12 United States Patent

King et al.

US009270527B2
(10) Patent No.: US 9,270,527 B2
45) Date of Patent: Feb. 23, 2016

(54) METHODS, SYSTEMS, AND COMPUTER
READABLE MEDIA FOR ENABLING
REAL-TIME GUARANTEES IN
PUBLISH-SUBSCRIBE MIDDLEWARE USING
DYNAMICALLY RECONFIGURABLE
NETWORKS

Applicant: The Trustees of the University of
Pennsylvania, Philadelphia, PA (US)

(71)

(72) Inventors: Andrew King, Philadelphia, PA (US);

Insup Lee, Newtown, PA (US)

THE TRUSTEES OF THE
UNIVERSITY OF PENNSYLVANIA,
Philadelphia, PA (US)

(73) Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(%)

(21) 14/452,155

(22)

Appl. No.:
Filed: Aug. 5, 2014

Prior Publication Data

US 2015/0039734 Al Feb. 5, 2015

(65)

Related U.S. Application Data

Provisional application No. 61/862,404, filed on Aug.
5, 2013.

(60)

Int. CL.
GO6F 15/177
HO4L 12/24
HO4L 12/18
HO4L 12/927

U.S. CL
CPC

(51)
(2006.0°
(2006.0°
(2006.0°

(2013.0°

)
)
)
)

(52)
HO4L 41/0816 (2013.01); HO4L 12/1859
(2013.01); HO4L 47/805 (2013.01); HO4L

47/801 (2013.01)

PUBLISHER
MINSEP: 10MS
MAXSEP: 15M$

(38) Field of Classification Search

CPC HO4L 12/1859
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0204054 Al* 9/2005 Wangetal. 709/232
2012/0191856 Al* 7/2012 Chenetal. 709/226
OTHER PUBLICATIONS

Egilmez et al., “OpenQoS: An OpenFlow Controller Design for
Multimedia Delivery with End-to-End Quality of Service over Soft-

ware-Defined Networks,” 2012.*
Wonho Kim et al., “Automated and Scalable QoS Control for Net-

work Convergence,” 2010.*

Audsley, Neil C., “Deadline Monotonic Scheduling,” Dept. of Com-
puter Science, University of York, pp. 1-38 (Sep. 1990).

Audsley, N.C., “Optimal Priority Assignment and Feasibility of
Static Priority Tasks with Arbritrary Start Times,” Real-Time Sys-
tems Research Group, Dept. of Computer Science, University of

York, pp. 1-31 (Nov. 1991).
(Continued)

Primary Examiner — Andrew Georgandellis

(74) Attorney, Agent, or Firm — Jenkins, Wilson, Taylor &
Hunt, P.A.

(57) ABSTRACT

The subject matter described herein includes methods, sys-
tems, and computer readable media for enabling real-time
guarantees 1n publish-subscribe middleware with dynami-
cally reconfigurable networks. One exemplary method
includes providing a publish-subscribe middleware interface
usable by publishers and subscribers to request quality of
service guarantees for data delivery across a network. The
method also includes providing a global resource manager for
receiving quality of service requests from the subscribers, for
evaluating the requests, and for dynamically reconfiguring
network resources to provide the requested quality of service

guarantees.

23 Claims, 9 Drawing Sheets

SUBSCRIBER A
- MAXSEP: 20MS

TOPIC NAME: BOILERPRESSURE
DATA TYPE: 1M32

|

MAXLATENCY: 5MS

SUBSCRIBER B
MAXSEP: 14MS
MAXLATENCY: 5MS

SUBSCRIBER
MAXSEP: 15MS
MAXLATENCY: TMS

US 9,270,527 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Bin et al., “A Response Time Bound in Fixed-Priority Scheduling
with Arbitrary Deadlines,” Computers, IEEE Transactions on 58(2),

pp. 279-286 (Feb. 2009).

Le Boudec et al., “Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet,” Online Version of the Book
Springer Verlag—I.NCS 2050, Version Apr. 26, 2012, pp. 1-263.
McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-
works,” SIGCOMM Comput. Commun. Rev. 38(2), pp. 69-74 (Mar.
14, 2008).

Pedreiras et al., “FTT-Ethernet: A Flexible Real-Time Communica-
tion Protocol That Supports Dynamic QoS Management on Ethernet-
Based Systems,” IEEE Transactions on Industrial Informatics, vol. 1,
No. 3, pp. 162-172 (Aug. 2005).

Kopetz et al., “The Time-Triggered Architecture,” Proceedings of the
IEEE, vol. 91, No. 1, pp. 112-126, (Jan. 2003).

Steiner etal., “T'TEthernet Dataflow Concept,” Proceedings of the 8th
IEEE International Symposium on Networking Computing and
Applications, pp. 319-322 (2009).

Dipippo et al., “Scheduling and Priority Mapping for Static Real-
Time Middleware,” Real-Time Systems 20, pp. 155-182 (2001).
Fide et al., “Dynamic CPU Management for Real-Time,
Middleware-Based Systems,” Proceedings of the 10th IEEE Real-

Time and Embedded Technology and Applications Symposium
(RTAS ’04), pp. 286-295 (2004).

Marau et al., “A middleware to support dynamic reconfiguration of
real-time networks,” Emerging Technologies and Factory Automa-

tion (ETFA), IEEE Conference, pp. 1-10 (2010).

Pardo-Castellote, Gerardo, “OMG Data-Distribution Service: Archi-

tectural Overview,” Distributed Computing Systems Workshops Pro-
ceedings. 23rd International Conference, pp. 200-206 (2003).

Schmidt et al., “An Overview of the Real-time CORBA Specifica-
tion,” IEEE Computer special 1ssue on Object-Oriented Real-time
Distributed Computing 33(6), pp. 56-63 (Jun. 2000).

Schmidt et al., “The Design of the TAO Real-Time Object Request
Broker,” Computer Communications, Elsivier Science, vol. 21, No. 4
pp. 1-46 (Apr. 1998).

Wang et al.,, “FC-ORB: A robust distributed real-time embedded

middleware with end-to-end utilization control,” Journal of Systems
and Software 80, pp. 938-950 (2007).

Egilmez et al., “OpenQos: An OpenFlow Controller Design for Mul-
timedia Delivery with End-to-End Quality of Service over Software-

Defined Networks,” Signal & Information Processing Association
Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific.

IEEE pp. 1-8 (2012).
Kim et al., “Automated and Scalable QoS Control for Network Con-

vergence,” Princeton University, Proc. INM/WREN 10, 1-1, pp. 1-6
(2010).

* cited by examiner

US 9,270,527 B2

SWL-ANILVIXVI
SWS L -dISXVW

&N

2) $3A1454NS

-

Z SWS -NILYTXYW
S | -d3SKYW
3 3914)540S

o

2

< SWS -NLYTXYW

2 SWOZ “dISXYW

2 V E1DSINS

U.S. Patent

CEWL -1dAL VIV
JNSSIU4AIT108 -JWVN J1dO01

SWS1 -dI5XVW
SWOL -dISNIW

d1HSI18MNd

US 9,270,527 B2

Sheet 2 0of 9

Feb. 23, 2016

U.S. Patent

NOILVENIIINO)
NAOMLIN MIN AlddY

ON

7 94

¢NOLLVANITANG) MIN
Ad QI1Y10IA SO0

S4A

NOILVENIIING)
A4OMLIN
MIN SLVIN1V)
4111 d1H)S MO

| ANJLVT XVW
H1IM NOLLdIdDSANS
S153N03
d1413)54(5

US 9,270,527 B2

£ 9l
HDLIMS MOTNAAO ! NOLINNOD INIWIOYNYW MOTNIA0 TI9OT -~ INTT LINYIHLI TYDISAHe
HIAISANS B YISHITEN INLL-TVA}
HIN3S INTSSTIOUd-Y1VQ QXA (0)
N D
@ R
< g
=
= /55 /5’_ WIETOSENS TINLL- V3N
- NOLLYLS ONFNOLINOW ONIAGY ()
m ™ \.__
” HIA14IS4NS ILL-IVAY g
AVIdSIQ IWIL-TYRY (4] g YIHSTT9Nd IWIL-1Y3Y4 YOSNIS TWDILdO (8)
= M& Ny ,um
S J N <
S HSTT8Nd 4
S IWILVEY WHOIYTd HOSNES (3 NOLLVSRD
§——y] B[\ﬂ
/

U.S. Patent

dIIVNYW DIN0SIY Tva013 GWLY

US 9,270,527 B2

439VNYW 32¥N0STY 14019 (4)

Iovavva |
o TI0OW HOLIMS
3
YNAIH)S
o Mo
Q
<
S FI9VNVW
)I40L

U.S. Patent

d311041NO)

MO14N1d0

HdVd3
AJOMLIN

d1IVNYW

INAIT)

b9l

AIVYAIT INIITD (V)

