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NOTHING IS STORED IN THE LINKED LIST.
HEAD QUEUE ELEMENT IS EMPTY.

TAIL QUEUE ELEMENT IS EMPTY.

THE BUFFER ID ("B1") IS PUSHED INTO THE TAIL.

B1 1S LOADED INTO BOTH THE HEAD AND TAIL QUEUE
ELEMENTS.

ORDINARILY B2 WOULD BE WRITTEN INTO THE
MEMORY AT THE LOCATION POINTED TO BY THE OLD
TAIL POINTER VALUE, BUT HERE THE OLD TAIL
POINTER VALUE WAS "EMPTY" SO THERE IS NO

MEMORY WRITE.

THE BUFFER ID ("B2") IS PUSHED INTO THE TAIL.
B2 IS LOADED INTO THE TAIL QUEUE ELEMENT.

B2 IS ALSO WRITTEN INTO THE MEMORY AT THE
LOCATION POINTED TO BY THE OLD TAIL POINTER
VALUE ("B1"). B1IS USED AS AN ADDRESS TQ STORE
B2 INTO THE MEMORY.
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THE BUFFER ID ("B3") IS PUSHED INTO THE TAIL. \ 55
T H1
B3 IS LOADED INTO THE TAIL QUEUE ELEMENT. S X = '—‘

B3 1S ALSO WRITTEN INTO THE MEMORY AT THE
LOCATION POINTED TO BY THE OLD TAIL POINTER

VALUE ("B2"). B21S USED AS AN ADDRESS TO STORE
B3 INTO THE MEMORY.

QUEUE STORES THREE BUFFER IDs.

B4
THE BUFFER ID ("B4") IS PUSHED INTOQ THE TAIL. \
T1

B4 1S LOADED INTO THE TAIL QUEUE ELEMENT.

B4 1S5 ALSO WRITTEN INTO THE MEMORY AT THE
LOCATION POINTED TO BY THE OLD TAIL POINTER

VALUE ("B3"). B3 1S USED AS AN ADDRESS TO STORE
B4 INTO THE MEMORY.
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B4

QUEUE STORES FOUR BUFFER IDs.
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A DUAL LINKED LIST OF BUFFERS
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T1
THE HEAD QUEUE ELEMENT IS POPPED. BUFFER
ID ("B1") IS OUTPUT. B4

TO COMPLETE THE POP, B1 1S USED AS AN
ADDRESS INTO THE MEMORY SO THAT B2 IS READ,
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TO COMPLETE THE POP, B2 IS USED AS AN

ADDRESS INTO THE MEMORY SO THAT B3 |S READ,

AND THEN B3 REPLISHES THE HEAD POINTER
QUEUE ELEMENT (REPLACES B2 AS THE VALUE

STORED BY THE HEAD POINTER QUEUE ELEMENT).

THE HEAD QUEUE ELEMENT IS POPPED. BUFFER
D ("B3") IS QUTPUT.

TO COMPLETE THE POP, B3 IS USED AS AN

ADDRESS INTO THE MEMORY SO THAT B4 IS READ,

AND THEN B4 REPLISHES THE HEAD POINTER
QUEUE ELEMENT (REPLACES B3 AS THE VALUE

STORED BY THE HEAD POINTER QUEUE ELEMENT).
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RECEIVING FRAMES ONTO A PHYSICAL MAC PORT OF AN NFP 301
INTEGRATED CIRCUIT.

SUPPLYING CONFIGURATION INFORMATION TO AN "INVERSE 302
PCP REMAP LUT" (IPRLUT? WITHIN THE NFP INTEGRATED

CIRCUIT.

WRITING FRAME DATA INTO A LINKED LIST OF BUFFERS. THE 303
LINKED LIST OF BUFFERS STORES FRAMES FOR A SINGLE
VIRTUAL CHANNEL.

MAINTAINING A BUFFER COUNT FOR THE LINKED LIST OF 304
BUFFERS.

STORING AN OVERFLOW THRESHOLD VALUE FOR THE 205
VIRTUAL CHANNEL.

DETERMINING THAT THE BUFFER COUNT HAS EXCEEDED A 306
THE PREDETERMINED THRESHOLD VALUE.

SUPPLYING THE VIRTUAL CHANNEL NUMBER TO THE IPRLUT 307
SUCH THAT THE IPRLUT OUTPUTS A MULTI-BIT VALUE. THE

MULTI-BIT VALUE INCLUDES A PLURALITY OF BITS. EACH BIT
CORRESPONDS TO A PCP CODE PRIORITY LEVEL. MULTIPLE

ONES OF THE BITS ARE SET, INDICATING THAT MULTIPLE PCP

FLOWS SHOULD BE PAUSED.

USING THE MULTI-BIT VALUE TO GENERATE A PFC PAUSE 308
FRAME, WHERE MULTIPLE ONES OF THE ENABLE BITS IN THE
PRIORITY CLASS ENABLE \)&%%ngTOF THE PFC PAUSE FRAME

OUTPUTTING THE PFC PAUSE FRAME FROM THE PHYSICAL 209
MAC PORT OF THE NFP INTEGRATED CIRCUIT.

GENERATION OF PFC PAUSE FRAMES IN A PCP FLOW
MERGING AND/OR PCP FLOW REORDERING SYSTEM

FIG. 22
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REORDERING PCP FLOWS AS THEY ARE
ASSIGNED TO VIRTUAL CHANNELS

TECHNICAL FIELD

The described embodiments relate generally to MAC
frame 1ngress processing circuits and methods.

SUMMARY

A Network Flow Processor (NFP) integrated circuit
includes a plurality of SerDes circuits and a Media Access
Control (MAC) layer intertace circuit. The SerDes and MAC
layer interface circuit are configurable 1nto a first number of
physical MAC ports. The NFP integrated circuit receives, via
cach of the physical MAC ports, one or more PCP (Priority
Code Point) flows. A PCP flow 1s a flow of frames recerved
onto the same physical MAC port, where all the frames have
the same PCP code value. Fach PCP flow received via a
particular physical MAC port has a relative priority with
respect to each other PCP flow recerved via that physical
MAC port. In addition to the SerDes circuits and the MAC
layer interface circuit, the NFP integrated circuit further
includes a plurality of port enqueue engines, a pipelined
buffer memory, a plurality of port dequeue engines, and a
single minipacket parallel bus. For each of a second number
of virtual channels, a corresponding linked list of butifers 1s
maintained in the memory. There 1s one port enqueue engine
tor each physical MAC port. For each PCP flow of frames
received via the physical MAC port associated with a port
enqueue engine, the port enqueue engine causes frame data of
the frames of the PCP flow to be loaded into butlers of one
particular linked list of buffers. The port dequeue engine
associated with the physmal MAC port dequeues the linked
list of butlers, thereby causing the frame data of the PCP flow
or tlows stored 1n the linked list of butifers to be output onto the
single minipacket parallel bus. Accordingly, all incoming
frame data from all the virtual channels 1s output onto the
same one minipacket parallel bus, with each 256-byte
mimpacket having an associated virtual channel number that
indicates the virtual channel. Further network processing
functionality of the NFP integrated circuit receives the frame
data from the minipacket bus and performs further network
processing. This further network processing functionality
implements the second number of virtual channels through
the remainder of the NFP integrated circuit.

In a first novel aspect, each port enqueue engine has a PCP
Remap LUT (PRLUT) and associated circuitry that causes
multiple PCP tlows to be merged so that the frame data for the
multiple PCP flows 1s all assigned to the same one virtual
channel. Accordingly, the frame data for the multiple PCP
flows 1s loaded 1nto the same one linked list of butfers 1n the
memory, where the linked list of butfers 1s the linked list of
butfers for the virtual channel. Due to the PCP tlow merging,
of flows of a physical MAC port, the second number can be,
and 1s 1n one embodiment, smaller than the first number
multiplied by eight. The number of virtual channels can be,
and 1s 1n one embodiment, smaller than the number of physi-
cal MAC ports multiplied by eight (the number of PCP pr1-
ority levels that can be defined by the three-bit PCP code
value of incoming frames).

In a second novel aspect, the PCP Remap LUT (PRLUT) of
a port enqueue engine does not cause PCP tlows to be merged
so that the frame data of multiple PCP tlows 1s assigned to one
virtual channel, but rather the PRLUT 1s configured so that the
relative priorities of the PCP tlows are reordered and changed
(with respect to one another) as the PCP tlows are assigned to
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virtual channels. For example, a higher prionity PCP flow
whose PCP value 1s a larger value 1s assigned to a lower
priority virtual channel having a lower virtual channel num-
bers, whereas a lower priority PCP flow whose PCP value 1s
a smaller value 1s assigned to a higher priority virtual channel
having a higher virtual channel number. In this example,
within the virtual channels for a given physical MAC port, the
higher the virtual channel number 1s the higher the priority of
the virtual channel 1s.

In one embodiment, a PRLUT 1s configured to carry out
PCP flow merging on some PCP flows, and to also perform
PCP flow reordering. In another embodiment, a first port
enqueue engine causes PCP flow merging to occur, whereas a
second port enqueue engine causes PCP reordering to occur.
The PRLUTSs of the port enqueue engines are independently
configurable.

In a third novel aspect, each linked list of butfers that stores
frame data 1s not actually a single linked list of buffers, but
rather 1s a dual linked list of buifers. In addition, a free buffer
linked list of builers 1s also a dual linked list of buifers. The
dual linked lists of buffers are maintained by a link manager.
The term “linked list of butlfers” as the term 1s used here refers
to a linked list of queue elements that stores butler identifi-
cation values (butfer 1Ds) along with the corresponding buil-
ers that are i1dentified by the butfer IDs. The link manager
maintains, for each such dual linked list of bullers, a first head
pointer queue element H1, a second head pointer queue ele-
ment H2, a first tail pointer queue element T1, a second tail
pointer queue element T2, a head pointer active bit, and a tail
pointer active bit. The first head pointer queue element and
the first tail pointer queue element are used to maintain the
first linked list of the dual linked list. The second head pointer
queue element and the second tail pointer queue element are
used to maintain the second linked list of the dual linked list.
When a sequence of values (a sequence of bufler IDs) 1s
pushed into the dual linked list of butfers, odd values of the
sequence are pushed into the first tail pointer queue element
so that odd values are stored 1n the first linked list of buffer
clements, whereas even values of the sequence are pushed
into the second tail pointer queue element so that even values
are stored 1n the second linked list of butfer elements. The tail
pointer active bit indicates which tail pointer queue element
will recerve the next value to be pushed. The value of the tail
pointer active bit 1s toggled from push to push. When a
sequence of values 1s popped out of the dual hnked l1st of
butlers, odd values of the sequence are popped oil the first
head pointer queue element, whereas even values are popped
oil the second head pointer queue element. The head pointer
active bit indicates which head pointer queue element will be
popped next. The value of the head pointer active bit 1s
toggled from pop to pop.

In one example, the memory that stores queue elements
other than the head and tail pointer queue elements 1s a pipe-
lined memory. The pipelined memory has a read access
latency time for reading the value stored 1n a queue element.
Due to the pipelined nature of the memory, however, the dual
linked list system can pop the dual linked list of values and
supply dequeued values at a sustained rate of more than one
value per the read access latency time. For example, 1f the
dual linked list system 1s popped twice 1n rapid succession,
then the pipelined memory will be performing multiple read
operations of multiple queue elements at a given time with the
read operations following each other 1n sequence through the
stages of the pipelined memory. The first head pointer queue
clement 1s popped, and then a memory read 1s initiated to
replenish the first head pointer queue element. Betfore this
replenishing has been completed, the second pop of the dual
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linked list occurs, thereby resulting 1n a pop of the second
head pointer queue element. A value can be popped out of the

second head pointer queue element at a time when the
memory 1s 1n the process of being read to replenish the first
head pointer queue element. A second read of the memory 1s
also mitiated to replenish the second head pointer queue
clement. At this time, both the first and second read operations
are occurring simultaneously, albeit with the first read opera-
tion leading the second through the various stages of the
pipelined memory.

