US009270586B2
a2y United States Patent (10) Patent No.: US 9,270,586 B2
Assarpour 45) Date of Patent: Feb. 23, 2016

(54) METHOD FOR ABSTRACTING DATAPATH (56) References Cited

HARDWARE ELEMENTS
(71) Applicant: Avaya, Inc., Basking Ridge, NJ (US)
(72) Inventor: Hamid Assarpour, Arlington, MA (US)
(73) Assignee: AVAYA INC., Basking Ridge, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 280 days.

(21) Appl. No.: 13/628,152

(22) Filed: Sep. 27,2012
(65) Prior Publication Data
US 2014/0086240 Al Mar. 27, 2014
(51) Int.CL
GO6IF 9/54 (2006.01)
HO4L 12/701 (2013.01)
HO4L 12/741 (2013.01)
(52) U.S. CL
CPC e, HO4L 45/54 (2013.01)
(58) Field of Classification Search

CPC GO6F 11/0709; GO6F 9/4443; GO6F
11/3006; GO6F 9/54; HO4W 84/18; HO4W

40/005; HO4W 8/005; HO4W 40/00;, HO4W
40/24; HO4W 48/18
See application file for complete search history.

Application 400

< =

Middleware 41

< -

U.S. PATENT DOCUMENTS

2003/0009584 Al* 1/2003 Bassoetal. 709/238
2003/0126195 Al* 7/2003 Reynolds GOoF 1/14
709/203
2004/0249803 Al* 12/2004 Vankatacharyetal. 707/3
2011/0274035 Al* 11/2011 Yadavc........ HO04W 40/24
370/328

* cited by examiner

Primary Examiner — 1uan Dao

(74) Attorney, Agent, or Firm — Anderson Gorecki &
Rouille LLP

(57) ABSTRACT

A table based abstraction layer 1s mterposed between appli-
cations and the packet forwarding hardware driver layer. All
behavior and configuration of packet forwarding to be imple-
mented 1n the hardware layer 1s articulated as fields 1n tables
of the table based abstraction layer, and the higher level
application software interacts with the hardware through the
creation ol and insertion and deletion of elements 1n these
tables. The structure of the tables in the abstraction layer has
no direct functional meaning to the hardware, but rather the
tables of the table based abstraction layer simply exist to
receive data to be inserted by the applications into the for-
warding hardware. Information from the tables 1s extracted
by the packet forwarding hardware driver layer and used to
populate physical offset tables that may then be 1nstalled into
the registers and physical tables utilized by the hardware to
perform packet forwarding operations.

18 Claims, 4 Drawing Sheets

Table based abstraction layer

Virtual Index Tables 422

420 Virtual Search Tables 424
12 < ~._ __,,/ Driver 432
Datapath Management Datapath hardware tables 434
Infrastructure 430 Virtual table managers 436
T Heap managers 438
v

Kemel APIl/Driver 440

-

Packet forwarding hardware
elements 450

U.S. Patent Feb. 23, 2016 Sheet 1 of 4 US 9,270,586 B2

FIG. 1
10
14\ 14
Legend:
10: Network

12: Network Element
14: Link

U.S. Patent Feb. 23, 2016 Sheet 2 of 4 US 9,270,586 B2

FIG. 2

Network Element 12

Application Platform Software
Software 202 Control Processes U0

Network Processing Unit 006 Network Processing Unit
230 230
290

A-1 Line Card 21

Line Card 21

A Memory 250 Memory 250

y
A-4 220 220

Line Card 210
0

Line Card 210
0

Memory 25

Memory 25

220 220

U.S. Patent Feb. 23, 2016 Sheet 3 of 4 US 9,270,586 B2

FIG. 3

Applications 300
Get Index
Vsl Free Index

viT Table Heap

Managers Manager
390 360

VIT

Config.Lib Component Object Virtual
370 Layer 340 Tables 345

Packet forwarding hardware elements 320

Registers

U.S. Patent

12 <

Feb. 23, 2016

3>
S
o
=

Middleware 410

-

Sheet 4 of 4

FIG. 4

Table based a

O

straction layer

Virtual Index Tables 422

Virtual Search Tables 424

(B

Datapath Management
Infrastructure 430

—

Kernel APIl/Dnver 440

-

Packet forwarding hardware
elements 450

[

Driver 432

Datapath hardware tables 434

Virtual table managers 436

Heap managers 438

US 9,270,586 B2

US 9,270,586 B2

1

METHOD FOR ABSTRACTING DATAPATH
HARDWARE ELEMENTS

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application 1s related to U.S. patent application
entitled Self Adapting Driver for Controlling Datapath Hard-
ware Elements filed on even date herewith, the content of
which 1s hereby incorporated herein by reference.

