaiming data to the application client. After
those are complete, the Hyper-TCP server forwards the FIN
and the session 1s closed.

FIG. 11 illustrates the effective operation of the Hyper-
TCP server and client over the CVI 1712. A series of appli-
cations 1702-1 to 1702-r» are communicating with applica-
tions 1704-1 to 1704-», respectively. The Hyper-TCP server
agent 1706 cooperates with the applications 1702 while the
Hyper-TCP agent 1708 cooperates with the applications

1704. In the 1llustration, four different Hyper-TCP sessions
are shown, H1, H2, H3 and Hn 1710-1 to 1710-7, which
traverse the WAN using the CVI 1712.

Flow-Based TCP

In WAN optimization products, and some other products,
there 1s sometimes a need to tunnel multiple flows 1n the same
TCP tunnel. Carrying multiple LAN TCP connections over
one WAN TCP connection helps 1n reducing the number of
TCP connections across the WAN but 1t can also introduce a
head of the line blocking problem. Head of the line blocking
occurs, when there 1s a frame loss for one of the flows and as
a result of the frame loss for the one flow, other tlows are not
delivered until the lost frame 1s retransmitted. In the preferred
embodiment of the invention, this problem 1s addressed by
using stream based TCP connections where each LAN TCP
connection 1s mapped to a stream and each stream data unit 1s
sent with a stream 1dentifier. TCP delivers stream data units
out of order but packets 1n the stream data unit are always 1n
order. CVI guarantees that data units for a stream are always
delivered 1n order.

The head of line blocking problem and the solution for it
are illustrated 1n FIGS. 12A-12Y. FIG. 12A 1llustrates a net-
work 1500 1 which two local area networks are connected
through a WAN 1510 The first network includes two com-
puter devices 1518 and 1520 which are coupled through a
L AN 1514 to a CNE 1502. A router 1506 transiers the data to
a WAN TCP tunnel 1512 which transmits the data to the
second network. The second network includes application
servers 1522 and 1524 which are coupled through a LAN
1516 to a CNE 1504. The CNE 1504 1s connected to a router
1508 which can send and recerve data through the WAN TCP
tunnel 1512.

FIG. 12B 1illustrates a data stream 1330 which 1s being
transmitted by one of the computer device 1520 or the com-
puter device 1518 through the LAN 1514 to the CNE device
1502. FIGS. 12C-12E show how this data stream 1s broken

down to its individual frames as it travels through the WAN

US 9,270,609 B2

13

TCP tunnel and how the individual frames make up a PDU.
The PDU 1s then recetved by the router 1508 and transmitted
through the CNE 1504 to the LAN 1516, as shown in FIG.
12F. Thus, FIGS. 12A-12F illustrate a normal transfer of data
between two local networks though a TCP tunnel. FIGS.
12G-120 show a similar data transfer when head of the line
blocking occurs.

FIG. 12G illustrates a data stream 1532 being transmitted
through the LAN 1514 to the CNE 1502. As shown 1n FIG.
12H, the data stream 1532 1s transierred through the router
1506 to the TCP tunnel 1512. As 1t travels through the TCP
tunnel 1512, the data stream 1532 loses one of 1ts frames thus
turning into a data stream 1531. This 1s shown 1n FIG. 121.
The data stream 1531 then continues traveling through the
TCP tunnel 1512 until 1t reaches the end of the tunnel (shown
in FIG. 12K). There, because 1t 1s an incomplete PDU, the
data stream 1531 cannot pass through the TCP tunnel 1512 to
the router 1508. Instead, it remains 1n the tunnel until the lost
frame 1s retransmitted. This 1s problematic, in particular
because the stuck data stream 1531 prevents other data
streams that are behind 1t from passing through the tunnel to
the remote side. This 1s illustrated 1n FIGS. 12K-12M.

FIG. 12K shows a data stream 13534 being transmitted
through the LAN 1514 to the CNE 1502 and eventually to the
TCP tunnel 1512 (as shown i FIG. 121L). The data stream
1534 forms a PDU 13534 as 1t reaches the end of the TCP
tunnel 1512 and gets stuck behind the previous data stream
1531. In prior art systems, the PDU 1334 would have to
remain behind the data stream 1531 until the lost frame 1s
retransmitted and the data stream 1531 becomes complete
again. This created unnecessary delay and inefficiency in data
transier. One way to avoid this 1ssue 1s to have a WAN TCP
connection for each LAN TCP connection. However, such a
system would require a lot of resources which also introduces
inefliciency.