The use of multiple linked lists to realize a faster access
single linked list 1s extendable. For example, three different
linked lists can be maintained together by the link manager 1n
order to realize a triple linked list. Likewise, four different
linked lists can be maintained together by the link manager 1n
order to realize a quadruple linked list, and so forth. The
values stored 1n these linked lists are typically buffer IDs,
where each such builer ID identifies a corresponding buitfer.
In a fourth novel aspect, the link manager stores a predeter-
mined and preconfigured “overtlow threshold value™ for vir-
tual channel. The link manager also maintains, for each vir-
tual channel, a buller count where the buffer count 1s the
number of buffers (1n the linked list of butfers for the virtual
channel) that currently store frame data. In addition, 1n this
tourth novel aspect, PCP flow merging and/or reordering was
performed on enqueue. As frames are recerved on the NFP
integrated circuit and are stored 1n a linked list of buifers, if
the butler count for a virtual channel 1s detected to exceed the
“overtlow threshold value” for a virtual channel whose origi-
nating PCP tlows were merged, then a PFC (Priority Flow
Control) pause frame 1s generated where multiple ones of the
priority class enable bits are set to indicate that multiple PCP
flows should be paused. The setting of a priority class enable
bit in the PFC pause frame 1s an indication to a recerver of the
PFC pause frame that the PCP flow corresponding to that
priority level should be paused. For the particular virtual
channel that 1s determined to be overloaded, an Inverse PCP
Remap LUT (IPRLUT) circuit 1n the port enqueue engine
performs mverse PCP mapping, including inverse PCP merg-
ing and/or mverse PCP reordering, and outputs a multi-bat
value. The multi-bit value indicates each of those PCP tlows
that 1s associated with the overloaded virtual channel. For
cach PCP flow 1dentified in this way, the corresponding bit 1n
an 8-bit priority class enable vector 1s set. The 8-bit priority
class enable vector 1s supplied by the port enqueue engine to
its corresponding physical MAC port. The physical MAC
port 1 turn uses the 8-bit priority class enable vector to
generate the PFC pause frame so that the appropriate multiple
enable bits are set in the pause frame. The physical MAC port
then outputs the PFC pause frame from the NFP integrated
circuit. The mverse PCP remap operation reverses the etfect
of PCP flow merging as well as PCP flow reordering, and
ensures that the correct PCP flows are paused 1n response to
the detecting of a virtual channel overload condition.

Further details and embodiments and techniques are
described 1n the detailed description below. This summary
does not purport to define the invention. The nvention 1s
defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, where like numerals indicate
like components, illustrate embodiments of the invention.

FIG. 1 1s a diagram of a network device 1 in accordance
with one novel aspect.

FIG. 2 1s a simplified top-down diagram of the NFP inte-
grated circuit of the network device of FIG. 1.
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FIG. 3 1s a diagram that 1llustrates a tlow of network infor-
mation through the NFP mtegrated circuit of FIG. 2.

FIG. 4 1s a diagram of the ingress MAC island of the NFP
integrated circuit of FIG. 2.

FIG. 5 1s a more detailed diagram of one of the SerDes
circuits of the NFP integrated circuit of FIG. 2.

FIG. 6 1s diagram of the ingress NBI 1sland of the NFP

integrated circuit of FIG. 2.
FIG. 7 1s diagram of the egress NBI 1sland of the NFP

integrated circuit of FIG. 2.

FIG. 8 15 a diagram of the egress MAC 1sland of the NFP
integrated circuit of FIG. 2.

FIG. 9 1s amore detailed diagram of COREI1 of the ingress
MAC island.

FIG. 10A 1s the left half of a larger FIG. 10.

FIG. 10B 1s the right half of a larger FIG. 10.

FIG. 11 1s a diagram of an ethernet frame that has a VL AN
tag and a PCP code field.

FIG. 12A 1s a diagram that shows how the ingress MAC
circuitry of the NFP integrated circuit can be configured into
a first set of physical MAC ports.

FIG. 12B i1s a diagram that shows how the ingress MAC
circuitry of the NFP integrated circuit can be configured into
a second set of physical MAC ports.

FIG. 12C 1s a diagram that shows how the ingress MAC
circuitry of the NFP integrated circuit can be configured into
a third set of physical MAC ports.

FIG. 12D 1s a diagram that shows how the ingress MAC
circuitry of the NFP integrated circuit can be configured into
a fourth set of physical MAC ports.

FIG. 13 1s a diagram that 1llustrates PCP flow merging in
accordance with a first novel aspect, and that i1llustrates PCP
flow reordering in accordance with a second novel aspect.

FI1G. 14 1s a diagram that 1llustrates the contents of the PCP
remap LUT circuit of the first port enqueue engine that
handles the first physical MAC port, for the example of FIG.
13.

FIG. 15 1s a diagram that 1llustrates the contents of the PCP
remap LUT circuit of the second port enqueue engine that
handles the second physical MAC port, for the example of
FIG. 13.

FIG. 16 1s a diagram of a dual linked list system 1n accor-
dance with a third novel aspect.

FIG. 17 1s a diagram that 1llustrates the first and second
linked lists that together comprise a dual linked list.

FIG. 18 1s a diagram that illustrates how a dequeue request
1s handled by the link manager and the pipelined linked list
memory.

FIG. 19 1s a simplified waveform diagram that 1llustrates
how two rapid dequeue requests (of the dual linked list for the
same virtual channel) are handled by the link manager and the
pipelined linked list memory.

FIG. 20A 1s a part of a larger diagram (FIG. 20) that
illustrates a pushing and a popping of another embodiment of
one of the two linked lists of a novel dual linked list.

FIG. 20B 1s a part of a larger diagram (FIG. 20) that
illustrates a pushing and a popping of another embodiment of
one of the two linked lists of a novel dual linked list.

FIG. 20C 1s a part of a larger diagram (FIG. 20) that
illustrates a pushing and a popping of another embodiment of
one of the two linked lists of a novel dual linked list.

FIG. 20D 1s a part of a larger diagram (FIG. 20) that
illustrates a pushing and a popping of another embodiment of
one of the two linked lists of a novel dual linked list.

FIG. 20E 1s a part of a larger diagram (FIG. 20) that 1llus-
trates a pushing and a popping of another embodiment of one
of the two linked lists of a novel dual linked list.
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FI1G. 21 1s a diagram of a PFC pause frame that 1s generated
as aresult of inverse PCP remapping 1n an overload condition
in accordance with a fourth novel aspect.

FIG. 22 1s a flowchart of a method that ivolves inverse
PCP flow remapping and generation of PFC pause frame 1n
accordance with the fourth novel aspect.

DETAILED DESCRIPTION

Reference will now be made in detail to background
examples and some embodiments of the invention, examples
of which are 1llustrated 1n the accompanying drawings.

FIG. 1 1s a high-level block diagram of a network device 1
in accordance with one novel aspect. The network device 1
includes and management card 2 and multiple line cards 3, 4
and 5, that are coupled to a backplane 23. The line cards are of
identical construction. Each line card can recerve 120 Gbps
(gigabits per second) packet traffic via fiber optic cable 7 and
can also transmit 120 Gbps packet traific out of fiber optic
cable 8. Each line card can also receive 100 Gbps packet
traffic from the switch fabric 6 and can also transmit 100 Gbps
packet trailic to the switch fabric 6. Line card 3 includes,
among other parts not 1llustrated, a Network Flow Processor
(NEFP) integrated circuit 9, a first optical transcerver 10, a first
PHY integrated circuit 11, a second optical transcerver 12, a
second PHY integrated circuit 13, a configuration Program-
mable Read Only Memory (PROM) 14, and an amount of
external Dynamic Random Access Memory (DRAM) 15-20.
Packet data received from a network via optical cable 7 1s
converted into electrical signals by first optical transceiver 10.
First PHY integrated circuit 11 receives the packet data in
clectrical form and forwards the packet data to the NFP 1nte-
grated circuit 9 via SerDes connections 21. In one example,
the packets are directed out of the line card 3 to optical fiber
8 via SerDes connections 22, second PHY integrated circuit
13, and the second optical transceiver 12. Alternatively, the
packets are directed from the NFP integrated circuit 9 to the
switch fabric 6 via SerDes connections 24. Packet data from
the switch fabric 6 can also be communicated from the switch
fabric 6, across SerDes connections 25, and to the NFP inte-
grated circuit 9. In one example, this packet data 1s directed to
pass out of the NFP integrated circuit 9 and to optical fiber 8.
In another example, this packet data 1s directed to pass out of
the NFP integrated circuit 9 and back to the switch fabric 6 via
SerDes connections 24. Data passing through the NFP 1nte-
grated circuit 9 may be buffered in the DRAM 15-20.

FI1G. 2 15 a top-down diagram of the NFP integrated circuit
9 01 FI1G. 1. The NFP integrated circuit 9 includes a peripheral
first area of mnput/output circuit blocks 26-50. SerDes circuit
blocks 26-31 are usable to communicate with optical fibers 7
and 8. Each of these SerDes circuits 1s duplex 1n that it has
tour 10 Gbps lanes for recerving SerDes information and 1t
also has four 10 Gbps lanes for transmitting SerDes informa-
tion. A SerDes circuit can communicate information 1n both
directions simultancously. Respective ones of the DDR
physical interfaces 34, 35, 37, 38, 49 and 50 are used to
communicate with corresponding external memory inte-
grated circuits 15-20, respectively. GPIO interface block 36 1s
used to recerve configuration information from external
PROM 14.

In addition to the first peripheral area of I/O blocks, the
NFP mtegrated circuit 9 also includes a second tiling area of
islands 51-75. Each of the 1slands 51-75 1s either a full rect-
angular shape, or 1s half the size of the full rectangular shape.
For example, the 1sland 67 1s a full 1sland. The 1sland 69 1s a
half 1sland. The functional circuits 1 the various i1slands of
this second tiling area are interconnected by: 1) a config-
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6

urable mesh Command/Push/Pull (CPP) data bus, 2) a con-
figurable mesh control bus, and 3) a configurable mesh event
bus. Each such mesh bus extends over the two-dimensional
space of 1slands with a regular grid or “mesh™ pattern.

In addition to the second tiling area, there 1s a third area of
larger sized blocks 76-80. The mesh bus structures do not
extend 1nto or over any of these larger blocks. The functional
circuitry of a larger sized block may connect by direct dedi-
cated connections to an iterface 1sland within the tiling area
and through this interface island achieve connectivity to the
mesh buses and other 1slands.

FIG. 3 1s a diagram that 1llustrates one example of packet
traffic passing through the NFP integrated circuit 9 of FIG. 1.
Packet tratfic 1s received onto the line card 3 from optical fiber
7, and passes through optics transcerver 10, and PHY inte-
grated circuit 11, and across SerDes connections 21 1nto three
SerDes circuit blocks 29, 30 and 31. Each of the three SerDes
circuit blocks has four 10 Gbps mput lanes, so overall the
SerDes circuit block can recerve incoming packet data at a
rate of 40 Gbps. The mncoming packet data 1s spread over three
such SerDes circuit blocks, so the NFP integrated circuit 9
can receive 120 Gbps packet data from optical fiber 7. The
packet data 1n this particular example passes through dedi-
cated connections from three SerDes circuit blocks 29-31 to
the mgress MAC 1sland 72. The dashed line 81 in FIG. 2
indicates the six SerDes circuit blocks that are coupled by
dedicated connections to the ingress MAC 1sland 72. Ingress
MAC 1sland 72 converts successive symbols delivered by the
physical coding layer into packets by mapping symbols to
octets, by performing packet framing, and then by bulfering
the resulting packets 1n an SRAM memory for subsequent
communication to other processing circuitry. After buifering
in the SRAM, the resulting packets are communicated from
ingress MAC 1sland 72 across a single private inter-island
minipacket bus, to mngress NBI (Network Bus Interface)
island 73. Prepended to the beginning of each packet 1s a
MAC prepend value that contains information about the
packet and results of analyses (parse results PR) performed by
the ingress MAC 1sland.

For each packet, the functional circuitry of ingress NBI
1sland 73 examines fields in the header portion to determine
what storage strategy to use to place the packet into memory.
In one example, the mngress NBI 1sland examines the header
portion and from that determines whether the packet 1s an
exception packet or whether the packet 1s a fast-path packet.
If the packet 1s an exception packet, then the mgress NBI
1sland 73 determines a first storage strategy to be used to store
the packet so that relatively mvolved exception processing
can be performed efficiently, whereas 11 the packet 1s a fast-
path packet then the ingress NBI island determines a second
storage strategy to be used to store the packet for more efli-
cient transmission of the packet from the NFP integrated
circuit 9. The ingress NBI 1sland examines a packet header,
performs packet preclassification, determines that the packet
1s a fast-path packet, and determines that the header portion of
the packet should passes to ME (Microengine) 1sland 67. The
header portion of the packet i1s therefore communicated
across the configurable mesh data bus from ingress NBI
island 73 to ME 1sland 67. The ME 1sland 67 determines
header modification and queuing strategy for the packet based
on the packet flow (derived from packet header and contents)
and the ME 1sland 67 informs a second NBI island 64 (also
referred to as an egress NBI 1sland) of these. In this simplified
example being described, the payload portions of fast-path
packets are placed into internal SRAM (Static Random
Access Memory) MU block 79 and the payload portions of
exception packets are placed into external DRAM 19 and 20.
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Half 1sland 68 1s an interface 1sland through which all infor-
mation passing into, and out of, SRAM MU block 79 passes.
The functional circuitry within half 1sland 68 serves as the
interface and control circuitry for the SRAM within block 79.
Accordingly, the payload portion of the incoming fast-path
packet 1s communicated from ingress NBI 1sland 73, across
the configurable mesh data bus to SRAM control 1sland 68,
and from control 1sland 68, to the interface circuitry 1n block
79, and to the internal SRAM circuitry of block 79. The
internal SRAM of block 79 stores the payloads so that they
can be accessed for flow determination by the ME 1sland 67.

