US0092706038B2
a2y United States Patent (10) Patent No.: US 9,270,608 B2
Starks et al. 45) Date of Patent: *Feb. 23, 2016
(54) MULTI-STAGE LARGE SEND OFFLOAD (56) References Cited
(71) Applicant: Microsoft Technology Licensing, LLC, U.S. PATENT DOCUMENTS

Redmond, WA (US
’ (U) 6,707,796 Bl 3/2004 1.

7,181,542 B2 2/2007 Tuomenoksa et al.

(72) Inventors: John A. Starks, Seattle, WA (US); Keith 7283.522 B2 10/2007 Siddabathuni
L. Mange, Bellevue, WA (US) 7,389,350 B2 6/2008 Jain et al
7,487,264 B2 2/2009 Pandya
(73) Assignee: Microsoft Technology Licensing, LL.C, ;agggﬁggg E% 51’//{ 3850 8{:18 ot ":111‘
,004, 11 Qu etal.
Redmond, WA (US) 7.920470 B2 4/2011 Lindsay
7,944,946 B2 5/2011 Zhou et al.

(*) Notice: Subject to any disclaimer, the term of this 2005/0147 126

_ _ Al 7/2005 Qiuetal.
patent 1s extended or adjusted under 35 2005/0223134 Al 10/2005 Vasudevan et al.
U.S.C. 154(b) by 0 days. 2006/0072564 Al 4/2006 Cornett et al.
| | | | | 2006/0104295 Al 5/2006 Worley et al.
This patent 1s subject to a terminal dis- 2007/0101023 Al* 5/2007 Chhabraetal. 709/246
claimer. 2008/0178201 Al 7/2008 Billau et al.
2009/0219936 Al* 9/2009 Tripathietal. 370/392
. 2009/0232137 Al 0/2009 Cherian et al.
(21) Appl. No.: 14/182,229 2009/0323690 Al 12/2009 Lu et al.
_ 2011/0090915 A1* 4/2011 Drouxetal.cevnnn.. 370/411
(22) Filed: Feb. 17, 2014
OTHER PUBLICATIONS
(65) Prior Publication Data | _ | _ o
“High Reliable Capturing Crash Dumps for Linux”, Min1 Kernel
US 2014/0161123 Al Jun. 12, 2014 Dump, www.mkdump.sourceforge.net, last updated Mar. 30, 2006.

(Continued)

Related U.S. Application Data
Primary Lkxaminer — Kan Yuen

(63) Continuation of application No. 12/722.,434, filed on (74) Attorney, Agent, or Firm — John Jardine; Kate Drakos:

Mar. 11, 2010, now Pat. No. 8,654,784. Micky Minhas
(51) Int.Cl. (57) ABSTRACT
H04J 3/24 (2006.01) .
041 12/805 (2013.01) A network stack sends very large p:-;}ckets with large segment
' offload (LSO) by performing multi-pass LSO. A first-stage
e ter 1s 1serted between the network stack and the
(52) US. Cl | LSO filter is inserted b h k stack and th
CPC HO4L 47/365 (2013.01); HO4L 47/36 physical NIC. The first-stage filter splits very large LSO

(2013.01) packets into LSO packets that are small enough for the NIC.
(58) Field of Classification Search The NIC then performs a second pass of LSO by splitting,
CPC . HO4L 29/06136; HO4L 47/36, HO4L 47/365; these sub-packets into standard MTU-sized networking pack-

HO4L 67/108; HO4L 69/166 ets for transmission on the network.

USPC 370/229-235, 464, 474 '709/230-232
See application file for complete search history. 24 Claims, 5 Drawing Sheets
Data strsam from network stack
402
NG
| N S
E! Data Data Dota Data Dats Data
Fum smaller packets by the first-
pasgs software LSQ engine
406
-y
\/ Lsﬂigéulm
N hardware LSO 8z
"Spiit into network MTU-sized packets
by the hardware LSO engine
410 Sumby
\\/ / 41;‘”"
[t | O | [t | O | [oaeiac| Dwe
S

Standand
networking
packet, MTU siza

US 9,270,608 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Freimuth, D. et al., “Server Network Scalability and TCP Offload,”
2005, 14 pages, downloaded at http://www.usenix.org/events/

usenix(5/tech/general/full. sub.--papers/frei-muth/freimuth.pdf.

Masputra, A. et al., “An Efficient Networking Transmit Mechanism
for Solaris: Multidata Transmit (MDT),” 2002, 12 pages, down-
loaded at http://arc.opensolaris.org/caselog/PSARC/2002/276/mate-

rials/mdt.pdf.