The preferred embodiment of the present mvention intro-
duces a method for sharing the TCP tunnel between multiple
flows without having this head of the line blocking problem.
The method involves allowing the data streams that are trans-
mitted after a stuck data stream to pass through the TCP
channel to the remote side without having to wait for the stuck
data stream to pass through. Thus, as shown 1n FIG. 12N, the
data stream 1534 would pass the data stream 1531 and move
through the router 1508, even though data stream 1531 1s still
stuck. FI1G. 120 1llustrates how this data stream 1534 1s able
to pass through the CNE 1504 and LAN 1516, while the data
stream 1531 1s still stuck i the TCP tunnel 1512.

This 1s achieved by first removing out of the TCP receive
queue complete but out of order PDU . In order to do that, the
boundaries of the PDUs of different data streams are pre-
served to determine one PDU from another. A vaniety of
methods can be employed to preserve PDU boundaries. In
one embodiment, to preserve PDU boundaries data 1s parsed
to look for PDU/CVTI headers. When out-of-order packets are
received, 1t may not be clear where the next PDU/CVI header
will be. Thus, 1n this embodiment every byte of payload data
1s searched until a header 1s found, and 1t 1s validated that 1t 1s
in fact a header and not payload data. This method may be
time consuming and not very eflicient.

An alternative embodiment for preserving PDU bound-
aries 1mvolves using the urgent flag of the data stream as a
pointer to the PDU boundary. In this embodiment, the urgent
flag and oflset are used to denote the beginning of the PDU/

CVI header with a TCP segment. FIG. 13 illustrates a TCP
packet having a CVI header 1301, a URG flag 1308, and an
urgent pointer 1310. When a CVI header 1s contained within

a TCP segment, as with the TCP packet 1300, the urgent

10

15

20

25

30

35

40

45

50

55

60

65

14

pointer 1310 points to the first byte of the CVI header 1301 to
preserve the boundary of the PDU. In this embodiment the
CVI1header contains a field of known oifset and length which
indicates the PDU length, which allows a determination of the
start of next the PDU. When more than one PDU/CVI header
1s contained within a TCP Segment, the urgent pointer will
point to only the first PDU header.

In one embodiment, the TCP transmit engine needs to keep
a running total of the number of bytes 1n a PDU sent to
identily when the next start of PDU 1s 1n the TCP segment.
This 1s done through a set of counters to identily when a PDU
header 1s 1n the segment. If there 1s a PDU header, the TCP
transmit engine sets the urgent tflag and sets the urgent pointer
to the byte count of the previous PDU 1n the segment (the
value can be anywhere from 0 to the MSS). If a packet does
not have a start of a PDU header 1n 1t, the urgent flag 1s not set,
indicating the entire segment 1s after the PDU header.

To prevent unneeded waiting and reassembly of the PDU
header on the remote side, the segment size may be truncated
as to include the start of the PDU header up through the entire
PDU length field 1n a single segment. This causes some TCP
segments to be smaller than the optimal MSS, but 1t waill
prevent waiting on the remote side for reassembly.

Reassembly of PDUs in TCP Recerve

When a packet 1s recerved that has an urgent flag set, a
check 1s made to verify that the PDU has enough of the header
to read the PDU size. If there 1s enough data to read the PDU
s1ze, the s1ze will be read, and a PDU boundary will be noted.
From that point on the start of PDUSs can be determined and all
incoming packets processed. PDU boundaries will be deter-
mined and when an entire PDU 1s received, 1t will be imme-
diately sent up the layer. This process allows for packets to be
sent to the upper layer out of order, preventing head of line
blocking.

The method of using the urgent tlag as a pointer to the PDU
boundary 1s easy to implement, but 1t only allows for one
boundary per packet and prevents from filling the full MSS 1t
there 1s a small PDU, particularly 1f the PDU includes jumbo
frames. This 1s because the larger the jumbo frame, the greater
the chance of multiple boundaries 1n a packet. This 1ssue 1s
addressed by using the PDU length value to calculate the start
of the next PDU. This can be continued as long as segments
are recerved in order. When an out of order segment is
received, the urgent pointer 1s used to find the next PDU, so
that the next PDU length can be obtained to continue the
process. Thus, PDU boundaries can be preserved by using the
urgent flag as a pointer.