7 (.
“aim) SN saies SNDYLN
SN/ 2 7 Z SO/ DL A
NOLLYZITYI¥3S3Q | |NOLLYZITVINIS
¥3AYT 9NIQO) YLV
o %
SHERHL 303001407 BIWW 1401 1101
YIAVT IdY INIIT) laV 1dY YIHST14Nd

Y31SANS

US 9,270,527 B2

Sheet S of 9

Feb. 23, 2016

U.S. Patent

[dY ¥3414)S4NS (4)

{
(YTTANYH <1> ¥ITANYHIOVSSINI
) YI1ANVHYILSIOTY ALOA dIT8Nd
| {ONLYIXYW
INOT dISXVW INOT ‘dISNIW INOT
JWYNDIdOL ONTYLS
) J1d0L0LDINNOD NYI1004 d114nd
"QIAIDTY ST 9SW THL LNIWOW //
JHL 01 39YSSIW
JHL SLIWSNVYL ¥3IHSI19nd IHL //
INJWOW FHL
WO¥H IWLL WNWIXYW 3HL - DNALYT //
(ZZV71) <1>SSYD) ¥341¥)s4ns d11and
HSI1ANd TTIM YIHSTIaNd //
SIHLINTYA 40 3dALIHL - Z7VD) //
} <[> ¥391854NS SS¥1) 114Nd

¢ I

[dV ¥3HSTIaNnd (V)

{
(INTVA L) HSIT9Nd AI0A J119Nd

(dISXYW INOT ‘dISNIW INOT
JWYNDIJOL ONIYLS
) JI40L0LDINNOD NYI1009 d114Nd
SNOILYDI14nd JALLNDISNGD //
NIIMLIS IWLL WNWIXYW THL — dISXYW //
SNOLLYDIT4Nd IALLMDASNGD //
NIIML38 IWIL WNWINIW JHL - dISNIW //
{221 <1>SSYD) ¥IHSI1ANd d114Nd
HSTTANd THM YIHSTTENd //
SIHLINTVA 40 3dAL IHL - 72VD) //
}<I> Y3HST14Nd SSYT) d114Nnd

US 9,270,527 B2

0 9l
- B — N\
HdVY9 YYOMLIN T1dWv)3 (8) TWX NI TIAOW HILIMS (V)
m %:W RILEIDY) <JIQ0WHILIMS/>
o ~1C <d31S” 154n4/>¥9<dils_1sang>
S <d31S ¥31IW/>0008<d1LS ¥I1IW>
N ¢ 1404 <ELW XYW/>9SZ<YIIW XYW>
@ <XT1dILINW/>8<XT1dILINW>
7 <§(1dS/>
<(33dS/>0001<q33dS>
L 140 <(33dS/>001<0314$>
o <QI3dS/>01<@I3dS>
Q ¢ 1N0d _ <3033d5-
o <INN0Y30In0 />8< INNO) 3NIND>
o N . <§140d/>8t<S1404>
3 / \ ;. , <INYN/>0Z6€~d 8YDId<IWYN>
~ g INIIT) | LY INIITD | <TAQOWHLIMS>

“~ s /s
o -’ ...J_lr_._, -

W o

U.S. Patent

US 9,270,527 B2

Sheet 7 0of 9

Feb. 23, 2016

U.S. Patent

L1 WATI1DVA0
L1 WATI1DVY0
14 J43HdSIM WAl

SNOILV¥NIIINO] 1SOH ()

WO0ZLL- LI
0/L-/]

005€-/1 (€ XNNIT1dW31dd 13

14 J43HdSIM WAl

005¢—/1

¢ 801 X50)VW
¢80l XS0)VW

¢ € XQNIT

(1d)

50

el 7L 'L S39nDsans

Y
LNOAYT HYOMLIN (V)
ZLSIHSTIANd | | 1L SIHSIIENd

. ﬁ%g =) 1SOH q 1S0H
[ORL]
—| [vL40d] [£L404 ¢130d

Si—-{z80d] 0765 81

0
e {11404

U.S. Patent Feb. 23, 2016 Sheet 8 of 9 US 9,270,527 B2

OBSERVED LATENCY
b | | - | - —
D bt + H ARt b = b o i e e

4t H H S A - e

=
S 3 I AR R
= —+ 4+ FoH 4+

]

0 | I . | |

0 2000 4000 6000 8000 10000
TRANSMISSION MOMENT
(A) BEST EFFORT
OBSERVED LATENCY

6 S ™ — —

)
R -
=
= D 0 0 O
5 9 P A R e - HHHr -

] i

0

0 2000 4000 6000 8000 10000
TRANSMISSION MOMENT |
(B) RTMB

e : . e _—— e

FIG. 8

U.S. Patent Feb. 23, 2016 Sheet 9 of 9 US 9,270,527 B2

OBSERVED LATENCY

6 | — T

54 444+ + A+ 4+ HH HEE

=
> 3 e A HHHE A S
= 9 + + +
'| —
0 | IS SIS U S —
0 2000 4000 6000 8000 10000
TRANSMISSION MOMENT

FIG. 9

US 9,270,527 B2

1

METHODS, SYSTEMS, AND COMPUTER
READABLE MEDIA FOR ENABLING
REAL-TIME GUARANTEES IN
PUBLISH-SUBSCRIBE MIDDLEWARE USING
DYNAMICALLY RECONFIGURABLE
NETWORKS

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional
Application Ser. No. 61/862,404, filed Aug. 5, 2013, the

disclosure of which 1s incorporated herein by reference 1n 1ts
entirety.

GOVERNMENT INTEREST

This presently disclosed subject matter was made with
U.S. Government support under Grant No. CNS-103357135
awarded by the National Science Foundation. Thus, the U.S.
Government has certain rights in the presently disclosed sub-
ject matter.

TECHNICAL FIELD

The subject matter described herein relates to middleware
for real time open systems. More particularly, the subject
matter described herein relates to methods, systems, and
computer readable media for enabling real-time guarantees 1n
publish-subscribe middleware using dynamically reconfig-
urable networks.

BACKGROUND

In real-time and open systems, such as monitoring systems
in a hospital or a power grid, modules are plugged into the
system and moved at run time. One goal when a new module
1s plugged into a system 1s that the module may need to be able
to deliver data 1n a fixed amount of time. Some middleware
standards allow applications to request quality of service.
However, there 1s no mechanism in the middleware to guar-
antee such quality of service.

Another example of message based quality of service 1s
differentiated service 1n IP networks where quality of service
parameters can be inserted by applications 1n IP headers.
However, there 1s no guarantee how routers 1n the network
will treat packets marked with such quality of service param-
eters.

Another 1ssue that exists with open networks where an
application can specity 1ts own quality of service 1s that bad
actors can disrupt network quality of service provided to other
actors. For example, an application infected with a virus
could specity high quality of service for all of 1its packets,
which may result 1n service degradation for other applications
in the network.

In light of these difficulties, there exists a need for
improved enabling of real time guarantees 1n publish-sub-
scribe middleware using dynamically reconfigurable net-
works.

SUMMARY

The subject matter described herein includes methods, sys-
tems, and computer readable media for enabling real-time
guarantees 1 publish-subscribe middleware with dynami-
cally reconfigurable networks. One exemplary method
includes providing a publish-subscribe middleware interface
usable by publishers and subscribers to request quality of

5

10

15

20

25

30

35

40

45

50

55

60

65

2

service guarantees for data delivery across a network. The
method also includes providing a global resource manager for
receiving quality of service requests from the subscribers, for
evaluating the requests, and for dynamically reconfiguring
network resources to provide the requested quality of service
guarantees.

The subject matter described herein for enabling real-time
guarantees in publish-subscribe middleware using dynami-
cally reconfigurable networks may be implemented in hard-
ware, soltware, firmware, or any combination thereof. As
such, the terms “function” or “module” as used herein refer to
hardware, soitware, and/or firmware for implementing the
feature being described. In one exemplary implementation,
the subject matter described herein may be implemented
using a computer readable medium having stored thereon
computer executable 1nstructions that when executed by the
processor of a computer control the computer to perform
steps. Exemplary computer readable media suitable for
implementing the subject matter described herein include
non-transitory computer-readable media, such as disk
memory devices, chip memory devices, programmable logic
devices, and application specific integrated circuits. In addi-
tion, a computer readable medium that implements the sub-
jectmatter described herein may be located on a single device
or computing platform or may be distributed across multiple
devices or computing platiorms.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the subject matter described
herein will now be explained with reference to the accompa-
nying drawings, wherein like reference numerals represent
like parts, of which:

FIG. 1 1s a block diagram illustrating a real-time publisher
and a real-time subscriber with quality of service guarantees
according to an embodiment of the subject matter described
herein;

FIG. 2 1s a flow chart illustrating admission control 1n a
system that implements a real-time message bus according to
an embodiment of the subject matter described herein;

FIG. 3 1s a network diagram illustrating an exemplary
deployment of the real-time message bus on an OpenFlow
enabled network according to an embodiment of the subject
matter described herein;

FIG. 4 1s a block diagram 1llustrating a real-time message
bus software stack according to an embodiment of the subject
matter described herein;

FIG. 5 1s a diagram 1llustrating an exemplary client API 1n
Java according to an embodiment of the subject matter
described herein;

FIG. 6 1s a diagram illustrating a switch model in XML and
an example network graph according to an embodiment of the
subject matter described herein;

FIG. 7 1s a diagram 1llustrating a test bench configuration
according to an embodiment of the subject matter described
herein;

FIG. 8 1s a graph illustrating observed latency for best
cifort and real-time message bus traffic according to an
embodiment of the subject matter described herein; and

FIG. 9 1s a graph illustrating observed latency bounds for a
subscriber Sy, to topic T; when publishers P, and P, totopics
T, and T, are malfunctioning.

