12 United States Patent

US009270537B2

(10) Patent No.: US 9,270,537 B2

Nadathur et al. 45) Date of Patent: *Feb. 23, 2016
(54) CONNECTION DISTRIBUTION WITHIN A (358) Field of Classification Search
CONNECTIONAL PARALLELISM CPC e GO6F 15/173
ARCHITECTURE USPC e 709/227, 224, 226
See application file for complete search history.
71) Applicant: NetApp, Inc., Sunnyvale, CA (US
(1) App or d (US) (56) References Cited
(72) Inventors: Gokul Nadathur, Fremont, CA (US);
Anumita Biswas, Santa Clara, CA (US) U.5. PATENT DOCUMENTS
: 6,483,813 B1* 11/2002 Blencowec.......... 370/252
(73) Assignee: NETAPP, INC., Sunnyvale, CA (US) 2003/0041146 Al* 2/2003 Davisetal. 709/227
2005/0256950 Al* 11/2005 Suzukiccoeevvvnnnnnnn, 709/223
(*) Notice: Subject to any disclaimer, the term of this 2010/0064286 Al* 3/2010 Pinteretal. 718/102
patent 1s extended or adjusted under 35 cited by examiner
U.S.C. 154(b) by O days.
This patent 1s subject to a terminal dis- Primary Examiner — David Lazaro
claimer. Assistant Examiner — Marie Georges Henry
(74) Attorney, Agent, or Firm — Kacvinsky Daisak Bluni
(21) Appl. No.: 14/505,400 PLLC
(22) Filed: Oct. 2, 2014 (57) ABSTRACT
_ o Example embodiments provide various techmques for dis-
(65) Prior Publication Data tributing connections within a connectional parallelism archi-
US 2015/0019745 A1 Jan. 15, 2015 tecture. In one embodiment, a method 1s provided where
resource ufilizations of connection groups are measured.
Related U.S. Application Data Here, each connection group 1s assigned to one of multiple
processors. A probability distribution 1s accessed that maps
(63) Continuation ot application No. 13/217,051, filed on probabilities assigned to relative resource utilizations. A rela-
Aug. 24, 2011, now Pat. No. 8,904,007. tive resource utilization of one of the connection groups is
determined based on a resource utilization of the one connec-
(51) Int.Cl. tion group relative to other resource utilizations of other con-
Goor 15/173 (2006.01) nection groups. A probability from the probability distribu-
HO4L 12/24 (20006.01) tion 1s 1dentified based on the determined relative resource
HO4L 12/561 (2013.01) utilization, and based on the identified probability, a connec-
HO4L 29/08 (2006.01) tion 1s assigned to this connection group for execution by one
(52) U.S. (L of the processors assigned to this connection group.
CPC ..., HO4L 41/12 (2013.01); HO4L 49/90

(2013.01); HO4L 67/142 (2013.01)

18 Claims, 9 Drawing Sheets

/ 500
502
MEASURE RESCURCE UTILIZATIONS OF ALL CONNECTION |/
GROUPS BOUND TO MULTIPLE PROCESSORS
/504
ACCESS A PRCBABILITY DISTRIBUTION
506
DETERMINE A RELATIVE RESQURCE UTILIZATION OF ONE |/
OF THE CONNECTION GROUPS
T l s a——
IDENTIFY A PROBABILITY OF ASSIGNING A CONNECTION 208
TO THE ONE CONNECTION GROUP FROM THE
PROBABILITY DISTRIBUTION
510
GENERATE A RANDOM NUMBER

COMPARE RANDCM NUMBER TC THE IDENTIFIED
PROBABILITY

212

l

ASSIGN THE CONNECTION TO THE CONNECTION GROUP
BASED ON THE COMPARISON

514

D

US 9,270,537 B2

Sheet 1 0of 9

Feb. 23, 2016

U.S. Patent

S V1 9|4

143
JAIN TOA

3NN TOA 091 091
NOILYNILS3d 304N0S j
PR ¢ " @ .o ¢ oy
041

ig] OFL
HALAYOV 23 LIVOY
FIOVHOLS INITD 30YH01S

HILdYOV § ERIEIT e}
MHOMLAN) MNHOMLITN TN
WY AN
SLaMOvd S IOV
sl GGl — 651 — il
GOZ 57T = 002 07T

WALSAS HOSSADOM "N 18 WILSAS HMOSEIOOU
NI VA gLl ~ N LVHILO

JOYHOLS e i | e A T i |
S € —

GZlL AHOW3N ,/ AHOAALIN w ¥E Goi AMOWIIW

J o PPN b bt e ercmmbem ..:.1.,/.....%.},.,.;. A .,._,_,w", b e rmtnenaremm s st e vt i
2L L W3LSAS 3OVHOLS NOILVNILS=A v OTT WILISAS F9OVHOLS 30HN0S

