12 United States Patent

Attig et al.

US009270517B1

(10) Patent No.: US 9.270,517 B1
45) Date of Patent: Feb. 23, 2016

(54) TUPLE CONSTRUCTION FROM DATA

(71)
(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

PACKETS

Applicant: Xilinx, Inc., San Jose, CA (US)

Inventors: Michael E. Attig, Sunnyvale, CA (US);
Gordon J. Brebner, San Jose, CA (US)

Assignee: XILINX, INC., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 248 days.

Appl. No.: 13/789,331

Filed: Mar. 7, 2013

Int. CI.

H04J 3/00 (2006.01)

HO4L 29/06 (2006.01)

HO4L 12/851 (2013.01)

HO4W 28/06 (2009.01)

U.S. CL

CPC HO4L 29/0653 (2013.01); HO4L 69/22

(2013.01); HO4L 47/2441 (2013.01); HO4L
47/2483 (2013.01); HO4L 69/04 (2013.01):
HO4L 69/166 (2013.01); HOAW 28/06
(2013.01); HO4W 28/065 (2013.01)

Field of Classification Search
CPC HO4L 69/04; HO4L 69/166; HO4L 69/22;
HO4L 47/2441, HO4L 47/2483; HO4L
29/0653; HO4W 28/06; HO4W 28/065
............... 370/473, 4774, 476
See application file for complete search history.

USPC

(56) References Cited
U.S. PATENT DOCUMENTS

6,778,530 B1* 82004 Greeneccc.ooeeevvrnennnn, 370/389
7,100,078 B1* 82006 Passcccccovivrnniriiviniinnn, 714/18
8,358,653 Bl 1/2013 Attig et al.
8,385,340 Bl 2/2013 Attig et al.
8,443,102 Bl 5/2013 Attig et al.
8,625,438 Bl 1/2014 Attig

2003/0046429 Al* 3/2003 Sonksen 709/246

OTHER PUBLICATIONS

“400 Gb/s Programmable Packet Parsing on a single FPGA”,

Michael Attig and Gordon Brebner, 2011, provided in IDS.*

Attig M. et al., 400 Gb/s Programmable Packet Parsing on a Single
FPGA”, 2011 Seventh ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, (ANCS ’11), Oct. 34,
2011, pp. 12-23., Brookleyn, NY, US.

* cited by examiner

Primary Examiner — Peter Cheng
(74) Attorney, Agent, or Firm — LeRoy D. Maunu

(57) ABSTRACT

In one approach for processing a data packet, 1n at least one
stage of a plurality of stages of a pipeline circuit, a respective
packet field value 1s extracted from the data packet. In each
stage of the plurality of stages, a respective tuple field value 1s
inserted 1nto a respective tuple register ol the stage at a respec-
tive oifset. The respective tuple field value 1n the at least one
stage 1s based on the respective packet field value. In each
stage of the plurality of stages except a last one of the stages,
the contents of the respective tuple register of the stage are
provided as input to a next one of the stages.

18 Claims, 6 Drawing Sheets

404 406 408
acket 402 - 414
P (- 0 ’ Q) ' D ‘ Q% $D,Q C >
P P
420~ vy 422~y v v v v
] N field constant N field constant ‘ field constant
extraction staging extraction staging ‘ extraction staging
| | I | | |
rograr value(s) of| | constant(s) | : : : :
Infﬂrmatlﬂn paGkEt ﬁEId(S) Ty : Yy} : T : : ‘ 1Y) : :
Pl Yy Y L 4 —» L, A J , A { ‘ —» Y Y Yy_ Y
» 424 computation — computation :I computation
> > ‘
I | |
value(s) of | . .. |
tuple fields : : ‘ : 412
h 4 b 4 Y Y h 4 h
tuple | J 426 tple N tuple ‘ A tuple .
construction construction ‘ construction
offset(s)T size(s)T T T T T
stage 1 stage 2 | stage m

U.S. Patent Feb. 23, 2016 Sheet 1 of 6 US 9,270,517 B1

0 3 4 7 8 15 16 31
Version IHL type of service total length
identification flags fragment offset
time to live protocol header checksum
source IP address
destination IP address
options padding
source port destination port
104 103-96 95-64 63-32 31-16 15-0
t | proto srclP dstIP srcPort dstPort
104-89 88-73 12-41 40-9 &1 O
dstPort srcPort dstlIP srclP proto | t

FIG. 3

US 9,270,517 B1

W 8bejs

W UoNaNJISUOI
A a|dn)
g
D 7y
9
m 4 %4
S aew
_
uonendwod
\&
y—
& _
2-_.;, _ L NN rra
& _
o _
S buibeys UOIDRIXE
= JUBISUOD ol
A

U.S. Patent

7 8be)s

UonoNISUOI

a1dm

A
_
_
_
_
_

A

uoneindwod

buibe)s
JUEJSUQD

S N S

UONIEBIIXD
Plel

{14

uononyjsuod
a|dn v €1
A
Sppey a|dn)
> | Jo(s)anea

uoneindwod #Zy

a|dn)