The second step 1nvolved 1n successiully removing com-
plete but out of order PDU’s 1n the TCP tunnel 1s to open the
receive window, when a complete but out of order PDU 1s
removed out of the TCP receive queue. The size of an adver-
tised receive window 1s generally restricted to two times the
normal operating receive window size.

The receive window 1s generally opened when mitially
receiving out-of-order data. As out-of-order but complete
PDUs are pulled out of the receive queue, however, that data
1s counted double towards the receive window size because
the data cannot be ACKed until 1t can be sent up to the TCP
user. To alleviate this problem, place holders are used 1n the
receive queue to mdicate data that was in the queue, but no
longer exists in the queue. Thus, 1n the recerve queue, a
placeholder 1s inserted to indicate that data has been sent up to
the user. The placeholder has byte counters for what has been
sent and what 1s remaining to be sent to properly adjust the
window sizes. This facilitates continued processing of the
queue. When a segment 1s sent up to the application layer out
of order, credits are applied to the advertised recerve window

US 9,270,609 B2

15

for the size of the bytes sent up. Thus, the size of the data that
1s sent up 1s added 1n to the advertised TCP receive window.
This creates a situation where the TCP receive window adver-
tisements reflects the available size of the recerve queue and
the recerve window 1s kept open for new data.

If out-of order PDUSs having sizes X1, X2, X3. .., respec-
tively, are pulled out of the queue, the window advertisement
would be calculated as:

win_adv=max_win_size+(X1+X2+X3+ ...)—bytes_
still_in RX_queue

The recerve window size 1s decreased by the amount incre-
mented for each placeholder frame on the receive queue. This
decreases the receive window size down to the normal value
tor when all gaps 1n the receive queue have been filled. FIG.
16 1illustrates an example in which the RX window size 1s
65535 bytes, each segment 1s a 1500 byte segment, and the
PDU byte size 1s 2000 for the upper layer, with segment 2
being dropped within the network.

Table 1 below represents what could be processed, and
what the advertised window would be at each of the given
time stamps for the above example 1n prior art TCP tunnel
transiers. It should be noted that in the prior art TCP cases, the
upper layer could not process any PDUs until after time index
16 at the point of retransmit. In addition, the window size
would be steadily decreasing until the retransmit 1s recerved.

TABL

(L]

1

Prior Art TCP Data Processing and

Window Advertisement with L.oss
Bytes to be
Data Advertised processed by
Segment to Upper Layer Advertised RX Upper Layer at
Time RX at time 1ndex Window at time time interval
Index Number (Bytes) interval (Bytes) (2 KB PDU)
T1 1 1500 64035 0
T2 3 0 62535 0
T3 4 0 61035 0
T4 5 0 59535 0
T3 6 0 58035 0
T6 2 7500 64535 8000

10

15

20

25

30

35

40

16

With early credit back to the RX window when a PDU 1s
passed along to the upper layer, the same example would
progress as shown in the Table 2. As shown, 1n this case, at
carlier time stamps the upper layer can process full PDUs.
Additionally, the advertised window does not drop down as
far.

TABL.

L1

2

Optimized TCP Data Processing and
Window Advertisement with Loss

Bytes to be
Data Advertised processed by
Segment to Upper Layer Advertised RX Upper Layer at

Time RX at time mdex Window at time time mterval

Index Number (Bytes) interval (Bytes) (2 KB PDU)
T1 1 0 64035 0
T2 3 0 62535 0
T3 4 2000 63035 2000
T4 5 0 61535 0
T5 6 2000 62035 2000
T6 2 4000 64535 4000

If the data 1n Tables 1 and 2 above 1s examined 1n a side by
side comparison, 1t would be seen that the further removed a
retransmit 1s from the original place it was supposed to be
received, the worse the blocking 1s for the prior art TCPs.
Table 3 below shows a side by side comparison based on the
following assumptions:

Starting window size of 65535

Latency of 10 ms

500 Mbait/s connection speed

Assumption of non-blocking PDUs. Upper layer 1s respon-

sible for any blocking that might occur due to PDUs
being on the same stream.
Given these assumptions, there will be roughly 40 segments
sent 1n the time between receiving the out of order ACK, and
the time the retransmit 1s recerved. This represents what a
typical network environment would encounter. FIG. 17 illus-
trates the windows sizes for the two cases while FIG. 18

illustrates the bytes processed by the upper layer for the two
cases.