U.S. Patent Feb. 23, 2016 Sheet 2 of 9 US 9,270,537 B2

‘/100

-

PROCESSOR 1 PROCESSOR 2
120 120

L | mwe

PROCESSOR n
120

CONNECTION
GROUP ¢
115

CONNECTION
GROUP 1
115

CONNECTION
GROUP 2
115

CONNECTION DISTRIBUTION MODULE 104

T

REQUEST REQUEST REQUEST
SOURCE 1 SOURCE 2 SOURCE u
117 117 ‘ E B = 1i7

FiG. IB

U.S. Patent Feb. 23, 2016 Sheet 3 of 9 US 9,270,537 B2

—
| APPLICATION LAYER 202

I

TRANSPORT LAYER 204

NETWORK LAYER 205

CONNECTION DISTRIBUTION MODULE
' 104 ‘

R |

LINK LAYER 206

HARDWARE LAYER 207

I -

FIG. 24

U.S. Patent

Feb. 23, 2016

PROTOCOL
STACK
192

APPLICATION
LAYER
190

NETWORK
LAYER
230

Sheet 4 of 9

US 9,270,537 B2

/ 200

FILE SYSTEM 210

HTTP NFS CIFS
222 224 226

SNAPMIRR
OR
228

SOCKET INTERFACE 232

TCP MODULE 234

IP MODULE 236

CONNECTION DISTRIBUTION MODULE 104

NETWORK
DRIVER 244

NETWORK
DRIVER 244

FIG. 2B

U.S. Patent Feb. 23, 2016 Sheet 5 of 9 US 9,270,537 B2

/ 300

302

MEASURE RESOURCE UTILIZATIONS OF ALL CONNECTION
GROUPS BOUND TO MULTIPLE PROCESSORS

Y

ACCESS A PROBABILITY DISTRIBUTION

304

306
DETERMINE A RELATIVE RESOURCE UTILIZATION OF ONE

OF THE CONNECTION GROUPS

IDENTIFY A PROBABILITY FROM THE PROBABILITY 308
DISTRIBUTION BASED ON THE CALCULATED RELATIVE
RESOURCE UTILIZATION

310
ASSIGN A CONNECTION TO THAT ONE CONNECTION

GROUP BASED ON THE IDENTIFIED PROBABILITY

FiIG. 3

US Patent Feb. 23, 2016 Sheet 6 of 9

FIG. 4

U.S. Patent Feb. 23, 2016 Sheet 7 of 9 US 9,270,537 B2

/ 500

502

MEASURE RESOURCE UTILIZATIONS OF ALL CONNECTION
GROUPS BOUND TO MULTHPLE PROCESSORS

504

ACCESS A PROBABILITY DISTRIBUTION

006
DETERMINE A RELATIVE RESOURCE UTILIZATION OF ONE

OF THE CONNECTION GROUPS

IDENTIFY A PROBABILITY OF ASSIGNING A CONNECTION 508

TO THE ONE CONNECTION GROUP FROM THE
PROBABILITY DISTRIBUTION

910

GENERATE A RANDOM NUMBER

512
COMPARE RANDOM NUMBER TO THE IDENTIFIED

PROBABILITY

|

ASSIGN THE CONNECTION TO THE CONNECTION GROUP
BASED ON THE COMPARISON

514

FIG. 5

US 9,270,537 B2

Sheet 8 0f 9

Feb. 23, 2016

U.S. Patent

/ 600

400

lll
ll

III
lll

II

--

--

II

--

--

FIG. 6

U.S. Patent Feb. 23, 2016 Sheet 9 of 9 US 9,270,537 B2

724 700
_\ 710
702\ 708 e

PROCESSOR

VIDEO
DISPLAY

INSTRUCTIONS

704
K

124
| MAIN MEMORY ALPHA-NUMERIC
| > > INPUT
INSTRUCTIONS DEVICE

724 \STATIC MEMORY
USER INTERFACE

>
INSTRUCTIONS I § NAVIGATION DEVICE
720 \

DRIVE UNIT 122

NETWORK

INTERFACE —_ |4 >

DEVICE MACHINE-
READABLE
MEDIUM

INSTRUCTIONS

724
—,

750

COMPUTER
NETWORK

SIGNAL GENERATION
DEVICE

>

riG. 7

US 9,270,537 B2

1

CONNECTION DISTRIBUTION WITHIN A
CONNECTIONAL PARALLELISM
ARCHITECTURE

RELATED APPLICATION

This application 1s a Continuation of U.S. patent applica-
tion Ser. No. 13/217,051, entitled “CONNECTION DISTRI-

BUTION WITHIN A CONNECTIONAL PARALLELISM
ARCHITECTURE”, filed Aug. 24, 2011; the atlorementioned
priority application being hereby incorporated by reference in
its entirety for all purposes.

FIELD

The present disclosure relates generally to network-based
systems. In an exemplary embodiment, the disclosure relates

to connection distribution within a connectional parallelism
architecture.

BACKGROUND

As demand for network content increases, the need for
greater network bandwidth to handle the demand also con-
tinues to increase. Currently, many network-based systems
provide multiple processors that can process 1n parallel to
handle the increasing demands for network bandwidth. For
example, applications on network devices (such as computer
systems connected over a network) can create connections
among each other over which they can exchange streams of
data in the form of data packets. A data packet 1s a unit of
information transmitted as a discrete entity between devices
over the network. To achieve high-speed and high-perfor-
mance of data packet processing, 1t 1s common to parallelize
the processing so that network devices can execute more than
one thread (e.g., a separate stream of packet execution that
takes place simultaneously with and independently from
other processing) simultaneously on a multiprocessing plat-
form.

Multi-processing 1s usetul when a single task takes a long
time to complete and processing packets serially (e.g., one at
a time) would slow down the overall packet throughput. In a
multiprocessing system, packets can be queued to network
groups (e.g., data structures that queue data packets that
belong to the same network connection) for further process-
ing based on some kind of algorithm. As a result, data packets
that belong to a single connection (such as, for example, a
Transmission Control Protocol (TCP) connection) are
queued to a single network group, and thus are processed by
a single network thread. Data packets that belong to different
network connections may be processed by different network
threads.

However, one problem associated with parallel processors
1s parallelism efficiency, or the performance improvement
relative to the number of processors. The law of diminishing
returns dictates that, as the number of processors increases,
the gain 1n performance decreases. Therefore, keeping paral-
lelism efliciency high has been a constant challenge 1n mul-
tiprocessor research.

