US009270553B1
a2y United States Patent (10) Patent No.: US 9.270,553 B1
Higgins 45) Date of Patent: Feb. 23, 2016
(54) DYNAMIC SERVICE DEBUGGING IN A 6,934,937 B1* 82005 Johnsonetal. ... 717/129
VIRTUAL ENVIRONMENT 6,993,585 B g 1/2006 Starkovich et al. 7009/228
7,992,133 B1* 8/2011 Therouxetal. 717/124
: : 8,135,572 B2* 3/2012 Crawfordetal. 703/22
(71) Applicant: Amazon Technologies, Inc., Reno, NV 8,680,186 B2* 4/2014 Savuretal. 717/124
(US) 2003/0233634 Al* 12/2003 Carrezetal. 717/124
2004/0148548 Al* 7/2004 Moyeretal.o.... 714/25
(72) Inventor: Chris Higginsj Sammamish, WA (US) 2007/0244904 Al* 10/2007 Durskioooooviiiiiiiil, 707/10
2009/0135731 Al* 5/2009 Secadesetal. 370/252
(73) Assignee: é}nsls)lzon Technologies, Inc., Seattle, WA * cited by examiner
(*) Notice: Subject‘ to any disclaimer,,. the term of this Primary Examiner — Michael Y Won
patent 1s extended or adjusted under 35 74y 14000, Agent, or Firm — Klarquist Sparkman, LLP
U.S.C. 154(b) by 156 days a8 HHISESP
(21) Appl. No.: 14/226,328 (57) ABSTRACT
(22) Filed: Mar. 26, 2014 A service oriented architecture (SOA) provides on-demand
(51) Int.Cl service call debugging and call stack tracing. The service call
i e.g., an API) includes a new field and optional signature
GO6F 15/177 (2006.01) (¢.2 . P Sl
04T 126 (2006.01) value. The field 1s a ‘debug-requested’ field, and the optional
(52) U.S. Cl ' field 1s a unique call-1d signature. The service provider can
Ci’ C ' HO4L 43/0823 (2013.01) enable debugging 1n accordance with the debug-requested
52) Field fCl """ ﬁ """ S h ' field for this service call, and tag all debugged data with the
(58) Field of Classification Searc / unmique call-1d. If it 1s necessary to call other services to fulfill
CPC e HO4L 43/0823 the request, then the service can pass the ‘debug-requested’
USPC 1 """ ﬁlf """"""" | 709/ 2031?12112_03 223, 230 field and the ‘unique 1d” 1n the call to that service. Using this
See application lile Tor complete search history. mechanism, detailed debugging can be supported across an
: entire stack for only those requests that need 1t and the per-
(56) References Cited Y 1 P

U.S. PATENT DOCUMENTS

formance/latency impact of having debugging enabled only
applies to the subset of calls which need debugging.

6,446,221 B1*
6,892,324 B1*

9/2002 Jaggaretal. 714/30

5/2005 Frenchetal. 714/38.14 19 Claims, 9 Drawing Sheets

ID

A0
132\/

SERVICE

m >
100 140 o SERVICE
1'5 4 SERVICE ID
§
' gy SERVICE
APl WITH service K.P
ppiis D - N\
REQUESTED 140
PARAMETER SERVICE
120 @
serRVICE V b
ENDPOINT K 7a07] SERVICE NID 140
AP
RESPONSE ID SERVICE
150 140 @ 6 o ®
110
SERVICE
SERVICE
N ID
140 2Ly SERVICE
130
SERVICE

US 9,270,553 B1

Sheet 1 0of 9

Feb. 23, 2016

U.S. Patent

el

J0INA3S

JINGIS

JINGIS

JINGIS

OFl.
di

2€l
3DIAYIS
OF!

0%l

al
30IAYIS

0%} I\
J0INYIS 4 oLl

Ol

J40IAA3S di

il
orl AN 3oIAM3S = 1INIOddN3

J0IANHIS

J0IAHdS

OFl
dl

U4 BN ELR
al

Ol

301Ad3s P g

00}

A

0G1
ASNOdSdd
|V

0cl
Jd1dANVdVd
3153N03Y
-0Nd3dd
HLIM IdV

e

| Ol

U.S. Patent Feb. 23, 2016 Sheet 2 of 9 US 9,270,553 B1

FIG. 2

200 DEBUG-REQUESTED
) PARAMETER ON/OFF
210

END-POINT
SERVICE 220
LOGGING
COMPONENT 550
LOG ON/OFF LOG ON/OFF
IDENTIFIER IDENTIFIER DE%%‘;‘;%G
LOGGING LEVE LOGGING LEVEL

240

LOGGING LOGGING
COMPONENT COMPONENT

£ LOG ON/OF2F50
-OG ONL IDENTIFIER
IDENTIFIER

LOGGING LEVEL LOGGING LEVEL

LOGGING
COMPONENT

250

LOGGING
COMPONENT

250

U.S. Patent Feb. 23, 2016 Sheet 3 of 9 US 9,270,553 B1

FIG. 3

310 320 330

2\

IDENTIFIER —I
DEBUG-
AP REQUESTED PASSED
REQUEST PARAMETER BETWEEN
SERVICES
f/./f T
S LEVEL 0 — ERRORS ONLY

0-0OFF AND/

1 -ON OR LEVEL 1 — STACK TRACE

LEVEL 2 - LOG ALL

US 9,270,553 B1

Sheet 4 of 9

Feb. 23, 2016

U.S. Patent

HILNANOD YIAYTS PO
1INAODOV ¥INOLSND SLb mwwuww_,\%wm
ININOJWOD INIWAOTAIA e -
ININOJWOD INIWIOVNYI .
ININOJWOD ONITYIS OLNY AR NZOb
807
1S3NO3Id 9N4g34d
Ol dSNOdSHY NI 31411 Nddl xW_O\S._.wm_/u_
ONILVYHANTD) dOIAHES vddv IV]

azoy

307

HOSIAHAdAH 90+ .

