US009270592B1
12 United States Patent (10) Patent No.: US 9.270,592 B1
Sites 45) Date of Patent: Feb. 23, 2016
o o oo e JIPANCEIN 20110273987 AL* 112011 Schlansker ot al. - 3701235
1 chlansker etal.
NETWORK ROUTING 2013/0086017 Al 4/2013 Chao et al.
(71) Applicant: Google Inc., Mountain View, CA (US) FOREIGN PATENT DOCUMENTS
(72) Inventor: Richard Lee Sites, Mountain View, CA EP 1551 141 Bl 7/2005
(US) EP 2512073 Al 10/2012
OTHER PUBLICATIONS
(73) Assignee: Google Inc., Mountain View, CA (US)
Nie, et al., IP Address Lookup Using a Dynamic Hash Function, pp.
(*) Notice: Subject to any disclaimer, the term of this 1642-1647, Canadian Conference on Electrical and Computer Engi-
patent is extended or adjusted under 35 neering, IEEE, May 2005. -
U.S.C. 154(b) by 156 days. Pagla.mtzm, etal., Cont‘.ant Addressable Memory (CAM) Circuits and
Architectures: A Tutorial and Survey, pp. 712-727, IEEE Journal of
(21) Appl. No.: 14/163,562 Solid-State Circuits, vol. 41. No. 3, Mar. 2006.
. .
(22) Filed: Jan. 24, 2014 cited by examiner
Primary Examiner — Kwang B Yao
(31) Int. Cl. Assistant Examiner — Ricardo Castaneyra
HO4L 12/743 (2013.01) (74) Attorney, Agent, or Firm — Edward A. Gordon; Foley &
HO4L 12/741 (2013.01) [ardner LLP
(52) US. Cl 57 ABSTRACT
CPC HO4L 45/7453 (2013.01); HO4L 45/745 57) . . .
_ Network device and method for routing a packet and setting
(2013.01); HO4L 45/7457 (2013.01) .. .
_ _ _ up a new flow. The device includes a packet classifier, a
(58) Field of ClaSSlﬁC/athI.I Search / | 8. field-selection table, a hash module, and a routing table. A
CPC ... HOAL 4;5 7%5’ HO4L ;15 74j53" HO4L ;15 ?’Sf packet is routed by finding an entry 1n the field-selection table
HO4L 45/ 74, HO4L 4311457, HO4L 41 2483f using the packet classifier, selecting bits from the packet
HO4L 47/1 OhOH4OL41;;;g(;L;1 hgfﬁ%;/‘gj/(;z 0215 based on the entry in the field-selection table, and hashing the
o > selected bits along with an 1dentifier from the packet classifier
See application file for complete search history. or the field-selection table, using the hash module. The hash
(56) References Cited result 1s used to locate instructions in the routing table. When

U.S. PATENT DOCUMENTS

7,002,965 B1* 2/2006 Cheriton

tttttttttttttttttt

7,219.211 B1* 5/2007 Greeneetal.
7,290,084 B2 10/2007 Miller et al.
7,653,670 B2 1/2010 Hasan et al.

370/395.32
.. 111/216

Sourcel
1103 Ty

setting up a new flow, the hash module result may point to an
existing entry in the routing table. In such instances, a new
entry 1s added to the packet classifier, such that the hash
module will produce a different result that points to an avail-
able entry 1n the routing table.

23 Claims, 7 Drawing Sheets

Network Interfaces 115

Routing Module
101

Maintenance
Module
102

Packet Classifier

(TCAM])
120

Field Selection

Table
130

Hash Module
140

Routing Table

150

Network Device
100

Destination 1 Destination M
190, v 190,

| ™

U.S. Patent Feb. 23, 2016 Sheet 1 of 7 US 9,270,592 B1

Source 1
110,
N/
- | | Maintenance
| Routing Module | I\I/Iodule
101
| | | 102
o ——————
%4 Packet Classifier Field Selection
E (TCAM) Table
@ 120 130
£
=
g Hash Module Routing Table
= 140 150
Z
Network Device
100
\V/

Destination M
190,

Destination 1
190,

Figure 1

U.S. Patent Feb. 23, 2016 Sheet 2 of 7 US 9,270,592 B1

200
\b- Receive a Packet

J

220
Retrieve an identifier associated
with a packet classifier entry

J

230
Choose a field-selection table entry

l

240
Generate a hash input from
bits of the received packet

21

250

Hash the generated hash input
and the identifier

|

260
Match the hash result to
an entry in the routing table

|

270

Obtain routing instructions from
the routing table entry

U.S. Patent Feb. 23, 2016 Sheet 3 of 7 US 9,270,592 B1

314
g Q000 (0000001111111 111 (2222222212233
f 0123456718901 12345(6789(01231456718901
o |End of New Packet Preamble MAC Destination
and Delimiter Bits Address (6 Octets)
1 MAC Destination (Continued)
320-
7 MAC Source Address (o6 Octets)
- MAC bSource Fthertupe
} Address (Cont.) YP
| P THIL '
4 DSCE pe Packet Length
Ver. |(length) (Q0S)
- s . Fragment
5 Identification Flags it
Offset
Time to
340< | 6 | Protocol Header Checksum
Live (TTL)
7 Source IP Address
3 Destination IP Address
O Source Port Destination .
10 Sequence Number
360< | 11 Acknowledgment Number
: 1
12 _??a Hot Lontro Window Size
OffsetjUsed Flags
P
- Cheekaumn Urgent ointer /
Options / Zero Pad
380 14 Fncapsulated Data

Figure 3A

U.S. Patent Feb. 23, 2016 Sheet 4 of 7 US 9,270,592 B1

316
N 000000000011 (1111(11111|2222|222212233
0123145671890112345|16789(0123(4567(8901
o |End of New Packet Preamble MAC Destination
and Delimiter Bits Address (6 Octets)
1 MAC Destination (Continued)
320+
7 MAC Source Address (6 Octets)
; MAC Source Ethert voe
Address (Cont.) vE
4 o FhabELC Flow Label
Ver.,
Next Ho
5 Pavliocad Length . P
Header Limit
350< | & Source 1P Address (16 Octets)
7-9 Source IP Address (Continued)
10 Destination IP Address (16 Octets)
111-13] Destination IP Address (Continued)
14 Source Port Destination Port
15 Sequence Number
370 | 16 Acknowledgment Number
Data |Not| Control . |
17 O“EmeE!! F1age Window Size
.
. Checksum Urgent ointer /
i Options / Zero Pad
390~ 19 FEncapsulated Data

Figure 3B

U.S. Patent Feb. 23, 2016 Sheet 5 of 7 US 9,270,592 B1
420
TN
47271 - O 4 H30X XOUXK XXX OO0 YO YOO 30008 380 3300 o
NHKK XKKK XXKK XXX XKKK KAKK KKK XKKK KAKK KKK
422~ 1 B X XK KHHK XKKXKX XXX XXAX XXX XXX XD XXX XXX
K. XKKK XXXK KKK XKKK XAKK KKK XKKK KAXK KKK
423 | 453X 0000 XXX XXX XX06 XXXX XXXX XXX XXX XXHX
NXHK KKK XXXK XXX KKKK KXKK KKK XKKK KAXK KKK
424 | 6000 30000 300X 06XX Y00 X300 X000 XXX XXX XXX
XXX KEKK XXXK KKK KKKK KXKK KKK XKKK KAXK KKK
4251, | 4530 30000 30000 3000 xxxx 0102 0304 0506 0708
NXXX 0050 XXXK XXX XXXK KXKK KHHX XKKK KAXK KKK
426 | 6:000 30000 XXX 06xX 0102 0304 0506 0708 0910 1112
1314 1516 1718 1920 2122 2324 2526 2728 2930 3137

430
N

431
1 ¢ 0000000000001111111100000)00000000000000

432
271 0000000011111111111111111111111111111117

4 o
3705 0000000000001111111111110)00000000000000

43471 5 N0000000111711111111171111171111711111111]
435 -

/ N000000000007111111111110d00000000000000
436

0 0000000011111 11111111111111111111111111]

Figure 4

U.S. Patent Feb. 23, 2016 Sheet 6 of 7 US 9,270,592 B1

—————_—____H

: Hash Module
140
510

530 { Hash Result |

Figure 5

f"':.'.Z:.'.Z:.'.'.:.'.'.::.'.:.'.'. """""""""""" ':
6104 i MatchData, ;
612 614 |

Routing Table 150

651w\ 652~

h
Hash value., | Index, Index, | Match Data, | Routing Instruction,
Hash valuey, | Index, Index, | Match Data, | Routing Instruction,
Hash value. | Index_ Index, | Match Data, | Routing Instruction,

Hash value, | Index, — Index, | Match Data, | Routing Instruction,

Hash value, | Index, Index,, | Match value, | Routing Instruction,

620 — Routlr-wg
Instruction,

Figure 6

U.S. Patent Feb. 23, 2016 Sheet 7 of 7 US 9,270,592 B1

701
Receive indication of a new flow
]

J

02

Retrieve an identifier associated with a packet classifier entry

\

703

Choose a field-selection table entry

Vs

704

Generate a hash input from bits of a packet of the flow)

\

. aaaaa--—-———— TS

705
Hash the generated hash input and the identifier

707
Add a new entry to the data packet classifier

¢/ ™
[708
Assign a new identifier for the new entry
in the data packet classifier

.2
709

Hash the generated hash input and the new identifier

N

.-'-"Fﬁ-“"—\-\.

e

— e
d-"'; R“"‘n
Yes - /10 T
— e
.-""-f I H“'%—h

-~ T
= __d_d__::-

~.__Collision?