TABLE 3

Optimized TCP vs. Prior Art TCP 1n a Typical Network Scenario with Loss

Segment
Time RX
Index Number

AW — O

1
3
4
35
6
7
8
9
10
|1
| 2
|3
|4
D

Classic TCP Optimized TCP
Data Data
Sent To Size that Sent To Size that
Upper can be Upper can be
Layer Advertised processed Layer Advertised processed Sum
at time RX by Upper attime RX by Upper processed
index Window layer index Window layer by upper
(Bytes) (Bytes) (Bytes) (Bytes) (Bytes) (Bytes) layer
1500 65535 0 0 64035 0 0
0 64035 0 0 62535 0 0
0 62535 0 2000 63035 2000 2000
0 61035 0 0 61535 0 2000
0 59535 0 2000 62035 2000 4000
0 58035 0 2000 62535 2000 6000
0 56535 0 2000 63035 2000 8000
0 55035 0 0 61535 0 8000
0 53535 0 2000 62035 2000 10000
0 52035 0 2000 62535 2000 12000
0 50535 0 2000 63035 2000 14000
0 49035 0 0 61535 0 14000
0 47535 0 2000 62035 2000 16000
0 46035 0 2000 62535 2000 18000

US 9,270,609 B2

17
TABLE 3-continued

18

Optimized TCP vs. Prior Art TCP 1n a Typical Network Scenario with L.oss

Classic TCP Optimized TCP

Data Data

Sent To Size that Sent To Size that

Upper can be Upper can be

Layer Advertised processed Layer Advertised processed Sum

Segment at time RX by Upper at time RX by Upper processed
Time RX index Window layer index Window layer by upper
Index Number (Bytes) (Bytes) (Bytes) (Bytes) (Bytes) (Bytes) layer
T15 16 0 44535 0 2000 63035 2000 20000
T16 17 0 43035 0 0 61535 0 20000
T17 18 0 41535 0 2000 62035 2000 22000
T18 19 0 40035 0 2000 62535 2000 24000
T19 20 0 38535 0 2000 63035 2000 26000
120 21 0 37035 0 0 61535 0 26000
T21 22 0 35535 0 2000 62035 2000 28000
122 23 0 34035 0 2000 62535 2000 30000
123 24 0 32535 0 2000 63035 2000 32000
124 25 0 31035 0 0 61535 0 32000
125 26 0 29535 0 2000 62035 2000 34000
126 27 0 28035 0 2000 62535 2000 36000
127 28 0 26535 0 2000 63035 2000 38000
128 29 0 25035 0 0 61535 0 38000
129 30 0 23535 0 2000 62035 2000 40000
T30 31 0 22035 0 2000 62535 2000 42000
T31 32 0 20535 0 2000 63035 2000 44000
132 33 0 19035 0 0 61535 0 44000
T33 34 0 17535 0 2000 62035 2000 46000
T34 35 0 16035 0 2000 62535 2000 48000
T35 36 0 14535 0 2000 63035 2000 50000
136 37 0 13035 0 0 61535 0 50000
137 38 0 11535 0 2000 62035 2000 52000
T38 39 0 10035 0 2000 62535 2000 54000
139 40 0 8535 0 2000 63035 2000 56000
T40 2 58500 65535 60000 4000 635535 4000 60000
335

The disclosed method of manipulating the receive window
s1ze keeps the sending side from running out of transmit
window size and stopping transmission of new data when the
receive side 1s able to pull out-of-order data from the RX
queue. This helps reduce the amount of head-of-line-blocking
when multiple tlows share the same WAN TCP connection.

As shown 1 FIG. 14, in one embodiment, the TCP Seg-
ment information for the segment before and after the PDU
that was sent up 1s truncated to no longer contain the PDU
information for the one that was passed up.