JONVLSNI 00t
¥3AINOYd
3OIAY3S
31LNdWOD

43LNdNO
SELYELSIEPAN

ONVLSNI

dOSINGIdAH
J90F
=

d3d1NdNOD
dINd3dS

HdOSIAGddAH

d90¥
¥3LNANOD FONVLSN
HIAYTS
oSz —— voor
T dINOD JONVLSNI
HIAYTS
SYILNAWOD
HIAYTS 40 ¥ALSNTO

US 9,270,553 B1

Sheet S of 9

Feb. 23, 2016

U.S. Patent

,__xme_Dn_dS NdNLl3dd ANV SINJWNOEY-

N 3DIAY3S
veS PN

GlLG

AN

0¥S

¢ dOINAIS 0€G

45Svav.ivd
vV.ivad 90Tl

v1ivad 907

SINIL dOL1S/1HVLS-
(S)TTVD ADIAYIS 40 dAVIS JNIL-
Aa3aT1Ivo (S)ADIAHIS-

Ad1Nd OO0

ddDVNVIA
JONVLSNI

dIdOVNVIA
49OVHO1S

SA0IANGAS
ddH10

1O4LNOD
NOISSINAY

JddOVNVIA

404dMN0Sdd
AHOMLAN

0LG

J0IAdd
1Y IN3ITO

G Ola

906

US 9,270,553 B1

0£9
1SOH
S3LNdNOD e 1SOH
HIAHTS 1SOH . . .
QGO 1SOH
O/l YHOMLAN ~ 1SOH
L 2€9
#G9 AHOWIAN 1SOH
059 IHVYMAYVYH L
o SIAHDLIMS
= WILSAS ONILYHIdO
\&
2 1N3 zNww_ NOD 029
= Sdd1MNOd
7 007 b
HAAVT IDIAY3S
e
= L9
gl
ot 1¥N
g |
S
o 919

SHAINdD V1v(d
ddH10 Ol

Sd31N0d

U.S. Patent

1SOH
1SOH
1SOH
1SOH
1SOH
1SOH
SAHOLIMS

0L9
ddLINdO
vV 1V({

9 Ol

U.S. Patent Feb. 23, 2016 Sheet 7 of 9 US 9,270,553 B1

FIG. 7

RECEIVE A REQUEST FOR A SERVICE TO BE

PERFORMED
710
DETECT A DEBUG-REQUESTED PARAMETER
CONTROLLING A DEBUGGING MODE 790
PASS THE DEBUGGING MODE BETWEEN
SERVICES OF THE SERVICE PROVIDER 730

LOG DATA IN ACCORDANCE WITH THE
DEBUGGING MODE 740

U.S. Patent Feb. 23, 2016 Sheet 8 of 9 US 9,270,553 B1

FIG. 8

RECEIVE A REQUEST FOR A SERVICE TO BE
PERFORMED 310

READ A DEBUG-REQUESTED PARAMETER 320
ASSOCIATED WITH THE REQUEST

IN ACCORDANCE WITH THE DEBUG-REQUESTED

PARAMETER, CONTROL A DEBUGGING MODE 330
USED BY THE SERVICE PROVIDER

SdIDOTONHO4L dd91d0Sdd DONILNIINT 1dNI 086 JdVMLAOS

US 9,270,553 B1

0v6 i |
JOVHOLS |
|
o AYOW3IN AHOW3IN |
-
&N
7 GL6 Hun |
> Buissaooud 016 nun
= BuIssa20.d |
¥ 9, -00
10 soiydeub [EJUDI |
o 026 (S)NOILDIANNOD _
~ NOILVOINNWINOO | 006 LNIWNOHIANT ONILNDNOD
o< N - - Y - _
g
T
&
e

U.S. Patent

6 Ol

US 9,270,553 Bl

1

DYNAMIC SERVICE DEBUGGING IN A
VIRTUAL ENVIRONMENT

BACKGROUND

Cloud computing 1s the use of computing resources (hard-
ware and soiftware) which are available 1n a remote location
and accessible over a network, such as the Internet. Users are
able to buy these computing resources (1including storage and
computing power) as a utility on demand. Cloud computing
entrusts remote services with a user’s data, software and
computation. Use of virtual computing resources can provide
a number of advantages including cost advantages and/or
ability to adapt rapidly to changing computing resource
needs.

Cloud computing can be formed by a plurality of services.
The details of how services operate i1s often hidden from
external customers that interface with the services through
Application Program Interfaces (APIs). Trouble shooting
errors can be problematic when multiple services are
involved 1n generating a response to an API call. For example,
it can be ditficult to determine which service caused an error
when hundreds of services are involved 1n the response.

As a result, many of the services activate full-debug capa-
bility on an ongoing basis. Unfortunately, this slows each
service, which can have a cumulative effect when many ser-
vices are used in generating a single response to an API
request.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s an overall system diagram showing a plurality of
services used 1n responding to an API request, wherein the
API request includes a debug-requested parameter.