DETAILED DESCRIPTION

1 Introduction & Motivation

Publish-subscribe middleware provides a simple commu-
nications abstraction for nodes 1n a distributed system. Nodes

US 9,270,527 B2

3

communicating via the publish-subscribe pattern generally
take on one of two roles: that of a publisher or that of a
subscriber. Publishers communicate to other nodes by pub-
lishing data to an abstract, shared namespace called a topic.
Subscribers can elect to receive data by subscribing to topics.
Publish-subscribe middleware confers a number of benefits
for distributed systems. First, the communications abstrac-
tion leads to a loose coupling between publishers and sub-
scribers. Second, the middleware allows for a separation of
concerns: application developers do not need to concern
themselves with low-level systems and communications
details.

Increasingly, publish-subscribe middleware 1s being used
in distributed real-time systems. Because real-time systems
must exhibit predictable timing behavior, modern publish-
subscribe middleware such as implementations of the Data,
Distribution Service (DDS) specification [12], expose a Qual-
ity of Service (QoS) API that application developers can use
specily various timing constraints.

Notably absent from the DDS specification 1s the notion of
guarantees; while publishers and subscribers can specity tim-
ing constraints, the middleware 1s not under any obligation to
ensure or enforce those timing requirements. The lack of
timing guarantees 1 the DDS standard (and its implementa-
tions) 1s likely due to the fact that achieving predictable tim-
ing in a distributed real-time system 1s challenging: the timing
behavior of a distributed system 1s not just a function of the
application code and middleware software stack; 1t also
depends on the underlying network and network load. Cur-
rently available publish-subscribe middleware implementa-
tions have limited or no ability to affect the configuration of
the underlying network. This means that a developer of a
distributed real-time system must carefully configure the net-
work ofthne and a prion to ensure that no critical timing
constraints will be violated for the lifetime of that system. The
consequence of this limitation 1s that the advantages of pub-
lish-subscribe, mainly loose coupling and the separation of
concerns, are diminished because real-time constraints force
application developers to deal with low-level system wide
1SSUes.

If networking hardware could be managed at a low-level by
the middleware 1itsell, then the middleware could automati-
cally provide end-to-end timing guarantees by applying
schedulability analysis, admission control, and transparent
network reconfiguration. Recent trends 1n networking make
this a realistic possibility. The increasing availability of
OpenFlow [11] enabled switches and routers means that com-
modity networking equipment could be combined with pub-
lish-subscribe middleware to create open and dynamic dis-
tributed real-time systems. This leaves a number of technical
and research questions: First, what QoS parameters are
needed to support strong real-time guarantees? Second, how
do we architect a publish-subscribe middleware system that
has complete control of the network? Third, how can we
(re)configure the network using the primitives provided by
OpenFlow to ensure that requested QoS 1s enforced?

To address these and other issues, the subject matter
described herein 1includes a Real-Time Message Bus
(RTMB), our publish-subscribe middleware prototype which
1s integrated with OpenFlow to provide real-time end-to-end
guarantees. In Section 2 we examine the DDS QoS API,
explain its current limitations and propose new QoS param-
eters to support end-to-end timing guarantees. In Section 3,
we give a high level description of how our approach lever-
ages OpenFlow to provide real-time guarantees. In Section 4
we describe the design of the RTMB. In Section 5 we describe
algorithms which the RTMB prototype uses to perform

10

15

20

25

30

35

40

45

50

55

60

65

4

schedulability analysis (admission control) and reconfigure
the network. In Section 6 we provide the results of an experi-

mental evaluation of the RTMB using real OpenFlow hard-
ware. In Section 7 we describe related work. We conclude and
provide some directions for future research 1 Section 8.

2 Quality of Service Proposal

The DDS standard currently exposes a number of param-
cters publishers or subscribers can set that can impact the
timing behavior of the system. The first QoS parameter we
will describe 1s deadline. The deadline (ddln) parameter can
be set by publishers or subscribers and defines the maximum
interval of time between two consecutive updates of a topic. If
a publisher specifies a deadline of d , then 1t 1s declaring that
it will not delay more than d , time units between each publi-
cation event. If a subscriber specifies a deadline of d then the
subscriber 1s declaring that 1t expects to recerve consecutive
updates to the topic no longer than d time units apart. While
the DDS standard requires that the middleware check 11 pub-
lishers or subscribers are mismatched (1.e., 1t will notity a
subscriber 1f 1t requests a d,<d,) the standard does not require
any mechanism for enforcement; instead the middleware
must notify the subscriber after the deadline has been vio-
lated.

The second parameter impacting end-to-end timing 1s
latency budget (1b). Latency budget indicates the maximum
acceptable latency of messages forwarded between the par-
ticular publisher or subscriber. This parameter can be set on
both publishers and subscribers. Note that setting the latency
budget does not result 1n any sort of guarantee. The standard
describes 1t as a hint to the underlying middleware for net-
work transport optimization purposes. For example, a pub-
lisher can use the latency budget parameter to determine how
messages are batched prior to network transmission.

The third parameter directly relating to timing 1s transport
priority (transp prior). Transport priority lets publishers
assign numerical priorities to messages sent to a topic. When
queuing messages for transmaission 1n the publisher’s soft-
ware stack, the underlying middleware will use the priority
parameter to determine which message will be serviced (1.e.,
transmitted or forwarded to clients) first. Applications devel-
opers typically use transport priority for one of two purposes.
First, transport priority can be used to specity relative impor-
tance. For example, a higher priority can be assigned to mes-
sages with higher criticality, such as alarm messages. Second,
transport priority can be assigned according to fixed priority
scheduling techniques to provide message timing guarantees
[6].

The first two parameters (deadline and latency budget)
have limited usefulness for real-time systems because they
are not associated with a notion of a guarantee. For example,
say some publisher P 1s publishing to topic T with a declared
deadline d,. Some subscriber S comes online and requests a
subscription to T with adeadline d,. It d,=d,, then the middle-
ware will deem S and P compatible and admit the subscrip-
tion. Now say that the network 1s continually loaded enough
that updates from P to S are delayed longer than d,. S’s
deadline QoS setting will be 1n constant violation which
means that the application of S will continually be in an
exceptional state.

The third parameter, transport priority, 1s problematic
because 1t exposes lower level systems 1ssues to functional
applications code. The result of this 1s two-fold. First, 1t
makes publishers less portable. The appropniate transport
priority setting i one deployment environment may be
entirely inappropriate in another. Second, it forces applica-

US 9,270,527 B2

S

tions developers to deal with low-level and system wide
1ssues. For example, applications developers not only have to
worry about how any transport priority they set impacts their
own application, but also how 1t affects all applications shar-
ing the same network. This negates the main benefit of pub-
lish-subscribe middleware, which 1s that applications devel-
opers should not have to worry about whole system 1ssues.
2.1 Proposed Real-Time QoS

We propose that at minimum, real-time publish-subscribe
middleware should allow subscribers to specily maximum
end-to-end network latency bounds. The middleware should
then provide guarantees that all recerved messages will con-
form to the latency bounds, or 1 guarantees cannot be made,
notily the subscriber at subscription time. We now formally

define network latency and latency guarantees.

Definition 1
Network Latency

Let P, be a publisher publishing to topic T and S~ be a
subscriber to T. Let t, be the moment P starts transmitting
message m on the network and let t, be the smallest time t
alter m has been fully received by S... The end-to-end network
latency of m 1s L(S,,m)=t,-t,.

Definition 2

Guaranteed Maximum Latency

Let P be a publisher publishing to topic T and S be a
subscriber to T. If S . requests a guaranteed maximum latency,
denoted L., (S,),thenV_L(S,.m)<L___(S,).