A recent attempt to improve multiprocessor efficiency for
network applications focuses on the framework of connec-
tional parallelism. In connectional parallelism, implementa-
tions of connection-parallel stacks map operations to groups
of connections and permit concurrent processing on indepen-
dent connection groups, thus treating a group of connections
as a unit of concurrency. In particular, each independent con-

10

15

20

25

30

35

40

45

50

55

60

65

2

nection group 1s serviced on an independent kernel thread,
and each kernel thread may be executed on any one of mul-
tiple processors.

Currently, connections are assigned to independent threads
of execution either randomly or sequentially (e.g., round
robin fashion). However, the sequential or random policy
assignment may not efficiently utilize parallelism effectively
or efficiently because network tratfic 1s unpredictable and the

resultant traffic load distribution across all available proces-
sors may be unpredictable and/or non-uniform.

SUMMARY

Exemplary embodiments of the present invention provide
various techniques for distributing connections within a con-
nectional parallelism architecture to different threads of
execution where these threads of executions run on indepen-
dent processing units. Instead of distributing the connections
randomly or sequentially, the connections are distributed
using a predefined probability distribution. In particular, this
probability distribution 1s a mapping of relative resource uti-
lizations to their respective probabilities for assignment of
work to the same resource. In one embodiment, a resource
utilization of a particular connection group 1s determined
relative to the resource utilizations of other connection
groups. This determined relative resource utilization can then
be used to look up 1ts corresponding probability from the
predefined probability distribution. This probability 1s then
used to determine whether a connection should be assigned to
that particular connection group.

As aresult of using this probability distribution for distrib-
uting connections, the connection distribution 1s therefore
dynamic, meaning that it takes into account the resource
utilizations of all connection groups. Such a distribution
using a predefined probability distribution can be more effi-
cient at distributing connections to underutilized processors
when compared to conventional random and sequential dis-
tributions. As a result, the connection distribution described
herein takes into account the unpredictability of network
traffic to distribute the connections evenly.

BRIEF DESCRIPTION OF DRAWINGS

The present disclosure 1s 1llustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1A 1s a schematic block diagram of storage system
environment that includes a pair of iterconnected network
devices, such as a source network device and a destination
network device;

FIG. 1B 1s a block diagram depicting a topological view of
a connectional parallelism architecture that may apply to the
storage system environment depicted in FIG. 1A, 1n accor-
dance with an embodiment of the present invention;

FIG. 2A 1s a block diagram of an example of an Open
Systems Interconnection (OSI) architecture;

FIG. 2B 1s an architectural block diagram of components of
a storage operating system of a storage system that may be
used with embodiments of the present invention;

FIG. 3 1s a flow diagram of a general overview of a method,
in accordance with an embodiment, of distributing connec-
tions 1n a connectional parallelism architecture;

FIG. 4 1s a graph of an example of a probability distribu-
tion;

FIG. 5 1s a flow diagram of a detailed method, 1n accor-
dance with an embodiment, of distributing connections
within a connectional parallelism architecture;

US 9,270,537 B2

3

FIG. 6 1s a histogram chart depicting the distribution of
connections when compared to other existing distribution

techniques; and

FI1G. 7 depicts a hardware block diagram of a machine in
the example form of a processing system within which may
be executed a set of 1nstructions for causing the machine to
perform any one or more of the methodologies discussed
herein.

DESCRIPTION OF EXAMPLARY
EMBODIMENTS

The description that follows includes 1llustrative systems,
methods, techniques, mnstruction sequences, and computing,
machine program products that embody the present inven-
tion. In the following description, for purposes of explana-
tion, numerous specific details are set forth in order to provide
an understanding of various embodiments of the mventive
subject matter. It will be evident, however, to one skilled 1n the
art that embodiments of the inventive subject matter may be
practiced without these specific details. In general, well-
known 1nstruction instances, protocols, structures and tech-
niques have not been shown 1n detail. Furthermore, the term
“exemplary” 1s construed merely to mean an example of
something or an exemplar and not necessarily a preferred or
ideal means of accomplishing a goal.

FIG. 1A 1s a schematic block diagram of storage system
environment that includes a pair of interconnected network
devices, such as a source network device and a destination
network device. The source network device can be a storage
system, such as storage system 110 or a client device, such as
client 170. The destination network device can be a destina-
tion storage system 112. For purposes of this description, the
source storage system 110 1s a device that manages storage of
one or more source volumes 117, each having an array of
storage devices 160 (described turther below). The destina-
tion storage system 112 manages one or more destination
volumes 116, which, 1n turn, comprise arrays of devices 160.
The source and destination storage systems (e.g., systems 110
and 112) are connected via a network 118 that can comprise
a local or wide area network. For the purposes of this descrip-
tion, like components in each of the source and destination
storage system, 110 and 112, respectively, are described with
like reference numerals. As used herein, the term “source”
can be broadly defined as a location from which data travels
and the term *“destination” can be defined as the location to
which the data travels. Both source storage system and des-
tination storage system are multiprocessing systems.

To improve reliability and facilitate disaster recovery 1n the
event of a failure of a storage system, 1ts associated devices or
some portion of the storage infrastructure, source storage
system 110 and destination storage system 112 may execute
a replication application configured to replicate some or all of
the underlying data and/or the file system that organizes the
data. Such an application that establishes and maintains mir-
ror relationship between a source storage system and a des-
tination system and provides infinite updates to the destina-
tion storage system can be SNAPMIRROR. Currently, when
a component ol a replication application executed at the
source storage system 110 establishes a connection with a
component of a replication application at the destination stor-
age system 112 to transier data packets over the network, the
replication application at the destination storage system 112
has no control how data packets are going to be processed.
Thus, packets that belong to the same session, but to different
connections, might be processed by different network
threads. Instead, these packets are being reassembled after

10

15

20

25

30

35

40

45

50

55

60

65

4

being processed by different network threads. This, 1n turn,
slows down the performance of the computer systems that
processes the recerved packets.