Senapathi, S. et al., “Introduction to TCP Offload Engines,” Mar.
2004, 5 pages, downloaded at http://www.dell.com/downloads/glo-

bal/power/1q04-her.pdf.
“Networking Adapter Performance Guidelines,” Mar. 18, 2008, 6

pages, downloaded at http://blogs.technet.com/
winserverperformance/archive/2008/03/18/networki-ng-adapter-

performance-guidelines.aspx.

* cited by examiner

US 9,270,608 B2

Sheet 1 of S

Feb. 23, 2016

U.S. Patent

06 aALIq Addol4

==

|

9t

suoneoddy
|

; B b s s e i

6V

(s)seindwion ajowiay

papt A LN Al a0 -

Uyl
i
i B
H L e e e A
5 . . B L L e el L T

LG NV

Of pieogAay

L

-

AL

T N
=N

_ s dirnnbonn]

71 OSNOIN

L Ol4

f

62 ©Del01S B|CBRACLUSY

¢G d/| HHOMISN

A 4 vy

97
A4/l HOd [eldg

/| ®ALQ 1eOlA0

A

Pe d

9t B1e() _ 7€ 8h0Ig
JIBUID

we b0

/Z 8AUQ pieH |

A

) 4

€€ 4/l 8nug
3SiQ onaubey

¢t d/l

W
W
=
i
P
-
.-
st
e
F]
=T
lllll
-

.=
lllll
-
=

-

SALQ SIJ pieH

9

921A8(] 8belols

07 SNYG LWBISAS %

3¢

L JOJIUO

99 SNy ISOS >

ja1depy 1S0H

8P

jejdepy 08pIA

Jyun buissanoid

0C Jainduwion)

g€ V.LVYU
NVHOOdd

L& SNVHO O
HdHLO

gt SINVHUD0O™
NOILY O iddV

GE SO

(GC
AYVY)

4 9¢ SOId

(¥Z NOH)
Zc

AJOUWISN WBISAS

U.S. Patent Feb. 23, 2016 Sheet 2 of 5 US 9,270,608 B2

20 Computer

204 Parent Child Partition 1 Child Partition N
Partition

228
Virtualization
Service
Providers

220 Guest OS 222 Guest OS

230 Virtual 232 Virtual
Processor Processor

224 Device
Drivers

202 Hypervisor

208 234 212
Graphics |
Storage 53 NIC Processin Loglcal 25 RAM

FProcessor

FIG. 2

U.S. Patent Feb. 23, 2016 Sheet 3 of 5 US 9,270,608 B2

Fig. 3
/ 301
Host Guest
Networking Networking
Application Application
350 360
A A
Host OS Guest OS
Y 302 303 Y
Host Guest
Neftwork Network
Stack Stack
330 3::,0
V"rtI | '
irtua Virtual NIC
Swiich |« |
205 Driver
i 342
Nefwork
Interface
Device
Driver
310
Nefwork
Interface
Device
53
Network

300

U.S. Patent Feb. 23, 2016 Sheet 4 of 5 US 9,270,608 B2

Fig. 4

Data stream from network stack

402
Configured in
- virtual NIC
TR\ j;- p f’f 404
x“x\f,r’fj H,f"f
i hlgdir Data I Data Data Data Data I Data E
\ Giant packet, Multi- //
~ pass LSO sized

Split into smaller packets by the first-
pass software LSO engine

406
Supported by
hardware
~ 7‘ fﬁ;-”’fﬁ LSO eﬂglﬂe
S yd 408
TCR Data I Data I Data -
header
e D ata __ I __ D ata __ -
header | |
\ Large packet, /
hardware LSO sized
Split into network MTU-sized packets
by the hardware LSO engine
410 Supported by
network
/" infrastructure
— _— .f‘/
~ / 412
S ;”’
-~ TCP TCP TCP
header Jata l header Jata 1 header § Uata
- TCP | TCP ce 0
header | Dala i header | Data .. ; header Data
N A
Standard
networking

packet, MTU size

U.S. Patent Feb. 23, 2016 Sheet 5 of 5 US 9,270,608 B2
Recelve Packet
505
v
///r/r \\\\H‘x
1 //"’f 507 \\\ y
{\ NIC Supports >
. L8O? -~
\x\v///
Y
' /// \H_
n A7 8509
Divide into NIC < Packet<NIC >
supported Packets . LSO? 7
511 . /ff
N
,,, Y Y
Divide into NIC
supported LSO
Packets and Use Sen%:]cc; NIC

LSO
511

Fig. 5

US 9,270,608 B2

1
MULTI-STAGE LARGE SEND OFFLOAD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 12/722,434, entitled “MULTI-STAGE LARGE
SEND OFFLOAD?”, filed on Mar. 11, 2010, the entirety of

which 1s incorporated herein by reference.