10

15

20

25

30

6
3 Approach Overview

We achieve real-time guarantees on open networks built
from COTS equipment by handing complete control over the
network to the middleware via OpenFlow [11]. Tight integra-
tion of the middleware with OpenFlow provides several ben-
efits. First, it gives the middleware complete control over how
data packets on the network are forwarded, prioritized, and
rate-limited. Second, many consumer off the shelf (COTS)
switches can be made OpenFlow capable with a firmware
update. This means that existing network deployments can be
made OpenFlow capable. Third, in many OpenFlow switches
all OpenFlow rule processing occurs at line rate. This means
that the middleware can affect configuration changes in the
network without any appreciable loss of network perior-
mance.

We now describe the operation of an OpenFlow network.
An OpenFlow network consists of two types of enfities:
OpenFlow switches and OpenFlow controllers. An Open-
Flow hardware switch 1s a Layer 2/3 Ethernet switch that
maintains a table of flow entries and actions.

Definition 3

Flow

Let a tlow 1 be a tuple (S,D) where S 1s a network address
of the flow source, and D 1s the network address of the desti-
nation. S(D).

TABLE 1

Example OpenFlow flow table

Datalink [P TCP
Input Port VLANID Src Dst lype SIC Dst Src Port Dst Port Action
3 0 89ab 89ac [P 192.168.1.1 192.168.1.2 100 101 meter =1, enqueue =4:7
4 0 89ac ¥9ab IP 192.168.1.2 192.168.1.1 101 100 meter = 2, enqueue = 3:2

In addition to maximum latency, publishers must also
specily the minimum separation time between consecutive
messages. While minimum separation 1s usually not usetul
from an application’s perspective, the middleware’s schedul-
ing algorithms will need 1t to calculate worst-case network
loads and ultimately provide real-time guarantees.

We 1llustrate the real-time QoS settings available 1n our
middleware prototype in FIG. 1. We provide three different
real-time QoS settings: maxSep—the maximum separation
between two messages, minSep—the minimum separation
between two messages, and maxLatency the maximum delay
the network 1s allowed to incur on the delivery of the message.
FIG. 1 also provides an example of how the RTMB will match
QoS between publishers, subscribers, and the underlying sys-
tem. Subscriber A 1s admitted to the system because its
required maxSep (20 ms) 1s greater than or equal to the
publishers (15 ms). Additionally the middleware has deter-
mined 1t can guarantee the requested maximum latency. Sub-
scriber B 1s not admitted because it requires a maxSep of 14
ms which 1s smaller than the publisher’s. Finally, Subscriber
C 1s not admitted to the system only because the underlying
middleware has determined that it cannot guarantee C’s
requested maximum end-to-end latency.

45

50

55

60

65

The flow table associates each flow with an action set
which tells the switch how to handle a packet matching the
flow. Table 1 shows an example tlow table. The table has two
flow entries which match against input port, Ethernet address,
IP address and TCP port number. There are two actions asso-
ciated with each flow. While the OpenFlow specification
describes a number of different actions our prototype utilizes
the enqueue and meter actions. The meter action requires the
switch to apply tratfic policing to the flow. The enqueue action
requires the switch to place the packet on an egress queue
associated with a specific port during forwarding.

When an OpenFlow switch receives a packet on one of its
interfaces, 1t compares that packet to its flow table. I the
packet matches a tlow table entry, 1t applies the action set
associated with that flow entry. If the packet does not match
an existing entry the switch performs what the OpenFlow
protocol calls a packet-in. When the switch performs a
packet-in, it forwards the packet to the OpenFlow controller
(a piece software runming on a server 1n the network). The
controller analyzes the packet and can execute any arbitrary
algorithm to generate a new flow rule. The controller can then
update the switch’s tlow table with the new rule. Packet-in
allows the OpenFlow controller to learn the topology of the

US 9,270,527 B2

7

network (1.e., learn what ports on what switches different
hosts are connected to) and then effect complex routing,

torwarding and QoS strategies with algorithms implemented
in a normal high level programming language like Java or
C++.

We now provide an overview ol how the RTMB provides
real-time guarantees on OpenFlow enabled COTS networks.
The RTMB implements a Global Resource Manager (GRM)
which contains a specialized OpenFlow controller (FIG. 3).
When a publish-subscribe client comes online it first connects
to the GRM. This allows the GRM to learn where on the
network the client 1s located (1.e., the switch and port 1t 1s
connected to). Then, when a client requests a subscription
with a specified QoS, the GRM will perform admission con-
trol (FI1G. 2). First, the scheduling algorithm 1n the GRM will
generate a new network configuration based on the new QoS
request. The new configuration 1s then analyzed by a schedu-
lability test which determines if any QoS constraints could be
violated with that configuration (see Section 5 for an example
scheduling and schedulability algorithm). If a violation 1s
possible, the client 1s notified and their request 1s not granted.
If QoS 1s guaranteed in the new configuration, the GRM
commits the network configuration to the network using
OpenFlow and then admits the client. Note that this system
architecture allows us to handle non publish-subscribe best
cifort tratfic (e.g., web-browsing) on the same network trans-
parently; the GRM can map best-effort traffic to the lowest
priority queues on each switch.

4 Middleware Design

Now we describe the various software components 1n the
RTMB. The RTMB adopts a brokerless architecture and the
functionality of middleware 1s separated into two software
stacks implemented 1n Java (see FI1G. 4). The client library
provides the publish-subscribe abstraction (FIG. 5) to clients
that wish to be publishers or subscribers. The client library
runs on machines that host applications that desire to be
publishers or subscribers. The Global Resource Manager
(GRM) runs on a server connected to the network and 1s
responsible for managing active topics) publishers, subscrib-
ers and the underlying network configuration. Both the client
library and GRM have features specifically designed to
enable automatic QoS guarantees.

4.1 Client Library

The architecture of the client library 1s illustrated 1n FIG.
da. If the application 1s a publisher, messages tlow from the
application to a local topic queue by way of the local topic
manager. This allows the client library to perform a zero-copy
transier of data between publishers and subscriber that are
running on the same host. Each local topic queue always has
a special subscriber: the data-coding layer. The data-coding
layer 1s responsible for serializing messages prior to trans-
mission on the network. After a message has been serialized,
a sender object transmits 1t onto the network. The type of
sender used depends on what transport protocol was negoti-
ated with the GRM. Symmetrically, the receivers receive
messages from the network, pass those messages to the data
coding layer where they are deserialized and then placed on
the appropriate topic queue. Subscribers are mvoked when
the topic queue associated with their topic becomes non-
empty.

The Client Library has one important feature used to sup-
port automatic QoS guarantees: it statically infers the maxi-
mum serialized message sizes from message types. When a
publisher comes online it specifies the type of message it will
publish. The API passes this information to the topic man-

10

15

20

25

30

35

40

45

50

55

60

65

8

agement layer, which 1n turn asks the data coding layer for
message size bounds on that type. In our prototype, the data

coding layer uses Java retlection to determine the structure of
the type and infer the maximum number of bytes used to
represent a message of that type on the network. Maximum
message size mnformation 1s used by the GRM when it per-
forms the schedulability analysis of a network configuration.
4.2 Global Resource Manager

The GRM (FIG. 4b) 1s responsible for orchestrating all
activity on the network to ensure that data 1s correctly propa-
gated between publishers and subscribers. To accomplish
this, the GRM must maintain configuration information about
the network and implement the appropriate scheduling and
network reconfiguration algorithms. Because we are con-
cerned with providing guaranteed timing, the GRM must
keep record of how switches 1n the network are intercon-
nected, where clients are plugged into the network, the per-
formance characteristics of each switch, and which multicast
addresses are associated with what topics.

These various responsibilities are decomposed along mod-
ule boundaries. Several of these modules’ functions do not
need to be extensively elaborated: the client manager 1s a
server process that handles client’s requests (e.g., to start
publishing on a topic); and the topic manager maintains a
record of active topics and the network addresses associated
with each topic, the OpenFlow controller implements the
OpenFlow protocol and exposes a simple API to the flow
scheduler to reconfigure the network.

The flow scheduler implements the admission control,
scheduling and network reconfiguration algorithms used to
ensure QoS constraints are not violated (see Section 3).

We now elaborate the network graph and the switch model
data in more detail. The switch model database 1s a repository
of performance and timing characteristics for different mod-
els of OpenFlow switch. This information 1s vitally important
to the GRM; 1t needs to know how each switch 1n 1ts network
behaves. The information 1n the switch model repository 1s
created before the middleware 1s deployed on a network. In
our prototype each switch model 1s represented by an XML
file that 1s read by the GRM when the GRM starts up. FIG. 6a
contains an example switch model. Each switch model con-
tains the model name of the switch, the number of ports on the
switch, the number of egress queues associated with each
port, the bandwidth capacity, and the number and precision of
the hardware rate-limaiters.