BACKGROUND

1. Field

This application relates to network elements and, more
particularly, to a method for abstracting datapath hardware
clements.

2. Description of the Related Art

Data communication networks may include wvarious
switches, nodes, routers, and other devices coupled to and
configured to pass data to one another. These devices will be
referred to herein as “network elements”. Data 1s communi-
cated through the data communication network by passing
protocol data units, such as frames, packets, cells, or seg-
ments, between the network elements by utilizing one or
more communication links. A particular protocol data unit
may be handled by multiple network elements and cross
multiple communication links as 1t travels between 1ts source
and 1ts destination over the network.

Network elements are designed to handle packets of data
cificiently, to minimize the amount of delay associated with
transmission of the data on the network. Conventionally, this
1s 1mplemented by using hardware in a data plane of the
network element to forward packets of data, while using
soltware 1n a control plane of the network element to config-
ure the network element to cooperate with other network
clements on the network.

The applications running in the control plane make deci-
s10ns about how particular types of tratfic should be handled
by the network element to allow packets of data to be properly
torwarded on the network. For example, a network element
may include a routing process, which runs in the control
plane, that enables the network element to have a synchro-
nized view of the network topology. Forwarding state, com-
puted using this network topology 1s then programmed 1nto
the data plane to enable the network element to forward
packets of data across the network. Multiple processes may
be running 1n the control plane to enable the network element
to 1nteract with other network elements on the network and
torward data packets on the network.

As the control applications make decisions, the control
plane programs the hardware in the dataplane to enable the
dataplane to be adjusted to properly handle tratfic. The data
plane includes ASICs, FPGAs, and other hardware elements
designed to receive packets of data, perform lookup opera-
tions on specified fields of packet headers, and make forward-
ing decisions as to how the packet should be transmitted on
the network. Lookup operations are typically implemented
using tables and registers containing entries populated by the
control plane.

Drivers are used to abstract the data plane hardware ele-
ments from the control plane applications and provide a set of
functions which the applications may use to program the
hardware implementing the dataplane. Example driver calls
may 1nclude “add route”, “delete route”, and hundreds of
other instructions which enable the applications to instruct

10

15

20

25

30

35

40

45

50

55

60

65

2

the driver to adjust the hardware to cause the network element
to exhibit desired behavior on the network.

The driver takes the instructions received from the control
plane and implements the mnstructions by setting values in
data registers and physical tables that are used by the hard-
ware to control operation of the hardware. Since the driver
code 1s specifically created to translate instructions from the
applications to updates to the hardware, any changes to the
hardware requires that the driver code be updated. Further,
changes to the hardware may also require changes to the
application code. For example, adding functionality to the
hardware may require the application to be adjusted to allow
the application to output instructions to the driver layer to take
advantage of the new functionality. Likewise, the driver may
need to be adjusted to implement the new instructions from
the application to enable the new functionality to be accessed.
Implementing changes to the driver code and/or to the appli-
cation code 1ncreases development cost, since any time this
code 1s changed 1t needs to be debugged to check for prob-
lems. This not only costs money, but also increases the
amount of time required to bring the newly configured prod-

uct to market.

SUMMARY OF THE DISCLOSUR.

L1

The following Summary, and the Abstract set forth at the
end of this application, are provided herein to introduce some
concepts discussed in the Detailed Description below. The
Summary and Abstract sections are not comprehensive and
are not intended to delineate the scope of protectable subject
matter which 1s set forth by the claims presented below.