In addition, a preclassifier in the ingress NBI 1sland 73
determines that the payload portions for others of the packets
should be stored 1n external DRAM 19 and 20. For example,
the payload portions for exception packets are stored in exter-
nal DRAM 19 and 20. Interface 1sland 71, IP block 80, and
DDR PHY 1/O blocks 49 and 50 serve as the interface and
control for external DRAM 1ntegrated circuits 19 and 20. The
payload portions of the exception packets are therefore com-
municated across the configurable mesh data bus from
ingress NBI 1sland 73, to interface and control 1sland 71, to
external MU SRAM block 80, to 32-bi1it DDR PHY I/O blocks
49 and 50, and to external DRAM integrated circuits 19 and
20. At this point 1n the operational example, the packet header
portions and their associated payload portions are stored in
different places. The payload portions of fast-path packets are
stored 1n internal SRAM 1n MU block 79, whereas the pay-
load portions of exception packets are stored 1n external
memories 19 and 20.

ME 1sland 67 informs egress NBI 1sland 64 where the
packet headers and the packet payloads can be found and
provides the egress NBI 1sland 64 with an egress packet
descriptor for each packet. The egress packet descriptor indi-
cates a queuing strategy to be used on the packet. Egress NBI
island 64 uses the egress packet descriptor to read the packet
headers and any header modification from ME island 667 and
to read the packet payloads from either internal SRAM 79 or
external DRAMs 19 and 20. Egress NBI 1sland 64 places
packet descriptors for packets to be output into the correct
order. For each packet that 1s then scheduled to be transmatted,
the egress NBI 1sland uses the packet descriptor to read the
header portion and any header modification and the payload
portion and to assemble the packet to be transmitted. The
egress NBI 1sland then performs packet modification on the
packet, and the resulting modified packet then passes from
egress NBI 1sland 64 and to egress MAC i1sland 65.

Egress MAC 1sland 65 bullers the packets, and converts

them 1nto symbols. The symbols are then delivered by dedi-
cated conductors from the MAC 1sland 65 to three SerDes
circuits 42-44. The dashed line 82 1n FIG. 2 indicates the six
SerDes circuits that are coupled by dedicated connections to
the egress MAC 1sland 65. Although the SerDes circuits
42-44 together can provide 120 Gbps of communication
throughput, the throughput out of NFP integrated circuit 9 to
the switch fabric 6 1s limited to 100 Gbps by the switch fabric.
From SerDes circuits 42-44, the 100 Gbps outgoing packets
pass out of the NFP integrated circuit 9 and across SerDes
connections 24 and to switch fabric 6.

The term “packet” 1s used 1n the description above 1n a
somewhat loose and colloquial way as 1s common 1n the art.
More particularly, incoming symbols are converted into
MAC layer “frames”, such as ethernet frames, and a MAC
prepend value 1s prepended to each such frame. The frame
generally carries a single higher level “packet™, such as an IP
packet, and that packet 1s not segmented. A single packet 1s
not being carried by multiple frames. Accordingly, through-
out the rest of this patent document the term *“frame” and
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“packet” are used interchangeably to refer to MAC layer
frames, unless the use of the term “packet” in context makes
it clear that a different usable of the term 1s being employed.

FIG. 4 1s a more detailed diagram of SerDes circuit blocks
26-31 and mngress MAC 1sland 72.

FIG. 5 1s a more detailed diagram of one of the SerDes
circuit blocks, SerDes circuit block 31. All the SerDes circuit
blocks are 1dentical. SerDes circuit block 31 has four 20-bit
outgoing PMA (Physical Medium Attachment) buses 83-86,
and four 20-bit incoming PMA buses 87-90.

The SerDes circuit bocks of FIG. 4 are being used to
receive frame data, so the outgoing 20-bit PMA buses are not
illustrated 1n FIG. 4. PMA RX data 91 1s converted into
frames by MAC layer interface circuit block 92. Blocks 92
and 93 are 1dentical. Each of these blocks actually includes an
Interlaken portion and an ethernet portion. MAC layer inter-
face circuit block 92 analyzes the frame data and places the
results at the beginning of the frame data 1n the form of the
“MAC prepend” value. The resulting frames and their asso-
ciated MAC prepend values are then builered in SRAM 94.
Reference numeral 95 1dentifies a part of a block that repre-
sents one frame and reference numeral 96 1dentifies a part of
the block that represents the MAC prepend value. The frame
95 and 1ts MAC prepend value 96 are not stored this way. The
illustration of the blocks 95 and 96 1s provided for instruction
purposes. The MAC prepend value includes: 1) an indication
of the length of the frame (packet), 2) an 1indication whether
the frame contains an IP packet, 3) and indication of whether
the checksums are correct, and 4) a time stamp 1ndicating
when the packet was recerved.

As such frames are loaded into SRAM 94, a statistics block
97 counts the number of frames that meet certain criteria.
Various sub-circuits of the ingress MAC 1sland 72 are con-
figurable. The input conductors 98 labeled CB couples the
certain portions of the ingress MAC 1sland to the control mesh
bus (CB) so that these portions recerve configuration infor-
mation from the root of control bus tree and configuration
PROM 14. SRAM block 94 includes error detection and
correction circuitry (ECC) 99. Error information detected and
collected by ECC block 99 and statistics block 97 1s reported
through a local event bus and a global event chain back to the
ARM 1sland 52 by the event bus mesh. Ingress MAC 1sland 72
1s coupled to part of one of the local event rings. Event packets
are circulated into the MAC 1sland via conductors 100 and are
circulated out of the MAC 1sland via conductors 101.

Frames that are bullered in SRAM 94 are then output from
the mngress MAC 1sland 72 to the ingress NBI 1sland 73 1n the
form of one or more 256-byte minipacket transactions 102
communicated across dedicated mimipacket bus connections
103. The mimipacket bus 1s a private bus used to transport this
frame information from the MAC 1sland to the NBI 1sland.
Each mimipacket bus transaction consists of: 1) 256 bytes of
frame data, or the remaining amount of data for the frame,
whichever 1s less, and the MAC prepend. The MAC prepend
includes: 1) a virtual channel number to which this frame data
belongs, 2) a SOF (Start of Frame) bit indicating 1f the 256
bytes of frame data 1s the first piece of a frame for this virtual
channel, 3) an EOF (End of Frame) bit that indicates whether
the 256 bytes of frame data 1s the last piece of a frame for this
virtual channel. Statistics information 104 1s also communi-
cated to the ingress NBI 1sland 73 via a separate XPB bus 105.

FIG. 6 1s a diagram of ingress NBI 1sland 73. Ingress NBI
island 73 receiwves the MAC prepend and the minipacket
information via dedicated minipacket bus connections 103
from the ingress MAC island 72. The first 256 bytes of the
frame and the MAC prepend pass through multiplexing cir-
cuitry and are analyzed by a pool 106 of forty-eight
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picoengines. Pool 106 generates preclassification results 107.
The preclassification results 107 include: 1) a determination
of which one of multiple butier pools to use to store the frame,
2) a sequence number for the frame 1n a particular flow of
frames through the NFP integrated circuit, and 3) user meta-
data. The user metadata 1s typically a code generated by the
picoengine pool 106, where the code communicates certain
information about the packet. In one example, the user meta-
data includes a bit that indicates whether the frame was deter-
mined by the picoengine pool 106 to be a first type of frame
(an exception frame or packet), or whether the frame was
determined to contain a second type of frame (a fast-path
frame or packet). The frame 1s buflered in SRAM 108. A
butifer pool 1s a set of targets in ME 1slands where header
portions can be placed. A bufler list 1s a list of memory
addresses where payload portions can be placed. DMA
engine 109 can read the frame out of SRAM 108 via conduc-
tors 110, then use the bulfer pools to determine a destination
to which the frame header 1s to be DMA transferred, and use
the butfer lists to determine a destination to which the frame
payload 1s to be DMA transierred. The DMA transfers occur
across the configurable mesh data bus. In the case of an
exception packet, the preclassification user metadata and
butter pool number 1indicate to the DMA engine 109 that the
frame 1s an exception frame and this causes a first butier pool
and a first different buffer list to be used, whereas 1n the case
ol a fast-path frame the preclassification user metadata and
butfer pool number indicate to the DMA engine that the frame
1s a fast-path frame and this causes a second butier pool and
a second bufler list to be used. CPP bus interface 111 1s a CPP
bus target. CPP bus interface 111 1s CPP bus interface through
which the configurable mesh data bus 1n accessed. Arrow 112
represents frames (packets) that are DMA transferred out of
the ingress NBI i1sland 73 by DMA engine 109 and through
CCP bus interface 111. Each frame (packet) 1s output with a
corresponding ingress packet descriptor. An ingress packet
descriptor includes: 1) an address indicating where and 1n
which ME i1sland the header portion 1s stored, 2) an address
indicating where and in which MU island the payload portion
1s, 3) how long the frame 1s, 4) a sequence number for the flow
to which the frame belongs, 5) user metadata.

Configuration data can be written by a master on the CPP

data bus (DB), through DB interface 111, through CPP-to-
XPB bus interface 113, across the XPB bus 105, and into the
ingress MAC 1sland 72. Arrows 114 1n FIG. 6 and 1n FI1G. 4
represent this configuration information. As described in fur-
ther detail below, this configuration information 114 config-
ures the MAC layer interface circuit blocks 92 and 93 so that
the blocks 92 and 93 together with the SerDes circuits 26-31
are partitioned 1nto and configured into a configurable num-
ber of “physical MAC ports”. Also, as described in further
detail below, this configuration information 114 also: 1) con-
figures block 94 to support a configurable number of “virtual
channels™, 2) configures how block 94 performs PCP map-
ping, 3) configures how block 94 performs PCP tlow merging,
4) configures how block 94 performs PCP flow reordering, 5)
configures how block 94 pertorms inverse PCP remapping for
PFC pause frame generation.

After the picoengine pool 106 1n the ingress NBI 1sland 73
has done 1ts analysis and generated 1ts preclassification
results for the packet, the mgress NBI 1sland then DMA
transiers the frame headers (packet headers) and associated
preclassification results across the CPP configurable mesh
data bus DB and into the ME island 67. Within the ME 1sland
67, one or more microengines then performs further process-
ing on the header and preclassification results as explained 1n
turther detail 1n U.S. patent application Ser. No. 13/399,888,
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entitled “Island-Based Network Flow Processor Integrated
Circuit”, filed Feb. 17, 2012, by Stark et al. (the entire subject
matter of which 1s hereby incorporated by reference).

FIG. 7 1s a diagram of egress NBI 1sland 64. As 1llustrated
by the arrows of FIG. 3, header and control information
passes from the ME 1sland 67 to the NBI 1sland 64, and packet
data passes from where 1t 1s stored (either SRAM 52 or
external DRAM 19-20) to the egress NBI 1sland 64. From the
egress NBI 1sland, packet data passes across a minipacket bus
115 to the egress MAC 1sland 65.

FIG. 8 1s a diagram of egress MAC 1sland 65. In the pres-
ently described example, the packet traffic discussed 1n con-
nection with FIG. 3 tlows out of the egress MAC 1sland 65 and
through three SerDes circuits 42-44 to the switch fabric 6.
Although the ingress MAC 1sland 72 1s 1llustrated in FIG. 4 as
having only 1ngress circuitry, and although the egress MAC
1sland 65 1s illustrated in FIG. 8 as having only egress cir-
cuitry, both MAC 1slands are actually identical and each of the
two 1slands has both ingress and egress circuitry. Ingress
MAC 1sland 72 can output packet traflic via the same three
SerDes circuits 29-31 to optical cable 8. Egress MAC 1sland
65 can receive packet traffic via the same three SerDes cir-
cuits 42-44 from switch fabric 6.

FIG. 91s amore detailled block diagram of the ingress MAC
island 72. Ingress MAC 1sland 72 includes two cores, referred
to here as CORE1 and as CORE2, and a DWRR (Deficit
Weighted Round Robin) arbiter and minipacket bus interface
116. The two cores are structurally 1dentical. As 1llustrated 1n
FIG. 9, the SRAM block 94 of FIG. 4 actually includes much
more circuitry than just SR AM circuitry. The SR AM block 94
of FIG. 4 actually includes the parser and checksum circuitry
of the two cores, the port enqueue circuitry of the two cores,
the SRAMs of the two cores, the port dequeue circuitry of the
two cores, and the link manager circuit of the two cores, along
with the common DWRR arbiter and minipacket bus inter-
face 116. The two parser and checksum circuits of CORE1 are
identified 1n FIG. 9 by reference numerals 117 and 118. The
port enqueue circuitry of CORFE1 1s 1dentified 1n FIG. 9 by
reference numeral 119. The SRAM of CORF1 1s 1dentified in
FIG. 9 by reference numeral 120. The port dequeue circuitry
of CORF1 1s 1dentified 1n FIG. 9 by reference numeral 121.
The link manager circuit of CORFE1 1s 1dentified 1n FIG. 9 by
reference numeral 122. Three of the s1x SerDes circuits that
work with the ingress MAC 1sland are coupled to CORFEI1,
whereas the other three are coupled to CORE2. MAC layer
interface circuit block 92 has an Ethernet MAC portion 123
and an InterLaken MAC portion 124. The Ethernet MAC
portion 123 of block 92, 1n one example, 1s a commercially
available IP core of the “Hydra” family, referred to as “Multi-

Channel/Multi-Rate 12 Lane 1/10/40/100G Ethernet MAC/
PCS Core”, ordering code: MTIP-H12LANE1040100-lang-
tech, available from MorethanIP GmbH, Muenchner Strasse
199, D-85757 Karlsteld, Germany.