BACKGROUND

When a guest computer system 1s emulated on a host com-
puter system, the guest computer system 1s called a “virtual
machine” as the guest computer system only exists 1n the host
computer system as a software representation of the operation
of one specific hardware configuration that may diverge from
the native machine. The virtual machine presents to the soft-
ware operating on the virtual machine an emulated hardware
configuration.

A virtual machine management system (sometimes
referred to as a virtual machine monitor or a hypervisor) 1s
also often employed to manage one or more virtual machines
so that multiple virtual machines can run on a single comput-
ing device concurrently. The virtual machine management
system runs directly on the native hardware and virtualizes
the resources of the machine by exposing intertaces to virtual
machines for access to the underlying hardware. A host oper-
ating system and a virtual machine management system may
run side-by-side on the same physical hardware. For purposes
of clarity will we use the abbreviation VMM to refer to all
incarnations of a virtual machine management system.

One problem that occurs 1n the operating system virtual-
1zation context relates to computing resources such as data
storage devices, data mput and output devices, networking
devices etc. Because each of host computing device’s mul-
tiple operating systems may have different functionality,
there 1s a question as to which computing resources should be
apportioned to which of the multiple operating systems. For
example, a virtualized host computing device may include
only a single network interface card (NIC) that enables the
host computing device to communicate with other networked
computers. This scenario raises the question of which of the
multiple operating systems on the virtualized host should be
permitted to interact with and control the NIC.

When one of the operating systems controls the NIC, the
other operating systems sends 1t packets to the network
through the operating system that controls the NIC. In such a
case, the packet size accepted by the NIC may not be known.
However, sending network TCP packets through a network
stack 1s computationally expensive. Resources must be allo-
cated for each packet, and each component in the networking
stack typically examines each packet. This problem 1s com-
pounded 1n a virtualization environment, because each packet
1s also transferred between the guest VM to the root operating
system. This entails a fixed overhead per packet that can be
quite large. On the other hand, the networking stack packet
s1ze 1s normally limited by the maximum transmission unit
(MTU) size of the connection, e.g, 1500 bytes. It 1s not typi-
cally feasible to increase the MTU size since it 1s limited by
network infrastructure.

Hardware NICs provide a feature called “Large Send O
load” (LLSO) that allows larger TCP packets to travel threugh
the stack all the way to the NIC. Since most of the cost per
packet 1s fixed, this does a fairly good job, but NICs typically
support packets that are fairly small, around 62 KB. There 1s

it il

10

15

20

25

30

35

40

45

50

55

60

65

2

a need for the transmission between operating systems of
larger packets to reduce overhead.

SUMMARY

The embodiments described allow a network stack to send
very large packets, larger than a physical NIC typically sup-
ports with large segment oftfload (LSO). In general, this 1s
accomplished by performing multi-pass LSO. A first-stage
LSO filter 1s 1inserted somewhere between the network stack
and the physical NIC. The first-stage filter splits very large
LSO packets into LSO packets that are small enough for the
NIC. The NIC then performs a second pass of LSO by split-
ting these sub-packets into standard MTU-sized networking
packets for transmission on the network.

To that end, a first operating system operating on a com-
puting device recerves an indicator of a first LSO packet size.
The first LSO packet size 1s a multiple of a second LSO packet
s1ze that 1s supported by a network interface card connected to
the computing device. The first operating system formats data
(e.g., from an application) into a first packet of a first LSO
packet size. The first packet 1s then transferred to a second
operating system on the same computing device that has
access to a network interface card. The first packet is then split
on the second operating system into multiple LSO packets of
a second LSO packet size that can be consumed by the net-
work mterface card. The multiple LSO packets are sent to the
network interface card for transmission on the network in
packets of a size supported by the network.

In general, the first operating system 1s executing on a
virtual machine and the indicator of a first LSO packet size 1s
received from a hypervisor operating on the same computing
device. The virtual machine can be migrated to a second
computing device and another indicator of a first LSO packet
s1ze 15 recerved from a hypervisor operating on the second
computing device. The indicator of the first LSO packet size
received from the hypervisor operating on the second com-
puting device can different from the indicator of the first LSO
packet size recerved from the hypervisor on the computing
device. Consequently, the indicator of the first LSO size
received Irom each of the hypervisor operating on the com-
puting device and the hypervisor operating on the second
computing device can be tuned for the specific computing
device’s CPU usage, throughput, latency or any combination
thereof.

In general, the first packet has a TCP header. The packet
header from the first packet 1s copied to the packets of second
[.SO-s1zed packets when they are split out.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of preferred embodiments, 1s better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the invention, there 1s shown in the
drawings exemplary constructions of the invention; however,
the invention 1s not limited to the specific methods and instru-
mentalities disclosed. In the drawings:

FIG. 1 1s a block diagram representing a computer system
in which aspects of the present mvention may be incorpo-
rated;

FIG. 2 1llustrates a virtualized computing system environ-
ment;

FIG. 3 illustrates the communication of networking across
a virtualization boundary;

FIG. 4 1s a flow diagram of the packet processing 1n accor-
dance with an aspect of the invention; and

US 9,270,608 B2

3

FIG. 5 1s a flow diagram of the processing performed by the
virtual switch according to an aspect of the invention.