A table based abstraction layer i1s interposed between
applications and the packet forwarding hardware driver layer.
All behavior and configuration of packet forwarding to be
implemented 1n the hardware layer 1s articulated as fields 1n
tables of the table based abstraction layer, and the higher level
application soitware interacts with the hardware through the
creation of and msertion and deletion of elements in these
tables. The structure of the tables in the abstraction layer has
no direct functional meaning to the hardware, but rather the
tables of the table based abstraction layer simply exist to
receive data to be mserted by the applications into the for-
warding hardware. Information from the tables i1s extracted
by the packet forwarding hardware driver layer and used to
populate physical ofiset tables that may then be 1nstalled into
the registers and physical tables utilized by the hardware to
perform packet forwarding operations.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present invention are pointed out with par-
ticularity in the claims. The following drawings disclose one
or more embodiments for purposes of 1llustration only and are
not intended to limait the scope of the invention. In the follow-
ing drawings, like references indicate similar elements. For
purposes of clarity, not every element may be labeled 1n every
figure. In the figures:

FIG. 1 1s a functional block diagram of an example net-
work;

FIG. 2 1s a functional block diagram of an example network
element; and

FIGS. 3 and 4 are functional block diagrams showing pro-
cessing environments ol example network elements.

DETAILED DESCRIPTION

The following detailed description sets forth numerous
specific details to provide a thorough understanding of the

US 9,270,586 B2

3

invention. However, those skilled in the art will appreciate
that the mvention may be practiced without these specific
details. In other mstances, well-known methods, procedures,
components, protocols, algorithms, and circuits have not
been described 1n detail so as not to obscure the invention.

FIG. 1 1llustrates an example of a network 10 1n which a
plurality of network elements 12 such as switches and routers
are mterconnected by links 14 to transmit packets of data. As
network elements 12 recerve packets they make forwarding
decisions to enable the packets of data to be forwarded on the
network toward their intended destinations.

FIG. 2 shows one example network element, although the
particular manner 1n which the network element 1s con-
structed may vary significantly from that shown in FI1G. 2. In
the example shown in FIG. 2, the network eclement 12
includes one or more control processes 200 associated with
control plane software applications that are configured to
control operation of the network element on the network 10.
Example control processes may include processes associated
with application software 202 and platform software 204.
Application software includes routing soitware (e.g. shortest
path bridging or link state routing protocol software), net-
work operation administration and management software,
interface creation/management software, and other software
designed to control how the network element interacts with
other network elements on the network. Platform software 1s
software designed to control components of the hardware.
For example, platform software components may include a
port manager, chassis manager, fabric manager, and other
soltware configured to control aspects of the hardware ele-
ments.

The control processes 200 (platform and application pro-
grams) are used to configure operation of the hardware com-
ponents (data plane) of the network element to enable the
network element to handle the rapid transmission of packets
of data. The data plane, 1n the illustrated embodiment,
includes ports (labeled A1-A4, B1-B4, C1-C4, D1-D4) con-
nected to physical media to recerve and transmit data. The
physical media may be implemented using a number of tech-
nologies, including fiber optic cables, electrical wires, or
implemented using one or more wireless communication
standards. In the illustrated example, ports are supported on
line cards 210 to facilitate easy port replacement, although
other ways of implementing the ports may be used as well.

The line cards 210 may have processing capabilities imple-
mented, for example, using microprocessors 220 or other
hardware configured to format the packets, perform pre-clas-
sification of the packets, and perform other processes on
packets of data received via the physical media. The data
plane further includes one or more Network Processing Units
(NPU) 230 and a switch fabric 240. The NPU and switch
tabric enable lookup operations to be implemented for pack-
ets of data and enable packets of data to be forwarded to
selected sets of ports to allow the network element to forward
network traffic toward its destination on the network.

Each of the line card processors 220, network processing,
unit 230, and switch fabric 240 may be configured to access
physical tables and registers implemented in memory 250 in
connection with making forwarding decisions. The line cards
210, microprocessor 220, network processing units 230,
switch fabric 240, and memories 250, collectively implement
the data plane of the network element 12 which enables the
network element to recerve packets of data, make forwarding,
decisions, and forward the packets of data on network 10.
Functionality of the various components of the data plane
may be divided between the various components 1 any

10

15

20

25

30

35

40

45

50

55

60

65

4

desired manner, and the invention 1s not limited to a network
clement having the specific data plane architecture illustrated
in FIG. 2.