The network graph maintains both static and dynamic net-
work configuration information. The static information 1s
specified at deployment time; 1t defines what switches are on
the network (the model, etc.) and how they interconnect. The
dynamic information 1s either learned via OpenFlow (e.g.,
what ports on which switch are specific client connected) or
set by the flow scheduler.

FIG. 654 illustrates a simple network graph. The network
consists of two switches. These switches are connected via an
uplink cable on each of their port 1. Each switch 1s connected
to two clients (denoted by dotted circles).

5> Flow Scheduling

In this section we describe the schedulability and network
configuration/reconfiguration algorithms we implemented 1n
our prototype to enable guaranteed end-to-end latency. Our
high-level approach is illustrated in F1G. 2. When a subscriber
comes online it requests a subscription with a guaranteed
maximum latency. The flow scheduler executes a scheduling
algorithm which generates a candidate network configura-
tion. The flow scheduler then analyzes the candidate configu-

US 9,270,527 B2

9

ration with a schedulability test. The schedulability test cal-
culates an upper bound on the worst case latencies that any
subscriber 1n the system may experience with the new con-
figuration. If the new configuration might cause a violation of
any timing constraint, then the new subscriber 1s not admitted
with its requested QoS. I the new configuration guarantees
all QoS constraints, the network’s current configuration 1s
carefully transformed into the new configuration and the new
subscriber 1s then admitted.

In general, these types of distributed real-time scheduling
problems are NP-Hard 11 we desire optimal scheduling. Dis-
tributed scheduling for various types of systems and task/flow
models have been studied extensively in the literature. We do
not claim new results 1n terms of algorithmic speedup or
optimality. Instead, we focus on illustrating how existing
scheduling techniques can be adapted to work with the con-
figuration primitives provided by OpenFlow enabled
switches. In order to simplify our explanation, we first
describe how our schedulability and network configuration
algorithms work for a distributed system based on a network
with one switch. After the basic technique has been estab-
lished, we generalize the technique to the multi-switch case.
5.1 Single Switch Scheduling

The tlow scheduler generates a candidate network configu-
ration in several phases. First, for each publish-subscribe
relationship the flow scheduler queries the OpenFlow con-
troller to determine what switch port each publisher and 1s
connected to and the network address associated with a given
topic. Then, for each publisher P publishing to T, the flow
scheduler configures a rate-limiter. The rate-limiter 1s config-
ured with a maximum burst size B and maximum rate R, and
1s set to apply to all packets that enter the switch on the port
connected to P destined to the network address associated
with T, If a publisher specifies a minimum separation between

cach message of minSep, and maximum message size of M,
then the burst size B and rate R are set as follows:

M

b=M, :
minSep

K=

This allows P to burst 1ts entire message onto the network
while ensuring that P cannot overload the network 11 P acts as
a babbling 1diot . . .

Before we can describe how the flow scheduler prioritizes
flows we need to explain how to calculate upper bounds on the
worst case latency ol message. Latency 1n a switched network
has a number of sources. The first 1s due to the bandwidth of
the network link. The second 1s due to the physical wire that
connects a network node to a switch: an electrical signal takes
time to propagate along a wire (in most networks the latency
cifects of the wires are small because they are relatively
short). The third 1s the multiplexing latency of the switch.
Switch multiplexing latency 1s the time 1t takes a switch to
move a bit entering the switch on one port to the output queue
of another. On modern non-blocking switches this 1s usually
on the order of several microseconds. Finally, there 1s queuing
latency, which 1s the amount of time a message spends wait-
ing 1n an egress queue. In a modern switched Ethernet all
these latencies are fixed (i.e., do not change due to network
load) except for queuing latency. Messages placed from dii-
terent flows placed on queues associated with the same switch
port are 1n contention for shared “forwarding resources.” We
now formally define the fixed latency, queuing latency, and
end-to-end latency for a single switch.

5

10

15

20

25

30

35

40

45

50

55

60

65

10
Definition 4

Wire Latency

The function w(N,, N,) denotes the signal propagation
latency between network stations N, and N,. A network sta-
tion can be either a switch, or a publisher/subscriber.

Definition 5

Fixed Latency

Let{=("T .S). Let the maximum message size of amessage
publish to topic T be M. Then the fixed portion of the end-to-
end latency, denoted L (P ~,S), between P~ and S.-1s:

(1)

M
Lr(Pr, S¢) = = + W(Pq, $)+ w(Sq, s) + 5

FRIEX

where C 1s the network bandwidth and s 1s the multi-

plexing latency of switch s.

Definition 6
Queuing Latency

Let (P,S,) be the flow from P to S, and let s(i) be the i””
port on switch s which the flow 1s routed out of, then the
queuing latency of the tlow (P S.) with priority p at switch/

port s(1) 15 Q(P,,S ~s(1),p).

Definition 7

End-to-End Latency

The end-to-end latency L_,_ 1s the sum of the fixed and
queuing latency:

Lo AP SO)=LAPSH)HOWP 1S 55(0),p) (2)

How can we calculate Q(P~S,s(1),p)? We adapt an
approximate technique for calculating the response time of a
task under fixed priority scheduling on a uniprocessor. In [5],
Bini et al. provide a linear equation for calculating an upper-
bound worst; case response time of a task. Assuming P, 1s the
minimum separation between consecutive arrivals of task T,
E. 1s the worst case execution time and hp (1) 1s the set of tasks
assigned priority higher than T, then the response time R, 1s
bounded from above by:

(3)

This equation 1s usetul in our application because the per-
task workload approximations Bini et al. used to derive the
response time bound also approximate the traific pattern of a
flow conforming to a rate-limiter. We then to transtorm Equa-
tion 4 into a worst-case bound on latency due to queuing we
by substituting the correct terms and subtracting the overall
message transmission cost for our tlow (Let hp (p,s (1)) be the
set of tlows with priority higher than p at port s(1)):

US 9,270,527 B2

(BJ, A (4)
M M ; Pl
_T + 4 1 — _ ¢
C ¢\ minSep; |
. chp(p,s(i)) My
@ . S. . AL ub p— s e ——
QFq, 57, s(0), p) B .
| — C
mfnSepj
JERP(p,s(i))

We can now use the upper-bound on worst-case switch
latency to determine how to prioritize each flow. Common
techniques for priority assignment in real-time systems
include the Rate Monotonic (RM) and Deadline Monotonic
orderings (DM) [3]. Unfortunately, both RM and DM theory
require that each flow 1s assigned a unique priority. This 1s not
possible on real networking hardware: most FEthernet
switches only provide 8 priority queues per port for egress
traffic. To overcome this limitation, we use Audsley’s Opti-
mal Priority Assignment. (OPA) algorithm [2]. OPA has two
desirable properties: It 1s optimal (if a flow set will meet 1ts
latency requirement under any fixed-priority configuration 1t
will also under OPA) and it minimizes the number or priority
levels required to schedule the Row set. Because each port of
the switch 1s independent 1n terms of 1ts egress queuing, we
only need to differentiate the priorities of tflows exiting the
switch on the same port.

We now describe a version of Audsley’s OPA adapted to
assign priorities to flows 1in an OpenFlow switch (Algorithm
1). Our modified OPA takes as input a set of flows (denoted F)
torwarded out of the same port. OPA starts by attempting to

assign flows to the lowest priority level. If a flow 1 can exceed
its latency bounds at a given prionity level, OPA moves on and
will attempt to assign that flow a higher prionty later. Con-
servatively, a flow(P,S) can miss its latency bounds 1 Q(P .,
Ss(1),p)?+L- (PrS,)>L__(S,). If OPA exits before
assigning a priority to every tlow) then the tlow set; 1s not
schedulable with any fixed priority assignment. If the number
of prionty levels required to schedule F 1s greater than the
number of priorities provided by the switch, then the tlow
scheduler deems the tflow set unschedulable.

Algorithm 1 Audsley’s Optimal Priority Assignment

: procedure OPA (F)
fori=1-—=ndo
unassigned < true
while F = O do
Select some flow f € F
' < F — { (FF'1s the set of all flows other than 1)
hp(f) < F'(assume all flows in F'are assigned a higher priority)
b Q(Mﬁi,p')“‘g" = L (1) - fixedDelays then
assign flow 1 to priority level 1
0 Ol
1 unassigned <— false
2 end if
3 if unassigned then
14: Exit because no feasible assignment exists
15
6
7
8

s NOY 0] Oy o s D B

end 1f
end while
end for
18: end procedure

Before admitting a new subscriber the flow scheduler must
carefully commuit the new configuration to the network; 1f new
flows are added to the network the priority assignments of
existing tlows may change. These flows must be migrated to
their new priorities 1n a specific order to avoid priority inver-
sions. To safely accomplish the reconfiguration the flow

10

15

20

25

30

35

40

45

50

55

60

65

12

scheduler maps existing priorities according to their priority
assignment 1n the new configuration: flows with lower prior-
ity are reprioritized first.