DETAILED DESCRIPTION OF ILLUSTRATIV.
EMBODIMENTS

L1

The mventive subject matter 1s described with specificity to
meet statutory requirements. However, the description itself
1s not mtended to limit the scope of this patent. Rather, the
inventor has contemplated that the claimed subject matter
might also be embodied 1n other ways, to include different
combinations similar to the ones described 1n this document,
in conjunction with other present or future technologies.

Numerous embodiments of the present invention may
execute on a computer. FIG. 1 and the following discussion 1s
intended to provide a briet general description of a suitable
computing environment in which the mnvention may be imple-
mented. Although not required, the invention will be
described 1n the general context of computer executable
instructions, such as program modules, being executed by a
computing device, such as a client workstation or a server.
Generally, program modules include routines, programs,
objects, components, data structures and the like that perform
particular tasks. Those skilled in the art will appreciate that
the mvention may be practiced with other computer system
configurations, including hand held devices, multi processor
systems, microprocessor based or programmable consumer
clectronics, network PCs, minicomputers, mainframe com-
puters and the like. The 1nvention may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing envi-
ronment, program modules may be located 1n both local and
remote memory storage devices.

Referring now to FIG. 1, an exemplary general purpose
computing system 1s depicted. The general purpose comput-
ing system can include a conventional computer 20 or the
like, including at least one processor or processing unit 21, a
system memory 22, and a system bus 23 that communicative
couples various system components including the system
memory to the processing unit 21 when the system 1s 1n an
operational state. The system bus 23 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety ol bus architectures. The system memory can include
read only memory (ROM) 24 and random access memory
(RAM) 25. A basic input/output system 26 (BIOS), contain-
ing the basic routines that help to transfer information
between elements within the computer 20, such as during
start up, 1s stored 1n ROM 24. The computer 20 may further
include a hard disk drive 27 for reading from and writing to a
hard disk (not shown), a magnetic disk drive 28 for reading
from or writing to a removable magnetic disk 29, and an
optical disk drive 30 for reading from or writing to a remov-
able optical disk 31 such as a CD ROM or other optical media.
The hard disk drive 27, magnetic disk drive 28, and optical
disk drive 30 are shown as connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive interface
33, and an optical drive mterface 34, respectively. The drives
and their associated computer readable media provide non
volatile storage of computer readable 1instructions, data struc-
tures, program modules and other data for the computer 20.
Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, 1t should be appreciated by those
skilled 1n the art that other types of computer readable media
which can store data that 1s accessible by a computer, such as

10

15

20

25

30

35

40

45

50

55

60

65

4

magnetic cassettes, tlash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMSs), read
only memories (ROMs) and the like may also be used 1n the
exemplary operating environment. Generally, such computer
readable storage media can be used 1 some embodiments to
store processor executable instructions embodying aspects of
the present disclosure.

A number of program modules comprising computer-read-
able mnstructions may be stored on computer-readable media
such as the hard disk, magnetic disk 29, optical disk 31, ROM
24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and pro-
gram data 38. Upon execution by the processing unit, the
computer-readable instructions cause the actions described 1n
more detail below to be carried out or cause the various
program modules to be instantiated. A user may enter com-
mands and information into the computer 20 through input
devices such as a keyboard 40 and pointing device 42. Other
iput devices (not shown) may include a microphone, joy-
stick, game pad, satellite disk, scanner or the like. These and
other input devices are oiten connected to the processing unit
21 through a serial port interface 46 that 1s coupled to the
system bus, but may be connected by other interfaces, such as
a parallel port, game port or universal serial bus (USB). A
display 47 or other type of display device can also be con-
nected to the system bus 23 via an interface, such as a video
adapter 48. In addition to the display 47, computers typically
include other peripheral output devices (not shown), such as
speakers and printers. The exemplary system of FIG. 1 also
includes a host adapter 55, Small Computer System Interface
(SCSI) bus 56, and an external storage device 62 connected to
the SCSI bus 56.

The computer 20 may operate 1n a networked environment
using logical connections to one or more remote computers,
such as a remote computer 49. The remote computer 49 may
be another computer, a server, a router, a network PC, a peer
device or other common network node, and typically can
include many or all of the elements described above relative
to the computer 20, although only a memory storage device
50 has been illustrated 1n FIG. 1. The logical connections
depicted in FIG. 1 can include a local area network (LAN) 51
and a wide area network (WAN) 52. Such networking envi-
ronments are commonplace 1n offices, enterprise wide com-
puter networks, intranets and the Internet.