FIG. 3 illustrates an example processing environment
implemented in network element 12. According to an
embodiment, hardware modifications resulting 1n changes 1n
the configuration of the network element data plane may be
accommodated by implementing a table based abstraction
layer 310 intermediate applications 300 and packet forward-
ing hardware elements 320.

In this embodiment, 1nstead of implementing a functional
based driver API 1n which applications specific functions to
be implemented by the driver, the applications 1nstead output
data to be inserted and retrieved from a set of virtual tables
345. The interaction with the applications 1s thus simplified to
through the use of a table based abstraction layer between the
application and packet forwarding hardware element driver
layer. These tables are referred to herein as “virtual tables™
since the syntax of the virtual tables i1s independent of the
physical tables used by the data plane in connection with
making forwarding decisions on packets of data.

The component object layer forms a hardware driver which
converts between virtual tables and physical tables. Use of the
virtual tables as an interface to the driver insulates the appli-
cations from the underlying hardware changes. Previously,
changes to the underlying hardware could require updates to
the applications to allow the applications to access the
changed hardware via API calls. For example, 11 a new func-
tion was enabled by changing the hardware, the application
may need to be changed to use a new API call to access the
new functionality. As described in greater detail below, the
processing environment illustrated in FIG. 3 operates in
reverse, by allowing the applications to specily the output
format, which 1s recerved by the table based abstraction layer
and 1nserted into the virtual tables. The packet forwarding
hardware element driver layer maps information from the
virtual tables 345 to the format required by the underlying
hardware to allow data to correctly be set into the tables 322
and register 324 used by the packet forwarding hardware
clements to make packet forwarding decisions.

FIG. 3 shows a high level view of an embodiment. As
shown 1n FIG. 3, in this embodiment API 330 enables appli-
cations 300 to interact with component object layer 340
which maps data from virtual tables 3435 to physical tables
322 and registers 324 used by the packet forwarding hardware
clements 320 to make packet forwarding decisions. In one
embodiment, table managers 350 convert virtual search table
commands to virtual index table commands (discussed
below). A heap manager 360 1s provided to manage memory
allocated for storage of data 1n virtual tables 345. A configu-
ration library 370 specifies the mapping to be used by the
component object layer to enable the component object layer
to map from virtual tables to the underlying tables and regis-
ters used by the hardware elements to make forwarding deci-
$1011S.

In one embodiment, API 330 has a small set of commands,
which enable SET, GET, and EVENT actions to be imple-
mented on the virtual tables. Set commands are used by
applications to write data to the virtual tables; Get commands
are used by applications to read data from the virtual tables;
and Event commands are used to notify the applications of
occurrences. Further, the applications are able to use a Get
Index command to obtain a memory allocation from the heap
manager and are able to use a Free Index command to release
memory 1n the heap manager to allow the applications to
request and release memory allocated to storing data 1n vir-
tual tables. Instead of utilizing a complicated action-based

US 9,270,586 B2

S

API, 1n which the applications output instructions associated
with actions to be taken, as 1s conventional, the applications
are thus able to interact with the table based abstraction layer
using a very small set of commands. Since the interaction
between the applications and table based abstraction layer 1s
not based on functional instructions, the same small API set
may be used to mmplement multiple functions. Further,
changes to the functionality of the underlying hardware ele-
ments does not require changes to the API to enable the
applications to access the new functionality. Hence, adding
functionality to the hardware does not require changes at the
application level. For example, instead of having an action
based AIP “set route” and another action based API “set
VPN” the application may implement both of these functions
simply using a SE'T command to cause the new route data and
the new VPN data to be inserted into the correct fields of the
virtual tables.

The component object layer 340 1s configurable as
described in greater detail in U.S. patent application entitled
Self-Adapting Driver for Controlling Datapath Hardware
Elements, filed on Sep. 27, 2012, the content of which 1s
hereby incorporated herein by reference. This application
describes an implementation 1n which methods and mapping
implemented by the component object layer 1s specified by
configuration library 370 to enable data set into the virtual
tables to be to mapped physical tables and registers 1n the data
plane used by the hardware 320 to make forwarding deci-
sions. The component object layer has set of methods which
interact with a configuration file to determine how fields of
data 1n the virtual tables should be mapped to registers and
data structures in the packet forwarding hardware elements.
The component object layer causes data to be set mto the
hardware elements using known processes, e¢.g. via kernel
driver or other known components. Kernel API/drivers and
hardware are standard components which are implemented in
a known manner and are not affected by implementation of
the virtual table interface layer.