Algorithm 2 Safe priority Reconfiguration

1: procedure RECONFIGURE (M)
2: Let L be the list of flow- to- priority mappings in M 1n reverse
priority order

3: for (f,p) € L do

4. SetPriority(1,p)
S: end for

6 end procedure

Extension to Multi-Switch

The prototype tlow scheduler supports real-time guaran-
tees on networks consisting of multiple switches by trans-
forming the distributed scheduling problem into a sequence
of local (1.e., single switch) scheduling problems. Before we
proceed we modity Equations 5 and 2 to describe the sources
of latency for a flow that 1s forwarded through a sequence of
switches. As 1n the single switch case there are fixed and
queuing sources of latency:

D.2.

Definition &

Multiswitch Fixed Latency

Let p be a path of length m through the network from P - to
S, Let N, be the k” network node (switch or publisher/
subscriber) on p. Let the maximum message s1ze of amessage
publish to topic T be M. Then the fixed portion of the end-to-
end latency, denoted L .P(P .S), between P.and S..1s:

M

5
LrPr, Sg) = vl)

D wiNe No+ Y s

1<k =m 1 <k<m

Definition 9

Multiswitch Queuing Latency Latency

Let p be a path through the network with length m from P -
to S.. Then the queuing latency due to all the switches on p 1s
the sum of all the queuing latencies of the switches along the

path:

5
Q° Py, S7) = Z QP Sq, 5:.(i)s pr) ©)

1 <k<m

Definition 10

Total Multiswitch End-to-End Latency

Let p be a path through the network crossing m switches.
Then the total end-to-end latency due to both fixed and queu-
ing delays along p 1s:

Lo P PrSp=0P(PrSp+L " (PrST) (7)

Given these equations for end-to-end latency for tlows
crossing multiple switches we describe how the RTMB gen-
erates and applies network configurations for multi-switch
networks. As mentioned earlier 1n this section distributed

US 9,270,527 B2

13

scheduling 1s 1n general quite difficult. Further complicating
matters 1s that the RTMB must be able to reconfigure the

entire network without causing any QoS constraint violations
tor existing tlows. This 1s challenging because the reconfigu-
ration of an upstream switch will impact the worst case load
on downstream switches. Imagine for example a simple net-
work consisting of two switches s, and s,. Now imagine some
flow T forwarded along the path s,, s,. Say that the minimum
separation between bursts of T at s, 1s 20 ms and the worst case
queuing latency at s; 1s 3 ms. This means that the minimum
separation that could be observed by s, 1s 17 ms (the case
where the first burst of 115 delayed the maximum amount and
then the second burstis notdelayed at all). Now assume a new
flow 1" 1s admitted to the network and 1t 1s prioritized higher
than fon s,. This will increase the worst-case queuing latency
of I (e.g., to 10 ms) at s, and further contract the worst-case
burst separation observed by s, (down to 10 ms).

¢ avold having to calculate network-wide side effects each
time a new subscriber 1s admitted by transforming the distrib-
uted scheduling problem into a sequence of local scheduling,
problems: When a subscriber S requests a subscription to T
with a latency constraint L. __(S) we first calculate the short-
est unweighted path p between P -and S... Next, we uniformly
allotaportion . (S.)to each switch: for each switch s, 1n p
we calculate L, ,.(S7),, where:

mm:(ST) -£ (@T S‘T)
ol

Lmax (S‘T)Sk —

That 15, we split the allowed queuing latency up evenly
between all the switches along p. We now recursively calcu-
late the worst case minimum separation observed at each
switch on the path. Let minSep, be the mimimum worst case
separation of bursts at switch s, then:

minsepk+l:minsepk_l’max(sf)sk

Finally, we apply the single switch schedulability, priority
assignment and network reconfiguration algorithms using
cach L __ (S,)s, and minSep, for the appropriate switch.
Because we fixed the allotted switch queuing latency when
the flow as admitted, the minSep, values will never change.

6 Experimental Evaluation

We evaluated two aspects of the RTMB. First we wanted to
see 11 the network scheduling used 1n the RTMB improved the
timing performance relative to that of a standard switch.
Second, we wanted to see how robust the RTMB timing
guarantees are. In order to evaluate these two aspects we
deployed the RTMB on our OpenFlow test bench (FIG. 7a).

Our OpenFlow test-bench consists of 4 computers (FIG.
7b)and an OpenFlow capable switch, aPica8 P3290[1]. Each
ol the 4 computers were plugged mnto the switches’ data-plane
ports (1.e., OpenFlow managed ports). The GRM was also
plugged into the control-plane port which carries OpenFlow
management traific. Measuring end-to-end timing in a dis-
tributed network accurately 1s challenging due to clock syn-
chronization 1ssues. We avoid these synchronization 1ssues by
exploiting OpenFlow to let us run publishers and subscribers
on the same hosts: we add an OpenFlow rule that causes the
switch to intercept packets from certain flows, rewrite the
packet headers, and then retransmit the packet back out the
port 1t arrived on. This allows us to ‘“fool’ the client; 1t can
publishto T, and subscribe to T, but in reality it the messages
being published to T are being sent back modified so they

10

15

20

25

30

35

40

45

50

55

60

65

14

look as 1t they are from T,. This allows us to compare the
timestamps of messages using the same system clock while
still subjecting the message to the same queuing, multiplex-
ing and wire latencies it would experience 1f 1t was being sent
to another host.

All timing measurements we done on Host A. Host A was
running real-time Linux with IBM’s RTSJ-compliant Real-
Time JVM. The RTMB client library on Host A was sched-
uled with the highest system priority using RTSIJ Java’s
NoHeapRealtimeThreads to ensure that they would not be
interfered with by the Java garbage collector or other pro-
cesses on the system. All timing measurements were made by
calling Java’s System.currentTimeMillis(). Prior to running
our experimental scenarios, we lower-bounded the amount of
latency added by the Linux TCP/IP stack and the JWM by
sending a message to the loopback interface. This latency was

consistently 1 ms.

For each experiment we used the same 3 publishers each
publishing to a different topic (T,, T, and T,) with a single
host subscribing to each topic. Table 2 lists each topic, rel-
evant QoS (minSep from the publisher and max latency from
the subscriber), and the bandwidth required by each. For each
experiment we captured all messages received within a 10
second window and recorded their latencies.

TABLE 2

Experimental Publish-Subcribe Set

Message
Topic minSep Max. Latency Size (Bytes) Bandwidth
T, 3 ms 2 ms 192192 512.512 mbit/s
T, 3 ms 3 ms 96000 256.000 mbit/s
T; 11 ms 8 ms 64000 46.545 mbit/s
TOTAL: 815.057 mbit/s

6.1 Scenario 1: Comparison to Best-Effort

Here we compare the performance of the middleware 1n
two network settings. In the first setting, we configure the
Ethernet switch to behave like anormal L.2/L.3 switch. We call
this the *‘best-efiort” setting. In the second setting we place the
network under control of the RTMB as described herein. We
observed the end-to-end latencies of messages published to
T, while the network was also handling subscriptions to T,
and T;.

The results of this observation are presented in FIG. 8.
Each point on each graph represents the end-to-end latency of
a single message sent to T, and received by the subscriber.
The x-axis 1s the moment (in milliseconds) that the message
was transmitted. The y-axis 1s the latency of that message.
Even accounting for jitters in the operating system and JVM
the end-to-end deadline of S 1s occasionally violated on the
best-effort system. Taking into account platiform jitters, no
messages violated the latency requirement when the RTMB
was managing the network configuration. What 1s not obvious
from the graph 1s the number of messages ol T, that are lost 1n
the best effort system: S, never received 43% of the messages
that were sent. All messages arrived in the RTMB-managed
setting.

6.2 Scenario 2: Fault Containment

In this scenario we modily the publishers to T, and T, so
they transmit as fast as they can and we record the latencies of
messages tlowing to T5. In this experiment the publishers
were able to saturate a 1 gigabitper second Ethernet link each.
We modified P, and P, because the RTrvIB will configure

their respective ﬂows Wlth the highest priority which means

US 9,270,527 B2

15

they have the most opportunity to steal resources from the
other flows 1f they misbehave. When run on the best effort
network (1.e., with no flow prioritization) P, and P, were
able to starve enough of the network forwarding capacity
from the flow associated with P, to cause all messages to be
dropped. FIG. 9 contains the observed latencies when the
RTMB was managing the network. Again, each point in the
graph represents a single message. The y-axis 1s latency of
that message, and 1ts x-value 1s the moment the message was
transmitted. Under the RTMB, no messages were dropped

and all messages arrived earlier than their required latency
bounds, &8 ms.