T -

Add an entry to the routing table

Figure 7

US 9,270,592 Bl

1

HASH COLLISION AVOIDANCE IN
NETWORK ROUTING

BACKGROUND

Network devices, e.g., switches, routers, and filters, play an
important role in data communications. Countless amounts of
data are transferred as data packets transmitted over different
networks across the world. Each data packet must be chan-
neled from 1ts source to 1ts destination, and network devices
play an important role 1n directing the traffic. In order to limit
latency, 1t 1s 1mportant that network device can route traflic
ciliciently and accurately.

There are many different components within network
devices. One component found 1n some network routers 1s a
routing table. A routing table stores handling instructions,
¢.g., a next-hop destination or an egress port identifier, for
data packets that are to be routed through the device. Each
entry in the table corresponds to a route. These routing tables
are sometimes stored using volatile integrated circuit
memory, €.2., SRAMSs. Generally, routing tables have limited
capacities. In order to stay within the limited capacity, it 1s
important that network devices store a minimal amount of
data for each route in the routing table.

SUMMARY

In one aspect, the disclosure relates to a network device.
The network device includes a packet classifier, a field-selec-
tion table, a hash module, a routing table, and a routing
module configured to route a packet. The routing module 1s
configured to determine an entry 1n the packet classifier using
a recerved packet, retrieve an 1dentifier associated with the
determined packet classifier entry, choose a field-selection
table entry using the retrieved 1dentifier, generate a hash mod-
ule mput by 1dentitying a set of bits of the packet based on the
chosen field-selection table entry, cause the hash module to
compute a hash result based on the generated hash module
input and based on the retrieved identifier, match the hash
result to an entry in the routing table, and obtain processing,
data for the data packet from the matching routing table entry.

In another aspect, the disclosure relates to a method. The
method includes recerving a packet from a source, determin-
ing an entry in a packet classifier using the received packet,
retrieving an 1dentifier associated with the determined packet
classifier entry, and choosing a field-selection table entry
using the retrieved identifier. The method further includes
generating a hash module mnput by identifying a set of bits of
the packet based on the chosen field-selection table entry,
causing a hash module to compute a hash result based on the
generated hash module input and the retrieved identifier, and
matching the hash result to an entry 1n a routing table. The
method includes obtaining processing data for the packet
from the matching routing table entry.

In another aspect, the disclosure relates to a non-transitory
computer-readable medium storing computer-readable
instructions that, when executed by one or more computing
devices, cause at least one of the one or more computing
devices to perform operations that include receiving a packet
from a source, determining an entry mn a packet classifier
using the received packet, retrieving an identifier associated
with the determined packet classifier entry, and choosing a
ficld-selection table entry using the retrieved identifier. The
operations further include generating a hash module 1nput by
identifying a set of bits of the packet based on the chosen
field-selection table entry, causing a hash module to compute
a hash result based on the generated hash module mput and

10

15

20

25

30

35

40

45

50

55

60

65

2

the retrieved 1dentifier, and matching the hash result to an
entry 1n a routing table. The operations further include obtain-
ing processing data for the packet from the matching routing
table entry.

BRIEF DESCRIPTION OF THE DRAWINGS

These diagrams and flowcharts are not intended to limit the
scope of the present teachings 1n any way. The devices and
methods may be better understood from the following illus-
trative description with reference to the following figures in
which:

FIG. 1 1s a diagram of an example network device;

FIG. 2 1s a flowchart of an example method for routing a
packet using the network device shown in FIG. 1;

FIG. 3A 1s the layout for a typical TCP/IPv4 packet header,
including the Ethernet frame;

FIG. 3B 1s the layout for a typical TCP/IPv6 packet header,
including the Fthernet frame;

FIG. 4 shows an example packet classifier and an example
field-selection table, as used by the network device shown 1n
FIG. 1;

FIG. 5 shows an example of the hash module used 1n the
network device shown 1n FIG. 1;

FIG. 6 shows an example routing table; and

FIG. 7 1s a flowchart of a method for imtiating a new flow
using the network device shown 1n FIG. 1.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

L1
=]

ERRED

The various concepts introduced above and discussed 1n
greater detail below may be implemented in any of numerous
ways, as the described concepts are not limited to any par-
ticular manner of mmplementation. Examples of specific
implementations and applications are provided primarily for
1llustrative purposes.

FIG. 1 shows a diagram of an example network device 100.
The 1llustrated network device 100 includes a routing module
101, a maintenance module 102, a packet classifier 120, a
field-selection table 130, a hash module 140, and a routing
table 150. The network device 100 includes network inter-
faces 115, through which the network device 100 can recerve
data packets from one or more of sources 110 _-110 (gener-
ally “source 110”) and can forward the data packets to any
number of destinations 190 -190 (generally “destination
190”"). The sources 110 and destinations 190 can each be a
server, a computer, a processor, a mobile device such as a
smart phone or tablet, a set-top device, or any other suitable
network device. In general, a set of data packets forming a
communication between a source 110 and a destination 190
constitutes a flow. In a two-way exchange between two end
points, the end points act as both sources and destinations.
Thus, a source 110 1n one flow may be a destination 190 for
another flow. In some 1mplementations, the network device
100 1s an end-host device. For example, the network device
100 can be a server that recerves requests from one or more of
sources 110 -110 , and responds to each request, e.g., by
originating data packets to transmit, or causing another server
to transmit, data packets to the requesting source 110. In some
implementations, the network device 100 uses the routing
module 101 to direct packets to another network device, to
one of multiple computing processors or modules 1n the net-

work device 100, to a particular core of a multi-core proces-

US 9,270,592 Bl

3

sor, to a particular hypervisor, virtual computer, or operating
system, or to a specific application or service instance execut-
ing on an end-host server.

In some implementations, one or more of the various com-
ponents of the network device 100 are implemented as hard-
ware 1n an integrated circuit, such as an application specific
integrated circuit (ASIC) or field programmable gate array
(FPGA). In some implementations, one or more of the various
components of the network device 100 are implemented as
computer executable instructions that are executed by one or
more special purpose or general purpose processors. In some
implementations, one or more of the various components of
the network device 100 are implemented as a mix of special
purpose circuits and computer executable instructions that
are executed by a processor. For example, 1n some implemen-
tations, the packet classifier 120 1s implemented as a ternary
content-addressable memory (TCAM) circuit, the hash mod-
ule 140 1s implemented as a special purpose hashing circuit,
the field-selection table 130 and the routing table 150 are
implemented using random access memory (RAM), and the
routing module 101 and the maintenance module 102 are
implemented as computer executable instructions that are
executed by a general purpose computing processor. In some
implementations, one or more of the components or modules
are remote from the network device 100. For example, 1n
some i1mplementations, the maintenance module 102 1s
implemented 1n a separate controller, €.g., 1n a controller for
a software-defined network (SDN). In some implementa-
tions, the ficld-selection table 130 and/or the routing table 150
are 1mplemented using volatile memory, such as DRAM,
SRAM, FLASH, or other integrated circuit memory. In some
implementations, a computing processor 1s multi-core. In
some 1mplementations, the network device 100 1s 1mple-
mented with multiple computing processors.

In operation, the network device 100 recerves a packet and
determines how to handle the received packet, e.g., by 1den-
tifying and forwarding the packet to a next-hop network
device. The process 1s generally governed by the routing
module 101. Each packet begins with a sequence of header
bits that identify a communication protocol for the packet and
any additional packet information in accordance with the
communication protocol, e.g., addressing information for the
packet. Two example formats are illustrated in FIGS. 3A and
3B, described below. The routing module 101 processes the
initial bits of the packet to 1dentily an entry in the routing table
150 with handling instructions for the packet. For example,
the handling instruction may specily a network interface 115
to use for forwarding the packet. In some 1implementations,
the network device 100 includes multiple computing proces-
sors and the handling 1nstructions specity which processor to
use for processing the packet. In some implementations, the
network device 100 includes multiple service instances for
handling network traific, and the handling instruction may
identify a particular service instance to handle the recerved
packet.