FI1G. 4 1llustrates a functional block diagram of an embodi-
ment of a processing environment of a network element
according to an embodiment. In the embodiment shown 1n
FIG. 4, applications 400 communicate with middleware 410
which converts application messages to messages to be
passed to a table based abstraction layer 420.

Table based abstraction layer 420 includes a set of API
function calls that completely abstracts the management of
the data path infrastructure from the middleware and higher
layers. This layer defines two virtual table types—mnamely
virtual index tables 422 and virtual search tables 424. The set
of API function calls 1s optimized to perform well-defined
operations on the tables.

For example, 1n one embodiment, applications generate
two types of messages—configuration messages which are
used by applications for configuration purposes, and query
messages which are used to retrieve information. Reply mes-
sages are expected by the application 1n response to a query
message. Additionally, the middle-ware may generate and
transmit event notification messages to the application upon
occurrence of a real time event within the middleware.

A Virtual Index Table (VIT) 422 represents an abstraction
of one or more physical tables. Itincludes one or more records
where each record 1s associated with a unique Index. An
index, 1s a zero-based unsigned integer that 1s uniquely asso-
ciated with a record 1n a virtual index table.

A record 1s a virtual table unit of access. Each record 1s
associated with a umique 1ndex and 1s a container for one or
more attributes. The index may either come from the appli-
cation or the application may request one from the heap

10

15

20

25

30

35

40

45

50

55

60

65

6

manager using a get index instruction. Attributes are data
structures that have the following properties: (1) 1dentifier;
(2) mask; and (3) value. An attribute may belong to one or
more virtual tables and may be an 1ndex to another table, a key
or a data field. The attribute ID uniquely 1dentifies an attribute
across all virtual tables.

A Virtual Search Table (VST) has one or more records.
Each record 1s associated with a unique index or search index.
The record contains one or more attributes. A set of attributes
have a key type and are referred to as key attributes. Adding a
record to a virtual search table mvolves mapping the key
attributes to a unique search index and storing the record at the
search index. Deleting a record 1involves finding a record that
matches the key and removing 1t from the search table. A
virtual search table abstracts the functions that map the key to
a search index. The mapping functions or search algorithms
may be implemented 1n software, hardware, or both. Typical

search algorithms include radix tree, AVL tree, hash table,
Ternary Content Addressable Memory (TCAM), although
other search algorithms may be used as well. In the embodi-
ment shown 1n FIG. 3, the component object layer supports
virtual index tables only. To enable virtual search tables to be
accessed by the applications via API 330, table manager 350
receive virtual search table API calls and translates the calls to
a set of virtual index table instructions to be implemented by
component object layer.

The virtual tables are implemented using physical memory
allocations such that the virtual tables are stored using data
structures in memory implemented as physical tables. In one
embodiment, a physical table occupies a region of physical
address space and contains one or more entries. An entry may
span one or more contiguous physical memory locations. The
physical table 1s specified by a base address, maximum num-
ber of entries, entry width, and entry stride (number of lines of
memory occupied by each entry).

An entry 1s one or more contiguous physical memory loca-
tions 1n a physical ofiset table. Entries can be either contigu-
ous or sparse with fixed stride. The width of an entry repre-
sents the number of bits that actually exist in a physical table.
The entry stride 1s the number of bytes that 1s added to the
current physical table offset to access the next physical entry.
The width of an entry 1s always less than or equal to the entry
stride *8, where 8 represents the number of bits per one byte.

The physical table 1s accessed using an offset from 1ts base
address. An oifset, 1n this context, 1s a zero-based unsigned
integer. Its value represents the number of bytes from the
physical table base address to a specific entry. Each entry 1s
associated with an oifset relative to the physical table base
address.

A datapath management infrastructure layer 430 extracts
information from the virtual tables and installs information
from the virtual tables into physical tables at the hardware
layer. The hardware layer includes the Kernel Application
Program Interface (API)/drivers 440, and actual hardware
450.