7 Related Work

To our knowledge the RIMB 1s the first example of a
publish-subscribe middleware that uses OpenFlow to provide
real-time guarantees on COTS FEthernet networks. Most
research mnto middleware for distributed real-time systems
can be divided 1nto two categories. The first category involves
research into how various CPU scheduling and determinism
features can be used 1n middleware to effectively support the
predictable execution of distributed tasks i a distributed
environment. Examples of such work include TAO [15] and
the many middleware other real-time Corba [14] middleware
works such as FC-ORBJ[16], QuO [17] and [8].

The other, less extensively studied, category includes
middleware which tries to achieve deterministic network
behavior by coordinating the activity of the application
nodes. Examples of such work are [10], FTT-Ethernet [13]
and the Synchronous Scheduling Service for RMI [4]. These
approaches all offer some notion of guarantee but they are not
robust because they depend on the cooperation of each node
on the network: 11 a node does not cooperate (either due to a
fault or malicious activity) then that node can disrupt the
whole network.

There have also been a number of projects where Open-
Flow has been used to provide some type of QoS guarantee.
However, these projects have not focused on real-time sys-
tems aspects. Instead, their application focus has been on data
center centric QoS (like minimum guaranteed bandwidth) [9]
or for multimedia systems [7].

8 Conclusion

The work described herein represents a promising step
towards publish-subscribe middleware that, can automati-
cally provide real-time guarantees. We have described a
weakness of current publish-subscribe middleware for real-
time systems: they do not provide end-to-end timing guaran-
tees. We proposed that QoS settings should be associated with
a notion of a guarantee. We then described the Real-Time
Message Bus, a prototype publish-subscribe middleware
which uses OpenFlow to manage the underlying network and
provide guarantees for real-time QoS. To our knowledge, this
1s the first time middleware has been combined with Open-
Flow for this purpose. We described both the RTMB’s design
and the algorithms 1t uses to generate network configurations
that provide real-time guarantees.

Our mitial evaluations showed that our prototype does
enable more deterministic timing behavior. Even with a rela-
tively high network load of 815 megabits per second all
publish-subscribe network tlows satisfied their millisecond-
level timing requirements while on the normal Ethernet net-
work latency constraints were violated and almost half the
messages were dropped. The evaluations also showed that the
RTMB’s ability- to provide guarantees 1s robust: when we

10

15

20

25

30

35

40

45

50

55

60

65

16

reconfigured two publishers to attempt the saturate the net-
work the R MB prevented the remaining tflow from deviating
from 1ts specified QoS constraints.

We believe the results described herein encourage turther
research mto OpenFlow and how it can be used to benefit
real-time publish-subscribe middleware. Such research top-
ics include better scheduling and reconfiguration algorithms
designed for use with the OpenFlow primitives, other types of
QoS (beyond timing) that could benefit from full network
control, and ways to detect and adapt to network faults
dynamically.

The subject matter described herein may be used 1n a
variety ol application areas. For example, in the healthcare
area, alarm aggregation systems in hospitals function by
propagating device alarms from monitors at the patient’s
bedside to a central location for monitoring. Current systems
require a separate network infrastructure for alarm traffic to
guarantee that the alarms arrive on time. This 1s a costly
capital investment for hospitals. The subject matter described
herein, including the global resource manager and the pub-
lish-subscribe middleware intertace, will allow critical traffic
and normal traffic to share the same network. For example,
critical applications, such as patient vital sign monitors may
function as publishers who contact the global resource man-
ager for guaranteed quality of service for communication of
their measurements to a monitoring or processing station, and
the global resource manager may dynamically reconfigure
the network to provide the requested QoS guarantee. Addi-
tionally, the subject matter described herein may facilitate a
plug 1n play network that would automatically adapt to clini-
cal needs. For example, when a new monitor 1s attached to a
patient’s bedside, the new monitor could become a publisher
that contacts the global resource manager to receive guaran-
teed quality of service for communication of 1ts measure-
ments to a monitoring station. The global resource manager
may grant or deny the request and, 11 the request 1s granted,
dynamically reconfigure the network to provide the guaran-
teed quality of service.

Another application area for the subject matter described
herein 1s finance. Financial trading platforms have real-time
constraints. Trades must be executed at certain times and
within certain time windows to maximize value. The publish-
subscribe middleware interface and the global resource man-
ager described herein will allow finance applications to use
the publish-subscribe middleware 1nterface to request mini-
mum latency for better trades.

Another application area for the subject matter described
herein 1s power grids. Power grids are becoming more auto-
mated. In power grids, sensors feed mnformation over a net-
work into algorithms, which alter how the power network
distributes electricity. These algorithms have real-time con-
straints 1n order to maintain the stability of the power distri-
bution network. The publish-subscribe middleware interface
and the global resource manager described herein can stream-
line the addition and removal of sensors, actuators, and con-
trol algorithms that manage power grid. For example, a sensor
added to the power grid could request, via the publish-sub-
scribe middleware interface, a quality of service guarantee for
its measurements. The global resource manager could either
grant or deny the request and dynamically reconfigure the
network to meet the quality of service guarantee of the sensor
if the request 1s granted.

Yet another application area of the subject matter described
herein 1s real time cloud computing. Cloud computing 1s
increasingly used due to 1ts elasticity 1n resource provision-
ing. Many future large scale distributed time critical applica-
tions will be based on cloud computing with real-time com-

US 9,270,527 B2

17

munication guarantees. The subject matter described herein
may be used by distributed computing resources to request
quality of service guarantees for communications between
the computing elements. The global resource manager may
be used to dynamically reconfigure the network to provide the
quality of service guarantees.

The publish-subscribe middleware interface and the global
resource manager when respectively executed on a comput-
ing platiform transform the computing platform into a special
purpose device that performs either the function of enabling
publishers and subscribers to request quality of service guar-
antees (1n the case of a client that uses the middleware inter-
face) or in the case o the global resource manager, granting or
denying those requests and dynamically reconfiguring the
network to ensure guarantees for granted requests. Thus, the
publish-subscribe middleware interface and the global
resource manager improve the functionality of computer net-
works and of applications that use those networks. Techno-
logical fields such as high speed networks and applications
that use such networks will be improved. It should also be
noted that the computing platforms on which the publish-
subscribe middleware interface and the global resource man-
ager execute may be special purpose computing platforms
themselves even without the publish-subscribe middleware
interface or the global resource manager. For example, as
described above, the publish-subscribe middleware interface
may execute on a patient vital sign monitor or a power grid
sensor, each of which may be considered a special purpose
computing platform. The global resource manager may
execute on a server that also functions as an Opentlow con-
troller, and such as server map also be considered a special
purpose computing platiform.

The disclosure of each of the following references 1s
hereby incorporated by reference 1n 1ts entirety.

REFERENCES

1. Pica8 3290 Product Literature (2013), http://www.hp.com/
rnd/products/switches/HP_ProCurve_Switch_ 5400
z1__ 3500 yl_Series/specs.htm

2. Audsley, N., Dd, Y.: Optimal priority assignment and fea-
sibility of static priority tasks with arbitrary start times
(1991)

3. Audsley, N. C.: Deadline monotonic scheduling (1990)

4. Basanta-Val, P., Almeida, L., Garcia-Valls, M., FEstevez-
Ayres, I.: Towards a synchronous scheduling service ontop
of a unmicast distributed real-time java. In: Real Time and
Embedded Technology and Applications Symposium,

20077. RTAS’07. 13th IEEE. pp. 123-132. IEEE (2007)
5. B, E., Nguyen, T. H. C., Richard, P., Baruah, S.: A
response-time bound 1n ﬁxed-pnorlty scheduhng with

arbitrary deadlines. Computers, IEEE Transactions on

58(2), 279-286 (February 2009)

6. Dipippo, L. C., Wolte, V. F., Esibov, L., Bethmangalkar, G.
C. R., Bethmangalkar, R., Johnston, R, Thuraisingham, B.,
Mauer, J.: Scheduling and priority mapping for static real-
time middleware. Real-Time Syst. 20(2), 155-182 (March
2001), http: //dx do1.0org/10.1023/A:1008189804392

7. Egilmez, H. E., Dane, S. T., Bagci, K. T., Tekalp, A. M.:
Opengos: An opentlow controller demgn for multimedia
delivery with end-to-end quality of service over software-
defined networks. In: Signal & Information Processing

Association Annual Summit and Conference (APSIPA
ASC), 2012 Asia-Pacific. pp. 1-8. IEEE (2012)

8. Eide, E., Stack, T., Regehr, J., Lepreau, J.: Dynamic cpu
management for roaltlme mlddleware-based systems. In:

10

15

20

25

30

35

40

45

50

55

60

65

18

Real-Time and Embedded Technology and Applications
Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE.

pp. 286-295. IEEE (2004)

9. Kim, W., Sharma, P., Lee, J., Banerjee, S., Tourrilhes, J.,
Lee, S. J Yalagandula P.: Automated and scalable qos
control for network convergence. Proc. INM/WREN 10,
1-1 (2010)