FIG. 2 shows further details of the services of FIG. 1,
including logging components used for storing debugging log
data.

FIG. 3 illustrates an example API request that includes a
debug-requested parameter and an identifier to be passed
between services.

FI1G. 4 1s an example system diagram showing a plurality of
virtual machine instances running in the multi-tenant envi-
ronment.

FIG. 5 shows further details of an example system 1nclud-
ing a plurality of management components associated with a
control plane.

FIG. 6 shows an example of a plurality of host computers,
routers and switches, which are hardware assets used for
running services.

FI1G. 7 1s a flowchart of a method according to one embodi-
ment used to dynamically control debugging 1n the multi-
tenant environment.

FIG. 8 1s a flowchart of a method according to another
embodiment used to dynamically control debugging 1n the
multi-tenant environment.

FI1G. 9 depicts a generalized example of a suitable comput-
ing environment 1n which the described innovations may be
implemented.

DETAILED DESCRIPTION

A service-oriented architecture (SOA) provides on-de-
mand service call debugging and call-stack tracing. The ser-
vice call (e.g., an API) includes a new field and optional
signature value. The field 1s a ‘debug-requested’ field, and the
optional field 1s a unique call-id signature. The debug-re-
quested field and optional signature value can be API 1nde-

10

15

20

25

30

35

40

45

50

55

60

65

2

pendent meaning that it can be used with any API to assist
with modifying a debug mode in the service provider as 1t
processing the API. Upon receipt of the service call, the
service provider checks to see 1f there 1s a unique call-1d
signature along with the ‘debug-requested’ field. I there 1s no
unmique call-1d, then one can be dynamically generated. The
service provider can enable debugging 1n accordance with the
debug-requested field for this service call, and tag all
debugged data with the unique call-1d. IT it 1s necessary to call
other services to fulfill the request, then the service can pass
the ‘debug-requested’ ficld and the ‘unique 1d’ 1n the call to
the other services. If every service 1n the call stack supports
this mechanism, then detailed debugging can be supported
across the entire stack for just those requests that need 1t and
the performance/latency impact of having debugging enabled
only applies to the subset of calls which need debugging. One
advantage of accepting the ‘debug-requested’ flag at any entry
point into the call tree 1s that 1t allows services to enable
debugging for a single service call only. Other service calls
that do notneed debugging can leave debugging switched off.
Alternatively, the debug-requested field can provide a level of
debugging, such as errors only, a stack trace, or a complete
log. Thus, the debug-requested field allows the caller to
dynamically control a debug mode within the service pro-
vider.

The services used 1n cloud computing are typically Web
services. A web service 1s a software function provided at a
network address over the web or the cloud. Clients imitiate
web service requests to servers and servers process the
requests and return appropriate responses. The client web
service requests are typically iitiated using, for example, an
API request. For purposes of simplicity, web service requests
are generally described below as API requests, but 1t 1s under-
stood that other web service requests can be made. An API
request 1s a programmatic interface to a defined request-
response message system, typically expressed i JSON or
XML, which 1s exposed via the web—most commonly by
means of an HI'TP-based web server. Thus, in certain imple-
mentations, an API can be defined as a set of Hypertext
Transfer Protocol (HTTP) request messages, along with a
definition of the structure of response messages, which can be
in an Extensible Markup Language (XML) or JavaScript
Object Notation (JSON) format. The API can specity a set of
functions or routines that perform an action, which includes
accomplishing a specific task or allowing interaction with a
soltware component. When a web service receives the API
request Irom a client device, the web service can generate a
response to the request and send the response to the endpoint
identified 1n the request.

FIG. 1 shows a service provider 100 as including a plurality
of services. Generally, the services can make requests to other
services and recetve corresponding responses. For example,
cach service can be a Web service and make an API request to
other services. The service provider 100 can include one or
more endpoints, such as service endpoint 110. A request for a
service 1s shown at 120 and can include a debug-requested
parameter. When the endpoint 110 receives the API request
120, 1t can be a starting point of a calling chain of services
used 1n the service provider 100 in responding to the request.
For example, 1in response to the request 120, the endpoint 110
can generate 1ts own API requests to a first level of services
shown generally at 130. Those services can, 1n turn, call a
second level of services shown at 132, and so on, until an Nth
level (where N 1s any integer value) of services 134 are called.
The service endpoint 110 can pass to the services 130 a
unmique debug 1dentifier, such as shown at 140. The services
130 can then pass the identifier to the downstream services

US 9,270,553 Bl

3

132, and so on. The 1dentifier 140 can be used by the services
as a key 1n storing debug data (e.g., metadata and log data,
such as errors, times, parameter, etc.) so that log data 1s stored
across services using the same key associated with the API
request. The unique debug identifier 140 can be generated by
the service endpoint 110 or recerved with the AIP request 120.
The 1dentifier 140 1dentifies the request throughout the ser-
vice calling chain so that all requests can be easily logged and
retrieved. The debug-requested parameter can likewise be
passed to each of the services 130, 132, etc., so as to establish
a consistent debugging behavior across services. Still further,
a different parameter associated with the debug-requested
parameter can be passed to each of the services. The param-
cters that are passed are called herein a “debugging mode”™
and can 1nclude the debug-requested parameter, the identifier
140, a combination of the two, and/or some other
parameter(s) imndicating the debugging mode. When each ser-
vice receives the debugging mode, 1t can correspondingly
adjust 1ts’ level of debugging to be consistent with the debug-
ging mode. Not all services need to behave 1dentically. That
1s, each service can interpret the debugging mode according
to the functionality of the particular service. Additionally, the
debugging mode can include a graduated level of debugging
and/or a generic on/oif tlag. Thus, 1n some cases where there
1s sensitivity to confidential information, debugging can be
selected as off so as to achieve maximum speed 1n the
response while assuring that log data 1s not maintained or 1s
otherwise minimized.