.A
1+ | (s)ppo1 Jo¥0Rd Loneuo
(shueisuoo | |Jo (s)enea weJbo
R
beys uonoea | __.
1SUOD DIl
Lz 2 ozp
_ 4
S 07 19)oed

v—
as
7 N
> G "9l
S 0£S
I~
= 2 A N
&N
<
e 295
99 o a
O @ $0C [(— —
8.5
b _Elm_ —
e “Tno o 12_C ¢S T -~ Coge I
.mn...w 4 [uzboy: | -uebolz]
7
896 095
= O @ O d
o
—
)
er
|
o
= A 75C
0/C 0/C 8G¢
O d O d O d
N
5 53
N O (
>
) 005 —~
L

DJOM YSeLl

8€G

77
O

[0:(1 -uzboy)]

925 ~\ _%Nm_A
Jos}40 paY 9|dny

anjeA piall aydn)

yES

¢
81§
0 d

AAY
O (

.

S
@

1

0
b
g

~r
b
o

E

&
e
T

g

43

s|qeus piel)

a1dn)

US 9,270,517 B1

Sheet 4 of 6

Feb. 23, 2016

U.S. Patent

8 Ol

L Ild

4444 0000 4444 4444 4444 4444 4444X0 9l Ol 0000 ¢£00 0000 0000 0000 0000 000OX0 G
4444 0000 4444 4444 4444 4444 4444%X0 91 9l 0000 ¢£00 0000 0000 0000 0000 0O0OX0 1%
4444 0000 4444 4444 4444 4444 4444X0 9l 9l 0000 ¢£00 0000 0000 0000 0000 0OOOX0 c
4444 0000 4444 4444 "_"_"_"_ 4444 4444X0 9l 9l 0000 ¢€00 0000 0000 0000 0000 0000X(0 ¢
0000 4444 4444 4444 4444 4444 4444X0 Ol Ol ¢£00 0000 0000 0000 0000 0000 0O0OX0 J
0000 0000 G000 0000 0000 0000 DOOOXO Ol Ol ¢£00 0000 0000 0000 0000 0000 000OX0 0
J8SHO 9ZIS
SEN ¢ Plol4 ¢ PIol4 ¢ PIol4 ¢ PISi4 da)s
4444 4444 4444 4444 4444 4444 0044X0 96 %) 0000 0000 0000 0000 0000 0000 9000X0 G
4444 4444 4444 4444 4444 4444 0044%0 96 S 0000 0000 0000 0000 0000 0000 9000X0 1%
4444 4444 4444 4444 4444 4444 0044X0 96 8 0000 0000 0000 0000 0000 0000 9000X0 ¢
4444 4444 4444 4444 4444 4444 0044X0 96 8 0000 0000 0000 0000 0000 0000 9000X0 4
0044 4444 4444 4444 4444 4444 4444%0 96 8 9000 0000 0000 0000 0000 0000 000OX0 |
0000 0000 0000 0000 0000 0000 0000X0 96 8 9000 0000 0000 0000 0000 0000 0000X(0
19SHO 9ZIS

ASEI | PISI] L P91 l P9I l PIold dajs

@ o \ H\ 8888X(¢€00X0 00000000x0 00000000%X0 90x0 0 G

8888X0 ¢¢00X0 00000000x0 00000000X0 90XD 0 14

8888X0 0000X0 O0000000X0 0000000OX0 00XD 0 C

8888X0 PIX0 00000000X0 00000000X0 00%0 0 ¢

8888X0 X0 00000000X0 00000000X0 00X0 0 !

8888X0 JIX0 00000000X0 00000000X0 00X0 0 0

MO JISp M0daIS dlisp diois ojoud adAjdi dajg

U.S. Patent Feb. 23, 2016 Sheet 5 of 6 US 9,270,517 B1

602
In each stage of the tuple
pipeline

604 Input a packet

l

606 Input tuple

l

608 Get data for generating a
tuple field value

|

610 Generate respective tuple
field value(s)

|

612 Insert tuple field value(s)
Into tuple

l

614 Output the tuple

FIG. 9

US 9,270,517 B1

Sheet 6 of 6

Feb. 23, 2016

U.S. Patent

0L Old

izl || e
1dSd 1d9

(T H
._.z_ LNI LNI LNI LN

Y

90410 €04

..__________l

\\

004

TOZ SIOW S

1 1]
T

e

o

e P T R

s

1
;]

el

AT RTAYSY

L

1 HEN iIIIIl.ﬂIIIIIIII
I 11 HEEEE s EEEEEEE..
T o III
I --IIIII IIIII._,__IIIII 1 11
llll lllll._w.llllll HEE
I BNy IIIIM.IIIII |
IIII I IIIIM_IIIII 1
1T IIII - 707 5919 IIﬂ__IIIIIIIIII
l I lllll___,_llllllllll
I 7] N I I
I HENENE 707 S9710 IIIIIJIIIIIIIIII
IIIIIIIIII IIIIIm____IIIIII
¢ AR AN e o

+#i++i++#
oo L
#i#ﬂﬁﬂﬂir

I I
NE 810 Hm___llllllll““

soroweeafl [{11
T I A A
HEEN HENN HEREN mIIIIIIIII
T
I I - A A
I o Y lllllw llllllll

I B 02T I.i
I =, I I lllllll
I I I I I I I

o

— ¢

0L SLON m

.