When used 1n a LAN networking environment, the com-
puter 20 can be connected to the LAN 51 through a network
interface or adapter 533. When used 1n a WAN networking

environment, the computer 20 can typically include a modem
54 or other means for establishing communications over the
wide area network 52, such as the Internet. The modem 54,
which may be internal or external, can be connected to the
system bus 23 via the serial port interface 46. In a networked
environment, program modules depicted relative to the com-
puter 20, or portions thereof, may be stored in the remote
memory storage device. It will be appreciated that the net-
work connections shown are exemplary and other means of
establishing a communications link between the computers
may be used. Moreover, while 1t 1s envisioned that numerous
embodiments of the present disclosure are particularly well-
suited for computerized systems, nothing in this document 1s
intended to limit the disclosure to such embodiments.
Referring now to FIG. 2, 1t depicts a lugh level block
diagram of computer systems that can be used 1 embodi-
ments of the present disclosure. As shown by the figure,
computer 20 (e.g., computer system described above) can
include physical hardware devices such as a storage device

208, e¢.g., a hard drive (such as 27 i FIG. 1), a network

US 9,270,608 B2

S

interface controller (NIC) 53, a graphics processing unit 234
(such as would accompany video adapter 48 from FIG. 1), at
least one logical processor 212 (e.g., processing unit 21 from
FIG. 1), random access memory (RAM) 25. One skilled in the
art can appreciate that while one logical processor 1s 1llus-
trated, in other embodiments computer 20 may have multiple
logical processors, e.g., multiple execution cores per proces-
sor and/or multiple processors that could each have multiple
execution cores. Depicted 1s a hypervisor 202 that may also be
referred to 1n the art as a virtual machine monitor or more
generally as a virtual machine manager. The hypervisor 202
in the depicted embodiment includes executable istructions
for controlling and arbitrating access to the hardware of com-
puter 20. Broadly, the hypervisor 202 can generate execution
environments called partitions such as child partition 1
through child partition N (where N 1s an integer greater than
1). In embodiments a child partition can be considered the
basic unit of 1solation supported by the hypervisor 202, that 1s,
cach child partition can be mapped to a set of hardware
resources, €.g., memory, devices, logical processor cycles,
etc., that 1s under control of the hypervisor 202 and/or the
parent partition. In embodiments the hypervisor 202 can be a
stand-alone software product, a part of an operating system,
embedded within firmware of the motherboard, specialized
integrated circuits, or a combination thereof.

In the depicted example configuration, the computer 20
includes a parent partition 204 that can be configured to
provide resources to guest operating systems executing in the
child partitions 1-N by using virtualization service providers
228 (VSPs). In this example architecture the parent partition
204 can gate access to the underlying hardware. Broadly, the
VSPs 228 can be used to multiplex the interfaces to the
hardware resources by way of virtualization service clients
(VSCs). Each child partition can include a virtual processor
such as virtual processors 230 through 232 that guest operat-
ing systems 220 through 222 can manage and schedule
threads to execute thereon. Generally, the virtual processors
230 through 232 are executable instructions and associated
state information that provide a representation of a physical
processor with a specific architecture. For example, one vir-
tual machine may have a virtual processor having character-
1stics of an Intel x86 processor, whereas another virtual pro-
cessor may have the characteristics of a PowerPC processor.
The virtual processors i this example can be mapped to
logical processors of the computer system such that the
instructions that effectuate the virtual processors will be
backed by logical processors. Thus, in these example embodi-
ments, multiple virtual processors can be simultaneously
executing while, for example, another logical processor 1s
executing hypervisor instructions. Generally speaking, the
combination of the virtual processors and various VSCs 1n a
partition can be considered a virtual machine.

Generally, guest operating systems 220 through 222 can
include any operating system such as, for example, operating
systems from Microsoit®, Apple®, the open source commu-
nity, etc. The guest operating systems can include user/kernel
modes of operation and can have kernels that can include
schedulers, memory managers, etc. Each guest operating sys-
tem 220 through 222 can have associated file systems that can
have applications stored thereon such as e-commerce servers,
email servers, etc., and the guest operating systems them-
selves. The guest operating systems 220-222 can schedule
threads to execute on the virtual processors 230-232 and
instances of such applications can be effectuated.

FIG. 3 15 a block diagram representing an exemplary vir-
tualized computing device where a first operating system

(host OS 302) controls the Network Interface Device 53.