After the API request has been completed, an APl response
150 can be returned to the original requester. 11 the service
endpoint 110 generated the identifier 140, then the API
response can include the identifier so that future queries 1nto
log data can be made using the identifier. Alternatively, the
API response 150 can be returned asynchronously. For
example, a response can be returned indicating the request
120 1s being processed. The identifier can be included with the
asynchronous response. A follow-up second response can be
returned when the request 1s completed or the requestor may
need to send a subsequent request for status.

FIG. 2 shows further details of an example calling chain
200 used 1n response to recerving an API request including a
debug-requested parameter 210. An end-point service 220
can receive the debug-requested parameter 210 and can gen-
erate a debugging mode 230 in response thereto. The debug-
ging mode can then be passed to the downstream services 1n
the calling chain 200. The debugging mode can include a flag
indicating that debugging 1s on/off, a umque 1dentifier that
can be used to store data for this particular request, and/or a
logging level indicating a degree to which logging should be
performed. The debugging mode can include any or all of
these parameters, and others can be used depending on the
particular design. In the particular illustrated embodiment,
the same debugging mode 230 1s passed to all services in the
calling chain. For example, a first downstream service 240 1s
shown recerving the debugging mode 230 from the end-point
service 220. In processing its’ response, the service 240
makes two API requests to services 242, 244 and passes each
one the same debugging mode 230 which itreceived. As such,
a uniform level of debugging can be implemented across all of
the services that are 1n the calling chain. Services that are not
in the calling chain need not receive the debugging mode.

Each of the services 200 can include a logging component
250. The logging components 250 can be responsive to the
debugging mode 230 to log data and metadata associated with
processing the API request. For example, the metadata can
include the other services called, time stamp information,
start/stop times, while the log data can include arguments,

10

15

20

25

30

35

40

45

50

55

60

65

4

return values, etc. The log data and metadata can be stored
using the i1dentifier as a key so that each logging component
250 stores 1ts data using the same 1dentifier, which 1s associ-
ated with the original API request. Thus, a uniform logging
system 1s used across disparate services within the service
provider.

FIG. 3 shows an example API request 300 including mul-
tiple fields, such as the API request itself 310, a debug-re-
quested field 320 and an optional identifier field 330, shown n
dashed lines. The API request 310 can be any desired request
supported by the service provider. Typical service providers
support thousands of requests and the API request 310 can
include multiple subfields. The debug-requested parameter
320 can take a variety of forms and can be a simple one-bit
flag (ON/OFF) or 1t can include levels of debugging, such as
Level 0 used for errors only, Level 1 used for logging a stack
trace, or Level 2 for logging everything. Thus, depending on
the level, a more detailed level of logging can be achieved.
Still further, the debug-requested parameter 320 can be a
combination of the flag and level or other fields can be used.
The 1dentifier 330 can be any alpha-numeric combination of
characters and should uniquely be associated with the API
request. Additional fields related to a debugging mode can be
added to the API request.

FIG. 4 1s a computing system diagram of a network-based
compute service provider 400 that illustrates one environ-
ment 1n which embodiments described herein can be used. By
way ol background, the compute service provider 400 (1.¢.,
the cloud provider) 1s capable of delivery of computing and
storage capacity as a service to a community of end recipi-
ents. In an example embodiment, the compute service pro-
vider can be established for an organization by or on behalf of
the organization. That 1s, the compute service provider 400
may olfer a “private cloud environment.” In another embodi-
ment, the compute service provider 400 supports a multi-
tenant environment, wherein a plurality of customers operate
independently (1.e., a public cloud environment). Generally
speaking, the compute service provider 400 can provide the
following models: Infrastructure as a Service (“laaS™), Plat-
form as a Service (“PaaS”), and/or Software as a Service
(““SaaS”). Other models can be provided. For the IaaS model,
the compute service provider 400 can olifer computers as
physical or virtual machines and other resources. The virtual
machines can be run as guests by a hypervisor, as described
turther below. The PaaS model delivers a computing platform
that can include an operating system, programming language
execution environment, database, and web server. Applica-
tion developers can develop and run their software solutions
on the compute service provider platform without the cost of
buying and managing the underlying hardware and software.
The SaaS model allows installation and operation of applica-
tion software i1n the compute service provider. In some
embodiments, end users access the compute service provider
400 using networked client devices, such as desktop comput-
ers, laptops, tablets, smartphones, etc. running web browsers
or other lightweight client applications. Those skilled 1n the
art will recognize that the compute service provider 400 can
be described as a “cloud” environment.

The particular 1illustrated compute service provider 400
includes a plurality of server computers 402A-402D. While
only four server computers are shown, any number can be
used, and large centers can include thousands of server com-
puters. The server computers 402A-402D can provide com-
puting resources lor executing software instances 406A-
406D. In one embodiment, the instances 406 A-406D are
virtual machines. As known in the art, a virtual machine 1s an
instance of a software implementation of a machine (1.e. a

US 9,270,553 Bl

S

computer) that executes applications like a physical machine.
In the example of virtual machine, each of the servers 402 A -
402D can be configured to execute a hypervisor 408 or
another type of program configured to enable the execution of
multiple instances 406 on a single server. Additionally, each
of the mstances 406 can be configured to execute one or more
applications.