Based on configuration information 114, the Ethernet
MAC portion 123, along with SerDes circuits 29-31, 1s con-
figured 1nto a desired number of “physical MAC ports”. The
Ethernet MAC portion 123 includes a configuration register
125 that 1s loaded with configuration information 114 for this
purpose. Translation circuit 182 translates XPB bus commu-
nications into communications understood by the Ethernet
MAC portion 123. The port enqueue circuitry 119 includes
thirteen port enqueue engines. The port enqueue engines are
labeled one through thirteen in the diagram of FIG. 9. The
configuration register 126 of the port enqueue circuitry 119 1s
loaded with configuration information 114 such that one port
enqueue engine 1s assigned to each of the physical MAC
ports. Likewise, the port dequeue circuitry 121 includes thir-
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teen port dequeue engines. The port dequeue engines are
labeled one through thirteen 1n the diagram of FIG. 9. The
configuration register 127 of the port dequeue circuitry 121 1s
loaded with configuration information 114 such that one port
dequeue engine 1s assigned to each of the physical MAC
ports.

In one example, ethernet frames are recetved on each of the
physical MAC ports. Frame data of such an ethernet frame 1s
output, 256 bits at a time, onto TDM (Time Division Multi-
plexed) bus 129. Each such 256-bit amount of packet data 1s
accompanied by: 1) a value that indicates the physical MAC
port that received the packet data, 2) a SOF (Start of Frame)
bit that 11 asserted 1indicates that the 256-bit amount of packet
data carries the first packet data of a frame, 3) an EOF (End of
Frame) bit that 1f asserted indicates that the 256-bit amount of
packet data carries the last packet data of a frame, 4) an error
bit ERR, 5) a 3-b1t MOD value that 1s valid 1if EOF 1s asserted
and 1n that case indicates how many bytes of the 256-bit value
are valid, 6) a port number, and 7) a timestamp that 1s valid 1f
SOF 1s asserted. This additional information about the 256-bit
amount ol packet data 1s generated by the Ethernet MAC
portion 123 of the MAC layer interface circuit 92. These
256-bit values along with their accompanying descriptive
information are supplied one after another, in time division
multiplexed fashion, from the various physical MAC ports
onto TDM bus 129.

A 256-bit value 1s supplied to parser and checksum circuit
117, and 1s also supplied to the port enqueue circuitry 119.
One of the port enqueue engines of the port enqueue circuitry
119 1s hardcoded with the number of the physical MAC port.
Each such port enqueue engine receives the physical MAC
number and determines, using its hardcoded number, if the
256-bit value 1s for the port handled by the port enqueue
engine. The proper port enqueue engine (the one whose hard-
coded number matches the port number of the mmcoming
256-bit value) recerves the 256-bit value, and loads the value
into a buflfer for the appropriate one of virtual channels. The
butferis in SRAM 120. Eight such 256-bit writes are required
to 11ll the butfer. The port enqueue engine operates atomically,
one frame at a time, loading butfers with frame data from SOF
to EOF, to a single channel. The Ethernet MAC portion 123
(the “Hydra™) presents 256-bit frame data for each port atomi-
cally. Frame data for multiple ports may be interleaved on the
TDM bus (e.g., Port 1 SOF, Port 2 SOF, .. ., Port1 EOF, Port
2 EOF), but each enqueue engine only takes the data for 1ts
assigned port, so each enqueue engine reads frames atomi-
cally. At the time of loading the last 256-bit word of a frame,
the parser and checksum circuit 117 has finished generating,
the “parser result” (PR) value. The PR value 1s then into a “PD
and PR Memory” 131 in the SRAM 120, where the result
value (PR) written 1s stored so that it 1s indexed by the butler
ID of the first butler that stores the first 256-bit value of the
frame. In addition to the parse result (PR) value, the times-
tamp value 1s also written 1nto this “PD and PR Memory” 131,
indexed to the butier ID of the first butfer that stores the first
256-bit value of the frame.

When the last 256-bit value has been written 1nto a butier
such that the bufter 1s full, a butfer ID for the butter 1s added
to a linked list for the virtual channel. This linked list stores
the buffer IDs of the buifers that store the frame data. As
bufter IDs are stored into the linked list, the associated frame
data 1s said to be pushed 1nto the linked list of builers. In the
illustration of FIG. 9, there are sixty-four linked lists of buil-
ers, where there 1s one linked list of buffers for each of a
maximum sixty-four corresponding virtual channels. The
ingress MAC 1sland 1s configured to provide one linked list of
butlers for each virtual channel through the NFP integrated
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circuit from the optical fiber 7 to the switch fabric 6 1n this
example. The mgress MAC 1sland supports a maximum of
128 virtual channels, with each core supporting a different set
of sixty-four virtual channels. A frame received via a physical
MAC port can have an IEEE 802.1Q PCP (Priority Code
Point) value from zero to seven. The frames received on a
particular physical MAC port having a particular PCP value
are referred to here as a “PCP flow”. Each of the eight possible
PCP flows received onto a given physical MAC port can be
assigned to a different one of eight linked lists of butfers for
eight corresponding virtual channels, such that there 1s a
one-to-one correspondence between PCP tlows and virtual
channels. Alternatively, multiple ones of the PCP flows com-
ing 1nto a given physical MAC port can be merged so that the
frames of these merged flows are all stored into the same
linked list of buflers for the same one virtual channel. Even
though PCP flows may be merged and stored in the same
virtual linked list of butters, the bufters for frames are stored
(1n the linked list of butlers for the virtual channel) so that
frames are stored atomically, one after the other. The link
manager 122 handles head pointer and tail pointer mainte-
nance for the linked lists. The link manager 122 also manages
a link list of buffers, where the buffers are free buffers. For
cach virtual channel, the link manager 122 also maintains a
buifer count and a packet count. The buffer count indicates
the number of buflers that are 1n the linked list of butfers for
the virtual channel. The packet count indicates the number of
complete packets (i.e., frames) that are stored 1n the linked list
of butters for the virtual channel. A frame (or packet) that 1s
stored 1n such a linked list of buffers in SRAM 120 1s said to
be buflfered 1in the SRAM.

The port dequeue circuitry 121 dequeues the linked lists of
builers for the virtual channels and supplies the frame data,
one bulfer at a time, to the DWRR arbiter and minipacket bus
interface 116. The DWRR arbiter and minipacket bus inter-
face 116 1n turn outputs 256-byte minipackets, out of the
ingress MAC 1sland 72 via mimipacket bus 103.

Each port dequeue port engine examines the frame counts
for the virtual channels that are recerving frames from the
physical MAC port associated with the port dequeue engine.
There 1s one port dequeue engine for each physical MAC port,
which handles all the channels for that physical MAC port.
Accordingly, the port dequeue engine for the first physical
MAC port examines the frame counts for the linked lists that
store frame data for PCP flows received onto the first physical
MAC port. The various port dequeue engines that determine
that theiwr linked lists have at least one complete frame to
dequeue then arbitrate with the DWRR arbiter and
minipacket bus interface 116 to read the SRAM 120, and one
1s granted permission to dequeue buifers. If, for that selected
port dequeue engine, there are linked lists for more than one
virtual channel that are indicated (by their frame counts) to
have at least one frame stored, then a local arbiter within the
selected port dequeue engine selects one of the virtual chan-
nels to be dequeued. The selected port dequeue engine then
dequeues buillers for one frame (dequeues this frame atomi-
cally) from the SRAM frame memory for the selected virtual
channel. At the time the first butier of a frame 1s dequeued, the
packet descriptor (PD) (for that frame) 1s also automatically
read by the port dequeue engine via the link manager. The
term “‘packet descriptor” i1s used here, even though the
descriptor 1s perhaps more accurately referred to as a “frame
descriptor”. The packet descriptor (PD) was stored indexed to
the buifer 1D of the first buifer that stores the first part of the
frame, so the packet descriptor (PD) can be read from
memory at this time. The packet descriptor was generated,
and caused to be stored 1n the PD and PR memory, by the
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particular port enqueue engine that enqueued to associated
frame. The packet descriptor (PD) contains a number that
indicates the numbers of butters that store the frame, and also
contains a number of bytes in the last butier that marks the end
of the frame. This packet descriptor (PD) information 1s gen-
crated the port enqueue engine. Together these two values
indicate how many 256-bit reads the port dequeue engine
must perform on the linked list of bufiers until one entire
frame has been atomically read. After reading the first 256-bit
value and the packet descriptor, the port dequeue engine then
goes on to read subsequent 256-bit values, one by one, from
subsequent butfers of the same linked list of butfers, and these
256-bit values are supplied to the DWRR arbiter and
mimpacket bus interface 116 to read the SRAM 120.

As indicated above, the DWRR arbiter and minipacket bus
interface 116 outputs the data in 256-byte minipackets. When
the last valid word of a butfer has been read, then the DWRR
arbiter 116 arbitrates again and selects another port dequeue
engine. The DWRR arbiter and minipacket bus interface 116
1s a 26-slot arbiter with programmable weights. The weights
are 1n bytes. When a port 1s arbitrating and 1s credit-positive
and wins a grant, then the arbiter deducts 512 bytes from the
port’s credits. The port can then outputup to 512 bytes. Once
the butler transier ends and the remaining transier credits of
the 512 bytes 1s less than 512 bytes, the port dequeue engine
will cause the arbiter’s port credit count to be updated with the
unused remaining credits of the original 512 bytes. When no
port dequeue engines are arbitrating, or when all the port
dequeue engines have negative credit, the arbiter credit
counts are refreshed to the original allotment. By program-
ming all the ports to an equal initial weight, the dequeue
bandwidth 1s evenly distributed across the arbitrating ports.

FIG. 10A and FIG. 10B together form a single larger FIG.
10. FIG. 10 1s a more detailed diagram of the port enqueue
circuitry 119, the SRAM 120, the port dequeue circuitry 121,
and the link manager 122 of FIG. 9. SRAM 120 actually 1s a
collection of multiple separately accessible memories: the
buffer memory 128, the linked list memory 129, the free
butifer linked list memory 130, and the PD (Packet Descrip-
tor) and PR (Parse Result) memory 131. Each bui

Ter in butier
memory 128 1s eight words, of 256 bits for each word. The
buifer memory 128 is read and written one 256-bit word at a
time. Any builers that are not being used to store frame data
are referred to as “Iree”. A pointer to each of these free butlers
1s maintained 1n a “free bufler linked list” 1n the free builer
linked list memory 130. The link manager 122 can pop the
free bufler linked list, thereby obtaining a bufier ID that
points to a free builer in the buffer memory 128. This butler
ID can then be used to write frame data into the Correspondmg
butifer that was free. When data 1s written 1nto the buifer, the
butler 1s no longer “iree”. When the builer has been filled, its
butler ID 1s pushed onto the appropriate one of the linked lists
in linked list memory 129. For each virtual channel, there 1s
one linked list of buffers, and the bufler IDs of these bulfers
are stored in a corresponding linked list in the linked list
memory. In an enqueue operation, when frame data 1s to be
written 1nto the linked list of buifers for a particular virtual
channel, the link manager 122 can push the butffer 1D of the
now-used buifer onto the linked list for the virtual channel.
The link manager 122 pops the free butfer list, thereby obtain-
ing a builer ID for another buffer to be used to store the next
amount of frame data. In a dequeueing operation, the link
manager 122 can pop the appropnate linked list, and obtain
the next builer ID of the next buller to be read (for a given

virtual channel). Once the frame data has been read out of that
butter, the builer ID for that bufler 1s pushed onto the free
butfer linked list. The link manager 122 handles the pushing,
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and popping from the various linked lists, and does so 1n
response to requests and commands from the port enqueue
engines and port dequeue engines.