60Z NOILNGIFELSId A2013 / DIANOD

US 9,270,517 Bl

1

TUPLE CONSTRUCTION FROM DATA
PACKETS

FIELD OF THE INVENTION

The disclosure generally relates to packet processing and
building tuples from the packets.

BACKGROUND

In some implementations, a network packet processor
inputs a stream of network packets, manmipulates the contents
ol the network packets, and outputs another stream of modi-
fied network packets. The manipulations may implement a
protocol for processing network packets. For example, the
network packet processor may implement a protocol layer of
a communication protocol, and for a high-level packet
received from a higher protocol layer and delivered to a lower
protocol layer for eventual transmission on the communica-
tion media, the manipulations may encapsulate the high-level
packet within a low-level packet of the lower protocol layer.

A common task in processing packets 1s to form a compact
data tuple based on certain fields of a packet. The data tuple
makes processing ol the assembled data convenient. For
example, 1n a packet classification task, certain address fields
and/or type fields are extracted from a packet and then used
together as a lookup key to determine the class of the packet.
The particular fields and positions of the fields 1n the packet
may vary depending on processing functions and protocols.

The data rate at which packets are transmitted presents
challenges for processing the packets at a rate suilficient to
keep pace with the data transmission rate. In packet process-
ing applications, packets are streamed word-wise, for
example using words that are 512-bits wide and achieving a
100 Gbps data rate. Each packet may be comprised of mul-
tiple S12-bit words. The fields of a packet that are used in
constructing a tuple are generally located 1n different areas of
the packet. Thus, the fields of a packet will be available at
different discrete times. The times at which the fields become
available 1s not necessarily static since packet structures can
vary from packet to packet, such as with vaniable field sizes.

SUMMARY

A method for processing a data packet includes, 1n at least
one stage of a plurality of stages of a pipeline circuit, extract-
ing a respective packet field value from the data packet. In
cach stage of the plurality of stages, a respective tuple field
value 1s 1nserted mto a respective tuple register of the stage at
a respective oflset. The respective tuple field value 1n the at
least one stage 1s based on the respective packet field value. In
cach stage of the plurality of stages except a last one of the
stages, the contents of the respective tuple register of the stage
are provided as input to a next one of the stages.

A packet processing circuit includes a plurality of pipeline
stages. Each stage includes a field extraction circuit and a
tuple construction circuit. The field extraction circuit 1s con-
figured to recerve a data packet and 1s configurable to extract
none or a plurality of packet field values from the data packet.
The tuple construction circuit 1s coupled to recerve an 1mput
tuple and each packet field value from the field extraction
circuit. The tuple construction circuit 1s configured to 1nsert a
respective tuple field value 1nto the mput tuple at a respective
offset and output a tuple having the 1nserted respective tuple
field value. The respective tuple field value 1s based on the at
least one packet field value.

10

15

20

25

30

35

40

45

50

55

60

65

2

Other aspects and features will be recognized from consid-
eration of the Detailed Description and Claims, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and advantages of the methods and circuits
will become apparent upon review of the following detailed
description and upon reference to the drawings 1n which:

FIG. 1 shows the content and format of an IP packet;

FIG. 2 shows a first example tuple formed from fields
extracted from the IP packet of FIG. 1;

FIG. 3 shows a second example tuple formed from fields
extracted from the IP packet of FIG. 1;

FIG. 4 shows a circuit diagram of a pipeline circuit having,
m stages for extracting fields from an input packet and assem-
bling the extracted fields into a tuple;

FIG. 5 shows an example implementation of a tuple con-
struction circuit that inserts a field value into a tuple 1n a stage
of the pipeline circuit of FIG. 4;

FIG. 6 shows the steps of a tuple under construction;

FIG. 7 shows the construction of a first tuple field and the
mask for the first tuple field;

FIG. 8 shows the construction of a second tuple field and
the mask for the second tuple field;

FI1G. 91s aflowchart of an example process for constructing,
a tuple; and

FIG. 10 shows an example programmable integrated cir-
cuit (IC) on which the circuitry described herein may be
implemented.

DETAILED DESCRIPTION OF THE DRAWINGS

To achieve a suitable level of performance and flexibility, it
may be desirable to aggregate field values of packets into
tuples at a high data rate. In addition, 1t may be desirable to
programmably select fields from data packets and formats of
the tuples. In one approach, a method of processing a data
packet includes, 1n at least one stage of multiple stages of a
pipeline circuit, extracting a respective packet field value
from the multiple fields of the data packet. In each of the
stages, a respective tuple field value 1s mserted 1into a respec-
tive tuple register of the stage at a respective offset. In at least
one stage 1n which the value of a field 1s extracted, the respec-
tive tuple field value 1s based on the respective packet field
value. Depending on application requirements, the tuple field
value may also be based on one or more constants or one or
more mput tuple field values. In each stage except the last
stage, the contents of the respective tuple register of the stage
are provided as input to a next one of the stages. With the
pipelined approach, a tuple can be produced from an input
stream of data packets 1n every cycle. With parallel circuitry,
multiple tuples could be generated.