It should be appreciated that although the embodiments
disclosed herein are described primarily 1n the context of
virtual machines, other types of instances can be utilized with
the concepts and technologies disclosed herein. For instance,
the technologies disclosed herein can be utilized with storage
resources, data communications resources, and with other
types of computing resources. The embodiments disclosed
herein might also execute all or a portion of an application
directly on a computer system without utilizing virtual
machine instances.

One or more server computers 404 can be reserved for
executing software components for managing the operation
of the server computers 402 and the instances 406. For
example, the server computer 404 can execute a management
component 410. A customer can access the management
component 410 to configure various aspects of the operation
ol the imstances 406 purchased by the customer. For example,
the customer can purchase, rent or lease instances and make
changes to the configuration of the instances. The customer
can also specily settings regarding how the purchased
instances are to be scaled in response to demand. The man-
agement component can further include a policy document to
implement customer policies. The policy document can
include a level of debugging to be used when the debug-
requested parameter 1s activated. An auto scaling component
412 can scale the mstances 406 based upon rules defined by
the customer. In one embodiment, the auto scaling compo-
nent 412 allows a customer to specily scale-up rules for use in
determining when new instances should be mstantiated and
scale-down rules for use in determining when existing
instances should be terminated. The auto scaling component
412 can consist of a number of subcomponents executing on
different server computers 402 or other computing devices.
The auto scaling component 412 can momitor available com-
puting resources over an internal management network and
modily resources available based on need.

A deployment component 414 can be used to assist cus-
tomers 1n the deployment of new instances 406 of computing
resources. The deployment component can have access to
account information associated with the instances, such as
who 1s the owner of the account, credit card information,
country of the owner, etc. The deployment component 414
canreceive a configuration from a customer that includes data
describing how new instances 406 should be configured. For
example, the configuration can specily one or more applica-
tions to be installed 1n new instances 406, provide scripts
and/or other types of code to be executed for configuring new
instances 406, provide cache logic specifying how an appli-
cation cache should be prepared, and other types of informa-
tion. The deployment component 414 can utilize the cus-
tomer-provided configuration and cache logic to configure,
prime, and launch new instances 406. The configuration,
cache logic, and other information may be specified by a
customer using the management component 410 or by pro-
viding this information directly to the deployment component
414. The nstance manager can be considered part of the
deployment component.

Customer account information 415 can include any desired
information associated with a customer of the multi-tenant
environment. For example, the customer account information

5

10

15

20

25

30

35

40

45

50

55

60

65

6

can include a unique 1dentifier for a customer, a customer
address, billing information, licensing information, customi-
zation parameters for launching instances, scheduling infor-
mation, auto-scaling parameters, previous IP addresses used
to access the account, etc.

A network 430 can be utilized to interconnect the server
computers 402A-402D and the server computer 404. The
network 430 can be a local area network (LAN) and can be
connected to a Wide Area Network (WAN) 440 so that end
users can access the compute service provider 400. It should
be appreciated that the network topology illustrated 1n F1G. 4
has been simplified and that many more networks and net-
working devices can be utilized to interconnect the various
computing systems disclosed herein.

A service 450 can receive an API request and generate an
identifier 1n response to a debug-requested parameter within
the API request. Thus, 1f an 1dentifier 1s not received with the
request, the service 450 can generate an identifier, which can
be used as a key for storing log data accumulated through
processing the API request. The service 450 can call other
services 1n order to process the request. Once the response 1s
generated, the service 450 can return the response to the caller
together with the generated 1dentifier. In this way, the debug-
requested parameter can be transformed into an identifier
used 1n storing log data.

FIG. S1illustrates 1n further detaill management components
506 that can be used 1n the multi-tenant environment of the
compute service provider 400. In order to access and utilize
instances (such as instances 406 of F1G. 4), aclient device can
be used. The client device 510 can be any of a variety of
computing devices, mobile or otherwise including a cell
phone, smartphone, handheld computer, Personal Digital
Assistant (PDA), desktop computer, etc. The client device
510 can communicate with the compute service provider 400
through an end point 512, which can be a DNS address
designed to recerve and process API requests. In particular,
the end point 512 can be a web server configured to expose an
API. Using the API requests, a client 510 can make requests
to implement any of the functionality described herein. Other
services 515, which can be internal to the compute service
provider 400, can likewise make API requests to the end point
512.

Other general management services that may or may not be
included 1n the compute service provider 400 include an
admission control 514, e.g., one or more computers operating
together as an admission control web service. The admission
control 514 can authenticate, validate and unpack the API
requests for service or storage of data within the compute
service provider 400. An instance manager 520 controls
launching and termination of imnstances 1n the network. When
an 1nstruction 1s recerved (such as through an API request) to
launch an instance, the instance manager pulls resources from
a capacity pool and launches the instance on a decided upon
host server computer. Similar to the instance manager are the
storage manager 522 and the network resource manager 524.
The storage manager 522 relates to mitiation and termination
of storage volumes, while the network resource manager 524
relates to 1nitiation and termination of routers, switches, sub-
nets, etc.