The source and destination storage systems 110, 112 each
comprise a plurality of processors 120, a memory 1235, a
network adapter 130 and a storage adapter 140 intercon-
nected by a system bus 145. Each storage system 110, 112
also includes a storage operating system 200 that implements,
for example, a file system to logically organize the informa-
tion as a hierarchical structure of directories and files on
devices.

In the i1llustrative embodiment, the memory 125 comprises
storage locations that are addressable by the processors and
adapters for storing software program code. The memory 1235
can be a random access memory (RAM). The processor and
adapters may, in turn, comprise processing elements and/or
logic circuitry configured to execute the software code and
mampulate the data structures stored 1n memory. The operat-
ing system 200 portions of which are typically resident 1n
memory, Tunctionally organizes the storage system by, inter
alia, invoking storage operations in support of a file service
implemented by the storage system. It will be apparent to
those skilled 1n the art that other processing and memory
means, including various computer readable media, may be
used for storing and executing program instructions pertain-
ing to the mventive technique described herein.

The network adapter 130 comprises the mechanical, elec-
trical and signaling circuitry needed to connect each storage
system 110, 112 to the network 118, which may comprise a
point-to-point connection or a shared medium, such as alocal
area network.

The storage adapter 140 cooperates with the operating
system 200 executing on the storage system to access infor-
mation requested by the client (such as client 170). The infor-
mation may be stored on the devices 160 that are attached, via
the storage adapter 140 to each storage system 110, 112 or
other node of a storage system as defined herein.

In one exemplary implementation, each storage system
110, 112 can include a nonvolatile random access memory
(NVRAM) 133 that provides fault-tolerant backup of data,
ecnabling the mtegrity of storage system transactions to sur-
vive a service interruption based upon a power failure, or
other fault. The size of the NVRAM depends 1n part upon 1ts
implementation and function 1n the storage system. It 1s typi-
cally sized sufliciently to log a certain time-based chunk of
transactions.

FIG. 1B 1s a block diagram depicting a topological view of
a connectional parallelism architecture that may apply to the
storage system environment depicted in FIG. 1A, 1n accor-
dance with an embodiment of the present invention. In gen-
eral, connectional parallelism 1s a data communication mode
where devices at the end points use a protocol to establish an
end-to-end logical or physical connection before any data
may be sent. In connectional parallelism, messages are bound
to processors 120. That 1s, messages coming from the same
connection are assigned to the same processor. Examples of
connections include Transmission Control Protocol (TCP)
connection and Datagram Protocol (UDP).

As depicted in FIG. 1B, an exemplary system 100 having
such a connectional parallelism architecture includes mul-
tiple processors 120 (processors 1, 2, . . .), multiple connec-
tion groups 1135 (connection groups 1, 2, . . . ¢), at least one
connection distribution module 104, and multiple request
sources 117 (request sources 1, 2, . . . u). Here, each processor
120 15 a single processing or computing element that reads
and executes program instructions. For example, each pro-
cessor 120 can perform a task defined in a network protocol.

US 9,270,537 B2

S

Connectional parallelism architecture 1s scalable because if
turther performance 1s needed to process additional connec-
tions, more processors 120 (1, 2, . . .) can be added to the
system 100. In one embodiment, all the processors 120 can be
embodied 1n a single processing system (e.g., a single file
server or a single network interface card). In another embodi-
ment, one or more of the processors 120 can be embodied in
different processing systems (e.g., multiple file servers or
multiple network interface cards).

Each connection group 115 represents the finest granule of
parallelism 1n a connectional parallelism architecture. In par-
ticular, each independent connection group 115 1s serviced on
an independent kernel thread, and each kernel thread may be
executed on any one of multiple processors 120. In a connec-
tional parallelism architecture, implementations of connec-
tion-parallel stacks map operations to groups of connections
and permit concurrent processing on independent connection
groups 115, therefore treating a connection group 115 as a
fundamental unit of concurrency. Accordingly, the processors
120 can simultaneously process messages as long as the mes-
sages belong to different connection groups 115. In a connec-
tional parallelism architecture, a single connection therefore
1s assigned to a single processor 120. It should be noted that
cach connection group 115 may also be referred to as a
“context” or as a “network context.”

Each request source 117 1s an element 1n the system 100
that can transmit requests to a processor 120. For instance, a
Hypertext Transier Protocol (HTTP) application that sends
socket calls to the TCP/Internet Protocol (IP) stack consti-
tutes a request source 117. Each request source 117 can send
requests to any processor 120. In the system 100, the connec-
tion distribution module 104 basically decides which proces-
sor 120 1s to handle each request. One function of the con-
nection distribution module 104 1s to queue messages
belonging to the same connection group 115 to the same
processor 120. As explained 1n detail below, the connection
distribution module 104, 1n one embodiment, assigns each
connection to a processor 120 based on a probability distri-
bution.