The routing module 101 1dentifies the entry in the routing,
table 150 by processing information in the header of the
packet. In general, each communication protocol defines an
assignment of the header bits into meaningful fields, where
cach field has a number of bits and the values of those bits 1s
the value of the respective header field. The meaning of a
header field value 1s understood within the context of the
communication protocol used. The number of bits 1n a field 1s
typically specified by either the protocol or by the contents of
another field 1n the header. For example, an address in IPv4 1s
represented by thirty-two bits, starting at the ninety seventh
bit of the IPv4 header (as shown, for example, in the IPv4

10

15

20

25

30

35

40

45

50

55

60

65

4

header 340 in FIG. 3A), whereas an address 1n IPv6 1s repre-
sented by one hundred twenty eight bits, starting at the sixty
fifth bit of the IPv6 header (as shown, for example, 1n the IPv6
header 350 1n FIG. 3B). Furthermore, a typical data packet
uses multiple protocols 1n a layered manner. For example, the
transmission control protocol (TCP) defines a communica-
tion verification protocol that relies on a separate addressing
protocol such as the Internet Protocol (IP), which, 1n turn,
relies on a framing protocol such as Ethernet. Thus, a single
TCP/IP packet has at least three layers of header information.
For example, as shown in FIG. 3A, a typical TCP/IPv4
packet, after a frame delimiter, begins with a fourteen-byte
Ethernet frame header 320, followed by a twenty-byte 1Pv4
header 340, followed by a TCP header 360, which 1s also
typically twenty bytes. Each protocol header contributes
information used by the routing module 101. For example, the
IPv4 header includes address information and the TCP header
includes port information. Therefore, the routing module may
be configured to distinguish between protocols and extract
information from the different protocol headers of a packet
using the correct bits, or fields of bits, of the packet.

Accordingly, still referring to FIG. 1, the routing module
101 uses a packet classifier 120 to classily the packet. In some
implementations, the packet classifier 120 determines which
communication protocols are used by the packet. In some
implementations, the packet classifier 120 compares the 1ni-
tial bits of a packet to one or more patterns, each associated
with an entry in the field selection table 130. If a pattern
matches to the 1nitial bits of a packet, then the associated entry
in the field selection table 130 indicates which fields (sets of
bits) 1n the packet to use. In some implementations, the pat-
tern matching 1s performed using ternary-logic content-ad-
dressable memory (TCAM). In a TCAM, the pattern for each
bit canmatch toal, toa 0, or to either. That 1s, the pattern can
designate some of the bits as “don’t care” bits that will satisty
a comparison with the pattern regardless of the value of those
particular bits. The “don’t care’ bits are typically indicated by
an “x”. In some implementations, the patterns are ordered 1n
such that i multiple patterns can may match to the same
packet, the first pattern 1in the ordering 1s used. The last pattern
can then be a generic pattern that will match all packet head-
ers and 1s associated with a default rule. In some implemen-
tations, the packet classifier 120 returns an identifier for an
entry 1n the field selection table 130. In some implementa-
tions, the packet classifier 120 returns two values: a classifi-
cation result and an 1dentifier for an entry 1n the field selection
table 130. In some 1mplementations, the classification result
1s unique to the pattern matched.

The field selection table 130 1s used to 1dentity which data
fields 1n the header of a packet to process based on the deter-
mined classification. In some implementations, the field
selection table 130 specifies, for each communication proto-
col or combination of communication protocols, which bits of
the header(s) to use. The selected bits are used as part of an
input to the hash module 140. For example, an entry in the
field selection table 130 may be a bit mask that, when applied
to the packet header with a logical AND operation, zeros-out
or clears the header bits that are not selected (efiectively
leaving only the selected field values). In some implementa-
tions, the routing module 101 extracts the results into a data
structure, an n-tuple, holding the selected field data. In such
implementations, the n-tuple 1s passed to the hash module
140. In some implementations, the bit mask 1dentified by an
entry 1n the field selection table 130 1s applied to the header,
or to a single contiguous block of bits from the header, and the
result 1s passed to the hash module 140. That 1s, the entire
packet prefix, or a single contiguous block of bits from the

US 9,270,592 Bl

S

packet, 1s used with bits for non-selected fields simply set to
a constant, e.g., zero. In some implementations, the bit mask
1s stored 1in a compressed manner, where each bit of the mask
represents multiple bits, e.g., one bit 1n a byte-mask repre-
sents eight bits of a bit-mask. In some 1implementations, an
entry in the field selection table 130 identifies specific bits, or
sets of bits, to use from the header. In some 1implementations,
an entry 1n the field selection table 130 identifies specific sets
of bits using a compressed encoding wherein each bit of the
encoding corresponds to a range of bits 1n the header. For
example, 1f a bitis “on” (1.e., setto 1), then the corresponding
range (e.g., the n” octet or byte, or the bits from bit x to bity
of the header) 1s extracted. In some 1mplementations, the
resulting value(s) 1s copied into a memory register.

The network device 100 includes a hash module 140, used
to hash an mput value (or values). For example, the hash
module 140 may be used to hash bit values selected from a
packet’s header data, as indicated by the entry 1n the field
selection table 130. In some implementations, values 1n addi-
tion to the bits selected from a packet header are included in
the input values to the hash module 140. The hash module 140
processes the input values and produces a hash value. In some
implementations, the hash value 1s of a fixed bit-length. In
some 1mplementations, an identifier associated with a result
from the packet classifier 120 1s included 1n the mput values.
For example, in some implementations, the classification
result 1s included with the bit values from the packet’s header
data. In some 1mplementations, the hash module 140 pro-
duces a hash result value from a sequential stream of 1nput
values. For example, the hash module may accept any number
of 1mput values. In some such implementations, each 1nput
value 1s limited to a predetermined number of bits (e.g., 32 or
64). In some such implementations, the hash module result 1s
updated as each 1input value 1s received, such that the result 1s
impacted by every bit recerved as mput. In some implemen-
tations, the hash module 1s placed 1n an initial state prior to
generating a result. In some implementations, the first input to
the hash module s a seed value. In some implementations, the
hash module implements a hash algorithm 1n special hard-
ware, €.g., in an ASIC or FPGA.

The routing module 101 uses the resulting hash value, or a
portion of the resulting hash value, to select an appropriate
entry 1n the routing table 150. In some implementations, the
hash module 140 produces a 2N-bit (e.g., 32 bit) hash value
and the routing module 101 only uses the lower order (or,
alternatively, the higher order) N bits (e.g., 16 bits) of the hash
value. In some 1mplementations, the routing table 150 1s
stored 1n a manner facilitating fast look-ups using the hash
value. For example, in some implementations, the routing
table 150 may be keyed to, or indexed by, the hash module
140 output values. In some implementations, the routing table
150 may be implemented as an array, two-way associative
array, four-way associative array, n-way associative array, or
successive-row-lookup table.

The maintenance module 102 maintains, and modifies as
necessary, the contents of the packet classifier 120, field
selection table 130, and routing table 150. In some implemen-
tations, the maintenance module 1s implemented as hardware
in an integrated circuit, such as an ASIC or FPGA. In some
implementations, the maintenance module 102 1s 1mple-
mented as computer executable instructions that are executed
by a special purpose or general purpose processor. In some
implementations, the maintenance module 102 1s on a sepa-
rate network controller, such as an SDN controller, remotely
maintaining the components of the network device 100. In
some 1mplementations, the maintenance module 102 updates
the routing table 150 for each new packet flow. In some

10

15

20

25

30

35

40

45

50

55

60

65

6

implementations, the maintenance module 102 updates the
routing table 150 for a new packet flow 11 the new flow meets
certain requirements. For example, in some implementations,
the maintenance module 102 updates the routing table 150 to
ensure a consistent route when a flow 1ndicates a need for a
certain quality of service ((QoS) or in-order delivery. In some
implementations, the maintenance module 102 updates the
packet classifier 120. For example, 1n some implementations,
the maintenance module 102 updates the packet classifier 120
with an additional classifier pattern used to differentiate
between two distinct packet flows that result in the same hash
result value from the hash module 140. The new pattern will
have a new, internally unique, classification result, and may
be associated with an existing entry in the field selection table
130 or may be associated with a new entry 1n the field selec-
tion table 130.

FI1G. 2 15 a flowchart of an example method 200 for routing
a packet using the network device shown 1n FIG. 1. In brief
overview, the method 200 includes recerving a packet (step
210), retrieving an 1dentifier associated with a packet classi-
fier entry (step 220), and choosing a field selection table entry
(step 230). The method further includes generating a first
hash module mput by identifying a set of bits of the received
packet (step 240), hashing the first hash module input
together with the identifier (step 250), matching the hash
result to an entry 1n the routing table (step 260), and obtaining
a routing struction from the routing table entry (step 270).
The network device then processes the packet according to
the obtained 1nstruction.