As described above, for each complete frame stored 1n a
linked list of butfers, the “PD and PR memory” 131 stores a

packet descriptor (PD) value and a parse result (PR) value,
where these PD and PR values are stored indexed to the butier
ID of the butler that stores the first part of the packet. Upon
enqueueing the butier that stores the last frame (EOF) data for
a frame, the packet descriptor (PD) and parse result (PR) 1s
written into the PD and PR memory 131. Each of the port
enqueue engines has a set of PD output conductors that are
coupled to mputs of an OR gate structure, where the output of
the OR gate structure 1s supplied to the PD and PR memory.
Because only one of the port enqueue engines can drive a
non-zero PD value at a given time, the active port enqueue
engine outputs the packet descriptor (PD) that passes through
the OR gate structure. The supplying of the packet descriptor
onto the mputs of the PD and PR memory results in writing of
the PD into the memory. Upon dequeueing the buifer that
stores the first frame data of a frame, the packet descriptor
(PD) 1s read from the PD and PR memory 131 and 1s supplied
to all the port dequeue engines at the same time in parallel.
Only the appropriate active port dequeue engine, however,
latches 1n the packet descriptor.

How a 256-bit value from the TDM bus 129 1s processed by

a port enqueue engine 133 and a port dequeue engine 134 1s
now described 1n reference to FI1G. 10. The 256-bit value 132

1s recerved on conductors 129, along with a port number, an
error bit ERR, five MOD bits (1f EOF 1s asserted then these
bits are valid and indicate how many bytes are valid 1n this
256-bit value), a timestamp, an SOF bit (11 this bit 1s asserted
then this 256-bit value contains the first part of the frame), and
an EOF bit (af thus bit 1s asserted then this 2356-bit value
contains the last part of the frame).

The parse and checksum circuit 117 begins analyzing such
256-bit values for a frame, and when the EOF 256-bit value
has been received and processed, the parse and checksum
circuit 117 supplies the parse result to the PD and PR memory
131. The parse result PR 1s written into the PD and PR
memory 131 at that time.

Port enqueue engine 133 has circuitry 135 that 1s hard-
coded with a port number. In the presently described example,
the circuit 136 uses this hardcoded value to determine
whether the port number of the mmcoming 256-bit value
matches the hardcoded value. For a given 256-bit value, i
there 1s a match the port enqueue engine 133 processes the

256-bit value, otherwise the port enqueue engine 133 takes no
action. Where there 1s a match, circuit 137 extracts the PCP

value 139 from the MAC header of the frame. The 3-bit PCP
value 139 1s supplied to PCP Remap Lookup Table (PRLUT)
circuit 138, that 1n turn outputs a remapped 3-bit value 140.
The PRLUT circuit 138 1s a LUT that has eight three-bit
entries, one entry for each 3-bit PCP value. The configurable
contents of the PRLUT circuit 138 1s provided by configura-
tion register 141. PRLUT circuit 138 1s a set of 3-bit loadable
registers and an associated set of three 8:1 output multiplex-
ers, where the select inputs of the output multiplexers are
controlled by the 3-bit PCP value, and where the data outputs
of the multiplexers output the 3-bit remapped PCP value 140.
The remapped PCP value 140 1s then added by an adder 143
to a 6-bit base value supplied by a base register 142. The
resulting 6-bit sum 1s a virtual channel number. The PCP
remapping circuitry 137, 138, 143, 141 and 142 1s preconfig-
ured high-speed combinatorial logic circuitry that generates
virtual channel numbers and that includes no processor that
fetches or executes any nstruction.
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If a SOF 1s indicated by SOF detector 145, then circuit 136
1ssues a request for a butfer ID from the link manager 122.
This request 1s communicated via conductors 146, and
through an OR gate structure, to link manager 122. Only one
port enqueue engine can output a non-zero request (request
for a buffer ID) at a time, so the request passes through the OR
gate structure and to the link manager. In response, the link
manager 122 pops the head of the free buffer linked list,
thereby obtaining a butfer ID of a free buller, and forwards the
butler ID to the port enqueue engine 133 via conductors 147.
The conductors 147 extend to each of the port enqueue
engines, but only the active port enqueue engine latches 1n the
butifer ID value. The active port enqueue engine 133 thereat-
ter uses the butfer ID to write into SRAM 120. This butfer 1D
identifies the beginning of an 8-word by 256-bit butffer. As
cach successive 256-bit word 1s written, the least significant
three bits of the value ADRS[13:0] are incremented due to the
incrementing of 3-bit counter 148. For each such 2356-bit
value received onto the port enqueue engine 133, the 3-bit
counter 148 increments, and this incrementing results 1n the
next 256-bit value being written into the next word of the
butfer. Only the port enqueue engine that 1s active can output
anon-zero address value. The OR gate structures 149 and 150
therefore pass the non-zero address value from the one active
port enqueue engine onto the ADRS[13:0] address lines of the
SRAM memory. When a butler has been filled, then the port
enqueue engine 133 1ssues a push buflfer command via con-
ductors 151 to the link manager 122 along with a virtual
channel number. The link manager 122 handles pushing the
buflfer ID onto the linked list for the indicated virtual channel.
For each linked list, the head pointer queue element and the
tail pointer queue element of the linked list are present in the
link manager 122, whereas any additional queue elements of
the linked list are stored in linked list memory 129. For the
free buffer linked list, the additional queue elements are
stored in the free butfer linked list memory 130. As buffers are
filled and as buffer IDs are pushed onto a linked list for a
virtual channel, a buffer count for the link list 1s incremented.
The buffer count values are labeled “B#” in FIG. 10. Simi-
larly, when the last 256-bit value of a frame has been loaded
into the buffer memory, then a frame count value for the
linked list 1s incremented. The frame count values are labeled
“F#” 1in FI1G. 10.

When EOF 1s asserted (indicating the last write to the last
butler storing the frame), and the last butifer ID of the frame
has been pushed onto the appropriate linked list for a virtual
channel, then the port enqueue engine 133 causes the link
manager 122 to write a packet descriptor (PD) 1nto the “PD
and PR memory” 131 by 1ssuing a push packet command to
the link manager 122 via conductors 152 and an OR gate
structure. Again, only one port enqueue engine can output a
non-zero push packet command, the push packet command
output by the active port enqueue engine passes through the
OR gate structure to the link manager 122. The push packet
command includes the buiter ID of the first butter storing data
for the frame, so that the packet descriptor (PD) will be stored
indexed to this butfer ID.

After the port enqueue engine 133 recerves a 256-bit value,
there 1s a fixed number of clock cycles before the ADRS[13:0]
address value will be presented to the SRAM 120. Pipeline
registers 184 and 185 are provided to delay the 256-bit data
value the appropriate amount so that the correct 256-bit data
value will be written into SRAM 120. The base number BASE
stored 1n base register 142 sets the base virtual channel num-
ber used by the port enqueue engine. If the port enqueue
engine loads buflers for multiple virtual channels, then the
virtual channel numbers of these virtual channels have 1ncre-
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mental offsets from the base virtual channel number. These
virtual channel numbers are a block of virtual channel num-
bers, whose base virtual channel number value 1s set by the
contents of the base register 142.

Those linked lists of butfers, the virtual channels of which
are assigned to a physical MAC port, are dequeued by a port
dequeue engine. There 1s one port dequeue engine assigned to
handle each physical MAC port. In FIG. 10, port dequeue
engine 134 1s the dequeue engine for same physical MAC port
to which the port enqueue engine 133 is assigned. The BASE
content of base register 153 sets a base virtual channel num-
ber, and the NUM content of num register 154 defines a
number of virtual channel numbers 1n a block of virtual chan-
nel numbers. These virtual channel numbers 1ndicate the vir-
tual channels, the linked lists of buffers for which the port
dequeue engine 1s responsible. By writing appropriate BASE
and NUM values into the base and num registers, the port
dequeue engine 1s configured to dequeue the corresponding
linked lists of buffers. A 64-bit vector 1s output from the link
manager 122 via conductors 155, where each respective bit in
the 64-bit vector indicates whether the frame count (also
called packet count) of a corresponding one of the sixty-four
linked lists 1s a non-zero value. A bit being set indicates that
the corresponding linked list stores at least one complete
packet (one complete frame). The mask circuit 156 1n the port
dequeue engine 134 uses the BASE and NUM values from
registers 153 and 154 to examine those bits 1n the 64-bit
vector that pertain to the linked lists that the port dequeue
engine 134 1s responsible for dequeueing. If more than one of
these bits 1s set, then a local “arbiter and dequeue request
generator” 157 selects one of the corresponding virtual chan-
nels. A dequeue request 158 to dequeue the linked list of
butlers for the selected virtual channel 1s supplied via an OR
gate structure and conductors 159 to the link manager 122.
The dequeue request includes a virtual channel number. In
response to the dequeue request, the link manager returns the
builter ID of the appropriate linked list. The buifer ID 1s
returned to the port dequeue engine 134 via conductors 160.
If the indicated butler 1s the butler that stores the first part of
a frame, then the PD and PR memory 131 1s read, and the
packet descriptor (PD) and the parse result (PR) are returned
to the port dequeue engine via conductors 161. Within the
port dequeue engine, the buffer ID value 1s shifted by three
bits by circuit 162. For each successive read of a word from
the butfer, the three-bit counter increments a count value. The
sum of the three-bit counter value and the shifted buitfer 1D
value, as output by adder 164, 1s supplied through OR struc-
ture 165 as the address value ADRS [13:0] to the SRAM 120.
This address value 1dentifies one of the eight 256-bi1t words of
the appropriate bulfer. A few clock cycles later the 256-bit
data contents of the addressed bufler are then output via
conductors 166. If the 256-bit value 1s indicated to be the start
of frame (SOF), then an SOF bit 1s asserted by circuit 167. If
an EOF circuit 168 determines that the 256-bit word 1s the last
of a frame, based on the “number of bufifers for the frame”
value and the “bytes in last builer” value of the packet
descriptor, then the circuit 168 asserts an end of frame (EOF)
bit. These bits are determined by circuit 167 several clock
cycles before the associated 256-bit data value 1s output by
SRAM 120, so a MAC prepend, the MOD bits, the SOF bait
and the EOF bit are delayed by pipeline registers 169 and 170.
The MAC prepend 1s derived from the parse result (PR) value
received via conductors 161. The value MOD indicates how
many bytes are valid 1 the 256-bit word (1n the last word of
a frame, only some of the bytes are typically valid). Only one
of the port dequeue engines 1s allowed by the DWRR arbiter
116 to dequeue and to output non-zero values at a time, so the
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MAC prepend, MOD, SOF and EOF bits pass through OR
structure 171. Prepend and merge circuit 183 “prepends” the
MAC prepend value onto the front of the first amount of frame
data, but nonetheless the prepend and merge circuit 183 out-
puts information 256 bits ata time. For each 256-bit value that
1s output, the MOD bits, the SOF bit, the EOF bit, and the
virtual channel number as output by OR gate structure 171 are
output as sideband signals.

When the last buffer of the frame has been read from
SRAM 120, the port dequeue engine 134 releases 1ts request
to the DWRR arbiter 166. The DWRR arbiter 166 1s then able
to arbitrate again among the various port dequeue engines for
which port dequeue engine will be permitted to dequeue next.
Each port dequeue engine dequeues ethernet frames atomi-
cally from the SRAM 120, so once the dequeueing of butlers
for a frame has begun, the buffers for that frame continue to be
dequeued (when allowed by DWRR arbiter 116) until the last
butler storing data for that frame has been dequeued.

The link manager 122 stores, for each linked list (for each
virtual channel), an overflow threshold value. The overtlow
threshold values are denotes ““1'V1 through TV64” 1n FI1G. 10.
The link manger 122 outputs a 64-bit vector signal 172, each
bit of which indicates whether the butfer count for a virtual
channel 1s greater than the overtlow threshold value for that
virtual channel. This 64-bit vector signal 172 1s received in
parallel by all the port enqueue engines. A mask circuit in
cach port enqueue engine uses the BASE and NUM values to
identify which bits from the 64-bit vector signal value corre-
spond to virtual channels, the linked lists of butfers of which
that particular port enqueue engine are enqueued by that port
enqueue engine. As explamned above, each port enqueue
engine 1s configured by BASE and NUM to enqueue up to
cight virtual channels. The circuitry of one port enqueue
engine 15 described here as an example. In the case of port
enqueue engine 133, the 64-bit vector signal 172 1s recerved
by mask circuit 173. Mask circuit 173 outputs an indication of
all virtual channels that this particular port enqueue engine
133 is responsible for enquewing. For each such indicated
virtual channel, an Inverse PCP Remap LUT (IPRLUT) cir-
cuit 174 performs inverse PCP mapping, and outputs the PCP
value or values associated with the virtual channel that has
exceeded its overtlow threshold value. Where multiple PCP
flows are merged by PCP remap LUT circuit 138 1n the
enqueueing process into one virtual channel, that one virtual
channel number 1s mverse mapped back to the multiple PCP
values of those PCP tlows. The effect of PCP merging and/or
PCP reodering performed by the PCP LU'T circuit 138 1n the
enqueueing process 1s therefore reversed 1 by the IPRLUT
circuit 174. For each PCP value for any of the virtual channels
identified by circuits 173 and 174, the corresponding bit 1n an
8-bit priority class enable vector 176 is set. This priority class
enable vector 176 1s output via conductors 175 to Ethernet
MAC portion 123. There 1s one such eight-bit set of conduc-
tors that extends from each respective port enqueue engine to
its corresponding physical MAC port portion of the Ethernet
MAC portion 123. For a given physical MAC port portion, the
Ethernet MAC portion 123 uses the incoming priority class
enable vector 176 (from 1ts corresponding port enqueue
engine) to generate a IEEE 802.3x PFC pause frame. The
physical MAC port that recerved the priority class enable
vector 176 then sends out the PFC pause frame. The MAC
source address of the PFC pause frame 1s the destination
MAC address of the physical MAC port. The MAC destina-
tion address 1s a predefined value.