FIG. 15 1llustrates a situation 1 which a recerved PDU
header 1s on a segment boundary. As shown in FIG. 15, PDU
2 1n on a segment boundary between TCP segment 1 and TCP
segment 2. Thus a part of the PDU 2 header1s in TCP segment
1 and a part of 1t 1s 1n TCP Segment 2. The system generally
attempts to avoid this situation on the transmit side, but it may
still occur 11 other network devices are in the middle. To
address this 1ssue, the following calculation 1s made:

if ((segment size—urgent pointer—length offset—length
size)>0){/*length is not segmented™*/}

Once the entire portion of the length field 1s received, the
length of the PDU 1s determined and processed on the queue
as normal.

The above description 1s intended to be 1llustrative, and not
restrictive. For example, the above-described embodiments
may be used in combination with each other. Many other
embodiments will be apparent to those of skill in the art upon
reviewing the above description. The scope of the mnvention
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled. In the appended claims, the

40

45

50

55

60

65

[1

terms “including” and “in which” are used as the plain-En-
glish equivalents of the respective terms “comprising” and
“wherein.”

What 1s claimed 1s:

1. A network device comprising:

a physical port for connection to a wide area network
(WAN) carrying Transmission Control Protocol (TCP)
traffic;

a TCP recerve queue coupled to said physical port to which
first and second protocol data units (PDUSs) are added;

a PDU removal logic coupled to said TCP receive queue to
pull PDUs from said TCP receive queue, wherein 1f the
first PDU 1s mcomplete and the second PDU 1s com-

plete, said PDU removal logic pulls the second PDU
prior to the first PDU being complete; and

a TCP receive window advertisement logic coupled to said

PDU removal logic and said port to provide a frame to
the WAN which increases a TCP advertised receive win-
dow si1ze by the size of the second PDU when the second
PDU 1s pulled betore the first PDU 1s complete.

2. The network device of claim 1, wherein the boundaries
of each of the first and the second PDUs are preserved 1n said
TCP receive queue.

3. The network device of claim 2, wherein the boundaries
of each of the first and the second PDUs are preserved by
using an urgent pointer in each of the PDUs to point to a PDU
boundary.

4. The network device of claim 3, wherein the urgent
pointer 1s pointed to the first byte of a PDU header.

5. The network device of claim 2, wherein the boundaries
of each of the first and the second PDUs are preserved by
parsing the first and the second PDUSs to look for PDU head-

Crs.

US 9,270,609 B2

19

6. The network device of claim 1, wherein a placeholder 1s
placed in the TCP receive queue for the second PDU when the
second PDU 1s pulled.

7. The network device of claim 6, wherein the placeholder
has a byte counter for any PDU that 1s pulled out of the TCP
receive queue.

8. The network device of claim 6, wherein the placeholder
has a byte counter for any PDU that is still remaining in the
TCP receive queue.

9. The network device of claim 1, wherein when the first
PDU 1s complete, said PDU removal logic pulls the first PDU
and said TCP recerve window advertisement logic decreases
the TCP advertised receive window by the size of the second
PDU when the first PDU 1s pulled.

10. A method comprising:

receiving from a wide area network (WAN) connection a
plurality of two or more protocol data units (PDUs) by a
Transmission Control Protocol (TCP) receive queue,
wherein at least one of the PDUSs 1s incomplete and one
or more of the remaining PDUs are complete;

pulling the complete PDUs out of the TCP receive queue
prior to completing a preceding PDU; and

providing a TCP receive window advertisement which
increases a TCP advertised recerve window size by the
s1ize of a pulled PDU each time a complete PDU 1s pulled
out of the TCP receive queue prior to a preceding PDU
being completed.

11. The method of claim 10, further comprising preserving
the boundaries of each of the plurality of the PDUSs 1n the TCP
receive queue.

12. The method of claim 11, wherein the boundaries of
cach of the PDUSs are preserved by using an urgent pointer in
cach of the PDUSs to point to a PDU boundary.

13. The method of claim 12, further comprising pointing
the urgent pointer to the first byte of a PDU header.

14. The method of claim 11, wherein the boundaries of
cach of the PDUs are preserved by parsing the PDUs to look
tor PDU headers.