As indicated above, the method 200 begins with receiving
a packet (step 210). The packet can be received from any of
the sources 110 connected to the network device 100. The
packet can be recetved via a wired network connection or
wirelessly. In general, each packet begins with a sequence of
header bits that identily a communication protocol for the
packet and any additional packet information 1n accordance
with the communication protocol, e.g., addressing informa-
tion for the packet. A data packet includes, after the header
bits, additional data bits referred to as the payload. The pay-
load may encapsulate another packet, e.g., a packet in a for-
mat of another protocol. The payload for an encapsulated
packet begins with another header. Thus, as shown 1n FIGS.
3 A and 3B, an Ethernet packet may encapsulate an IP (IPv4 or
IPv6) packet, which may encapsulate a TCP packet (or a UDP
packet, or an ICMP packet, or any other protocol packet).
Each encapsulation 1s a layer, and the header for each layer
specifies information that may be useful in determining how
to handle the packet. For example, the IP layer includes a
source address, a destination address, and a protocol indicator
for the next-layer protocol of an encapsulated packet (e.g., 1
tor ICMP, 6 for TCP, 17 for UDP, etc.). Similarly, the TCP
layer includes 1dentifiers for a source port and a destination
port, and also includes control flags indicating a tlow state,
¢.g., a synchronization (SYN) flag used to imitiate a flow and
a final packet (FIN) flag used to terminate an existing flow.

Continuing with FIG. 2, after receiving a packet (step 210),
the routing module 101 retrieves an 1dentifier for the packet
using the packet classifier 120 (step 220). A packet classifier
120 matches a received packet with a packet classifier entry.
In some 1implementations, the packet classifier 120 will parse
the packet header to determine specific mformation associ-
ated with the packet, such as protocol, source IP address and
destination IP address. In some implementations, the packet
classifier 120 will compare the packet header to one or more
classification patterns. For example, 1n some implementa-
tions, the packet classifier 120 1s a TCAM. In general, a
packet may satisiy conditions for multiple possible classifi-

US 9,270,592 Bl

7

cations. In some 1mplementations, the packet classifier 120
prioritizes or orders the classification patterns such that the
packet 1s classified according to the highest priority (highest
order or “first”) pattern 1t satisfies. For example, the packet
classifier 120 may have a low order generic pattern for all
IPv4 packets, a higher order pattern for all TCP/IPv4 packets,
and a higher order pattern for TCP/IPv4 packets addressed to
a particular address or range of addresses (e.g., a sub-net). If
a TCP/IPv4 packet arrives addressed to an address in that
range, 1t would satisiy all three patterns, but the prioritization
determines that 1t should be classified using the highest order
pattern. In some implementations, the packet classifier 120
has a maximum number of entries. In some implementations,
a smaller number of entries may result 1n a reduced level of
clectrical power consumption. For example, where the packet
classifier 120 1s implemented as a TCAM, a TCAM with at
most 128 or 256 entries will use significantly less power than
a TCAM with thousands of entries.

The routing module 101 uses the retrieved identifier to
identily an entry 1n the field-selection table (step 230). Fach
entry in the field-selection table 130 indicates how to parse or
process the header information for a packet. In some 1mple-
mentations, an entry indicates which bits (or sets of bits) of
the packet are to be used as input values to a hash module 140.
In some implementations, multiple packet classifier entries
may correspond to a same field-selection table entry. In some
implementations, the packet classifier 120 1s implemented as
a TCAM and each entry in the TCAM corresponds to (or
indexes) an entry 1n the field-selection table 130. In some such
implementations, the entries in the field-selection table 130
are data structures including an i1dentifier (e.g., an 1dentifier
for an entry in the packet classifier 120) and a field selection
indicator (e.g., a bit selection pattern, as described above). In
some 1mplementations, the 1dentifier 1s an arbitrary number
selected as a “Seed” value that, when passed to the hash
module 140 as an imput value, causes the hash module 140 to
generate a particular hash result value (or causes the hash
module 140 to generate a hash result value other than a
particular hash result value). In brief, as discussed 1n more
detail below, 1n some implementations, the hash result value
corresponds to an entry 1n the routing table 150 and the Seed
value may be selected so that hash result value corresponds to
a particular entry in the routing table 150. Thus, in some
implementations, at steps 220 and 230, the routing module
101 uses the packet classifier 120 to identily an entry 1n the
ficld-selection table that specifies an 1dentifier or Seed value
and a bit-selection instruction.

The routing module 101 then selects bits from the header
(s) of the recerved packet (step 240) based on the bit-selection
instruction from the entry in the field selection table. One or
more of the fields of the packet header may be selected. For
example, the entry may indicate selection of bits representing
the packet’s source IP address, destination IP address, next
level protocol, destination port, and source port. As another
example, the entry may indicate selection of bits representing
the packet’s destination IP address sub-net (e.g., the first 24
bits of an IPv4 address), next level protocol, destination port,
and the TCP synchronization control flag (SYN). In some
implementations, the routing module 101 extracts the desig-
nated bits from the packet header and passes the designated
bits to a hash module 140 as input. In some 1implementations,
the routing module 101 1dentifies a single contiguous block of
bits from the packet, applies a bit mask to the block, the bit
mask 1dentified i1n the entry 1n the field selection table, and
passes the result to a hash module 140 as input. For example,
the single contiguous block of bits may be the first forty-four
bytes (three hundred fifty two bits) after the Ethernet header,

10

15

20

25

30

35

40

45

50

55

60

65

8

which 1s sufficient to include the twenty bytes of an IPv4
header or the forty bytes of an IPv6 header, and the first few
bytes of an encapsulated header. In some 1implementations,
the routing module 101 also passes the 1dentifier ({from step
220) or Seed value (from step 230) to the hash module 140 as
input.

The routing module 101 uses the hash module 140 to
determine a hash value for the mput values (step 250). In
general, the hash module 140 accepts the bits selected from
the packet header, and any additional mnput bits (e.g., an
identifier or Seed value), as mput. The hash module 140
implements a hash function which generates a hash value
based on the input values. In some implementations, the hash
module 140 calculates the hash result using a hash function
such as MD?3, Jenkins, or MurMur. In some implementations,
the hash module 140 uses a table of random numbers for
generating hash values. In some implementations, the hash
module 140 uses a linear-feedback shiit register (LFSR).
Typically, a hash function uses every input value such that a
change 1n any one input bit will result 1n a different output
value. The output value for a hash function 1s typically rep-
resented with fewer bits than the input value. For example, the
input values may be 128 bits that include two 32-bit IPv4
addresses, port information, protocol information, and a seed
value, and the input values may be reduced to, for example, a
32-bit hash result value. This 1s a form of lossy compression,
which means that, for such functions, there must be at least
one output value that can be reached from at least two differ-
ent mput values. When this happens, there 1s a collision
between the different input values that resulted 1n the same
output hash value. As introduced above, in some 1implemen-
tations, the Seed value may be adjusted to avoid collision
events. Further discussion of collisions, and methods of
addressing collision events, 1s presented below.

Continuing to refer to FIG. 2, in the method 200, the
routing module 101 takes the output of the hash module 140
and matches 1t to an entry in the routing table (step 260). In
some 1mplementations, the routing table 150 1s a hash table
keyed to the results of the hash module 140. In some 1mple-
mentations, the hash result value 1s an 1ndex into the routing
table 150. In some implementations, the routing module 101
uses the hash result, or a portion of the hash result, to calculate
an index into the routing table 150. In some 1implementations,
an index into the routing table 150 1s a memory address
allowing for direct access to memory storing an entry in the
routing table 150. In some implementations, the routing table
150 has a fixed number of entries such that each possible hash
result value can be translated to a specific entry 1n the routing
table 150. For example, there could by 2'° entries and the
lower-order 16 bits of the hash result value 1dentifies a respec-
tive entry. Each entry is either empty or 1s populated with
routing mstructions that corresponds to a packet with header
information that results in a corresponding hash value. In
some 1implementations, the entry 1identified 1s a generic entry
for packets flowing to a subnet.

In some 1mplementations, matching the hash result to an
entry 1n the routing table includes verifying the match. For
example, each routing table entry may include match data that
can be used to confirm the entry 1s correct for a particular
packet. Match data 1s described in more detail below. In some
implementations, matching the hash result to an entry 1n a the
routing table includes deriving a routing table index from a
first subset of a set of hash result bits (the binary representa-
tion of the hash result), locating an entry 1n the routing table
from the routing table index, identifying a match data item
stored 1n the entry, and verifying that the match data item 1s
equal to a second subset of the set of hash result bits. In some

US 9,270,592 Bl

9

implementations, the second subset of bits includes at least
one bit not 1n the first subset of bits. In some implementations,
the first subset of bits does not intersect with the second subset
ol bits. In some implementations, the first subset of bits 1s the
x lower order bits of an n-bit hash result, and the second
subset of bits 1s the upper n—x bits of the n-bit hash result. In
some 1mplementations, another characteristic of the packet s
used to verily the match.

In some 1implementations, the entry 1dentified 1s a specific
entry created for a particular flow of data packets. For
example, 1n some implementations, a new entry 1s added to
the routing table 150 when a new tlow 1s detected, and the new
entry indicates specific istructions for the new tlow. A new
flow may be detected, for example, when a TCP/IP packet
arrives with the SYN flag set, indicating the beginning of a
TCP handshake. In some implementations, 1f a new tlow 1s
detected and the resulting hash value points to (or indicates)
an entry in the routing table 150 that 1s already in use, this
indicates a collision. In some implementations, when a colli-
s10n 1s detected, a new entry 1s added to the packet classifier
120 such that the identifier for the entry in the packet classifier
120 1s changed, thereby altering the input to the hash module
140 and generating a new hash result value. In some 1mple-
mentations, a collision may be detected 1n other ways, as
described below.