The endpoint 512 can be coupled to a service 5330, which
can call other services 5332, 534, etc. Any number N (where N
1s any 1nteger) of services can be called. Assuming that a
debug-requested parameter 1s activated in the API, the ser-
vices 530, 532, 534 store their respective log datain a log data
database 540. Each log service can use the same 1dentifier in
order to store the data. An example entry 1s shown as includ-
ing other services called, time stamps associated with the

US 9,270,553 Bl

7

calls, start and stop times, arguments and return values, and
log data generally. As the log data database 540 1s a single
repository including the 1dentifier, it can be easy searched for
all log data related to the same API call. For example, each
API request can have 1ts own unique 1dentifier so that all log
data associated with the API request can be retrieved.

FI1G. 6 illustrates the hardware framework upon which the
services can operate. A plurality of data centers, such as data
center 610, can be coupled together by routers 616. The
routers 616 read address information in a recerved packet and
determine the packet’s destination. If the router decides that a
different data center contains a host server computer, then the
packet 1s forwarded to that data center. If the packet 1s
addressed to a host in the data center 610, then 1t 15 passed to
a network address translator (NAT) 618 that converts the
packet’s public IP address to a private IP address. The NAT
also translates private addresses to public addresses that are
bound outside of the datacenter 610. Additional routers 620
can be coupled to the NAT to route packets to one or more
racks ol host server computers 630. Eachrack 630 caninclude
a switch 632 coupled to multiple host server computers. A
particular host server computer 1s shown in an expanded view
at 640.

Each host 640 has underlying hardware 650 including one
or more CPUs 652, memory 654, disk I/O 656, network 1/0O
658, etc. Running a layer above the hardware 650 1s an oper-
ating system 670. The service layer 680 can be an application
including a log component 682 used for logging data associ-
ated with processing an API request. For example, the log
component 682 can obtain access to the hardware 650
through the operating system 670 to record data such as CPU
cycles, memory use of memory 654, Disk I/O use from Disk
I/0 hardware 656 or network I/O use from network 1I/O hard-
ware 658. The log component 682 can access the log data
database 540 using the structure of FIGS. 5 and 6.

FIG. 7 1s a flowchart of an embodiment for dynamically
controlling a debugging mode 1n a service provider. In pro-
cess block 710, a request 1s received for a service to be
performed. For example, the request can be an API request or
other Web service request. In process block 720, a debug-
requested parameter can be detected, which controls a debug-
ging mode. The debug-requested parameter can be a field
within the request. Thus, a simple parsing of the request can
be used to detect the debug-requested parameter. In process
block 730, the debugging mode can be passed between ser-
vices. The debugging mode can be derived directly from the
debug-requested parameter or 1t can be obtained from a policy
document linked to a customer account. For example, i1 the
debug-requested parameter 1s activated, a level of debugging
can be obtained from the customer’s policy document. Alter-
natively, all of the debug mode data can be part of the API. In
any event, the log data 1s passed to each service needed 1n
order to generate a response to the API request. In process
block 740, data 1s logged in accordance with the debugging,
mode. The logging of data can include storing parameters
indicating how the service processed the request. Alterna-
tively, parameters can indicate resources (CPU cycles,
memory, etc.) used by one or more server computers 1n pro-
cessing the request. The logging of data can be performed by
those services that recerve the debugging mode. It should be
recognized that the process blocks can be performed 1n any
desired order and are not necessarily sequential.

In process block 810, a request for a service to be per-
formed can be received. As previously described, the request
can be an API request. Additionally, the request can be from
a customer of the service provider or from a service internal to
the service provider. In process block 820, a debug-requested

10

15

20

25

30

35

40

45

50

55

60

65

8

parameter associated with the request can be read. The debug-
requested parameter can be read from the request itself or
from a policy document, wherein the policy document 1s a
document stored by the service provider and associated with
a customer of the request. In any event, the debug-requested
parameter can be used to control a debugging mode used 1n
processing the request. In addition or alternatively, the
request can mclude an 1dentifier that can be passed between
the services. In process block 830, the debugging mode 1s
controlled 1n accordance with the debug-requested param-
cter. Controlling the debugging mode can include passing the
debugging mode between services of the service provider
used to process the request, so as to establish a consistent
debug behavior across all services. Additionally, controlling
the debugging mode can include logging information associ-
ated with the request for each service used to process the
request. The information that can be logged can include meta-
data associated with the request and log data associated with
the request. Examples of controlling the debugging mode can
include turning the debugging mode off, turming the debug-
ging mode on, or adjusting a level of the debugging mode,
wherein the debugging mode includes graduated levels.

It will be recognized that the services of the service pro-
vider can have debugging turned off until dynamic requests
are made requesting debugging while generating a response
to an API. Once the requests are processed, the debugging can
be switched back off. In this way, the services can minimize
unwanted debugging data, but can switch debugging on to a
desired level 1n response to a request to do so.

Additionally, 1t will be recognized that the identifier can be
used later via internal or external service requests to retrieve
all log data associated with the API request. In a particular
example, the log data and metadata can be retrieved using the
identifier as a key. Various details regarding how the API was
processed can be determined from the log data and metadata,
such as through a visual display. For example, a graphical
presentation can indicate each of the services called 1n the
request, a total amount of memory used, CPU cycles used,
network I/Oused, disk /O used, etc. Each of these parameters
can be displayed or otherwise saved for later use. Addition-
ally, timing information can be extracted, such as a total time
to process the APl request or a time for each service to process
the request. Other uses of the log data can vary depending on
the design.