FIGS. 1, 2, and 3 illustrate an example packet and two
alternative tuples generated from data in the packet. Though
the example 1s based on an Internet Protocol (IP) packet, 1t
will be appreciated that the approaches described herein may
be applied to a variety of different packet protocols.

FIG. 1 shows the content and format of an IP packet 100.
The first six 32-bit words are the header of the packet. The

source port and destination port fields are part of the payload
of the packet. Additional data in the payload portion and the
trailer are not 1llustrated.

FIG. 2 shows a first example tuple 200 formed from 6 fields
extracted from the IP packet of FIG. 1. The t field 1s a type
field the value of which 1s computed based on fields that

US 9,270,517 Bl

3

appear before an IPv4 or IPv6 header. For example, the value
of the field may be based on a field called ‘type’ in the
Ethernet header as:

If (Ethernet.type==0x800) //IPv4 type code
Tuple.t=0

Else 11 (Ethernet.type=—=0x86dd) //IPv6 type code
Tuple.t=1

Else

Tuple.t=0; //default case

The proto field 1n the tuple 200 corresponds to the protocol
field 1n the IP header, the srcIP field 1in the tuple 1s the source

IP address field from the packet 100, the dstIP field i the

tuple 1s the destination IP address field from the packet, the
srcPort field 1s the source port field from the packet, and the
dstPort field 1s the destination port field from the packet.

FIG. 3 shows a second example tuple 300 formed from the
6 fields extracted from the IP packet of FIG. 1. The order of
the fields 1 tuple 300 1s different from the order of the fields
in tuple 200. The particular tuple structure depends on the
requirements for high-speed processing of the tuple.
Although the example tuples 200 and 300 show fields of the
packet being copied from the packet to the designated posi-
tions 1n the tuples, the tuple field values may be computed
using arithmetic or logic functions of combinations of the
field values, local variables, constants, and/or tuple field val-
ues from a previous stage of the pipeline.

A tuple aggregation circuit 1s provided to construct tuples
in a pipelined fashion. FIG. 4 shows a circuit diagram of a
pipeline circuit 400 having m stages for extracting fields from
an mmput packet and assembling the extracted fields 1nto a
tuple. Each stage inserts one or more tuple field value 1nto the
tuple. A full packet 1s input on line 402 and 1s registered
between each of the stages 1n packet registers 404, 406, and
408. Once the processing of a packet 1s complete 1n one stage,
that packet 1s passed to the next stage for processing and a new
packetis input. Thus, the stages are processing different pack-
ets concurrently, or different words of the same packet. The
completed tuple for a packet 1s output on line 412 as the
corresponding packet 1s output on line 414.

Each stage of the pipeline circuit 400 includes a field
extraction circuit 420, a constant staging circuit 422, a com-
putation circuit 424, and a tuple construction circuit 426.
Programmed control information 1s mput to the circuit ele-
ments for controlling each circuit element. The programmed
control information indicates which fields to extract {from the
packet, any constants to be used, the computation to be per-
formed, and offsets and sizes of the tuple field values in the
tuple. The programmed control information may be provided
via a microprogramming control store (not shown), for
example.

The field extraction circuit 420 1s controllable to extract
one or more fields from the input packet. For each field to be
extracted by the field extraction circuit, the programmed con-
trol information indicates an offset of the field in the packet
and a size of the field. For a tuple field value that 1s not based
on a packet field, the imnput program information indicates to
the field extraction circuit to not extract any fields from the
packet. Further disclosure of a field extraction circuit 1s found

in the co-pending patent application having Ser. No. 13/229,
083, entitled, “CIRCUIT AND METHOD FOR EXTRACT-

ING FIELDS FROM PACKETS, by Michael Attig, and
assigned to Xilinx, Inc.; the entire contents of this co-pending
application are incorporated by reference into this applica-
tion. The extracted value(s) of the field(s) of the packet are
output by the field extraction circuit and mput to the compu-
tation circuit 424.

10

15

20

25

30

35

40

45

50

55

60

65

4

The constant staging circuit 422 stages constant values for
input to the computation circuit 424. The programmed con-
trol information mput to the constant staging circuit indicates
which constant value, 1f any, 1s to be provided to the compu-
tation circuit. Depending on application requirements, mul-
tiple constant values may be provided to the computation
circuit. The programmed control immformation mput to the
constant staging circuit may provide the constant values, or
alternatively, reference constant values stored within the con-
stant staging circuit. The time at which the constant value(s)
1s provided as mput to the computation circuit coincides with
the provision of the field value(s) as input to the computation
circuit.