The routing module 101 obtains the routing instruction
from the entry 1n the routing table (step 270) and processes the
packet using the routing instruction. In some 1mplementa-
tions, the routing table entry identifies a network interface
115 through which the network device 100 forwards the
packet. In some implementations, the routing table entry
identifies a next-hop address. In some implementations, the
routing table entry includes an mstruction to allow or drop the
packet. In some implementations, the routing table entry
includes an instruction to process the packet before forward-
ing, ¢.g., to fragment the packet or to update a time-to-live
field or a hop limit field. The network device processes the
packet using the routing instructions. Thus, for example, the
network device can forward the packet to the proper destina-
tion 190.

FIG. 3A shows the format 314 for the headers of a typical
TCP/IPv4 packet transmitted via Ethernet. In broad overview,
the 1llustrated format includes an Ethernet frame 320, an
Internet Protocol (IP) version 4 header 340, a transmission
control protocol (TCP) header 360, and the beginning of the
encapsulated data 380, 1.¢., the payload.

A TCP/IPv4 packet, as shown 1n FIG. 3A, begins with a

new packet preamble and delimiter, most of which 1s not
shown. After the delimiter, an Ethernet frame header 320
includes a media access control (MAC) address for the pack-
et’s immediate destination (1.e., the network device receiving
the packet) and a MAC address for the packet’s immediate
source (1.e., the network device transmitting the packet). A
MAC address 1s 48 bits, or six 8-bit octets. The Ethernet frame
header 320 also includes a 16-bit “Ethertype” indicator,
which may indicate the size of the frame or the protocol for
the Ethernet payload (1.e., the next level protocol). The Eth-
ernet frame header 320 1s followed by the Ethernet payload,
which begins with a header for the encapsulated packet.
FIG. 3A shows the format 314 for the headers of a typical
TCP/IPv4 packet, thus the Ethernet frame header 320 1s fol-
lowed by an IPv4 header 340. The first four bits indicate the
Internet Protocol version (1.€., 4). The next sets of bits indicate
the header length (IHL), flags to differentiate service require-
ments (DSCP, used, e.g., to express quality of service (QoS)
requirements), explicit congestion notification (ECN), a
length for the IP packet, a packet identification shared across

5

10

15

20

25

30

35

40

45

50

55

60

65

10

packet fragments, IP flags, and a fragment offset. After the
packet fragmentation bits, the IPv4 header 340 indicates a
time to live (TTL) for the packet, which may be measured in
time (e.g., seconds) or hops (number of network devices that
can forward the packet). After the TTL, the IPv4 header 340
indicates the protocol for the next level encapsulated packet.
For example, a 1 indicates the Internet control message pro-

tocol (ICMP), a 6 indicates TCP, and 17 indicates the user
datagram protocol (UDP). The IPv4 header 340 further
includes a header checksum, which must be recalculated
every time the header changes, e¢.g., whenever the TTL 1s
updated. The IPv4 header 340 next specifies a 32-bit source
address and a 32-bit destination address. Additional header
fields may be used, but may be omitted and are not shown 1n
FIG. 3A.

After the IPv4 header 340, FIG. 3A shows a TCP header
360. The typical TCP header begins with a 16-bit source port
identifier and a 16-bit destination port identifier. A TCP port
1s a virtual port, typically used to indicate the type of data 1n
the payload so that the receiver can pass the packet to the
correct application. The TCP header 360 then specifies
sequencing mnformation including a sequence number for the
packet, an acknowledgement number, and a data offset. The
TCP header 360 includes control flags, e.g., SYN, FIN, and
ACK, and additional control information such as the window
s1Zze, a checksum, and other options. The data encapsulated
380 begins after the TCP header 360.

FIG. 3B shows the format 316 for the headers of a typical
TCP/IPv6 packet transmitted via Ethernet. In broad overview,
the illustrated format includes an Ethernet frame 320, an
Internet Protocol (IP) version 6 header 350, a transmission
control protocol (TCP) header 370, and the beginning of the
encapsulated data 390, 1.e., the payload. The Ethernet frame
320 1n the 1llustrated packet 1s 1dentical to the Ethernet frame
320 1n FIG. 3A.

FIG. 3B shows the format 316 for the headers of a typical
TCP/IPv6 packet, thus the Ethernet frame header 320 1s fol-
lowed by an IPv6 header 350. The first four bits indicate the
Internet Protocol version (1.€., 6). The next sets of bits indicate
a traific class, a flow label, and the payload length. After the
payload length, the IPv6 header 350 indicates a Next Header,
which 1s the same as the protocol identifier used 1n IPv4. That
1s, it may be a 1 for ICMP, a 6 for TCP, a 17 for UDP, or any
other number 1indicating an associated protocol for the next
header in the packet. The IPv6 header 350 then indicates a hop
limait for the packet, equivalent to the TTL of IPv4 when used
to specily the number of network devices that can forward the
packet. After the hop limait, the IPv6 header 350, specifies a
128-bit source address and a 128-bit destination address.
Additional header fields may be used, but may be omaitted and
are not shown 1n FIG. 3B. There 1s no checksum for an IPv6
header, eliminating one of the bottlenecks in IPv4 packet

processing.
After the IPv6 header 350, FIG. 3B shows a TCP header

370. The TCP header 370 1s identical to the TCP header 360
shown 1n FIG. 3A, but the offsets from the Ethernet frame 320
are increased because the size of an IPv6 header 350 1s larger
than the size of an IPv4 header 340. The data encapsulated
390 begins after the TCP header 370.

FIG. 4 1llustrates an example of a packet classifier 420 and
an example of a field selection table 430. The 1llustrated
packet classifier 420 1s shown with patterns expressed in
hexadecimal, such that each four bit section of the header 1s
represented by a value 1n the range 0-9, A-F, or by an X for
“don’t care.” The patterns illustrated begin with the IP header,
although 1n some implementations the patterns begin with the
Ethernet frame, e.g., so that the source MAC address can be

US 9,270,592 Bl

11

used 1n the patterns. The illustrated packet classifier 420
begins with a lowest priority filter 421 matching any IPv4
packet with an IP header of twenty octets and a filter 422
matching any IPv6 packet. The packet classifier 420 also
includes a filter 423 matching any TCP/IPv4 packet and a
filter 424 matching any TCP/IPv6 packet. The packet classi-
fier 420 1ncludes a higher priority filter 425 matching a TCP/
IPv4 packet from address 1.2.3.4 to address 5.6.7.8, with a
destination port of 80 (shown 1n hexadecimal as 0050). The
packet classifier 420 also includes a higher prionty filter 426
matching a TCP/IPv6 packet from address 0102:0304:0506:
0708:0910:1112:1314:1516 to address
1718:1920:2122:2324:2526:2728:2930:3132.

Each row of the example field selection table 430 corre-
sponds to arow ol the example of a packet classifier 420. Thus
a packet that satisfies the highest priority filter 426 1s associ-
ated with a corresponding entry 436 that indicates where the
address bits are 1n the header. An IPv4 packet that does not

satisiy any of the higher priority filters will match the lowest
priority filter 421, which corresponds to an entry 431 that
indicates where IPv4 address bits are located in the header. As
indicated above, while the example field selection table 430
includes one entry for each entry in the packet classifier 420,
in some other implementations, more than one entry in the
packet classifier 420 may correspond to a common entry in
the field selection table 430. For example, 1n some implemen-
tations, the filters 421, 423, and 425, which each match to an
IPv4 packet, each correspond to a single entry in the field
selection table 430 that identifies, for example, bits common
to any IPv4 header.

FIG. 5 shows an example structure of the mputs and out-
puts of a hash module used in the network device shown in
FIG. 1. The example structure of a hash module 140 takes, as
input, bits from the packet 520 and a seed value 510, and
generates a hash result value 530. In some implementations,
the bits from the packet 520 are the values for various protocol
fields indicated by an entry 1n the field selection table 130. In
some 1mplementations the bits from the packet 520 are a
block of bits from the header with some of the bits therein set
to zero. Although shown 1n FIG. § as multiple fields 520, the
bits from the packet 520 may only be one field, may be a
single block of data representing multiple fields, may be
multiple fields, and/or may include bit values that have been
set to a constant. In some implementations, the seed value 510
1s an 1dentifier specified by the packet classifier 120. In some
implementations, the seed value 510 1s an identifier or Seed
value specified by an entry in the field selection table 130.
Because the hash module processes all of the input bits,
different values for the seed value 510 will cause the hash
module 140 to produce different values for the hash result
530, without any change to the input values 520 selected from
the packet header. In some 1implementations, the hash result
530 1s a fixed number of bits. In some implementations, the
lower order bits of the hash result 530 are used to locate an
entry in the routing table 150. For example, in some imple-
mentations, the routing table 150 has space for 2'° entries,
and the lower order sixteen bits of the hash result 530
uniquely identify one of those 2'© spaces in the routing table
150. In some 1mplementations, the routing table 150 1s
dynamically sized and an intermediary index maps hash
result values to indices ito the dynamically sized routing
table 150. In some such implementations, the intermediary
index has the same number of entries as possible hash result
values 530, e.g., 2'° entries for a 16 bit result. In some such
implementations, the intermediary index has a smaller num-
ber of entries, e.g., m, and the entry for a hash result values 1s

10

15

20

25

30

35

40

45

50

55

60

65

12

found at the hash result value modulo m. These implementa-
tions have an increased likelihood of hash collisions.