FIG. 2A 1s a block diagram of an example of an Open
Systems Interconnection (OSI) architecture. At the bottom of
the OSI stack 1s a hardware layer 207, which encompasses the
physical devices that provide connectivity to the networks
(e.g., Ethernet devices). Near the bottom of the OSI stack 1s a
link layer 206, which encompasses device drivers that pro-
vide access to the hardware layer 207. Above the link layer
206 15 a network layer 203, which 1s responsible for directing
packets to their destinations. The next transport layer 204 1s
responsible for peer-to-peer communication. It should be
appreciated that while the network layer 205 manages com-
munication between hosts, the transport layer 204 manages
communication between endpoints within those hosts.
Finally, the application layer 202 contains all protocols and
methods that fall into the realm of process-to-process com-
munications across, for example, an Internet Protocol (IP)
network. For example, the application layer 202 can include
HTTP, which moves requests and responses for Web content
between a server and a client.

In one embodiment, the connection distribution module
104 discussed earlier 1s embodied in the network layer 205.
As explained in detail below, the connection distribution
module 104 assigns each connection to a particular processor
based on a probability distribution. It should be appreciated
that in other embodiments, the network layer 205 may include
tewer or more modules apart from those shown 1n FIG. 2A.
The module 104 may be 1n the form of software that is
processed by a processor. In another example, as explained in

10

15

20

25

30

35

40

45

50

55

60

65

6

more detail below, the module 104 may be i the form of
firmware that 1s processed by application-specific integrated
circuits (ASIC), which may be integrated into a circuit board.
Alternatively, the module 104 may be 1n the form of one or
more logic blocks included 1n a programmable logic device
(for example, a field programmable gate array). The
described module 104 may be adapted, and/or additional
structures may be provided, to provide alternative or addi-
tional functionalities beyond those specifically discussed in
reference to FIG. 2A. Examples of such alternative or addi-
tional functionalities will be discussed in reference to the tlow
diagrams discussed below.

FIG. 2B 1s an architectural block diagram of components of
a storage operating system 200 of a storage system that may
be used with embodiments of the present invention. Although
some of the components have been described 1n reference to
FIG. 2A, these components will be described 1n greater detail
herein. In the illustrative embodiment, the storage operating
system 200 can be the NETAPP DATA ONTAP operating
system that implements the file system 210. However, 1t 1s
expressly contemplated that any appropriate file system or
storage system may be enhanced for use 1n accordance with
the mventive principles described herein. As used herein, the
term “storage operating system” generally refers to the com-
puter-executable code operable on a computer that that stores
data and provides access to the data via one or more types of
networks. The storage operating system 200 can be imple-
mented as an application program operating over a general-
purpose operating system, such as UNIX, or as a general-
purpose operating system with configurable functionality,
which 1s configured for storage applications as described
herein. The storage operating system 200 further includes a
storage device management module (not shown in FIG. 2)
that manages access operations to storage devices. The stor-
age device management module may include a module that
implements a storage protocol and a driver layer that imple-
ments a disk access protocol (these layers are not shown in
FIG. 2).

The storage operating system 200 comprises a series of
layers (or modules) organized to form an integrated network
protocol stack 192 or, more generally, amulti-protocol engine
that provides data paths for clients or other storage systems to
access information stored on the storage system using block
and file access protocols. The protocol stack 192 includes an
application layer 190 that may include a Common Internet
File System (CIFS) server 226, an Network File System
(NFS) server 224, a Hypertext Transier Protocol (HT'TP)
server 222, SNAPMIRROR application 228, as well as other
applications.

Additionally included 1n the integrated network protocol
stack 192 1s a network layer 230 that interfaces with network
drivers 244 (e.g., gigabit Ethernet drivers). In one embodi-
ment, the network layer 230 includes an IP module 236 and its
supporting transport mechanisms (e.g., the TCP module 234),
as well as a socket interface 232, such as Berkeley Software
Distribution (BSD) interface. The network layer 230 further
includes the connection distribution module 104 as described
above.

FIG. 3 1s aflow diagram of a general overview of a method
300, 1n accordance with an embodiment, of distributing con-
nections 1n a connectional parallelism architecture. In an
exemplary embodiment, the method 300 may be imple-
mented by the connection distribution module 104 as embod-
ied 1n the network layer 203 depicted in FIG. 2A. In reference
to FIG. 3, the connection distribution module at 302 initially
measures resource utilizations of all connection groups. A
“resource utilization,” as used herein, refers to a measure of

US 9,270,537 B2

7

workload associated with a connection group. In one exem-
plary embodiment, the resource utilization 1s a data rate (e.g.,
average number of kilobytes per second) that 1s serviced by
cach connection group. In another exemplary embodiment,
the resource utilization 1s a number of open connections to
cach connection group.

Additionally, at 304, the connection distribution module
accesses a probabaility distribution and, with all resource uti-
lizations measured, the connection distribution module deter-
mines at 306 a relative resource utilization of one of the
connection groups. As used herein, a probability distribution
1s a distribution of probabilities as a function of relative
resource utilizations. A relative resource utilization 1s a
resource utilization of a particular connection group as

defined 1n relation to the resource utilizations of other con-
nection groups. In one embodiment, the relative utilization of
a connection count-based distribution can be expressed as:

M{A) %100
X(A) = 1.0

The relative utilization X(A) expressed in Equation 1.0 1s a
fraction of a number of active connections owned by any one
connection group to a total number of connections. “A” there-
fore refers to any connection group, “M(A)” 1s a number of
active connections owned by connection group A, and “1” 1s
a total number of connections. In another embodiment, the
relative utilization of a frame rate-based distribution can also
be expressed using Equation 1.0. This alternate relative utili-
zation X(A) 1s a fraction ol frames serviced by any one
connection group to the total frames. Here, “A” refers to any
connection group, “M(A)” 1s a data rate serviced by connec-
tion group A, and “I1” 1s a total data rate serviced by all
connection groups.