The computation circuit 424 computes the value of the
tuple field to be mserted into the tuple based on registered
packet field values, registered constant values, and/or a reg-
1stered mput tuple. The computation circuit may be an arith-
metic logic unit that performs arithmetic and/or logic func-
tions on designated operands. The operation(s) to be
performed may be provided to the computation circuit as
executable structions. The mstructions also 1indicate which
registered values are the operands. A no-operation-type
instruction may be used to indicate to the computation circuit
that a registered value 1s to be output without changing its
value. The computation circuit may provide values for mul-
tiple tuple fields depending on application requirements.

The tuple construction circuit 426 inserts the tuple field
value(s) from the computation circuit 424 mto the proper
location(s) i the in-process tuple (the tuple being con-
structed). The offset(s) provided 1n the programmed control
information indicates the proper location(s) of the tuple field
value(s). The size(s) provided in the programmed control
information indicates the number of bits occupied by the
tuple field value(s). Once the tuple field value(s) 1s mnserted in
the tuple, the tuple and packet are forwarded to the next stage
in the pipeline. Since packets are streamed word-wise, a tuple
does not necessarily have to wait until the entire packet has
been received to proceed to the next stage. Rather a tuple may
be forwarded to the next stage once the word of the packet
having the last needed packet field has been extracted and
processed to create the tuple field value. ITno field 1s extracted
from an mput packet to create any tuple field value, the tuple
may be forwarded to the next stage at the same time the first
packet word 1s forwarded to the next stage.

FIG. 5 shows an example implementation of a tuple con-
struction circuit 500 that inserts a field value 1nto a tuple 1n a
stage of the pipeline circuit of FIG. 4. The tuple construction
circuit performs four main tasks. The first task 1s to create a
mask of the s1ze needed for the tuple field value to be inserted.
For example, 11 the tuple field value 1s 16 bits, then a 16-bat
mask 1s generated. Next the tuple field value and the mask are
shifted to align with the proper position in the tuple. In the
third task, the mask 1s applied to the tuple to clear the appro-
priate bits 1n the tuple for the tuple field value. The fourth task
1s to insert the tuple field value 1nto the tuple.

The data path including elements 502, 506, 536, 542, 554,
562, 564, and 566 may be viewed as a mask circuit within the
tuple construction circuit, and the elements 510, 512, 532,
540, 552, 560, 568, and 572 may be viewed as a tuple 1nser-
tion circuit within the tuple construction circuit.

The proper size mask 1s created by selecting a mask word
with multiplexer 502 from mask words having mask sizes that
correspond to the different possible sizes of tuple fields. In an
example implementation, the mask bits are logic 0 bits and
are right aligned 1n amask word having logic 1 bits 1n all other
positions. For example, for a tuple field of size 8 bits, the
rightmost 8 bits of the mask word selected by and output from

US 9,270,517 Bl

S

multiplexer 502 are logic O bits, and all other bits of the
selected mask word are logic 1. The tuple field si1ze signal 504
selects the proper mask word, and the selected mask word 1s
stored 1n register 506.

In parallel with the selection of the mask word, the tuple
field value 1s imnput via multiplexer 510 and register 312. Also,
the field enable signal 514 provides the selection of the tuple
field value via multiplexer 510 and the field offset via multi-
plexer 516. The state of the field enable signal 1s stored in
register 518, and the field offset 1s stored 1n register 520. The
tuple being constructed 1s input to register 522 also 1n parallel
with selection of the mask word.

The mask word and the tuple field value are shifted 1n two
stages. In stage 526, the tuple field value and the mask word
are left shifted by a number of bits indicated by the low-order
bits of the field offset 528, and in stage 530 the output of the
first shift stage 1s shifted by a number of bits indicated by the
high-order bits of the field offset. In stage 526, multiplexer
532 selects from mputs in which the tuple field value has been
left shifted by O ton—1 bits. The notation “<<x” in the diagram
indicates a circuit that left shifts the input by x bits. The mnput
tuple field value 534 occupies the low-order (right-most) bits
of the input word, and the other bits are logic 0. Logic 0 values
are shifted 1n as the tuple field value 1s lett shifted. The mask
in the mask word 1s also left shifted, and multiplexer 536
selects the mask word that was shifted by the same number of
bits as the tuple field value. The mask occupies the low-order
bits 1n the input mask word 538, and the other bits are logic 1.
Logic 1 bits are shifted in as the mask 1s left shifted.

The low-order bits of the field offset are used to control the
selections by multiplexers 532 and 536. For selecting from
words that have been left shifted from O to n-1 bits, bits 0
through log, n-1 of the field offset are used.

The selected tuple field value 1s stored 1n register 540, and
the selected mask word 1s stored in register 342. The tuple,
field enable signal, and field offset are forwarded to registers
544, 546, and 548, respectively, to maintain proper timing
within the pipeline and allow the next tuple and tuple field
value to be processed.