In some 1mplementations, the hash result 530 1s an n-bit
value (e.g., a 64-bit value or a 32-bit value) and the lower
order n—x bits (e.g., 16 bits) are used to determine an index
into the routing table 150. In some implementations, the
routing module 101 confirms that the entry at the determined
index 1s the correct entry (and not an entry reached via a hash
collision) by matching one or more stored values with con-
firmation values (referred to as “match data™). In some such
implementations, the full n-bit hash result value 330 may be
used as match data. For example, 1n some implementations,
the routing table 150 includes, 1n each entry, a stored copy of
the n-bit value that matches to the entry even though only n—x
bits are used to locate the entry. In some such implementa-
tions, only the additional bits of the hash value not included in
the n—x bits used to locate the entry are stored as match data.
The routing module 101 can confirm that the entry 1s correct
by matching the stored n-bit value (or stored portion thereof)
to the n-bit hash result value 530. As an example, 1n some
implementations, the hash result 530 1s 64 bits and only the
higher order 48 bits are stored as match data. The lower order
16 bits are used to locate an entry in the routing table 150 and
the remaining bits are used to confirm a match. In some such
implementations, no other match data 1s stored. In some
implementations, the match data includes bits from one or
more of the mput fields 520. For example, 1n some implemen-
tations, the match data includes an address field from the
packet header. In some implementations, the match data 1s an
input value 520 that 1s common to all packets for which the
entry should match. In some implementations, the match data
1s stored 1n a compressed form. In general, a routing table
storing less match data will use less memory and require less
circuitry and electrical power for verifications with match
data. In some implementations, no match data 1s stored and no
verification 1s performed.

FIG. 6 shows an example structure of a routing table 150
with stored match data. The example structure shows the
routing table 150 implemented as an associative array con-
taining two tables, an index table 651 and a data table 652.
The routing table 150 1s accessed using key data 610, which
includes a hash value 614, e.g., bits from a hash result 530.
When a routing module 101 accesses the routing table 150 to
identify routing instructions for a packet, the routing module
101 passes 1n the hash value 614, which 1s then converted to
an index using the index table 651. The index 1s used to locate
a corresponding entry in the data table 652. In some 1mple-
mentations, the key data 610 also includes match data 612.

The index table 651 maps hash values to indices. The index
table 651 1s ordered by hash values such that an entry for an
input hash value 614 can be quickly located 1n the index table
651. For example, 1n some implementations, the index table
651 1s structured such that each entry 1s at a memory location
addressed by a start address plus the respective mnput hash
value multiplied by a constant (e.g., the size of an entry in the
index table 651).

The data table 652 1s ordered by the indices from the index
table 651. As shown 1n FIG. 6, 1n some implementations, each
populated entry 1n the data table 652 includes confirmation
match data and routing instructions. In some 1implementa-
tions, the data table 652 does not include the confirmation
match data. In some implementations, the confirmation
match data includes multiple values, e.g., a value representa-
tive ol a source or destination address, a value representative
ol a source or destination sub-net, a hash value, or any other
data that may be used as confirmation match data. In some
implementations, the confirmation match data 1s the hash

US 9,270,592 Bl

13

result value 530 produced by the hash module 140 (see FIG.
5). In some such implementations, the hash value 614 used as
key data 610 for the routing table 150 1s a portion of the hash
result value 3530 stored as confirmation match data. For
example, the mput hash value 614 may be only the lower (or
higher) order bits of the hash result value 530. In some 1mple-
mentations, the key data 610 1s a subset of the bits represent-
ing the hash result value 530, and the match data 1s a different
subset of the bits representing the hash result value 530. In
some 1mplementations, the confirmation match data 1s the
same data that was passed into the hash module 140. In some
implementations, the confirmation match data 1s a subset of
the data that was passed into the hash module 140. In some
such implementations, the confirmation match data may
include less information than the data that was passed into the
hash module 140. In some implementations, the confirmation
match data 1s compressed. In some implementations, the
index table 651 and the data table 652 are n-way associative.
For example, the index table 651 and the data table 652 may
be two-way associative, such that the data table 652 includes,
for each entry, the hash value that corresponds to that entry
(from the index table 651).

In some implementations, the match data 612 1s also passed
in as an mput value 610. In such implementations, 1 the
match data stored in the entry matches the input match data
612, then the routing 1nstruction stored at the entry 1s returned
620. If there 1s no entry, the packet may belong to a new tlow
and the maintenance module 102 updates the tables accord-
ingly. If there 1s an entry, but the match data in the data table
652 does not match to the input match data 612, then there 1s
a collision. That 1s, the values selected from the packet hashed
into a hash value that 1s already 1n use by packets in another
flow. This packet, too, 1s for a new flow and the maintenance
module 102 updates the tables accordingly. In some 1mple-
mentations, the match data 612 1s only passed 1n as an input
value 610 for a new tlow. For example, in some implementa-
tions, the maintenance module 102 may receive an instruction
to establish a new tflow and uses the match data 612 to verily
that the newly established tlow does not have a collision with
an existing flow.

In some 1implementations, when there 1s a new tlow with a
hash collision with an existing entry in the routing table 150,
the maintenance module 102 updates the packet classifier 120
to add a new entry for the new flow, such that the new flow 1s
associated with a new 1dentifier. The new entry in the packet
classifier 120 may correspond to an already existing entry 1n
the field selection table 130, or the new entry 1n the packet
classifier 120 may correspond to a new entry in the field
selection table 130. In either case, the updates result 1in a
configuration for the new flow such that the data extracted
from packets in the flow, along with the new 1dentifier, cause
the hash module 140 to generate a distinct hash result 530 (as
shown 1n FI1G. §). The new hash result can be used, e.g., as an
input value 610, to identily an entry 1n the routing table 150
for the new flow. In some implementations, the maintenance
module 102 configures the entry with routing instructions for
the flow. In some implementations, the maintenance module
102 vernifies that the entry 1s not already 1n use, and, 11 1t 1s,
modifies the identifier associated with the flow so that the
hash module 140 will generate a different result.

FI1G. 7 1s a flowchart of an example method for imtiating a
new flow using the network device shown 1n FIG. 1. In brief
overview, the method 700 includes recerving an indication of
a new flow (step 701), retrieving an 1identifier associated with
packet classifier entry (step 702), and choosing a field selec-
tion table entry (step 703). The method further includes gen-
erating a hash module input by processing a packet of the new

5

10

15

20

25

30

35

40

45

50

55

60

65

14

flow (step 704), hashing the generated mnput along with the
identifier (step 705), and detecting a collision (step 706). If a
collision 1s detected, the method 700 includes adding a new
entry to the data packet classifier (step 707), assigning a new
identifier for the new entry 1n the data packet classifier (step
708), and hashing the generated hash module mput and the
new 1dentifier to produce a new hash result (step 709). The
method 700 then verifies that the new hash result does not
have a collision with an existing routing table entry (step
710). If there 1s a collision at step 710, the method 700 repeats
step 708, assigning a different new identifier for the new
entry. Once there are no collisions (at step 706 or step 710),
the method 700 includes adding an entry to the routing table
(step 720).

As indicated above, the method 700 begins with the main-
tenance module 102 receiving an indication to 1nitiate a new
data communication flow (step 701). In some 1mplementa-
tions, the indication 1s an mstruction recerved by the mainte-
nance module 102. For example, in some implementations,
an application or service instance on an host server may
initiate a tlow by sending an instruction to the maintenance
module 102. In some such implementations, the application
or service nstance designates specific packet handling
instructions for the new flow. For example, the host server can
request that acknowledgment packets for a new data stream
be directed to a particular stream management instance. In
some 1mplementations, the maintenance module 102 detects
a new flow as a previously unseen flow. In some implemen-
tations, the packet classifier 120 classifies a packet as one
initiating a new tlow. For example, the packet classifier 120
may detect the beginning of a TCP handshake, as indicated by
a SYN flag set in the TCP packet header. In some implemen-
tations where the data packet classifier 120 1s implemented as
a TCAM, there 1s a TCAM pattern to match one or more flow
initiation packets. For example, 1n some implementations, the
TCAM has a high priority pattern for identitying a TCP
packet with the SYN flag set, which 1s iterpreted by the
network device to indicate a new flow. In some 1mplementa-
tions where the data packet classifier 120 1s implemented as a
TCAM, recerving a packet with a packet header that matches
to the default row of the TCAM may 1nitiate a new flow. In
some 1implementations, an indication of a new flow includes
an indication of a desired routing instruction for the new tlow.
In some implementations, the maintenance module 102 deter-
mines a desired routing instruction for a new flow. For
example, the maintenance module 102 may access additional
network topology iformation to identily a next-hop device
for packets in the new flow.