10. Marau, R, Almeida, L., Sousa, M., Pedreires, P.: A
middleware to support dynamic reconfiguration of real-
time networks. In: Emerging Technologies and Factory
Automation (ETFA), 2010 IEEE Conterence on. pp. 1-10
(September)

11. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rextford, I., Shenker, S., Turner, J.: Open-
flow: enabling innovation 1 campus networks. SIG-
COMM Comput. Commun. Rev. 38(2), 69”-74 (March
2008), http://dot.acm.org/10.1145/1355734.1355746

12. Pardo-Castellote, G.: Omg data-distribution service:
architectural overview. In: Distributed Computing Sys-

tems Workshops, 2003. Proceedings. 23rd International

Conierence on. pp. 200-206 (May)

13. Pedreiras, P., Gai, P., Almeida, L., Buttazzo, G. G.: Ftt-
cthernet: a flexible realtime communication protocol that
supports dynamic qos management on Ethernet-based sys-

=t =

tems. Industrial Information, IEEE Transactions on 1(3),
162-172 (2005)

14. Schmidt, D., Kuhns, F.: An overview of the real-time
corba specification. Computer 33(6), 56-63 (2000)

15. Schmidt, D. C., Levine, D. L., Mungee, S.: The design of
the tao real-time object request broker. Comput. Commun.
21(4), 294-324 (Apnl 1998), http://dx.doL1.org/10.1016/
S0140-3664(97)00165-5

16. Wang, X., Chen, Y., Lu, C., Koutsoukos, X.: Fc-orb: A
robust distributed real-time embedded middleware with
end-to-end utilization control. Journal of Systems and

Software 80(7), 938-950 (2007)
17. Zinky, J. A., Bakken, D. E., Schantz, R. E.: Architectural
support for quality of service for corba objects. Theory and
Practice of Object Systems 3(1), 55-73 (1997)
It will be understood that various details of the subject
matter described herein may be changed without departing
from the scope of the subject matter described herein. Fur-
thermore, the foregoing description 1s for the purpose of
illustration only, and not for the purpose of limitation.
What 1s claimed 1s:
1. A method for enabling real-time guarantees in publish-
subscribe middleware with dynamically reconfigurable net-
works, the method comprising:
providing a publish-subscribe middleware interface usable
by publishers and subscribers to request quality of ser-
vice guarantees for data delivery across a network,
wherein the publish-subscribe middleware interface
includes a client library that automatically infers a maxi-
mum message size M from a message type specified by
a publisher when the publisher comes online; and

providing a global resource manager for receiving quality
of service requests from the subscribers, for evaluating
the requests, and for dynamically reconfiguring network
resources to provide the requested quality of service
guarantees, wherein a publisher specifies, via the pub-
lish-subscribe middleware interface, a minimum sepa-
ration 1n time, minSep, between messages published to a
topic and the message type of the messages, and wherein
the global resource manager 1includes a flow scheduler
that configures a rate limiter for the publisher that limats
the rate at which the publisher can publish messages
onto the network to a rate equal to M/minSep.

US 9,270,527 B2

19

2. The method of claim 1 wherein providing a publish-
subscribe middleware interface includes providing an inter-
face through which publishers and subscribers can request
timing guarantees for data delivery across the network and
wherein providing a global resource manager includes pro-
viding a global resource manager adapted to dynamically
configure the network to meet the timing guarantees.

3. The method of claim 1 wherein providing a global
resource manager includes providing a global resource man-
ager including an OpenFlow controller for dynamically
reconfiguring the network resources in response to the
requests.

4. The method of claim 1 wherein the publish-subscribe
middleware interface 1s usable by new publishers and sub-
scribers to an open network to join and leave the network 1n
real time while the network 1s operational and have quality of
service guarantees on communications between the publish-
ers and subscribers.

5. The method of claim 1 wherein the global resource
manager 1s adapted to dynamically reconfigure network
resources with rate limiters to limit communications involved
in a time critical transmission when a client becomes faulty
and begins consuming more resources than initially requested
via the publish-subscribe middleware 1nterface.

6. The method of claim 1 wherein the publish-subscribe
middleware interface and the global resource manager allow
best effort traffic to transparently share the network with time
critical traffic by automatically mapping best etfort traffic to
a lower priority than time critical traffic.

7. The method of claim 1 wherein the publish-subscribe
middleware 1nterface responds to publishers and subscribers
to indicate whether or not a network configuration that wall
ensure the requested quality of service can be generated.

8. The method of claim 1 comprising providing at least one
client that uses the publish-subscribe middleware interface to
request a quality of service guarantee from the global
resource manager.

9. The method of claim 8 wherein the at least one client
comprises a patient vital sign monitor that functions as a
publisher of patient vital sign measurements.

10. The method of claim 8 wherein the at least one client
comprises a power grid sensor that publishes power gnid
measurements.

11. The method of claim 8 wherein the client comprises a
cloud computing application that uses distributed computing
resources and requests a quality of service guarantee for
communications between the distmbuted computing
resources.

12. A system for enabling real-time guarantees in publish-
subscribe middleware with dynamically reconfigurable net-
works, the system comprising;:

a publish-subscribe middleware interface usable by pub-
lishers and subscribers to request quality of service guar-
antees for data delivery across a network, wherein the
publish-subscribe middleware interface includes a client
library that automatically infers a maximum message
size M from a message type specified by a publisher
when the publisher comes online; and

a processor and a global resource manager executing on the
processor for recerving quality of service requests from
the subscribers, for evaluating the requests, and for
dynamically reconfiguring network resources to provide
the requested quality of service guarantees, wherein a
publisher specifies, via the publish-subscribe middle-
ware 1nterface, a mimmimum separation in time, minSep,
between messages published to a topic and the message
type of the messages, and wherein the global resource

5

10

15

20

25

30

35

40

45

50

55

60

65

20

manager includes a tlow scheduler that configures a rate
limiter for the publisher that limits the rate at which the
publisher can publish messages onto the network to a
rate equal to M/minSep.

13. The system of claim 12 wherein the publish-subscribe
middleware interface 1s configured to allow publishers and
subscribers to request timing guarantees for data delivery
across the network and wherein the global resource manager
1s adapted to reconfigure the network resources to meet the
timing guarantees.

14. The system of claim 12 wherein the global resource
manager includes an OpenFlow controller for dynamically
reconfiguring the network resources in response to the
requests.

15. The system of claim 12 wherein the publish-subscribe
middleware interface 1s usable by new publishers and sub-
scribers to an open network to join and leave the network 1n
real time while the network 1s operational and have quality of
service guarantees on communications between the publish-
ers and subscribers.

16. The system of claim 12 wherein the global resource
manager 1s adapted to dynamically reconfigure network
resources with rate limiters to limit communications involved
in a time critical transmission when a client becomes faulty
and begins consuming more resources than initially requested
via the publish-subscribe middleware interface.

17. The system of claim 12 wherein the publish-subscribe
middleware interface and the global resource manager allow
best effort traffic to transparently share the network with time
critical traffic by automatically mapping best effort traflic to
a lower priority than time critical traffic.

18. The system of claim 12 wherein the publish-subscribe
middleware interface responds to subscribers to indicate
whether or not a network configuration that will ensure the
requested quality of service can be generated.

19. The system of claim 12 comprising at least one client
that uses the publish-subscribe middleware interface to
request a quality of service guarantee from the global
resource manager.

20. The system of claim 19 wherein the at least one client
comprises a patient vital sign monitor that functions as a
publisher of patient vital sign measurements.

21. The system of claim 19 wherein the at least one client
comprises a power grid sensor that publishes power grid
measurements.

22. The system of claim 19 wherein the client comprises a
cloud computing application that uses distributed computing
resources and requests a quality of service guarantee for
communications between the distrbuted computing
resources.

23. A non-transitory computer readable medium having
stored thereon executable mstructions that when executed by
the processor of a computer control the computer to perform
steps comprising:

providing a publish-subscribe middleware interface usable

by publishers and subscribers to request quality of ser-
vice guarantees for data delivery across a network,
wherein the publish-subscribe middleware interface
includes a client library that automatically infers a maxi-
mum message size M from a message type specified by
a publisher when the publisher comes online; and
providing a global resource manager for recerving quality
of service requests from the subscribers, for evaluating
the requests, and for dynamically reconfiguring network
resources to provide the requested quality of service
guarantees, wherein a publisher specifies, via the pub-
lish-subscribe middleware interface, a minimum sepa-

US 9,270,527 B2
21

ration 1in time, minSep, between messages published to a
topic and the message type of the messages, and wherein
the global resource manager 1includes a flow scheduler
that configures a rate limiter for the publisher that limaits
the rate at which the publisher can publish messages 5
onto the network to a rate equal to M/minSep.

G x e Gx o

22

	Front Page
	Drawings
	Specification
	Claims