In stage 530, the tuple field value and the mask are left
shifted by a number of bits specified by the high-order bits of
the field offset. In stage 530, multiplexer 552 selects from
inputs in which the tuple field value has been lett shifted by O,
n, 2n, ...n(n-1) bits, and multiplexer 554 selects from nputs
in which the mask has been left shifted by 0, n, 2n, . . . n(n—1)
bits. For the tuple field value, logic O bits are shifted 1n, and for
the mask word, logic 1 bits are shifted in. For selecting from
words that have been left shifted from 0, n, 2n, . . . n(n-1) bits,
bits log,n through 2 log, n—1 of the field offset are used. The
tuple, field enable signal, selected tuple field value, and
selected mask word are stored 1n registers 556, 558, 560, and
562, respectively.

The tuple from register 556 and the mask word from reg-
1ster 562 are mnput to AND circuit 564, which clears the bits 1in
the tuple for the tuple field value to be inserted. The output 1s
stored 1n register 566, and 1n parallel, the tuple field value
from register 560 1s stored 1n register 568, and the field enable
signal 1s stored 1n register 370. The tuple with the cleared bits
from register 566 and the tuple field value from register 568
are mput to OR circuit 572, which outputs the tuple with the
tuple field value inserted at the proper ofiset 1n the tuple. The
tuple 1s stored in register 574, and in parallel, the field enable
signal 1s forwarded for storage 1n register 376. The tuple 1s
then ready for the next stage (if any) of the pipeline circuit 400
of FIG. 4. The field enable signal indicates availability of the
tuple having the tuple field value 1nserted.

10

15

20

25

30

35

40

45

50

55

60

65

6

Multiple tuple fields may be inserted into a tuple 1n parallel
in an example implementation. For each tuple field value to be
inserted, the circuitry for shifting the tuple field value and
constructing and shifting a mask would be replicated. The
dashed line 378 input to AND circuit 564 represents the mask
word having the shifted mask for the additional tuple field
value. The dashed line 580 input to OR circuit 572 represents
the additional shifted tuple field value.

FIGS. 6,7, and 8 show an example 1n which two tuple field
values are 1nserted into a tuple. FIG. 6 shows the tuple under
construction 1n steps 0-5; FIG. 7 shows the construction of

tuple field 1 and the mask for tuple field 1; and FIG. 8 shows
the construction of tuple field 2 and the mask for tuple field 2.
In Step 0, the mitial input tuple 1s specified as having srcPort

set to OXFFFF and dstPort set to 0x8888, while all other tuple

fields are mitialized to O. There are two tuple field values to
insert into the tuple. The first tuple field value (field 1) to be
inserted 1s the value 0x06, which 1s 8 bits, and 1s to be placed
at offset 96 (from the least significant bit position) 1n the tuple.
The second tuple field value (field 2) to be inserted 1s the value
0x0032, which 1s 16 bits, and 1s to be placed at offset 16. Thus,
the first tuple field value 1s to be 1nserted as the proto tuple
field, and the second tuple field value 1s to be inserted as the
srcPort tuple field.

In Step 1, the masks for fields 1 and 2 are constructed. This
involves creating a mask of OxFFFF FFFF FFFF FFFF FFFF
FFFF FFOO for field 1 and a mask of OxFFFF FFFF FFFF
FFFF FFFF FFEFF 0000 for field 2. Note that the first mask
clears 8 bits while the second mask clears 16 bits.

In Step 2, the fields and masks are aligned to the appropri-
ate position 1n the tuple being constructed by using the appro-
priate oilset for the mnput field. The aligned field and mask
values for field 1 are 0x0006 0000 0000 0000 0000 0000 0000
and OxFFOO FFFF FFFF FFFF FFFF FFFF FFFE, respec-
tively. The aligned field and mask values for field 2 are
0x0000 0000 0000 0000 0000 0032 0000 and OxFFFF FFFF
FFFF FFFF FFFF 0000 FFFF, respectively.

In Step 3 the masks are applied to the input tuple. This
results 1n a change to the value held 1in the srcPort from
OxFFFF to 0x0000. There 1s no change to the proto field,
because 1t was already at 0x00.

In Step 4 the new fields are inserted. This results 1n a value
of 0x06 for the proto field and 0x0032 for the srcPort field.

In Step 5 the result 1s output. The final tuple value 1s 0x006
0000 0000 0000 0000 0032 8888.

FI1G. 91s aflowchart of an example process for constructing,
a tuple. The processing of blocks 604-614 1s performed 1n
cach stage of the tuple pipeline as indicated by block 602. At
block 604 a packet 1s input. Depending on the application and
particular tuple to be constructed, the packet may contain data
to use 1n generating a tuple field value. A tuple 1s input at block
606. The tuple that 1s mput depends on the stage of the
pipeline and on the application. For example, for the first
stage of the pipeline, the mput tuple may be a tuple with
initialized values or a tuple mput from elsewhere 1n a packet
processing system. For other stages, the mput tuple 1s the
tuple from the previous stage of the tuple construction pipe-
line.

At block 608, the data for generating a tuple field value 1s
obtained. As described above, the data may be one or more
fields extracted from the mnput packet, one or more constant
values, or one or more input tuple field values. The tuple field
value 1s generated at block 610. The tuple field value may be
an arithmetic or logic function of one or more packet field
values, one or more constants, and/or one or more mnput tuple
field values.