15. The method of claim 10, further comprising placing a
placeholder in the TCP receive queue for each complete PDU
that 1s pulled.

16. The method of claim 15, wherein the placeholder has a
byte counter for any PDU that 1s pulled of the TCP receive
queue.

17. The method of claim 15, wherein the placeholder has a
byte counter for any PDU that 1s still remaining in the TCP
receive queue.

18. The method of claim 10, further comprising pulling the
previously mcomplete PDU from the TCP receive queue,
when the previously incomplete PDU 1s complete and
decreasing the TCP advertised recetve window size by the
s1ze ol the PDUs following the now complete PDU which
have been previously pulled, when the now complete PDU 1s
pulled.

19. A network device comprising:

a physical port for connection to a wide area network
(WAN) carrying Transmission Control Protocol (TCP)
traffic;

a TCP recerve queue coupled to said physical port to which
a plurality of protocol data units (PDUs) are added,;

a PDU removal logic coupled to said TCP receive queue to
pull PDUs from said TCP recerve queue, wherein 11 one
of the plurality of PDUs 1s incomplete and one or more
of the plurality of PDUSs following the incomplete PDU
are complete, said PDU removal logic pulls the one or
more of the plurality of complete PDUs prior to the
preceding incomplete PDU becoming complete; and

5

10

15

20

25

30

35

40

45

50

55

60

65

20

a TCP recerve window advertisement logic coupled to said
PDU removal logic and said port to provide a frame to
the WAN which increases a TCP advertised receive win-
dow size by the size of a pulled PDU each time a com-
plete PDU is pulled out of the TCP receive queue prior to
a preceding PDU being completed.

20. The network device of claim 19, wherein the bound-
aries of each of the PDUs 1n said TCP recetve queue are
preserved.

21. The network device of claim 20, wherein the bound-
aries of each of the PDUs are preserved by using an urgent
pointer 1n each of the PDUs to point to a PDU boundary.

22. The network device of claim 21, wherein the urgent
pointer 1s pointed to the first byte of a PDU header.

23. The network device of claam 20, wherein the bound-
aries of each of the PDUSs are preserved by parsing the PDUSs
to look for PDU headers.

24. The network device of claim 19, wherein a placeholder
1s placed 1n the TCP receive queue for each complete PDU
when a complete PDU 1s pulled.

25. The network device of claim 24, wherein the place-
holder has a byte counter for any PDU that 1s pulled out of the
TCP receive queue.

26. The network device of claim 24, wherein the place-
holder has a byte counter for any PDU that 1s still remaining
in the TCP receive queue.

277. A method comprising:

recerving a first and a second protocol data unit (PDU) by
a Transmission Control Protocol (TCP) receive queue,
the first PDU being incomplete and the second PDU
being complete;

pulling the second PDU out of the TCP receive queue prior
to the first PDU being complete; and

providing a TCP receive window advertisement which
increases a TCP advertised receive window size by the
s1ize of the second PDU when the second PDU 1s pulled
out of the TCP recerve queue prior to the first PDU being
complete.

28. The method of claim 27, further comprising preserving,
the boundaries of each of the first and the second PDUSs 1n the
TCP receive queue.

29. The method of claim 28, wherein the boundaries of
cach of the first and the second PDUSs are preserved by using
an urgent pointer 1n each of the PDUs to point to a PDU
boundary.

30. The method of claim 29, further comprising pointing
the urgent pointer to the first byte of a PDU header.

31. The method of claim 28, wherein the boundaries of
cach of the first and the second PDUs are preserved by parsing
the first and the second PDUs to look for PDU headers.

32. The method of claim 27, further comprising placing a
placeholder 1n the TCP receive queue for the second PDU
when the second PDU 1s pulled.

33. The method of claim 32, wherein the placeholder has a
byte counter for any PDU that 1s pulled of the TCP receive
queue.

34. The method of claim 32, wherein the placeholder has a
byte counter for any PDU that 1s still remaining 1n the TCP
receive queue.

35. The method of claim 27, further comprising pulling the
first PDU out of the TCP recerve queue when the first PDU
becomes complete and decreasing the TCP recerve window
s1ze by the size of the second PDU when the first PDU 1s

pulled.

	Front Page
	Drawings
	Specification
	Claims