As 1n the case of the PCP remapping circuitry 137, 138,
143, 141 and 142 as described above, the inverse PCP remap-

ping circuitry 173 and 174 1s an amount of preconfigured
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high-speed combinatorial logic circuitry that that includes no
processor that fetches or executes any instruction.

FIG. 11 1s a diagram of an ethernet frame 177 that includes
a VLAN tag 178 and the 3-bit PCP code 139. The 12-bit
VLAN tag and the 3-bit PCP code are parts of an IEEE
802.1Q header 180. This 3-b1t PCP code 139 1s the PCP value
139 1dentified by circuit 137 in FIG. 10.

FIG. 12 A 15 a diagram that 1llustrates one possible configu-
ration of the mngress MAC circuitry of the NFP integrated
circuit 9. The MAC 1nterface circuitry and the six SerDes
26-31 are configured into twenty-four 10 Gbps physical MAC
ports. In this case, the number of physical MAC ports multi-
plied by eight (the number of PCP priority levels) exceeds the
maximum number of virtual channels supported (sixty-four),
so PCP flow merging (using PCP remap LUT circuit 138) as
described above 1s performed.

FIG. 12B 1s a diagram that illustrates another possible
configuration of the mgress MAC circuitry of the NFP 1nte-
grated circuit 9. The MAC terface circuitry and the six
SerDes 26-31 are configured 1nto six 40 Gbps physical MAC
ports. The number of physical MAC ports multiplied by eight
(the number of PCP priority levels) does not exceed the maxi-
mum number of virtual channels supported, so PCP flow
merging need not be applied.

FIG. 12C 1s a diagram that illustrates another possible
configuration of the ingress MAC circuitry of the NFP 1inte-
grated circuit 9. The MAC nterface circuitry and the six
SerDes 26-31 are configured into two 100 Gbps physical
MAC ports and four 10 Gbps physical MAC ports. The num-
ber of physical MAC ports multiplied by e1ght (the number of
PCP priority levels) does not exceed the maximum number of
virtual channels supported, so PCP flow merging need not be
applied.

FIG. 12D 1s a diagram that 1illustrates another possible
configuration of the mgress MAC circuitry of the NFP 1nte-
grated circuit 9. The MAC terface circuitry and the six
SerDes 26-31 are configured 1nto twelve 10 Gbps physical
MAC ports and three 40 Gbps physical MAC ports. The
number of physical MAC ports multiplied by eight (the num-
ber of PCP priority levels) exceeds the maximum number of
virtual channels supported, so PCP flow merging 1s applied.

FIG. 13 1s a diagram that illustrates both PCP flow merg-
ing, as well as PCP flow reordering. The PCP remap LUT
circuit of the port enqueue engine handling the first physical
MAC port “1” 1s configured so that the PCP flows of PCP
codes 101,110, and 111 are merged so that all their frames are
stored ito the same linked list of builers for virtual channel
number 000101. Similarly, the PCP remap LUT circuit of the
port enqueue engine handling the third physical MAC port
“3” 15 configured so that PCP flows for PCP codes 000, 001,
010,011, 100,101 and 110 are all merged so that their frames
are all stored 1nto the same linked list of butiers for virtual
channel number 001101. The first and third port enqueue
engines therefore perform PCP flow merging. The second
port enqueue engine that 1s handling the second physical
MAC port “2” recorders PCP flows as they are assigned to
virtual channels, but does not perform tlow merging. The PCP
remap LUT circuit of the second port enqueue engine assigns
the PCP tlow of PCP code 011 so that its frames are stored 1into
the linked list of buffers for virtual channel number 001010.
The PCP remap LUT circuit of the second port enqueue
engine assigns the PCP flow of PCP code 100 so that 1ts
frames are stored into the linked list of butfers for virtual
channel number 001011. The PCP remap LU circuit of the
second port enqueue engine assigns the PCP tflow of PCP
code 101 so that its frames are stored into the linked list of
butters for virtual channel number 001001. In one example,
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the larger PCP code values are to indicate higher priority
levels, and the higher the virtual channel number (within
those virtual channels assigned to the same physical MAC
port) the higher the priority, but yet the higher priority PCP
flow of PCP code value “101” 1s assigned to a virtual channel
of lower priority that are the PCP flows for PCP code values
“011” and “100”". Higher virtual channel numbers of a physi-
cal MAC port generally correspond to higher priority, but this
need not be so. The relative priorities of the virtual channels
1s actually determined by packet processing functionality
downstream of the ingress MAC 1sland.

FI1G. 14 1s a diagram that illustrates the configuration infor-
mation stored in the PCP remap LUT circuit of the first port
enqueue engine (the one handling the first physical MAC
port), for the example of FIG. 13. There are eight 3-bit words
stored. The contents of the eight table locations of the PCP
remap LUT are the values in the right column. The 3-bit
address values that point to those table location are indicated
in the left column.

FI1G. 15 1s a diagram that illustrates the configuration infor-
mation stored in the PCP remap LUT circuit of the second
port enqueue engine (the one handling the second physical
MAC port), for the example of FIG. 13. There are e1ght 3-bit
words stored. The contents of the eight table locations of the
PCP remap LUT are the values in the right column. The 3-bit
address values that point to those table locations are indicated
in the left column.

FIG. 16 1s a diagram that illustrates operation of a dual
linked list system 200 involving link manager 122, linked list
memory 129, free buller linked list memory 130, and packet
descriptor and parse result memory 131. In one specific
example, a queue element 1s a storage element or pair of
storage elements that stores: 1) a value, and 2) a pointer that
points to another queue element. This 1s but an example.
There are other ways of implementing queues in hardware as
explained below (see, for example, FIG. 20 and the corre-
sponding description), but this simplified way 1s used here for
instructional and illustrative purposes in connection with the
circuit of FIG. 16.

In the case of FIG. 16, each of memories 129 and 130 1s a
pipelined memory adapted to store queue elements. Each
memory has a pipeline of stages. In one example, memory
129 1s such a memory system and memory 130 1s such a
memory system. From the time a read request address 1s
supplied to a memory system, a {irst clock cycle 1s required
for address information to propagate to a pipeline register on
the way to the memory. A second clock cycle 1s required to
pass out o the pipeline register and to get set up on the address
inputs of the internal memory. A third clock cycle 1s required
for the data value to be output from the internal memory. A
tourth clock cycle 1s required for the output data value to pass
through a pipeline register. A fifth clock cycle 1s required to
perform error detection and correction on the data. A sixth
clock cycle 1s required to set a valid bit (to indicate the
memory has output a valid data value). Accordingly, there are
seven clock cycles of delay between the time a dequeue
request 1s made from a requesting entity (for example, port
dequeue engine 134) to the link manager 122 until the time
the data (as read from a queue element 1n the memory) 1s
loaded into the popped head pointer queue element (the
replenish the head pointer queue element). Multiple reads of
such a pipelined memory system can be taking place at the
same time, with each stage operating on a different read 1n a
pipelined manner.

For each linked list maintained by link manager 122, the
link manager 122 maintains a first head pointer queue ele-
ment H1, a second head pointer queue element H2, a first tail
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pointer queue element 11, a second tail pointer queue element
12, a head pointer active bit, a tail pointer active bit, a butfer
count B#, and a packet count P#. Each of these linked lists 1s
actually a dual linked list involving: 1) a first linked list of
queue elements (involving the first head pointer queue ele-
ment H1 and the first tail pointer queue element T1), and 2) a
related second linked list of queue elements (involving the
second head pointer queue element H2 and the second tail
pointer queue element 1T2). Into which of the two linked lists
the next value (in this case, the next butfer ID) will be pushed
in a push operation 1s determined by the content of the tail
pointer active bit. From push to push, the value of the tail
pointer active bit toggles. From which of the two linked lists
the next value will be popped 1n a pop operation 1s determined
by the content of the head pointer active bit. From pop to pop,
the value of the head pointer active bit toggles. The link
manager 122 can maintain up to sixty-four such dual linked
lists of queue elements, as well as a dual linked list of queue
clements for the free buller linked list.

An enqueue engine (for example, port enqueue engine 133

of FIG. 10) can cause a sequence of values (in this case, a
sequence of bulfer IDs) to be enqueued into one of the dual
linked lists such that the odd values of the sequence are
enqueued by pushing the odd values into the first linked list of
queue elements, and such that the even values of the sequence
are enqueued by pushing the even values into the second
linked list of queue elements. Values are pushed into the first
and second linked lists 1n alternating fashion, with the content
of the tail pointer active bit indicating which one of the two
linked lists will be pushed next.
In this example, each of the two linked lists of a dual linked
list operates as follows. If the linked list 1s empty, then neither
the tail pointer queue element nor the head pointer queue
clement stores any value (any buffer ID). The next value that
1s pushed into the linked list 1s written into both the head and
the tail pointer queue elements. 11 there 1s already one value
stored in the linked list, and another value 1s to be pushed, then
the new value 1s pushed into the tail pointer queue element.
The head pointer queue element 1s made to point to the tail
pointer queue element. At this point the head and tail pointer
queue elements store different values, and two values are
stored 1n the linked list. If there are already two values stored
in the linked list 1n this way, and a third value 1s to be pushed,
then the new value 1s pushed 1nto the tail pointer queue ele-
ment, and the value that was 1n the tail pointer queue element
1s stored 1n a third queue element in memory. The head pointer
queue element 1s made to point to the queue element 1n
memory, and the queue element 1n memory 1s made to point
to the tail queue element. If there are already three values
being stored in the linked list, and fourth value is to be pushed
into the linked link, then the value of the tail pointer 1s moved
into memory to be the value of a second queue element 1n
memory, and the new value 1s pushed into the tail pointer
queue value. The header pointer queue element 1s made to
point to the second queue element 1n memory, the second
queue element 1n memory 1s made to point to the first queue
clement 1n memory, and the first queue element 1n memory 1s
made to point to the tail pointer queue element.

In this example, the opposite procedure 1s followed to pop
a value off a linked list. The value of the head pointer queue
clement 1s output (popped), and the value of the queue ele-
ment to which the head pointer queue element had previously
pointed 1s moved to the new head pointer queue element. The
head pointer queue element 1s changed so that 1t points to the
next queue element 1n the linked list. If there are only two
values stored in the linked list, then those two values will be
stored 1n the head and tail pointer queue elements, and the
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head pointer queue element will point to the tail. If in that
condition the linked list 1s to be popped, then the value of the
head pointer 1s output (popped), and the value of the tail 1s
copied to the head pointer queue element such that both the
head and tail pointer queue elements will store the same
value. In this condition, the linked list stores one value. If in
this condition the linked list 1s to be popped, then the value of
the head pointer queue element 1s output (popped) and both
the head and tail pointers are erased (both the head pointer
queue element and the tail pointer queue element are empty).

The dual linked list system 200 maintains two such linked
lists for each dual linked list. Popping a head pointer queue
clement takes a relatively small amount of time (for example,
two clock cycles) as compared to the larger amount of time
required to read a value out of the memory to replenish the
head pointer. If the dual linked list 1s popped twice 1n rapid
succession, then one of the head pointer queue element 1s
popped, and then the other head pointer queue element 1s
popped. During the time that the second head pointer queue
clement 1s supplying 1ts output value, the memory can be
updating a queue element of the linked list associated with the
first head pointer. Likewise, if the dual linked list 1s popped
again, then the first head pointer will be popped, and while the
first head pointer 1s outputting 1ts value the memory can be
updating a queue element of the linked list associated with the
second head pointer. Due to the pipelined nature of the
memory, the rate at which a head pointer value can be popped
off the dual linked list 1s smaller than the read access latency
time of the memory. The dual linked list system can be
popped to output a new butler ID every other clock cycle, and
the dual linked list system can pop a dual linked list repeat-
edly at a sustained rate to output two builer IDs each seven
clock cycles. Each of the sixty-four linked lists for the sixty-
four virtual channels 1s such a dual linked list. Also, the linked
list for the free butler linked list 1s such a dual linked list. As
described above, the values stored in these linked lists are
butfer 1Ds.