US 9,270,517 Bl

7

The tuple field value 1s inserted into the tuple at block 612,
and the tuple 1s output at block 614. For stages other than the
final stage, the tuple 1s output for processing by the next stage
in the tuple construction pipeline, and for the final stage, the
tuple 1s output from the pipeline.

FIG. 10 shows an example programmable integrated cir-
cuit (IC) on which the circuitry described herein may be
implemented. The programmable IC of FIG. 10 1s an FPGA.
FPGASs can include several different types of programmable
logic blocks 1n the array. For example, FIG. 10 illustrates an
FPGA architecture (700) that includes a large number of
different programmable tiles including multi-gigabit trans-
ceivers (MGTs 701), configurable logic blocks (CLBs 702),
random access memory blocks (BRAMSs 703), input/output
blocks (1I0Bs 704), configuration and clocking logic (CON-
FIG/CLOCKS 705), digital signal processing blocks (DSPs
706), specialized input/output blocks (I/0 707), for example,
¢.g., clock ports, and other programmable logic 708 such as
digital clock managers, analog-to-digital converters, system
monitoring logic, and so forth. Some FPGAs also include
dedicated processor blocks (PROC 710) and internal and
external reconfiguration ports (not shown).

In some FPGAs, each programmable tile includes a pro-
grammable interconnect element (INT 711) having standard-
1zed connections to and from a corresponding interconnect
clement 1n each adjacent tile. Therefore, the programmable
interconnect elements taken together implement the pro-
grammable 1nterconnect structure for the illustrated FPGA.
The programmable interconnect element INT 711 also
includes the connections to and from the programmable logic
clement within the same tile, as shown by the examples
included at the top of FIG. 10.

For example, a CLB 702 can include a configurable logic
clement CLE 712 that can be programmed to implement user
logic plus a single programmable interconnect element INT
711. A BRAM 703 can include a BRAM logic element (BRL
713) 1n addition to one or more programmable 1nterconnect
clements. Typically, the number of interconnect elements
included 1n a tile depends on the width of the tile. In the
pictured FPGA, a BRAM tile has the same width as five
CLBs, but other numbers (e.g., four) can also be used. A DSP
tile 706 can include a DSP logic element (DSPL 714) in
addition to an appropriate number of programmable intercon-
nect elements. An 10B 704 can include, for example, two
instances ol an input/output logic element (IOL 715) 1n addi-
tion to one 1nstance of the programmable interconnect ele-
ment INT 711. As will be clear to those of skill in the art, the
actual 1/O pads connected, for example, to the I/O logic
clement 715 are manufactured using metal layered above the
various illustrated logic blocks, and typically are not confined
to the area of the mput/output logic element 715.

In the pictured FPGA, a horizontal area near the center of
the die (shown shaded in FIG. 10) 1s used for configuration,
clock, and other control logic. Vertical areas 709 extending
from this horizontal area are used to distribute the clocks and
configuration signals across the breadth of the FPGA.

Some FPGAs utilizing the architecture illustrated in FIG.
10 1nclude additional logic blocks that disrupt the regular row
structure making up a large part of the FPGA. The additional
logic blocks can be programmable blocks and/or dedicated
logic. For example, the processor block PROC 710 shown 1n
FIG. 10 spans several rows of CLBs and BRAMs.

Note that FIG. 10 1s intended to illustrate only an exem-
plary FPGA architecture. The numbers of logic blocks 1n a
row, the relative heights of the rows, the number and order of
rows, the types of logic blocks included 1n the rows, the
relative sizes of the logic blocks, and the interconnect/logic

10

15

20

25

30

35

40

45

50

55

60

65

8

implementations included at the top of FIG. 10 are purely
exemplary. For example, in an actual FPGA more than one
adjacent row of CLBs 1s typically included wherever the
CLBs appear, to facilitate the efficient implementation of user
logic.

The methods and circuits are thought to be applicable to a
variety of systems for constructing tuples. Other aspects and
teatures will be apparent to those skilled 1n the art from
consideration of the specification. The processes and circuits
may be implemented as one or more processors configured to
execute software, as an application specific integrated circuit
(ASIC), or as a logic on a programmable logic device. It 1s
intended that the described features and aspects be considered
as examples only, with a true scope of the invention being
indicated by the following claims.

What 1s claimed 1s:

1. A method of processing a data packet, comprising:

in at least one stage of a plurality of stages of a pipeline
circuit, extracting a respective packet field value from
the data packet;

in each stage of the plurality of stages:

inputting an in-process tuple into a respective tuple reg-

1ster;

inputting a respective programmable ofiset value;

creating 1n a mask register, a mask word having a subset

of bits equal 1n number to a number of bits of a
respective tuple field value and positioned 1n the mask
word 1n response to the respective programmable off-
set value;

clearing by a first circuit, bits of the in-process tuple 1n
the respective tuple register using the subset of bits 1n
the mask word 1n the mask register;
mserting by a second circuit, the respective tuple field

value based on the respective packet field value into
the respective tuple register of the stage by replacing
the cleared bits of the respective in-process tuple with
the tuple field value; and

in each stage of the plurality of stages except a last one of

the stages, providing contents of the respective tuple
register of the stage as iput to a next one of the stages.