The method 700 includes the maintenance module 102
retrieving an identifier associate with a packet classifier entry
(step 702). This step 1s analogous to step 220 in FIG. 2. The
method 700 includes the maintenance module 102 choosing a
field-selection table entry (step 703), this step i1s similarly
analogous to step 230 1n FIG. 2. The method 700 includes the
maintenance module 102 selecting bits from a packet of the
flow (step 704). This step 1s analogous to step 240 1n FIG. 2.
The method 700 also includes hashing the selected bits and
the 1dentifier (step 705). This step 1s analogous to step 250 1n
FIG. 2. As with step 250 in FIG. 2, step 705 1n FIG. 7 includes
using the 1dentifier as a seed value to a hashing function.

In the method 700, the maintenance module 102 then
detects whether a hash collision has occurred (step 706). A
collision 1s detected, for example, when the routing table 150
does not have an empty location at the index specified by the
hash result 330 for the new flow. In some implementations, a
collision 1s detected 11 there exists an entry with different
match data as compared to match data for the new tlow. In

US 9,270,592 Bl

15

some 1mplementations, a collision 1s detected 11 there exists
an entry with a different routing instruction as compared to
the desired routing instruction for the new tlow, and no col-
l1s10n 1s detected 11 the routing instruction in the routing table
150 1s the desired routing 1instruction for the new flow. That 1s,
if a new flow 1s established and packets for that new flow
would cause the routing module 101 to access an entry in the
routing table that i1s populated with handling instructions
prior to establishing the flow, then there 1s a collision. How-
ever, 1 those handling instructions are the same as the desired
handling mstructions, in some 1mplementations, the collision
1s 1gnored because the new entry would have the same han-
dling instructions as the existing entry. In some 1implementa-
tions, a collision 1s detected unless the returned location 1n the
routing table 150 1s empty, which indicates that the routing
instruction for the new data communication flow may be
stored at the returned location 1n the routing table 150.

If a collision 1s detected at step 706, the method 700
includes establishing a new 1dentifier for the flow, e.g., by
adding a new entry to the data packet classifier (step 707),
assigning a new 1dentifier for the new entry in the data packet
classifier (step 708), and hashing the generated hash module
input and the new 1dentifier to produce a new hash result (step
709). When adding a new entry to the data packet classifier
(step 707), the new entry 1n the data packet classifier 120 1s
selected to match packets of the new tlow, but not packets of
flows already being processed. In some implementations, the
next entry 1s selected to match packets only of the new flow.
In some implementations, the maintenance module 102 1den-
tifies the pattern previously used to classily a packet for the
flow and adds additional criteria to the pattern, specific to the
packet classified. For example, 11 the packet matched a clas-
sification pattern that specified the packet’s destination sub-
net, but not the full destination address, the maintenance
module 102 adds anew classification pattern that specifies the
packet’s full destination address.

The new classification pattern corresponds to a new 1den-
tifier assigned for the new entry 1n the data packet classifier
(step 708). In some implementations, the new 1dentifier 1s an
output value from the packet classifier. In some implementa-
tions, the new i1dentifier 1s stored in the field selection table
130, e.g., as a Seed value. In some implementations, the new
identifier 1s selected at random. In some implementations, the
new 1dentifier 1s selected in a deterministic manner, e.g., by
incrementing a counter.

If a collision was detected at step 706, the method 700
includes, after establishing a new identifier for the flow 1n step
708, hashing the generated hash mput from step 704 and the
new 1dentifier (step 709). Because the mputs are now difler-
ent, the hashing at step 709 results in a new a new hash value.
The result of the hashing at step 709 1s used to 1dentily an
entry location 1n the routing table. The new hash value will
almost always correspond to a different entry in the routing
table 150. If there 1s a collision (step 710), the method 700
returns to step 708 and assigns a new identifier for the entry in
the data packet classifier (added 1n step 707). In some 1mple-
mentations, steps 708, 709, and 710 are repeated until there 1s
no collision. In some implementations, after a predetermined
number of 1terations without avoiding a collision, an error
condition 1s triggered. In some implementations, after a pre-
determined number of 1terations without avoiding a collision,
additional steps are taken to modify the hash output, e.g., by
associating the new entry in the packet classifier with a dii-
terent field-selection table entry.

When there are no collisions detected at step 706 and/or
step 710, the method 700 includes adding, by the mainte-
nance module 102, a new entry to the routing table (step 720),

10

15

20

25

30

35

40

45

50

55

60

65

16

the entry containing the desired routing instruction and match
data for the flow. In some implementations, the new entry also
contains the hash result from step 709. In some implementa-
tions, the match data 1s a portion of the hash result from step
709. For example, 1n some implementations, the hash resultis
a 64-b1t value and the match data 1s the higher order 48 bits of
the hash result. In some such implementations, the lower
order 16 bits ol the hash result are used to locate an entry in the
routing table and the higher order 48 bits are used to verity a
match. Packets received after completion of the method 700
are routed using the method explained 1n relation to FIG. 2,
which locates and retrieves the routing instructions and asso-
ciated data stored in step 720.

In some implementations, the maintenance module 102
removes entries from the routing table 150 for tlows that have
ended, terminated, or become stale. For example, the packet
classifier 120 may detect a TCP teardown, as indicated by a
FIN flag set in the TCP packet header. In some implementa-
tions where the data packet classifier 120 1s implemented as a
TCAM, there 1s a TCAM pattern to match one or more tlow
termination packets. In some implementations, the mainte-
nance module 102 periodically removes entries from the rout-
ing table 150 that have not been used for a threshold length of
time or that were established more than some predetermined
period of time prior.

Implementations of the subject matter and the operations
described 1n this specification can be implemented 1n digital
clectronic circuitry, or 1n computer software embodied on a
tangible medium, firmware, or hardware, including the struc-
tures disclosed in this specification and their structural
equivalents, or 1n combinations of one or more of them.
Implementations of the subject matter described 1n this speci-
fication can be implemented as one or more computer pro-
grams embodied on a tangible medium, 1.e., one or more
modules of computer program instructions, encoded on one
or more computer storage media for execution by, or to con-
trol the operation of, a data processing apparatus. A computer
storage medium can be, or be included 1n, a computer-read-
able storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combi-
nation of one or more of them. The computer storage medium
can also be, or be 1included 1n, one or more separate compo-
nents or media (e.g., multiple CDs, disks, or other storage
devices). The computer storage medium may be tangible and
non-transitory.

The operations described in this specification can be imple-
mented as operations performed by a data processing appa-
ratus on data stored on one or more computer-readable stor-
age devices or received from other sources.

A computer program (also known as a program, soitware,
soltware application, script, or code) can be written 1n any
form of programming language, including compiled or inter-
preted languages, declarative or procedural languages, and 1t
can be deployed 1n any form, including as a stand-alone
program or as a module, component, subroutine, object, or
other unit suitable for use 1 a computing environment. A
computer program may, but need not, correspondto afileina
file system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program 1n question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub programs, or por-
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network. Examples of
communication networks include a local area network

US 9,270,592 Bl

17

(“LAN") and a wide area network (“WAN”), an inter-network
(¢.g., the Internet), and peer-to-peer networks (e.g., ad hoc
peer-to-peer networks).

The processes and logic tlows described 1n this specifica-
tion can be performed by one or more programmable proces-
sOrs executing one or more computer programs to perform
actions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any mventions or of what may be claimed, but
rather as descriptions of features specific to particular imple-
mentations. Certain features that are described 1n this speci-
fication in the context of separate implementations can also be
implemented in combination in a single implementation.
Conversely, various features that are described 1n the context
of a single implementation can also be implemented 1n mul-
tiple implementations separately or in any suitable sub-com-
bination. Moreover, although features may be described
above as acting 1n certain combinations and even mnitially
claimed as such, one or more features from a claimed com-
bination can in some cases be excised from the combination,
and the claimed combination may be directed to a sub-com-
bination or variation of a sub-combination.

Similarly, while operations are depicted 1n the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the implementations described above should not be
understood as requiring such separation 1n all implementa-
tions, and 1t should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple sofit-
ware products.

References to “or” may be construed as inclusive so that
any terms described using “or” may indicate any of a single,
more than one, and all of the described terms. The labels
“first,” “second,” “third,” and so forth are not necessarily
meant to indicate an ordering and are generally used merely to
distinguish between like or similar items or elements.

Thus, particular implementations of the subject matter
have been described. Other implementations are within the
scope of the following claims. In some cases, the actions
recited 1n the claims can be performed 1n a different order and
still achieve desirable results. In addition, the processes
depicted 1n the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain implementations, multi-
tasking or parallel processing may be utilized.