FI1G. 16 illustrates a condition 1n which a dual linked list of
eight queue elements stores eight values (eight butter IDs) for
the first virtual channel. The first value in the sequence of
values to be pushed 1nto the dual linked list 1s stored 1n QE1.
The second value 1n the sequence 1s stored mm QE2, and so
torth. The first head pointer queue element H1 stores the first
value, and points to the queue element QE3 1n memory that
stores the third value. This queue element QE3 points to the
queue element Q5 1n memory that stores the fifth value. This
queue element QES points to the T1 tail queue element that
stores the seventh value. The tail pointer queue element does
not pointer anywhere because it 1s the tail. That 1s the first
linked list of the dual linked list. The second linked list of the
dual linked list involves the second value that 1s stored 1n the
H2 head pointer queue element QE2. The H2 queue element
(QE2) points to the queue element Q4 1n memory that stores
the fourth value. This queue element QE4 points to the queue
clement QE6 in memory that stores the sixth value. This
queue element QE6 points to the T2 tail pointer queue ele-
ment (QES8) that stores the eighth value. The T2 tail pointer
queue element does not point anywhere because it 1s a tail
pointer queue element. According the first value of the
sequence1s stored 1n QE1, the second value of the sequence 1s
stored 1n QE2, the third value of the sequence i1s stored 1n
QE3, and so forth. If the linked list 1s to be popped, then the
values of the sequence will be read out of the head pointer
queue elements in the same order. The first value will be
popped first, the second value will be popped second, and so
torth. In addition to this dual linked list maintained for the first
virtual channel, a second dual linked list 1s maintained for the
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free butler linked list. In the case of the free butfer linked list,
the link manager 122 maintains a free buifer head FIFO 181.
I, for example, the free buller head FIFO 181 can store four
values (four butter IDs), then the link manager 122 keeps the
head pointer queue elements popped such that the next four
head pointer values (that could be popped) are preloaded from
the linked list and are sitting 1n the free builer head FIFO. The
read access time for reading the free buller head FIFO 1s
smaller than the read access time of the free butfer linked list
memory 130, so four successive butler IDs can be supplied by
the overall free butler dual linked list 1n rapid succession with
the butler IDs that are output being drawn from the free butier
head FIFO.

FIG. 17 1s a diagram that 1llustrates the two linked lists of
the dual linked list for the first virtual channel, as explained
above. The first linked list involves the queue elements QE1,
QE3, QE5 and QE7 storing the odd values of the sequence of
values. The second linked list mnvolves the queue elements
QE2, QE4, QE6 and QE8 storing the even value of the
sequence ol values. Values are pushed onto the tail pointer
queue elements, and are popped off the head pointer queue
clements. The “values™ are builer IDs.

FIG. 18 1s a diagram that illustrates how a value (a butfer
ID) 1s popped oif a dual linked list. A port dequeue engine 134
1ssues a dequeue request to the link manager 122 along with
a virtual channel number. The virtual channel number 1ndi-
cates which one of multiple dual linked lists 1s to be popped.
The active head pointer queue element (as indicated by the
head pointer active bit) 1s popped and the obtained butfer 1D
1s returned to the port dequeue engine 134. The linked list
(that involves the head pointer queue element that was just
popped) must, however, be updated. The queue element 1n the
memory to which the head pointer queue element had pointed
must be read from memory, and that value must then be
loaded into the head pointer queue element that was just
popped. To do this, a read request 206 1s 1ssued to pipelined
memory system 129. A first clock cycle 1s required by the link
manager 122 to respond to the dequeue request and to get a
read address output to a pipeline register 201 on the way to the
pipelined memory system. A second clock cycle 1s required to
pass out of the pipeline register 201 and to get set up on the
address inputs of the internal memory 202. A third clock cycle
1s required for the data value to be output from the internal
memory 202. A fourth clock cycle 1s required to pass through
a pipeline register 203. A fifth clock cycle 1s required to for an
ECC circuit 204 to perform error detection and correction on
the data. A sixth clock cycle 1s required to pass through an
output register 205 and to set a valid bit (to indicate a valid
data value 1s available on the outputs of the pipelined memory
system). From the time the dequeue request 1s supplied from
the port dequeue engine 134 to the link manager 122 until the
time the read data (the butfer 1D) from the pipelined memory
129 1s loaded into the head pointer queue element (the head
pointer queue element that was just popped) 1s seven clock
cycles. The pointer of the head pointer queue element in the
link manager 122 1s changed so that 1t contains the pointer of
the queue element just read out of memory. The result 1s that
the head pointer queue element correctly points to the next
queue element in the appropriate linked list. When this 1s
done, the head pointer queue element 1s said to be “replen-
1shed”.

FIG. 19 1s a simplified wavelform diagram that illustrates
two head pointer queue element pops done one after the other
in rapid succession for the same virtual channel, in the case of
dequeueing two consecutive frames that are of the minimum
frame size (sixty-four bytes). From the time of the first
dequeue request a time T1 until the time when the read butfer
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ID has replenished the popped head pointer queue element at
time T8 1s seven clock cycles. Nonetheless, due to pipelining
in the memory, two head pointer values can be popped from
the link manager 122 every seven clock cycles, repeatedly,
and indefinitely. As shown 1n FIG. 19, multiple read assess of
the pipelined memory are occurring at the same time, with
one read access passing through the stages of the pipeline
memory a few clock cycles behind the other.

The term “queue element™ as 1t 1s used 1n this patent docu-
ment 1s a broad term. There are multiple ways of implement-
ing a queue element. A queue element need not necessarily
involve a storage location in a memory or other sequential
logic element, where both the value of the queue element 1s
stored and also the pointer of the queue element 1s stored. In
some examples of a queue element, the association of the
pointer of the queue element and the value of the queue
clement 1s maintained by the way values are stored 1n a
memory and by the way that memory 1s addressed. For
example, the value of a first queue element may itself be used
as the pointer of the queue element, where the pointer of the
queue element 1s used as an address into the memory to
address the next queue element that 1s being pointed to. The
address location pointed to 1s made to store the value of the
next queue element.

FIGS. 20A-20F together form a larger diagram, FIG. 20.
FIG. 20 illustrates an example of pushing and popping one of
the two linked lists of the dual linked list for the first virtual
channel, for the novel dual linked list of buffers described
above. Imitially, 1n this example, the linked list empty. The
head pointer queue element H1 1s empty and the tail pointer
queue element T1 1s empty. Next, a first value 1s pushed. In
this example, the values pushed are butler identification val-
ues (butler IDs). The first value B1 1s pushed, by pushing the
value B1 1nto the tail pointer queue element T1. Ordinarily,
the value being pushed (in this case B2) would then also be
written 1into the memory at the location pointed to by the old
tail pointer value, but here the old tail pointer value 1s “empty”™
so there 1s no memory write. In addition, the value being
pushed (B2)1s stored into the head pointer queue element H1.
At this point, both the head and tail pointer queue elements
store the same value B1 and the linked list (the “queue™)
stores one value, B. In this pipelined memory a write can be
performed in one clock cycles, whereas a read requires seven
clock cycles (from the time a read request 1s made until the
data read 1s returned from the pipelined memory).

Next, the second value 1s pushed. The value B2 i1s loaded
into the tail pointer queue element T1, and 1n addition the new
value being pushed (B2) i1s written mto the memory at the
location pointed to by the old tail pointer value (B1). At this
point, the head pointer queue element H1 stores the value B1,
the tail pointer queue element T1 stores the value B2, and the
value B2 1s stored in the memory at the location pointed to by
the value B1. The linked list stored two values.

Next, a third value (B3) 1s pushed. The value B3 1s loaded
into the tail pointer queue element T1, and 1n addition the new
value being pushed (B3) 1s written into the memory at the
location pointed to by the old tail pointer value (B2). At this
point, the head pointer queue element H1 stores the value Bl,
the tail pointer queue element T1 stores the value B3, the
memory stores the value B2 at the location pointed by B1, and
the memory stores the value B3 at the location pointed to by
B2. The linked list stores three values.

Next, a fourth value (B4) 1s pushed. The value B4 1s loaded
into the tail pointer queue element T1, and 1n addition the new
value being pushed (B4) i1s written mto the memory at the
location pointed to by the old tail pointer value (B3). At this
point, the head pointer queue element H1 stores the value B1,
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the tail pointer queue element T1 stores the value B4, the
memory stores the value B2 at the location pointed by B1, and
the memory stores the value B3 at the location pointed to by
B2, and the memory stores the value B4 at the location
pointed to by B3. The linked list stores four values.

Next, 1n this example, the linked list 1s popped. The value
B1 stored in the head pointer queue element H1 1s output. To
replenish the head pointer queue element H1 so that 1t stores
the next value to be popped, the memory 1s read at the location
pointed to by the old head pointer value (B1). The value stored
in memory at the location addressed by the value B1 is the
value B2. This value B2 1s therefore read from memory, and
1s loaded into the head pointer queue element H1. At this
point, the tail pointer queue element 11 stores the value B4,
the head pointer queue element H1 stores the value B2, the
memory stores the value B3 at the location pointed by the
value B2, and the memory stores the value B4 at the location
pointed to by the value B3. The linked list stores three values.

Next, the linked list 1s popped for the second time. The
value B2 stored in the head pointer queue element H1 1s
output. To replenish the head pointer queue element H1 so
that 1t stores the next value to be popped, the memory 1s read
at the location pointed to by the old head pointer value (B2).
The value stored 1n memory at the location addressed by the
value B2 1s the value B3. This value B3 1s therefore read from
memory, and 1s loaded into the head pointer queue element
H1. At this point, the tail pointer queue element T1 stores the
value B4, the head pointer queue element H1 stores the value
B3, and the memory stores the value B4 at the location
pointed to by the value B3. The linked list stores two values.

Next, the linked list 1s popped for the third time. The value
B3 stored 1n the head pointer queue element H1 1s output. To
replenish the head pointer queue element H1 so that 1t stores
the next value to be popped, the memory 1s read at the location
pointed to by the old head pointer value (B3). The value stored
in memory at the location addressed by the value B3 is the
value B4. This value B4 1s therefore read from memory, and
1s loaded into the head pointer queue element H1. At this
point, the tail pointer queue element T1 stores the value B4,
and the head pointer queue element H1 also stores the value
B4. The linked list stores one value.

Next, the linked list1s popped for the fourth time. The value
B4 stored in the head pointer queue element H1 1s output.
Because the values stored 1n the head pointer queue element
H1 and the tail pointer queue element T1 were the same prior
to the fourth pop, the head and tail pointer values are now
made to be empty. The linked list1s empty. Accordingly, 1n the
example of FIG. 20, each queue element 1s a single storage
location.

FI1G. 21 1s a diagram of the form of an IEEE 802.3x Priority
Flow Control (PFC) pause frame 210, such as might be output
by the NFP integrated circuit 9 when one or more virtual
channels are overloaded. In the case of PCP flow merging
happening in the port enqueue engine responsible for han-
dling ingress through the physical MAC port (the port
through which the overloading frames were received), the
PFC pause frame 210 1s output 1n the opposite direction on
that same physical MAC port. The PFC pause frame 1s a
request that the sender of the ethernet frames pause 1n sending
frames on the physical MAC port 1f those frames have speci-
fied PCP code values. In the PFC pause frame, multiple ones
of the enable bits 1n the priority class enable vector are set 1f
PCP flow merging 1s employed, and the merged flow 1s to be
paused. For example, in the case of the PCP tlow merging of

FIG. 14, and 1n the case of overloading of the virtual channel
into which the three PCP tlows (for PCP values 5, 6 and 7) are

merged, the enable bits EN[3], EN[6] and EN[7] 1n the PFC
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pause frame are set. The setting of these enable bits means
that a pause request 1s being made: 1) to pause flows having a
PCP code value of 5 for a pause time specified by a corre-
sponding one of the pause time fields denoted “PAUSE TIME

(P CLASS 5)”, 2) to pause flows having a PCP code value of 5

6 for a pause time specified by a corresponding one of the
pause time fields denoted “PAUSE TIME (P CLASS 6)”, and
3) to pause tlows having a PCP code value of 7 for a pause
time specified by a corresponding one of the pause time fields
denoted “PAUSE TIME (P CLASS 7)”. All three PCP flows
that are being merged 1nto the one overloaded virtual channel
are all requested to be paused at the same time due to the same
one PFC pause frame 210. To generate the pause frame, the
port enqueue engine outputs the enable bits on conductors
175 of FIG. 10A. In response, the appropriate physical MAC
port (configured portion of the Ethernet MAC portion 123)
handles generating the PFC pause frame and outputting the
PFC pause frame on the physical MAC port.