2. The method of claim 1, further comprising, computing,
the respective tuple field value 1n the at least one stage as a
function of the respective packet field value.

3. The method of claim 2, further comprising:

inputting a respective set of one or more constants to the at

least one stage; and

computing the respective tuple field value in the at least one

stage as a function of the respective packet field value
and the respective set of one or more constants.

4. The method of claim 1, wherein:

the extracting of the respective packet field value from the

data packet 1n the at least one stage includes, extracting
a respective set that includes two or more packet field
values from the data packet; and

the mnserting of the respective tuple field value into a

respective tuple register in the at least one stage includes
inserting the respective tuple field value based on the
respective set of two or more packet field values.

5. The method of claim 1, further comprising, 1n at least one
stage of the plurality of stages, inserting two tuple field values
into the respective tuple register 1n parallel.

6. The method of claim 1, further comprising, computing
the respective tuple field value 1n the at least one stage as a
function of the respective packet field value and at least one
tuple field value of the mput from a previous one of the
plurality of stages.

US 9,270,517 Bl

9

7. The method of claim 1, further comprising:

inputting a respective set ol one or more constants to the at

least one stage; and

computing the respective tuple field value in the at least one

stage as a function of the respective packet field value, at

least one tuple field value of the input from a previous
one of the plurality of stages, and the respective set of
one or more constants.

8. The method of claim 1, further comprising mputting a
respective programmable field size indicative of a number of
bits of the respective tuple field value.

9. The method of claim 1, wherein the creating the mask
word includes:

selecting a mask word having the subset of bits in right-

most bits of the mask word and storing the selected mask

word 1n the mask register; and

shifting bits of the mask word a number of positions indi-

cated by the programmable offset value.
10. A packet processing circuit, comprising;:
a plurality of pipeline stages, each stage including:
a field extraction circuit configured to recerve a data
packet and configurable to extract none or a plurality
of packet field values from the data packet; and
a tuple construction circuit coupled to recerve an mput
tuple, a respective programmable offset value, and
cach packet field value from the field extraction cir-
cuit, the tuple construction circuit configured to 1nsert
a respective tuple field value based on the received
packet field values 1nto the input tuple at a respective
offset and output a tuple having the inserted respective
tuple field value;
wherein each tuple construction circuit includes:
a first circuit configured to:
create a mask word 1n a mask register having a subset
of bits equal 1n number to a number of bits of the
respective tuple field value and positioned 1n the
mask word 1n response to the respective program-
mable offset value, and

clear bits of the input tuple using the subset of bits 1n
the mask word; and

a second circuit configured to replace the cleared bits of

the 1nput tuple with the respective tuple field value.
11. The circuit of claim 10, wherein each stage further
comprises a computation circuit coupled to the field extrac-
tion circuit, the computation circuit configured to compute
the respective tuple field value as a function of the packet field
values.

5

10

15

20

25

30

35

40

45

10

12. The circuit of claim 11, wherein each stage further
COMpPIises:

a constant staging circuit coupled to the computation cir-
cuit, the constant staging circuit configured to mput a
respective set ol one or more constants;

wherein the computation circuit 1s configured to compute
the respective tuple field value as a function of the packet
field values and the respective set of one or more con-
stants.

13. The circuit of claim 10, wherein:

the field extraction circuit 1s further configured to extract a
respective set that includes two or more packet field
values from the data packet; and

the tuple construction circuit 1s further configured to insert
the respective tuple field value based on the respective
set of two or more packet field values.

14. The circuit of claim 10, wherein the tuple construction
circuit 1n at least one stage of the plurality of stages 1s further
configured to msert two tuple field values 1into the mput tuple
in parallel.

15. The circuit of claim 10, wherein each stage further
comprises a computation circuit coupled to the field extrac-
tion circuit, the computation circuit configured to compute
the respective tuple field value as a function of the packet field
values and at least one tuple field value of the 1nput tuple.

16. The circuit of claim 10, further comprising:

a computation circuit coupled to the field extraction circuit;
and

a constant staging circuit coupled to the computation cir-
cuit, the constant staging circuit configured to iput a
respective set ol one or more constants;

wherein the computation circuit 1s configured to compute
the respective tuple field value as a function of the packet
field values, at least one tuple field value of the input
tuple, and the respective set of one or more constants.

17. The circuit of claim 10, wherein each tuple construction
circuit 1s responsive to a respective programmable tuple field
s1ze indicative of a number of bits of the respective tuple field
value.

18. The packet processing circuit of claim 10, wherein the
mask circuit 1s further configured to:

select a mask word having the subset of bits in right-most
bits of the mask word;

store the selected mask word in the mask register; and

shift bits of the mask word a number of positions indicated
by the programmable offset value.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