FIG. 9 depicts a generalized example of a suitable comput-
ing environment 900 1n which the described innovations may
be implemented. The computing environment 900 1s not
intended to suggest any limitation as to scope of use or func-
tionality, as the innovations may be implemented in diverse
general-purpose or special-purpose computing systems. For
example, the computing environment 900 can be any of a
variety ol computing devices (e.g., desktop computer, laptop
computer, server computer, tablet computer, etc.)

With reference to FIG. 9, the computing environment 900
includes one or more processing units 910, 915 and memory
920, 925. In FIG. 9, this basic configuration 930 1s included
within a dashed line. The processing units 910, 915 execute
computer-executable instructions. A processing unit can be a
general-purpose central processing unit (CPU), processor 1n
an application-specific integrated circuit (ASIC) or any other
type of processor. In a multi-processing system, multiple
processing units execute computer-executable instructions to
increase processing power. For example, FIG. 9 shows a
central processing unit 910 as well as a graphics processing
unit or co-processing unit 915. The tangible memory 920, 9235
may be volatile memory (e.g., registers, cache, RAM), non-
volatile memory (e.g., ROM, EEPROM, flash memory, etc.),

US 9,270,553 Bl

9

or some combination of the two, accessible by the processing
unit(s). The memory 920, 925 stores software 980 1mple-
menting one or more innovations described herein, in the
form of computer-executable instructions suitable for execu-
tion by the processing unit(s).

A computing system may have additional features. For
example, the computing environment 900 includes storage
940, one or more input devices 950, one or more output
devices 960, and one or more communication connections
970. An 1nterconnection mechanism (not shown) such as a
bus, controller, or network interconnects the components of
the computing environment 900. Typically, operating system
soltware (not shown) provides an operating environment for
other software executing in the computing environment 900,
and coordinates activities of the components of the comput-
ing environment 900.

The tangible storage 940 may be removable or non-remov-
able, and includes magnetic disks, magnetic tapes or cas-
settes, CD-ROMs, DVDs, or any other medium which can be
used to store information 1n a non-transitory way and which
can be accessed within the computing environment 900. The
storage 940 stores instructions for the software 980 imple-
menting one or more mnovations described herein.

The mput device(s) 950 may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to the
computing environment 900. The output device(s) 960 may
be a display, printer, speaker, CD-writer, or another device
that provides output from the computing environment 900.

The communication connection(s) 970 enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data 1n a modulated data signal. A
modulated data signal 1s a signal that has one or more of its
characteristics set or changed 1n such a manner as to encode
information 1n the signal. By way of example, and not limi-
tation, communication media can use an electrical, optical,
RF, or other carrier.

Although the operations of some of the disclosed methods
are described 1n a particular, sequential order for convenient
presentation, 1t should be understood that this manner of
description encompasses rearrangement, unless a particular
ordering 1s required by specific language set forth below. For
example, operations described sequentially may in some
cases be rearranged or performed concurrently. Moreover, for
the sake of simplicity, the attached figures may not show the
various ways 1n which the disclosed methods can be used in
conjunction with other methods.

Any of the disclosed methods can be implemented as com-
puter-executable instructions stored on one or more com-
puter-readable storage media (e.g., one or more optical media
discs, volatile memory components (such as DRAM or
SRAM), or non-volatile memory components (such as flash
memory or hard drives)) and executed on a computer (e.g.,
any commercially available computer, including smart
phones or other mobile devices that include computing hard-
ware). The term computer-readable storage media does not
include communication connections, such as signals and car-
rier waves. Any of the computer-executable instructions for
implementing the disclosed techniques as well as any data
created and used during implementation of the disclosed
embodiments can be stored on one or more computer-read-
able storage media. The computer-executable instructions
can be part of, for example, a dedicated software application
or a soltware application that 1s accessed or downloaded via a
web browser or other software application (such as a remote

10

15

20

25

30

35

40

45

50

55

60

65

10

computing application). Such software can be executed, for
example, on a single local computer (e.g., any suitable com-
mercially available computer) or 1n a network environment
(e.g., via the Internet, a wide-area network, a local-area net-
work, a client-server network (such as a cloud computing
network), or other such network) using one or more network
computers.

For clarity, only certain selected aspects of the software-
based implementations are described. Other details that are
well known in the art are omitted. For example, 1t should be
understood that the disclosed technology 1s not limited to any
specific computer language or program. For instance, the
disclosed technology can be implemented by software writ-
ten 1n C++, Java, Perl, JavaScript, Adobe Flash, or any other
suitable programming language. Likewise, the disclosed
technology 1s not limited to any particular computer or type of
hardware. Certain details of suitable computers and hardware
are well known and need not be set forth in detail 1n this
disclosure.

It should also be well understood that any functionality
described herein can be performed, at least 1n part, by one or
more hardware logic components, instead of software. For
example, and without limitation, 1llustrative types of hard-
ware logic components that can be used include Field-pro-
grammable Gate Arrays (FPGAs), Program-specific Inte-
grated Circuits (ASICs), Program-specific Standard Products
(ASSPs), System-on-a-chip systems (SOCs), Complex Pro-
grammable Logic Devices (CPLDs), etc.

Furthermore, any of the software-based embodiments
(comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed meth-
ods) can be uploaded, downloaded, or remotely accessed
through a suitable communication means. Such suitable com-
munication means include, for example, the Internet, the
World Wide Web, an intranet, software applications, cable
(1including fiber optic cable), magnetic communications, elec-
tromagnetic commumnications (1including RF, microwave, and
infrared communications), electronic communications, or
other such communication means.