What 1s claimed 1s:

1. A network device, comprising:

a packet classifier;

a field-selection table;:

a hash module;

a routing table comprising entries each associated with a

respective hash value; and

a routing module configured to route a packet by:

determining an entry in the packet classifier using the
packet,

retrieving a first identifier associated with the deter-
mined packet classifier entry,

10

15

20

25

30

35

40

45

50

55

60

65

18

choosing a first field-selection table entry using the first
identifier, wherein the first field-selection table entry
specifies a first set of bits,

generating a first hash module mput by 1dentifying val-
ues of the first set of bits of the packet specified by the
chosen first field-selection table entry,

causing the hash module to compute a first hash result
based on the first hash module input and based on the
first identifier,

matching the first hash result to a first entry 1n the routing
table, and

obtaining processing data for the packet from the first
routing table entry associated, by the matching, with
the first hash result; and

a maintenance module configured to resolve a collision

between the first hash result associated with the first

entry 1n the routing table and a second hash result for a

new data communication tlow by:

adding, responsive to detecting the collision, a new entry
to the packet classifier corresponding to the new data
communication flow, wherein the new entry includes
a new 1dentifier that 1s different from the first 1denti-
fier:

adding, to the field-selection table, a new field-selection
table entry corresponding to the new identifier,
wherein the new field-selection table entry specifies a
second set of bits;

generating a second hash module 1input by identifying
values of the second set of bits of a packet of the new
data communication flow:

causing the hash module to compute a third hash result
based on the second hash module 1input and the new
identifier; and

adding, 1n association with the third hash result, an entry
to the routing table comprising processing data asso-
ciated with the new data communication flow.

2. The network device of claim 1, wherein the new entry
added to the packet classifier matches at least one field of a
packet associated with the new data communication flow.

3. The network device of claim 1, wherein the packet
classifier 1s a ternary content addressable memory (TCAM).

4. The network device of claim 3, wherein the first 1denti-
fier associated with the first packet classifier entry comprises
an index 1n the TCAM.

5. The network device of claim 1, wherein the field-selec-
tion table comprises a table of byte-masks.

6. The network device of claim 1, wherein causing the hash
module to compute the first hash result based on the first hash
module input and based on the first identifier comprises caus-
ing the hash module to use the first identifier as a seed value.

7. The network device of claim 1, wherein the routing
module 1s configured to match the first hash result to the first
routing table entry by:

deriving a routing table index from a first subset of a set of

hash result bits, wherein the hash result bits are a binary
representation of the hash result;

locating an entry 1n the routing table from the routing table

index;

identifying a match data item stored in the entry; and

verilying that the match data item 1s equal to a second

subset of the set of hash result bits, the second subset
comprising at least one bit not 1n the first subset.

8. The network device of claim 1, wherein the first hash
module mput consists of the results of an application of a
mask associated with the chosen first field-selection table
entry to a single contiguous block of bits from the first packet,

US 9,270,592 Bl

19

wherein the single contiguous block of bits comprises at least
a portion of a header of the first packet.

9. The network device of claim 1, the maintenance module
configured to detect the collision between the first hash result
and the second hash result for the new data communication
flow.

10. The network device of claim 1, the routing module
configured to retrieve the first identifier associated with the
first packet classifier entry by retrieving an index value of the
first packet classifier entry.

11. The network device of claim 1, wherein the second set
ol bits specified 1n the new field-selection table entry 1s dii-
ferent from the first set of bits specified by the first field-
selection table entry.

12. A method, comprising:

receiving a first packet associated with a first data commu-

nication flow:

determining a {irst entry i a packet classifier using the

recerved first packet;

retrieving a first identifier associated with the determined

first packet classifier entry;

choosing a first field-selection table entry using the

retrieved first identifier, wherein the first field-selection
table entry specifies a first set of bits;

generating a first hash module input by 1dentifying values

ol the first set of bits of the received first packet specified
by the chosen first field-selection table entry;

causing a hash module to compute a first hash result based

on the first hash module mput and the retrieved first
identifier;

matching the first hash result to a first entry in a routing

table;

obtaining processing data for the first packet from the

matching first routing table entry associated, by the
matching, with the first hash result;
detecting a collision between a second hash result for a
second data commumnication flow and the first hash result
associated with the first entry 1n the routing table;

adding, responsive to detecting the collision, a new entry to
the packet classifier corresponding to the second data
communication flow, wherein the new entry includes a
new 1dentifier that 1s different from the first identifier;

adding, to the field-selection table, a new field-selection
entry corresponding to the new identifier, wherein the
new lield-selection entry specifies a second set of bits;

generating a second hash module input by 1dentifying val-
ues of the second set of bits of a packet of the new data
communication flow;

causing the hash module to compute a third hash result

based on the second hash module mput and the new
identifier; and

adding an entry to the routing table comprising processing,

data associated with the new data communication flow,
the added entry associated with the third hash result.

13. The method of claim 12, wherein adding the new entry
to the packet classifier comprises adding an entry that
matches at least one field of a packet associated with the new
data communication flow.

14. The method of claim 12, wherein retrieving the first
identifier associated with the first packet classifier entry com-
prises retrieving an index value of the first packet classifier
entry.

15. The method of claim 12, wherein the first hash module
input consists of the results of an application of a mask asso-
ciated with the chosen first field-selection table entry to a
single contiguous block of bits from the recerved packet.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

16. The method of claim 12, wherein matching the first
hash result to the first routing table entry 1n the routing table
COmprises:

deriving a routing table index from a first subset of a set of

hash result bits, wherein the hash result bits are a binary
representation of the hash result;

locating an entry in the routing table from the routing table

index;

identifying a match data item stored in the entry; and

verilying that the match data item 1s equal to a second

subset of the set of hash result bits, the second subset
comprising at least one bit not 1n the first subset.

17. The method of claim 12, wherein the second set of bits
speciflied in the new field-selection table entry i1s different
from the first set of bits specified by the first field-selection
table entry.

18. A non-transitory computer-readable medium storing
computer-readable instructions that, when executed by one or
more computing devices, cause at least one of the one or more
computing devices to:

recerve a first packet associated with a first data communi-

cation flow:

determine a first entry 1 a packet classifier using the

received first packet;

retrieve a first identifier associated with the determined first

packet classifier entry;

choose a first field-selection table entry using the retrieved

first 1dentifier, wherein the first field-selection table
entry specifies a first set of bits;

generate a first hash module mput by identifying values of

the first set of bits of the recerved first packet specified by
the chosen first field-selection table entry;

cause a hash module to compute a first hash result based on

the first hash module mput and the retrieved first identi-
fier:

match the first hash result to a first entry 1n a routing table;

obtain processing data for the first packet from the first

routing table entry associated, by the matching, with the
first hash result;

detect a collision between a second hash result for a second

data communication flow and the first hash result asso-
ciated with the first entry 1n the routing table;

add, responsive to detecting the collision, anew entry to the

packet classifier corresponding to the second data com-
munication flow, wherein the new entry includes a new
identifier that 1s different from the first identifier;
add, to the field-selection table, a new field-selection entry
corresponding to the new identifier, wherein the new
field-selection entry specifies a second set of bits;

generate a second hash module mput by identitying values
of the second set of bits of a packet of the new data
communication flow;

cause the hash module to compute a third hash result based

on the second hash module input and the new 1dentifier;
and

add an entry to the routing table comprising processing

data associated with the new data communication flow,
the added entry associated with the third hash result.

19. The non-transitory computer-readable medium in
claiam 18, further comprising additional instructions that,
when executed by one or more computing devices, cause at
least one of the one or more computing devices to add the new
entry to the packet classifier by adding an entry that matches
at least one field of a packet associated with the new data
communication tflow.

20. The non-transitory computer-readable medium 1n
claam 18, further comprising additional instructions that,

US 9,270,592 Bl
21

when executed by one or more computing devices, cause at
least one ofthe one or more computing devices to: retrieve the
first 1dentifier associated with the first packet classifier entry
by retrieving an index value of the first packet classifier entry.

21. The non-transitory computer-readable medium in 5
claim 18, wherein the first hash module mput consists of
results ol an application of a mask associated with the chosen
first field-selection table entry to a single contiguous block of
bits from the received first packet.

22. The non-transitory computer-readable medium in 10
claam 18, further comprising additional instructions that,
when executed by one or more computing devices, cause at
least one of the one or more computing devices to match the
first hash result to the first routing table entry in the routing
table by: 15

deriving a routing table index from a first subset of a set of

hash result bits, wherein the hash result bits are a binary
representation of the hash result;

locating an entry 1n the routing table from the routing table

index; 20
identifying a match data item stored 1n the entry; and
verifying that the match data item 1s equal to a second

subset of the set of hash result bits, the second subset
comprising at least one bit not 1n the first subset.

23. The non-transitory computer-readable medium in 25
claim 18, wherein the second set of bits specified 1n the new
ficld-selection table entry 1s different from the first set of bits
specified by the first field-selection table entry.

¥ H H ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