The datapath management infrastructure layer may be
implemented to include a driver 432, implemented as com-
ponent object layer in FIG. 3, that 1s configured to map infor-
mation from the virtual tables 422, 424, to physical tables
implemented in the hardware 450. In one embodiment, the
data path management infrastructure layer includes a repre-
sentation of the data path hardware tables 434. As data 1s
written to the data path hardware tables, the data path man-
agement inirastructure layer passes commands to the Kernel
API to cause the kernel drivers to install the correct entries
into the actual physical tables utilized by the hardware. The

US 9,270,586 B2

7

data path management infrastructure 430 also includes virtual
table managers 436, and heap manager 438.

In operation, an application that needs to aifect operation
of how the data plane handles a class of traific will output
information associated with the class of traific using a virtual
table set command. For example, if traflic associated with a
particular destination address and Virtual Local Area Net-
work Identifier (VID) 1s to be transported over a particular
Virtual Private Network, the application may use a virtual
table set command to cause the destination address (DA) and
VID to be written to fields of the virtual tables.

The driver 432 maps the DA/VID to appropriate fields of
the data path hardware tables 434, and the kernel API/drivers
440 install the information from the data path hardware tables
to registers and memories 250 to allow the data path hardware
to correctly cause traific associated with the DA/VID to be
forwarded on the VPN.

In one embodiment, the API supports the Virtual Index
Table instructions set forth below 1n Table I:

TABLE 1

Instruction Function

SET ATTR The SET ATTR command includes the virtual table ID,
Index, and Attributes, and 1s used to set data into an
Index Table

GET ATTR The GET ATTR command includes the virtual table ID
and Index, and is used to retrieve the value of the
attributes stored at the Index

GET INDEX The GET INDEX command is used if the index to the

virtual table 1s not visible to the application. It
dynamically allocates an index which is then used by
the SET_ATTR command

In this embodiment, the API also supports the Virtual
Search Table instructions set forth below 1n Table I1:

TABLE 11

Instruction Function

ADD OR UPDATE RECORD The ADD OR _UPDATE RECORD
command 1ncludes the virtual table ID,
key, and attribute list from the application
to the virtual table, and 1s used to set data
into a search table.

The DELETE RECORD command
includes the virtual table ID and key, and
1s used to remove a record from the search

table.

DELETE_RECORD

GET ATTR The GET ATTR command includes the
virtual table ID and key, and 1s used to
retrieve the value of the attributes stored
at the record

QUERY QUERY commands, such as

QUERY (key) and QUERY((value) are also
supported. QUERY (key) will return a
range of values, and QUERY (value) 1s
used to return a range of records.

As noted above, 1n one embodiment the table managers 350
are provided to convert virtual search table commands 1nto
virtual index table commands such that the physical imple-
mentation of the virtual tables 1s simplified.

The functions described herein may be embodied as a
soltware program implemented in control logic on a proces-
sor on the network element or may be configured as a FPGA
or other processing unit on the network element. The control
logic 1n this embodiment may be implemented as a set of
program instructions that are stored in a computer readable
memory within the network element and executed on a micro-
processor on the network element. However, 1n this embodi-

10

15

20

25

30

35

40

45

50

55

60

65

8

ment as with the previous embodiments, 1t will be apparent to
a skilled artisan that all logic described herein can be embod-
ied using discrete components, integrated circuitry such as an
Application Specific Integrated Circuit (ASIC), program-
mable logic used 1n conjunction with a programmable logic
device such as a Field Programmable Gate Array (FPGA) or
microprocessor, or any other device including any combina-
tion thereol. Programmable logic can be fixed temporarily or
permanently in a tangible non-transitory computer-readable
medium such as a random access memory, cache memory,
read-only memory chip, a computer memory, a disk, or other
storage medium. All such embodiments are intended to fall
within the scope of the present invention.
It should be understood that various changes and modifi-
cations of the embodiments shown in the drawings and
described herein may be made within the spirit and scope of
the present invention. Accordingly, i1t 1s intended that all mat-
ter contained i1n the above description and shown in the
accompanying drawings be imterpreted in an illustrative and
not i a limiting sense. The mvention 1s limited only as
defined 1n the following claims and the equivalents thereto.
What 1s claimed 1s:
1. A method of abstracting datapath hardware elements in
a network element, the method comprising the steps of:
implementing a table based abstraction layer as an inter-
face between applications running in a control plane of
the network element and data path hardware elements,
the table based abstraction layer including a set of tables
and an API, the API defining table access operations that
allow the applications to 1nsert and extract data from the
tables of the table based abstraction layer; and

implementing a data path hardware element driver to
access the table based abstraction layer and translate
fields of the tables 1n the table based abstraction layer to
tables and registers which are used by the data path
hardware elements 1n connection with making forward-
ing decisions for packets of data.