Still referring to FIG. 3, at 308, the connection distribution
module thereafter 1dentifies a probability from the accessed
probability distribution based on the determined relative
resource utilization. That 1s, the connection distribution mod-
ule uses the determined relative resource utilization to look up
its corresponding probability from the probability distribu-
tion. With the probabaility 1dentified, the connection distribu-
tion module then assigns the connection to that one connec-
tion group at 310 based on the identified probability. As
explained 1n detail below, 1n one embodiment, the connection
distribution module can assign the connection based on a
comparison of a random number with the 1dentified probabil-
ity.

FIG. 4 1s a graph of an example of a probability distribu-
tion. It should be noted that a variety of different probability
distributions can be used to distribute connections within a
connectional parallelism architecture. For example, the prob-
ability distribution, as illustrated 1n graph 400, can be a step
function-based probability distribution where the probability,
as defined along the vertical axis of the graph 400, decreases
as the determined relative resource utilization increases, as
defined along the horizontal axis of the graph 400. In this
example, a system having a connectional parallelism archi-
tecture includes four connection groups. The step function
shown 1n FIG. 4 can be used as a probability distribution to
identify a probability of assigning a connection to a particular
connection group.

As defined along the horizontal axis of the graph 400, the
relative resource utilization ranges from O to 100. The relative
resource utilization 1s divided 1nto four steps, namely 25, 50,
75, and 100, to correspond to the four connection groups 1n

10

15

20

25

30

35

40

45

50

55

60

65

8

the system. According to the graph 400, when the relative
resource utilization increases by Y4, the probability 1s also
decreased by 4. Graph 400 also reveals that when connec-
tions are evenly distributed (relative resource utilization 1s
close to 0), the probability of generating the same connection
group 1s close to 1. As the skew starts to appear 1n the graph
400, the probability starts falling in %4 steps towards 0, and
connections assigned to this particular connection group may
be queued to other connection groups. The relationship can be
expressed 1n the following probability distribution function
where for any connection group A and 1ts relative utilization
X(A), the probability P of generating A=a 1s:

X(A=a)«N1 100
P(A:a)EY(A:a):lﬂﬂ—[]

- —
100

In Equation 2.0, N 1s the total number of connection groups in
the system and Y(A) 1s P(A) expressed as a percentage. Equa-
tion 2.0 expressed above can be applied to both data rate and
connection-based resource utilizations. Furthermore, the
probability distribution, such as the probability distribution
expressed in Equation 2.0, 1s predefined. A user can define a
variety of different probability distributions based on the
needs of a network. As an example, a user can analyze his-
torical network traffic and define a probability distribution
function that best suits the needs of the network.

FIG. 5 15 a flow diagram of a detailed method 500, 1n
accordance with an embodiment, of distributing connections
within a connectional parallelism architecture. In an exem-
plary embodiment, the method 500 may be implemented by
the connection distribution module 104 as embodied 1n the
network layer 205 depicted in FIG. 2A. In reference to FIG. 5,
the connection distribution module at 502 measures the
resource utilization of each connection group assigned to a
particular processor and, at 504, accesses a probability distri-
bution.

The connection distribution module then selects a particu-
lar connection group and determines a relative resource uti-
lization of the selected connection group at 506. In one
embodiment, a preference for a particular connection group
may be predefined for each connection. In particular, this
group preference defines one or more connection groups pre-
terred by the connection over other connection groups. The
group preference may, for example, define a connection
group 1 for a particular type of TCP connection. As a result,
the connection distribution module mitially identifies a group
preference for the connection, and determines a relative
resource utilization of a connection group, as defined 1n the
connection group.

In an alternate embodiment, the group preference may be
defined based on previous assignments of the same connec-
tion. Here, a presumption can be made that messages associ-
ated with the same connection relate to the same process. As
a result, 1t may be more eflicient to assign a specific connec-
tion group to process all messages that are associated with the
same connection. The connection distribution module can
store a record of a particular connection group that has been
previously assigned to a particular connection. Therefore, 1T
the same connection 1s requested, the connection distribution
module can access this record to identily the previously
assigned connection group and then select this connection
group at 306 to determine its relative resource utilization.

After the determination of the relative resource utilization
for this one connection group, the connection distribution
module at 508 identifies, from the probability distribution, a

US 9,270,537 B2

9

probability of assigning a connection to the selected connec-
tion group. Thereaiter, the connection distribution module
then generates a random number at 510 and compares this
random number to the identified probability at 512. The con-
nection distribution module then, at 514, decides whether to
assign the connection to the connection group based on this
comparison. Particularly, 11 the connection distribution mod-
ule determines that the connection 1s to be assigned to a
particular connection group, then the connection distribution
module assigns the connection to a group identifier that
uniquely identifies this particular connection group.

As an example, the connection distribution module 1denti-
fies a probability of 0.70 from the probability distribution for
assigning a connection to this particular connection group.
This 0.70 can mean that there 1s a 70% chance that the con-
nection will be assigned to this particular connection group.
The connection distribution module also generates a random
number, say for example, 50, from a range between 0 and 100.
This 501s divided by 100 to define 0.50. Since 0.50 1s less than
0.70, then the connection distribution module assigns the
connection to this particular connection group. However, 1f
the random number generated 1s above 70, then the connec-
tion distribution module will not assign the connection to this
particular connection group.