The disclosed methods, apparatus, and systems should not
be construed as limiting in any way. Instead, the present
disclosure 1s directed toward all novel and nonobvious fea-
tures and aspects of the various disclosed embodiments, alone
and 1n various combinations and subcombinations with one
another. The disclosed methods, apparatus, and systems are
not limited to any specific aspect or feature or combination
thereof, nor do the disclosed embodiments require that any
one or more specific advantages be present or problems be
solved.

In view of the many possible embodiments to which the
principles of the disclosed invention may be applied, it should
be recognized that the illustrated embodiments are only pre-
ferred examples of the invention and should not be taken as
limiting the scope of the invention. Rather, the scope of the
invention 1s defined by the following claims. We therefore

claim as our invention all that comes within the scope of these
claims.

What 1s claimed 1s:
1. A method of dynamically controlling a debugging mode
in a service provider, the method comprising:

receving a request for a service to be performed by the
service provider;

detecting, within the request, a debug-requested parameter
controlling a debugging mode to be used while process-
ing the request;

US 9,270,553 Bl

11

while processing the request, passing the debugging mode
between services of the service provider so as to estab-
lish a consistent debugging behavior across services;
and

logging data by services that receive the debugging mode,

the logging data being 1n accordance with the debugging
mode.

2. The method of claim 1, further including dynamically
generating a unique debug 1dentifier 1n response to receiving
the request, and passing the unique debug identifier to the
services used in processing the request.

3. The method of claim 1, further including receiving, with
the request, a unique debug 1dentifier and passing the unique
debug identifier to the services used in processing the request.

4. The method of claim 1, wherein passing the debugging
mode between services includes passing the debug-requested
parameter 1tself and/or a unique debug 1dentifier.

5. The method of claim 1, wherein logging data includes
storing parameters indicating how the service processed the
request.

6. The method of claim 1, wherein the request 1s an API
request Irom a customer of the service provider.

7. A computer-readable storage including instructions
thereon for executing a method of dynamically controlling
debugging 1n a service provider, the method comprising:

receiving a request for a service to be performed by the

service provider;

in response to the request, reading a debug-requested

parameter associated with the request; and

in accordance with the debug-requested parameter, con-

trolling a debugging mode used by the service provider
while processing the request;

wherein the service provider includes a plurality of ser-

vices used for processing the request, and wherein the
controlling of the debugging mode 1ncludes passing a
debugging mode between the plurality of services of the
service provider used to process the request so as to
establish a consistent debug behavior across the plural-
ity of services.

8. The computer-readable storage of claim 7, wherein con-
trolling the debugging mode includes, for each service used to
process the request, logging information associated with the
request 1n accordance with the debugging mode.

9. The computer-readable storage of claim 7, wherein con-
trolling the debugging mode includes one of the following:
turning debugging off, turming debugging on, or adjusting a
level of debugging.

10. The computer-readable storage of claim 7, wherein
receiving the request includes recerving an API request from
a customer ol the service provider or from a service within the
service provider.

11. The computer-readable storage of claim 7, wherein the
service provider includes a plurality of services used for
processing the request, and wherein the request includes an
identifier associated with the debug-requested parameter and
the 1dentifier 1s passed between the plurality of services.

10

15

20

25

30

35

40

45

50

55

12

12. The computer-readable storage of claam 11, wherein
controlling the debugging mode further includes logging
metadata associated with the request and logging log data
associated with processing the request 1n a log store using an
identifier, and further including retrieving the metadata and
log data using the i1dentifier as a key.

13. The computer-readable storage of claim 7, wherein
reading the debug-requested parameter includes reading a
field within the request itself or reading a field 1n a document
stored by the service provider, the document associated with
a customer of the request.

14. The computer-readable storage of claim 7, wherein the
debugging mode includes graduated levels of debugging and
controlling the debugging mode includes selecting one of the
graduated levels based on the request.

15. The computer-readable storage of claim 7, wherein the
service provider includes a plurality of services used for
processing the request, and the plurality of services have
debugging switched off prior to recerving the request, and
wherein controlling the debugging mode includes dynami-
cally switching on debugging within the plurality of services
while servicing the request and then switching debugging off
once the request 1s processed.

16. The computer-readable storage of claim 7, wherein
controlling the debugging mode includes, for each service
used to process the request, logging one or more of the fol-
lowing parameters associated with the request: CPU cycles
needed to service the request, memory used to service the
request, disk I/O needed to service the request, or network 1/O
needed to service the request.

17. A system for dynamically controlling a debugging
mode 1n a compute service provider, comprising:

a plurality of host server computers for running services in

the compute service provider;

an endpoint server computer responsive o receiving an

API request including a debug-requested parameter that
controls a debug mode to be used while processing the
API request, the endpoint server computer for generat-
ing an i1dentifier to be passed to a set of the plurality of
host server computers running the services used to
respond to the API request, so as to establish a consistent
debugging behavior across the set of the plurality of host
server computers; and

a log database coupled to the plurality of host server com-

puters, for storing log data 1n association with the 1den-
tifier.

18. The system of claim 17, further including a logging
component associated with the plurality of services for
obtaining at least CPU cycles and memory usage of one of the
set of host server computers and storing the CPU cycles and
memory usage 1n the log database.

19. The system of claim 17, wherein the debug-requested
parameter includes graduated levels of debugging.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