2. The method of claim 1, wherein all behavior and con-
figuration of packet forwarding in the data path hardware
elements 1s articulated as fields in the virtual tables, and
wherein the application software running 1n the control plane
interacts with the data path hardware elements through the
creation of, isertion of, and deletion of, elements 1n these
tables.

3. The method of claim 1, wherein the API only defines
table access operations such that interaction between the
applications and the data path hardware elements are imple-
mented solely through interaction with the set of tables.

4. The method of claim 1, wherein the set of tables includes
a virtual index table representing an abstraction of one or
more of the tables and registers used by the data path hard-
ware elements.

5. The method of claim 1, wherein the set of tables includes
a virtual search table having one or more records, each record
containing one or more attributes and being associated with a
unmque key.

6. The method of claim 5, wherein the set of tables includes
a virtual search table representing an abstraction of functions
that map a key to a search index.

7. The method of claim 5, wherein a set of attributes have
a key type (key attribute), and wherein adding a record to the
virtual search table.

8. The method of claim 5, wherein each record 1nvolves
mapping the key attributes to a unique search index and
storing the record at the search index.

9. The method of claim 5, wherein the set of tables includes
a virtual search table having one or more records, each record

US 9,270,586 B2

9

containing one or more attributes and being associated with a
unique key, and wherein virtual search table API calls are
implemented by translating the virtual search table calls to a
set of virtual index table 1nstructions.
10. A network element, comprising:
a control plane configured to implement control processes;
and
a data plane including packet forwarding hardware ele-
ments configured to handle forwarding of packets on a
communication network, the packet forwarding hard-
ware elements including tables and registers containing
data specitying how packets should be forwarded on the
communication network; and
a virtual table interface between the control plane and the

10

data plane, the virtual table interface containing a set of 13

virtual tables configured to receive data from the control
processes and translate the data for insertion into the
tables and registers of the data plane, the virtual table
interface mcluding a set of tables and an API, the API
defining table access operations that allow the control
processes to msert and extract data from the tables of the
virtual table interface:; and

a data path hardware element driver to access the tables of

the virtual table interface and translate fields of the tables
in the virtual table interface to the tables and registers o
the data plane.

11. The network element of claim 10, wherein all behavior
and configuration of packet forwarding in the data plane
packet forwarding hardware elements 1s articulated as fields
in the virtual tables, and wherein the control processes run-
ning in the control plane interact with the data plane packet

20

f25

30

10

forwarding hardware elements through the creation of, inser-
tion of, and deletion of, elements 1n these tables.

12. The network element of claim 10, wherein the API only
defines table access operations such that interaction between
the applications and the data path hardware elements are
implemented solely through interaction with the set of tables.

13. The network element of claim 10, wherein the set of
tables includes a virtual index table representing an abstrac-
tion of one or more of the tables and registers used by the data
path hardware elements.

14. The network element of claim 10, wherein the set of
tables includes a virtual search table having one or more
records, each record containing one or more attributes and
being associated with a unique key.

15. The network element of claim 14, wherein the set of
tables includes a virtual search table representing an abstrac-
tion of functions that map a key to a search index.

16. The network element of claim 14, wherein a set of
attributes have a key type (key attribute), and wherein adding
a record to the virtual search table.

17. The network element of claim 14, wherein each record
involves mapping the key attributes to a unique search index
and storing the record at the search index.

18. The network element of claim 14, wherein the set of
tables includes a virtual search table having one or more
records, each record containing one or more attributes and
being associated with a unique key, the network element
turther including a table manager configured to translate vir-
tual search table API calls into a set of virtual index table
instructions.

	Front Page
	Drawings
	Specification
	Claims