FIG. 22 1s a flowchart of a method that involves 1nverse
PCP flow remapping in accordance with one novel aspect.
Multiple frames are received (step 301) onto a physical MAC
port of the NFP integrated circuit. Configuration information
1s supplied (step 302) to an “Inverse PCP Remap LUT™ (IP-
RLUT) circuit within the NFP integrated circuit. Frame data
1s written (step 303) into a linked list of buffers, where the
linked list of buflers stores frames for a single (one and only
one) virtual channel. A buffer count 1s maintained (step 304)
for the linked list of buffers. As the frames are received, the
frames data 1s stored 1n the linked list of butiers and the butifer
count goes up and down depending on how the enqueue
engine and the dequeue engine handling the virtual channel
are operating. The NFP integrated circuit also stores (step
305), for the wvirtual channel, a predetermined overflow
threshold value. This predetermined overtlow value may be
part of the configuration information and/or may be supplied
by another monitoring processor. In this example, ata pointin
the recerving of frames, the link manager determines (step
306) that the buffer count has exceeded the predetermined
overflow threshold value. As a result of the determining that
the bufler count has exceeded the predetermined threshold
value, the virtual channel number 1s supplied (step 307) to the
IPRLUT. In response, the IPRLUT outputs a multi-bit value.
The 1inverse lookup function 1s determined by the configura-
tion information loaded into the IPRLUT 1n step 302. The
multi-bit value includes a plurality of bits, where each bit
corresponds to a PCP code prionty level. In the enqueuing
operation, PCP merging was performed. Accordingly, mul-
tiple ones of the bits 1n the multi-bit value (output by the
IPRLUT) are set, thereby indicating that not just one but
rather multiple PCP flows should be paused. Even though
only one virtual channel may be overloaded, multiple PCP
flows are to be paused. The multi-bit value as output by the
IPRLUT 1s then used (step 308) to generate a PFC pause
frame, where multiple ones of the enable bits 1n the priority
class enable vector of the PFC pause frame are set. FIG. 21 1s
a diagram of the format of the PFC pause frame. In the
example of FIGS. 9 and 10, the Ethernet MAC portion 123
performs this operation of generating the PFC pause frame
from the multi-bit value. The resulting PFC pause frame 1s
then output (step 309) from the physical MAC port ol the NFP
integrated circuit.

In one example, to realize an 1ntegrated circuit embodi-
ment of the ingress MAC island circuitry of FIG. 5, the
function of the each circuit block i1s described 1n a hardware
description language (for example, Verilog or VHDL or
CDL). A hardware description language description of Eth-

ernet MAC portion 123 1s obtained from MorethanlP GmbH,
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Muenchner Strasse 199, D-85757 Karlsteld, Germany, and 1s
incorporated into the overall hardware description. A com-
mercially available hardware synthesis program (for
example, Synopsis Design Compiler) 1s then employed to
generate digital logic circuitry from the hardware description
language description, where the synthesized digital logic cir-
cuitry performs the function described by the hardware
description language.

Although certain specific embodiments are described
above for instructional purposes, the teachings of this patent
document have general applicability and are not limited to the
specific embodiments described above. Accordingly, various
modifications, adaptations, and combinations of various fea-
tures of the described embodiments can be practiced without
departing from the scope of the invention as set forth 1n the
claims.

What 1s claimed 1s:

1. A method comprising;:

(a) recerving configuration information onto a Media
Access Control (MAC) layer interface circuit of a Net-
work Flow Processor (NFP) integrated circuit, wherein
the configuration information includes port definition
configuration information and Priority Code Point
(PCP) remap information, wherein the PCP remap infor-
mation includes a plurality of portions;

(b) using the port definition configuration information to
configure the MAC layer interface circuit to include a
first number of physical MAC ports, wherein the MAC
layer interface circuit can alternatively be configured by
the other port definition configuration information nto
another configuration that includes another number of
physical MAC ports;

(¢) recerving a plurality of PCP tflows of ethernet frames via
the physical MAC ports onto the NFP integrated circuit,
wherein all the frames of a PCP flow are received via the
same physical MAC port and wherein all of the frames of
the PCP flow have the same PCP value, wherein a first
PCP flow recerved via a physical MAC port has a larger
PCP value as compared to a second PCP tlow recerved
via the same physical MAC port that has a smaller PCP
value:

(d) storing each respective portion of the PCP remap infor-
mation 1n association with a corresponding respective
one of the physical MAC ports; and

(¢) for each frame received via a particular physical MAC
port using the PCP value of the frame and the portion of
the PCP remap information associated with the physical
MAC port to assign the frame to one of a second number
of virtual channels, wherein a first of the virtual channels
1s a higher priority channel through the NFP integrated
circuit as compared to second of the virtual channels that
1s ol a lower priority, wherein the assigning of (e)
ivolves assigning the first PCP flow to the second vir-
tual channel and assigning the second PCP flow to the
first virtual channel, wherein the first number multiplied
by eight 1s greater than the second number.

2. The method of claim 1, wherein the first number multi-

plied by eight 1s greater than the second number.

3. The method of claim 1, wherein the first number multi-
plied by eight 1s equal to the second number.

4. The method of claim 1, wherein the MAC layer interface
circuit 1s a part of an 1sland of circuitry, wherein some frames
received 1n (c¢) are received via a first of the physical MAC
ports, wherein other frames received in (¢) are recerved via a
second of the physical MAC ports, and wherein all the frames
received 1n (¢) are communicated out of the 1sland across a
single bus.
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5. The method of claim 1, wherein the NFP integrated
circuit comprises a plurality of port enqueue engines, wherein
cach respective one of the port enqueue engines causes
frames received via a corresponding respective one of the
phy51cal MAC ports to be enqueued 1n one or more linked lists
of butlers, wherein each port enqueue engine includes a Look
Up Table (LUT) circuit, and wherein each respective portion
of the PCP remap information is stored 1n a corresponding
one of the LUT circuaits.

6. The method of claim 1, further comprising:

(1) assigning frames to virtual channels such that the
frames of multiple PCP flows received via the same
physical MAC port are assigned to the same single vir-
tual channel.

7. The method of claim 6, wherein the frames of other PCP
flows recerved via the same physical MAC port of (1) are
assigned so that a higher priority PCP flow 1s assigned to a
lower priority virtual channel whereas a lower priority PCP
flow 1s assigned to a higher priority virtual channel.

8. The method of claim 1, and wherein the physical MAC
ports are parts of the NFP integrated circuat.

9. A Network Flow Processor (NFP) integrated circuit,
comprising;

a Media Access Control (MAC) layer interface circuit that
1s configurable to include a plurality of physical MAC
ports, wherein each physical MAC port can receive a
PCP flow of ethernet frames onto the NFP integrated
circuit, wherein all the frames of a PCP flow are received
via the same physical MAC port and wherein all of the
frames of the PCP flow have the same Priority Code
Point (PCP) value, wherein a first PCP flow received via
a physical MAC port has a larger PCP value as compared
to a second PCP flow received via the same physical
MAC port that has a smaller PCP value;

a memory that stores a first linked lists of buffers and a
second linked list of builers, wherein the first linked list
stores frames to be passed through a higher priority
channel through the NFP integrated circuit as compared
to the second linked list that stores frames to be passed
through a lower priority channel through the NFP 1inte-
grated circuit;

a plurality of port enqueue engines, wherein each respec-
tive one of the port enqueue engines 1s configured to
receive ethernet frames from a respective corresponding
one of the physical MAC ports and to cause the frames to
be stored into one or more of the linked list of bufters,
wherein one of the port enqueue engines 1s configurable
to: 1) assign frames of the first PCP flow to the second
linked list such that frames of the first PCP flow are
stored 1n the second linked list of buifers, and 2) assign
frames ol the second PCP flow to the first linked list such
that frames of the second PCP tlow are stored 1n the first
linked list of bufters:

an output bus; and

a plurality of port dequeue engines, wherein each respec-
tive one of the port dequeue engines receives frames

from the memory and outputs the frames so that the
frames are then communicated via the output bus.

10. The NFP 111tegrated circuit of claim 9, wherein each
port enqueue engine includes a PCP remap Look Up Table
(LUT) circuit, and wheremn each LUT stores PCP remap
information that determines how the port enqueue engine
assigns PCP tlows to virtual channels.

11. The NFP integrated circuit of claim 9, wherein each
port enqueue engine Comprises:

a PCP detecting circuit that identifies a three-bit PCP value

in an amount of frame data;
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a PCP remap circuit that recetves the three-bit PCP value
and performs PCP remapping thereby outputting a
three-bit remapped PCP value, wherein the PCP remap
circuit 1s configurable so that 1t can be configured to
output any three-bit remapped PCP value for any three-
bit PCP value;

an adder that adds the remapped PCP value to a base value
thereby outputting a channel number; and

means for using the channel number to obtain a butffer
identification value, wherein the bufifer identification
value 1dentifies a bufter of a linked list of buffers, and
wherein the means 1s also for causing the amount of
frame data to be written into the butfer.

12. The NFP integrated circuit of claim 11, wherein the

PCP remap circuit 1s a Look Up Table (LUT) circuit.

13. The NFP integrated circuit of claim 11, wherein the
NFP mtegrated circuit further comprises a link manager, and
wherein 1n the means comprises:

a circuit that supplies dequeue requests to the link manager.

14. The NFP integrated circuit of claim 9, further compris-
ng:

a link manager, wheremn the memory i1s a pipelined
memory, wherein a head pointer queue element and a tail
pointer queue element of a first linked list are stored 1n
the link manager, wherein other queue elements of the

first linked list are stored 1n the memory, wherein the first

linked list stores builer identification values that point to

bulters of the first linked list of butlers, wherein a head
pointer queue element and a tail pointer queue element
of a second linked list are stored in the link manager,
wherein other queue elements of the second linked list
are stored 1n the memory, and wherein the second linked
list stores builer identification values that point to buil-
ers of the second linked list of builers.

15. A Network Flow Processor (NFP) integrated circuit,
comprising;

a Media Access Control (MAC) layer interface circuit that
1s configurable to include a plurality of physical MAC
ports, wherein each physical MAC port can receive a
PCP flow of ethernet frame data onto the NFP itegrated
circuit, wherein all the frame data of a PCP flow 1s
received via the same physical MAC port and wherein
all of the frame data of the PCP flow has the same

Priority Code Point (PCP) value, wherein a first PCP

flow received via one of the physical MAC ports has a

larger PCP value as compared to a second PCP flow

received via the same physical MAC port that has a

smaller PCP value;

a memory that stores a first linked lists of buffers and a
second linked list of bufters, wherein the first linked list
stores frame data to be passed through a higher priority
virtual channel through the NFP integrated circuit as
compared to the second linked list that stores frame data
to be passed through a lower priority virtual channel
through the NFP integrated circuait;

a plurality of port enqueue engines, wherein each respec-
tive one of the port enqueue engines 1s configured to
receive ethernet frame data from a respective corre-
sponding one ol the physical MAC ports and to cause the
frame data to be stored into one or more of the linked list
of buffers, wherein one of the port enqueue engines 1s
configurable to: 1) assign frame data of the first PCP

flow to the second linked list such that frame data of the

first PCP flow 1s stored in the second linked list of
butfers, and 2) assign frame data of the second PCP flow
to the first linked list such that frame data of the second

PCP flow 1s stored 1n the first linked list of butfters;
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an output bus; and

a plurality of port dequeue engines, wherein each respec-
tive one of the port dequeue engines recerves frame data

from the memory and outputs the frame data so that the

frame data 1s then communicated out of the MAC ter-

face circuit via the output bus.

16. The NFP integrated circuit of claim 15, wherein a port
enqueue engine associated with a physical MAC port 1s con-
figurable to assign each PCP flow received via the physical
MAC port to a selectable one of up to eight linked lists of
butilers, wherein the port enqueue engine comprises a Look
Up Table (LUT) circuit, and wherein how the port enqueue
engine assigns PCP tlows to linked lists of buflers 1s defined
by configuration information stored in the LUT circuait.

17. The NFP integrated circuit of claim 15, wherein an port
enqueue engine associated with a physical MAC port 1s con-
figurable to assign each PCP flow received via the physical
MAC port to a selectable one of one or more linked lists of
butlers, wherein the port enqueue engine comprises a Look
Up Table (LUT) circuit, and wherein how the port enqueue
engine assigns PCP flows to linked lists of buifers 1s defined
by configuration information stored in the LUT circuit.

18. The NFP integrated circuit of claim 135, wherein an port
enqueue engine associated with a physical MAC port 1s con-
figurable to assign each PCP flow received via the physical
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MAC port to a selectable linked list of builers, wherein the
port enqueue engine comprises a Look Up Table (LUT) cir-
cuit, and wherein how the port enqueue engine assigns PCP
flows to linked lists 1s defined by configuration information
stored 1n the LUT circuit.

19. The NFP itegrated circuit of claim 15, further com-

prising:

a link manager, wherein the memory 1s a pipelined
memory, wherein a head pointer queue element and a tail
pointer queue element of a first linked list are stored 1n
the link manager, wherein other queue elements of the

first linked list are stored 1n the memory, wherein the first

linked list stores buller identification values that point to
bufters of the first linked list of butlers, wherein a head
pointer queue element and a tail pointer queue element
of a second linked list are stored in the link manager,
wherein other queue elements of the second linked list
are stored 1n the memory, and wherein the second linked
list stores butiler identification values that point to buil-
ers of the second linked list of butfers.
20. The NFP integrated circuit of claim 15, wherein how
cach of the port enqueue engines assigns PCP flows to linked
lists of butlers 1s independently configurable.
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