10

15

20

25

30

35

40

45

50

55

60

65

6

Network Interface Device 53 provides access to network 300.
Network interface device 53 may be, for example, a network
interface card (NIC). Network interface device driver 310
provides code for accessing and controlling network interface
device 53. Host network stack 330 and guest network stack
340 each provide one or more modules for processing outgo-
ing data for transmaission over network 300 and for processing
incoming data that 1s received from network 300. Network
stacks 330 and 340 may, for example, include modules for
processing data 1n accordance with well known protocols
such as Point to Point protocol (PPP), Transmission Control
Protocol (TCP), and Internet Protocol (IP). Host networking
application 350 and guest networking application 360 are
applications executing on host operating system 204 and
guest operating system 220, respectively, that access network
300.

As mentioned above, 1n conventional computing devices
which adhere to the traditional virtualization boundary, data
does not pass back and forth between virtualized operating
systems. Thus, for example, in conventional configurations,
when data 1s transterred between host networking application
350 and network 300, the data 1s passed directly from the host
network stack 330 to the network interface device driver 310.
However, 1n the system of FIG. 3, data does not pass directly
from the host network stack 330 to the network interface
device driver 310. Rather, the data 1s intercepted by virtual
switch 3235. Virtual switch 325 provides functionality accord-
ing to an aspect of the mvention.

Because the guest OS does not have direct access to the
NIC, when the virtual NIC starts, the hypervisor advertises an
L.SO size to the networking stack indicating that the NIC 1s
capable of LSO with a large packet size. LSO increases
throughput by reducing the amount of processing that 1s nec-
essary for smaller packet sizes. In general, large packets are
given to the NIC and the NIC breaks the packets into smaller
packet sizes 1n hardware, relieving the CPU of the work. For
example, a 64 KB LSO 1s segmented into smaller segments
and then sent out over the network through the NIC. By
advertising an LSO packet size to the virtual NIC on the guest
OS that 1s larger that the L.SO-s1zed packets that are accepted
by the NIC, the networking stack will pass much larger pack-
ets to the virtual NIC. The virtual NIC 1n turn will transter the
large packets to the virtual switch.

This causes the networking stack to format and send pack-
cts that are much larger than the MTU size supported by the
underlying networking infrastructure, and much larger than
the physical NIC that the virtual NIC 1s attached to supports.
The packets are large chunks of data that are larger than a
standard TCP packet, but with a TCP header. The precise LSO
s1ze 1s tuned to optimize for performance: CPU use, through-
put, and latency, whereas previous solutions would choose
the largest value expected to be supported by the underlying
hardware NIC.

Normally this packet 1s sent all the way to the hardware as
an LSO packet, or it 1s entirely split in software by a software
LSO engine to MTU size. Instead, at some point before send-
ing the packet to the hardware, 1t 1s split into multiple packets
cach with a maximum size no greater than that supported by
the hardware’s LSO engine, then send the new packets to the
hardware NIC. This step can occur any time before the packet
1s sent to hardware, but the closer to the hardware that it 1s
performed, the better the performance.

This 1s accomplished with an LSO algorithm, by copying
the packet headers to each sub-packet and adjusting the TCP
sequence number, 1dentification field (for IPv4), and header
tflags. preferably, the IP or TCP checksums are not calculated
as 1s normally required by LSO, because that will be per-

US 9,270,608 B2

7

formed by the hardware NIC. Similarly, the length field in the
IP headers 1s not updated, nor 1s the TCP pseudo-checksum,
as this would interfere with the NIC’s later computation of
these fields while performing hardware LSO.

Finally, the software LSO driver must wait to complete the
tull packet to the sender until all sub-packets have been sent
by the NIC and are completed. This 1s achieved by keeping a
count of outstanding sub-packets that have not yet completed,
and completing the full packet when this count reaches zero.

FI1G. 4 demonstrates in conjunction with FIG. 3 more detail
the flow described above. In particular at 402, the data stream
from the network stack 340 arrives at the virtual NIC driver
342. At 404, the virtual NIC driver 342 configures a packet
that 1s as large as the hypervisor will allow. The LSO size of
the packet 1s preferably much larger that the LSO packet size
supported by NIC 53 in the host partition. The virtual NIC
driver 342 then transiers the data to the virtual switch 325 by
communication services provided by the hypervisor. At 406,
the virtual switch 325 then splits the large format LSO 1nto
LSO packets that conform to the LSO packet size 408 sup-
ported by the NIC hardware 33.

At 410, the LSO engine of the NIC hardware 53 splits the
LSO packets into MTU-s1zed packets 412 supported by the
network infrastructure. Those packets are then transmitted
over the network.

FIG. 5 further 1llustrates the processing performed 1n vir-
tual switch 325 of FIG. 3. At 505, virtual switch 325 receives
the packet from virtual NIC driver 342. Thereafter at 507,
virtual switch 325 determines if the NIC hardware 53 sup-
ports LSO. If LSO 1s supported, virtual switch 325 deter-
mines whether the packets 1s less than the NIC LSO packet
supported. If yes, at 5311, the packet 1s sent to the NIC hard-
ware 53 without further processing. If no, at 511, the over-
s1zed LSO packet 1s subdivided into LSO supported packets.
On the other hand, at 507, 1if NIC 1s not supported, then the
packets are divided into NIC supported packets at 511.