Particularly, in reference to Equation 2.0 above, a random
number between 1 and 100 generated from a umiform distri-
bution when compared against Y (A) can be used to determine
whether a connection 1s assigned to the connection group. For
example, 11 Y (A) 1s 60 then any random number between 0-59
will result in the connection assigned to the connection group
(or staying in the same preferred connection group). That 1s,
for any Y(A)=y, a random number q between 1 and 100 1s
generated. I g<y, then A=a. Otherwise, A=b where:

X(4=b)=MINM(4), Y de/1 ... NJ 3.0

Equation 3.0 above describes the situation when the ran-
dom number q falls outside the range (e.g., 60-99). In this
example, the connection 1s routed to an alternate connection
group with the lowest utilization.

FIG. 6 1s a histogram chart 600 depicting the distribution of
connections when compared to other existing distribution
techniques. In this histogram chart, the horizontal axis defines
the connection group distribution while the vertical axis rep-
resents the number of connections. The bars having a hatched
pattern denote distribution using a probability distribution
while the bars having a dotted pattern denote distribution in a
round robin manner. The system 1n this example has four
connection groups, and 1,000 connections, 20,000 connec-
tions, 100,000 connections are evaluated to simulate low,
mid, and high connection count workloads. As illustrated in
the histogram chart 600, when compared to round robin,
distribution based on a probability distribution, as discussed
above, results 1n a more even distribution of the connections,
thereby resulting 1n more etficient distribution of connections
to underutilized processors.

FI1G. 7 depicts a hardware block diagram of a machine in
the example form of a processing system 700 within which
may be executed a set of instructions for causing the machine
to perform any one or more of the methodologies discussed
herein. In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of a server or as a peer machine in
a peer-to-peer (or distributed) network environment.

The machine 1s capable of executing a set of 1nstructions
(sequential or otherwise) that specily actions to be taken by
that machine. Further, while only a single machine 1s 1llus-

10

15

20

25

30

35

40

45

50

55

60

65

10

trated, the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of 1nstructions to perform any one or
more of the methodologies discussed herein.

The example of the processing system 700 includes a pro-
cessor 702 (e.g., a central processing unit (CPU), a graphics
processing unit (GPU) or both), a main memory 704 (e.g.,
random access memory), and static memory 706 (e.g., static
random-access memory), which communicate with each
other via bus 708. The processing system 700 may further
include video display unit 710 (e.g., a plasma display, a liquid
crystal display (LCD) or a cathode ray tube (CRT)). The
processing system 700 also includes an alphanumeric input
device 712 (e.g., a keyboard), a user interface (Ul) navigation
device 714 (e.g., a mouse), a disk drive unit 716, a signal
generation device 718 (e.g., a speaker), and a network 1nter-
tace device 720.

The disk drive unit 716 (a type of non-volatile memory
storage) includes a machine-readable medium 722 on which
1s stored one or more sets of data structures and 1nstructions
724 (e.g., software) embodying or utilized by any one or more
of the methodologies or functions described herein. The data
structures and instructions 724 may also reside, completely or
at least partially, within the main memory 704 and/or within
the processor 702 during execution thereol by processing
system 700, with the main memory 704 and processor 702
also constituting machine-readable, tangible media.

The data structures and instructions 724 may further be
transmitted or received over a computer network 750 via
network interface device 720 utilizing any one of a number of
well-known transfer protocols (e.g., HyperText Transier Pro-
tocol (HT'TP)).

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute soitware modules (e.g., code embod-
ied on a machine-readable medium or 1n a transmission sig-
nal) and/or hardware modules. A hardware module 1s a tan-
gible unit capable of performing certain operations and may
be configured or arranged 1n a certain manner. In example
embodiments, one or more computer systems (e.g., the pro-
cessing system 700) or one or more hardware modules of a
computer system (e.g., a processor 702 or a group of proces-
sors) may be configured by software (e.g., an application or
application portion) as a hardware module that operates to
perform certain operations as described herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that 1s permanently configured (e.g., as a special-purpose
processor, such as a field programmable gate array (FPGA) or
an application-specific integrated circuit (ASIC)) to perform
certain operations. A hardware module may also comprise
programmable logic or circuitry (e.g., as encompassed within
a general-purpose processor 702 or other programmable pro-
cessor) that 1s temporarily configured by software to perform
certain operations. It will be appreciated that the decision to
implement a hardware module mechanically, 1n dedicated
and permanently configured circuitry, or 1n temporarily con-
figured circuitry (e.g., configured by software) may be driven
by cost and time considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that 1s physically constructed, permanently configured (e.g.,
hardwired) or temporarily configured (e.g., programmed) to
operate 1n a certain manner and/or to perform certain opera-
tions described herein. Considering embodiments 1n which
hardware modules are temporarily configured (e.g., pro-

US 9,270,537 B2

11

grammed), each of the hardware modules need not be con-
figured or instantiated at any one instance in time. For
example, where the hardware modules comprise a general-
purpose processor 702 configured using software, the gen-
eral-purpose processor 702 may be configured as respective
different hardware modules at different times. Software may
accordingly configure a processor 702, for example, to con-
stitute a particular hardware module at one 1nstance of time
and to constitute a different hardware module at a different
instance of time.

Modules can provide information to, and recerve informa-
tion from, other modules. For example, the described mod-
ules may be regarded as being communicatively coupled.
Where multiples of such hardware modules exist contempo-
raneously, communications may be achieved through signal
transmission (€.g., over appropriate circuits and buses) that
connect the modules. In embodiments 1in which multiple
modules are configured or instantiated at different times,
communications between such modules may be achieved, for
example, through the storage and retrieval of information 1n
memory structures to which the multiple modules have
access. For example, one module may perform an operation,
and store the output of that operation in a memory device to
which 1t 1s communicatively coupled. A further module may
then, at a later time, access the memory device to retrieve and
process the stored output. Modules may also 1nitiate commu-
nications with mput or output devices, and can operate on a
resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors 702 that are temporarnly configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors 702 may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, 1 some
example embodiments, comprise processor-implemented
modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors 702 or processor-implemented modules.
The performance of certain of the operations may be distrib-
uted among the one or more processors 702, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the processors 702
may be located i a single location (e.g., within a home
environment, an oifice environment or as a server farm),
while 1n other embodiments the processors 702 may be dis-
tributed across a number of locations.

While the embodiment(s) 1s (are) described with reference
to various implementations and exploitations, 1t will be
understood that these embodiments are illustrative and that
the scope of the embodiment(s) 1s not limited to them. In
general, techniques for connection distribution may be imple-
mented with facilities consistent with any hardware system or
hardware systems defined herein. Many variations, modifica-
tions, additions, and improvements are possible.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations,
and data stores are somewhat arbitrary, and particular opera-
tions are 1llustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the embodiment(s). In gen-
eral, structures and functionality presented as separate com-
ponents in the exemplary configurations may be implemented

10

15

20

25

30

35

40

45

50

55

60

65

12

as a combined structure or component. Similarly, structures
and functionality presented as a single component may be
implemented as separate components. These and other varia-
tions, modifications, additions, and improvements fall within
the scope of the embodiment(s).

What 1s claimed 1s:

1. A method of distributing connections within a connec-
tional parallelism architecture, the method comprising:

accessing a record of previous connection group assign-

ments for multiple connection groups;

selecting one of the connection groups for a connection

based on the record:

determiming a current relative resource utilization of the

selected connection group as compared to other resource
utilizations of other connection groups;

identifying a probability from a probability distribution

based on the determined current relative resource utili-
zation; and

based on the i1dentified probability, assigning the connec-

tion to the selected connection group for execution by a

processor assigned to the selected connection group; and
wherein the probability from the probability distribution
decreases as the determined current relative resource utiliza-
tion increases.

2. The method of claim 1, wherein selecting one of the
connection groups for the connection includes a group pret-
erence for the connection, the group preference defining a
connection group prelferred by the connection over other con-
nection groups.

3. The method of claim 2, wherein the group preference 1s
predefined.

4. The method of claim 2, wherein the group preference 1s
defined based on a type of Transmission Control Protocol
(TCP) connection.

5. The method of claim 1, wherein each connection group
1s 1dentified by a group 1dentifier, and wherein the assignment
of the connection comprises assigning the connection to a
group 1dentifier that 1dentifies the selected connection group.

6. The method of claim 1, wherein the probability distri-
bution 1s predefined, and wherein the probability distribution
corresponds to a step function-based distribution 1n which
probabilities decrease as relative resource utilizations
increase.

7. The method of claim 1, wherein the resource utilizations
of the multiple connection groups are determined by measur-
ing a number of connections to each of the multiple connec-
tion groups.

8. The method of claim 7, wherein the current relative
resource utilization 1s determined based on a ratio of anumber
ol connections owned by the selected connection group to a
total number of connections.

9. The method of claim 1, wherein the resource utilizations
of the multiple connection groups are determined by measur-
ing data rates serviced by the multiple connection groups.

10. The method of claim 9, wherein the current relative
resource utilization 1s determined based on a ratio of a data
rate serviced by the selected connection group to a total data
rate serviced by the connection groups.

11. A system comprising:

a plurality of processors including at least a first processor

and a second processor; and

a memory in communication with the first and second

processors, the memory being configured to store a con-
nection distribution module having instructions that
when executed, cause operations to be performed, the
operations comprising;

US 9,270,537 B2

13

accessing a record ol previous connection group assign-
ments for multiple connection groups;

selecting one of the connection groups for a connection
based on the record;

determining a current relative resource utilization of the
selected connection group as compared to other
resource utilizations of other connection groups;

identifying a probability from a probability distribution
based on the determined current relative resource uti-
lization; and

based on the identified probability, assigning the con-
nection to the selected connection group for execution
by a processor assigned to the selected connection
group; and

wherein the probability from the probability distribution
decreases as the determined current relative resource
utilization 1ncreases.

12. The system of claim 11, wherein selecting one of the
connection groups for the connection includes a group pret-
erence for the connection, the group preference defining a
connection group preferred by the connection over other con-
nection groups.

13. The system of claim 12, wherein the group preference
1s predefined.

14. The system of claim 12, wherein the group preference
1s defined based on a type of Transmission Control Protocol
(TCP) connection.

15. The system of claim 11, wherein each connection group
1s 1dentified by a group identifier, and wherein the assignment
of the connection comprises assigning the connection to a
group 1dentifier that identifies the selected connection group.

10

15

20

25

30

14

16. The system of claim 11, wherein the probability distri-
bution 1s predefined, and wherein the probability distribution
corresponds to a step function-based distribution 1n which
probabilities decrease as relative resource utilizations
Increase.

17. The system of claim 11, wherein the resource utiliza-
tions of the multiple connection groups are determined by
measuring a number of connections to each of the multiple
connection groups.

18. A non-transitory, machine-readable medium storing
instructions that, when performed by a machine, cause the
machine to perform operations comprising;:

accessing a record of previous connection group assign-
ments for multiple connection groups;

selecting one of the connection groups for a connection
based on the record;

determining a current relative resource utilization of the
selected connection group as compared to other resource
utilizations of other connection groups;

identifying a probability from a probability distribution
based on the determined current relative resource utili-
zation; and

based on the 1dentified probability, assigning the connec-
tion to the selected connection group for execution by a

processor assigned to the selected connection group; and

wherein the probability from the probability distribution
decreases as the determined current relative resource
utilization increases.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