The techniques described allow the virtual machine to be
migrated from one system to another and maximize the per-
formance on each system, preferably tailored to the NIC
hardware on each system. To that end, when the virtual NIC

driver loads on the target system, the hypervisor provides a
LSO packet size that 1s then used to send the maximum sized
packet to the partition that controls the NIC hardware. This
allows an oversized packet to be determined for each system
based on maximizing throughput or other parameters that
may be desirable on the target system.

The various systems, methods, and techniques described
herein may be implemented with hardware or soiftware or,
where appropriate, with a combination of both. Thus, the
methods and apparatus of the present invention, or certain
aspects or portions thereof, may take the form of program
code (1.e., mstructions) embodied in tangible media, such as
floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable storage medium, wherein, when the pro-
gram code 1s loaded 1nto and executed by a machine, such as
a computer, the machine becomes an apparatus for practicing
the ivention. In the case of program code execution on pro-
grammable computers, the computer will generally include a
processor, a storage medium readable by the processor (in-
cluding volatile and non-volatile memory and/or storage ele-
ments), at least one mput device, and at least one output
device. One or more programs are preferably implemented 1n
a high level procedural or object oriented programming lan-
guage to communicate with a computer system. However, the
program(s) can be implemented 1n assembly or machine lan-

10

15

20

25

30

35

40

45

50

55

60

65

8

guage, 1 desired. In any case, the language may be a compiled
or interpreted language, and combined with hardware 1imple-
mentations.

The methods and apparatus of the present invention may
also be embodied 1n the form of program code that 1s trans-
mitted over some transmission medium, such as over electri-
cal wiring or cabling, through fiber optics, or via any other
form of transmission, wherein, when the program code 1s
received and loaded into and executed by a machine, such as
an EPROM, a gate array, a programmable logic device (PLD),
a client computer, a video recorder or the like, the machine
becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program
code combines with the processor to provide a unique appa-
ratus that operates to perform the indexing functionality of the
present invention.

Consequently, the network stack can send very large pack-
cts, larger than a physical NIC normally supports with LSO.
This 1s accomplished by performing multi-pass LSO; a first-
stage LSO switch 1s inserted somewhere between the network
stack and the physical NIC that splits very large LSO packets
into LSO packets that are small enough for the NIC. The NIC
then performs a second pass of LSO by splitting these sub-
packets into standard MTU-sized networking packets for
transmission on the network.

While the present invention has been described in connec-
tion with the preferred embodiments of the various figures, 1t
1s to be understood that other similar embodiments may be
used or modifications and additions may be made to the
described embodiment for performing the same function of
the present invention without deviating there from. For
example, while exemplary embodiments of the invention are
described in the context of digital devices emulating the func-
tionality of personal computers, one skilled i1n the art waill
recognize that the present invention 1s not limited to such
digital devices, as described in the present application may
apply to any number of existing or emerging computing
devices or environments, such as a gaming console, handheld
computer, portable computer, etc. whether wired or wireless,
and may be applied to any number of such computing devices
connected via a communications network, and interacting
across the network. Furthermore, 1t should be emphasized
that a varniety of computer platforms, including handheld
device operating systems and other application specific hard-
ware/software interface systems, are herein contemplated,
especially as the number of wireless networked devices con-
tinues to proliferate. Theretfore, the present invention should
not be limited to any single embodiment, but rather construed
in breadth and scope 1n accordance with the appended claims.

Finally, the disclosed embodiments described herein may
be adapted for use 1n other processor architectures, computer-
based systems, or system virtualizations, and such embodi-
ments are expressly anticipated by the disclosures made
herein and, thus, the present invention should not be limited to
specific embodiments described herein but instead construed
most broadly. Likewise, the use of synthetic imstructions for
purposes other than processor virtualization are also antici-
pated by the disclosures made herein, and any such utilization
ol synthetic instructions in contexts other than processor vir-
tualization should be most broadly read into the disclosures
made herein.

What 1s claimed:

1. A method for transmitting packets over a network, com-
prising:

receving at a first operating system operating on a com-

puting device, an indicator of a first large segment off-
load (LSO) packet size wherein the first LSO packet size

US 9,270,608 B2

9

1s a multiple of a second LSO packet size that 1s sup-
ported by a network interface card connected to the
computing device;

formatting data into a first packet of a first LSO packet size;

transferring the first packet to a second operating system on

the same computing device;
splitting the first packet on the second operating system
into multiple LSO packets of a second LSO packet size;

sending the multiple LSO packets to the network interface
card for transmission on the network 1n packets of a size
supported by the network.

2. The method as recited 1n claim 1 comprising copying a
packet header from the first packet to the multiple LSO pack-
ets.

3. The method as recited 1n claim 1 comprising adjusting a
TCP sequence number for the multiple LSO packets.

4. The method as recited i claim 1 wherein the first LSO
packet size 1s based at least 1n part on a size supported by a
virtual machine management system.

5. The method as recited 1n claim 1 wherein the first oper-
ating system1s a guest operating system executing on a virtual
machine.

6. The method as recited 1n claim 5 wherein the transferring
the first packet to the second operating system 1s performed
by a virtual network interface card driver.

7. The method as recited 1n claim 1 wherein the second
operating system 1s a host operating system.

8. The method as recited in claim 1 wherein the splitting of
the first packet 1s performed by a virtual switch.

9. A computer-readable storage device having stored
thereon computer-readable 1nstructions, the computer-read-
able 1nstructions, upon execution on a computing device
causing a system at least to:

receive at a first operating system operating on a computing

device, an indicator of a first large segment oitload
(LSO) packet size wherein the first LSO packet size 1s a
multiple of a second LSO packet size that 1s supported
by a network interface card connected to the computing
device:

format data into a first packet of a first LSO packet size;

transfer the first packet to a second operating system on the

same computing device wherein the first packet 1s split
on the second operating system 1nto multiple LSO pack-
ets of a second LSO packet size and the multiple LSO
packets sent to the network interface card for transmis-
s1on on the network 1n packets of a si1ze supported by the
network.

10. The computer-readable storage device as recited 1n
claim 9, the computer-readable 1nstructions, upon execution
on a computing device causing the system at least to copy a
packet header from the first packet to the multiple LSO pack-
ets.

11. The computer-readable storage device as recited 1n
claim 9, the computer-readable 1nstructions, upon execution
on a computing device causing the system at least to adjust a
TCP sequence number for the multiple LSO packets.

12. The computer-readable storage device as recited 1n
claim 9 wherein the first LSO packet size 1s based at least in
part on a size supported by a virtual machine management
system.

13. The computer-readable storage device as recited 1n
claim 9 wherein the first operating system 1s a guest operating
system executing on a virtual machine.

10

15

20

25

30

35

40

45

50

55

60

10

14. The computer-readable storage device as recited in
claiam 13 wherein the computer-readable instructions, that
upon execution on a computing device cause the system at
least to transter the first packet to the second operating system
1s performed by a virtual network interface card driver.

15. The computer-readable storage device as recited in
claim 9 wherein the second operating system 1s a host oper-
ating system.

16. The computer-readable storage device as recited in
claiam 9 wherein the computer-readable instructions, that
upon execution on a computing device cause the system at
least to split the first packet 1s performed by a virtual switch.

17. A system comprising:

one or more processing devices;

at least one memory in communication with the one or

more processing devices when the system 1s operational,
the at least one memory having stored thereon computer-
readable instructions, the computer-readable instruc-
tions, upon execution on the one or more processing
devices causing the system at least to:

recerve at a first operating system operating on a computing

device, an indicator of a first large segment oifload
(LSO) packet size wherein the first LSO packet size 1s a
multiple of a second LSO packet size that 1s supported
by a network interface card connected to the computing
device;

format data 1nto a first packet of a first LSO packet size;

transier the first packet to a second operating system on the

same computing device wherein the first packet 1s split
on the second operating system into multiple LSO pack-
ets of a second LSO packet size and the multiple LSO
packets sent to the network interface card for transmis-
s1on on the network 1n packets of a si1ze supported by the

network.

18. The system as recited in claim 17, wherein the com-
puter-readable mstructions that upon execution on the at least
one processing devices cause the system at least to copy a
packet header from the first packet to the multiple LSO pack-
ets.

19. The system as recited in claim 17, wherein the com-
puter-readable instructions that upon execution on the at least
one processing devices cause the system at least to adjust a
TCP sequence number for the multiple LSO packets.

20. The system as recited in claim 17 wherein the first LSO
packet size 1s based at least 1n part on a size supported by a
virtual machine management system.

21. The system as recited in claim 17 wherein the first
operating system 1s a guest operating system executing on a
virtual machine.

22. The system as recited in claim 21 wherein the com-
puter-readable mstructions that upon execution on the at least
one processing devices cause the system at least to transfer
the first packet to the second operating system 1s performed
by a virtual network interface card driver.

23. The system as recited 1n claim 17 wherein the second
operating system 1s a host operating system.

24. The system as recited in claim 17 wherein the com-
puter-readable instructions that upon execution on the at least
one processing devices cause the system at least to split the
first packet 1s performed by a virtual switch.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

