US009270468B2

12 United States Patent
Alrabady et al.

US 9,270,468 B2
Feb. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

METHODS TO IMPROVE SECURE FLASH
PROGRAMMING

Applicant: GM Global Technology Operations
LLC, Detroit, MI (US)

Ansaf 1. Alrabady, Livonia, MI (US); J.
David Rosa, Clarkston, MI (US)

Inventors:

GM GLOBAL TECHNOLOGY
OPERATIONS LLC, Detroit, MI (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 143 days.

Notice:

Appl. No.: 13/904,715

Filed: May 29, 2013
Prior Publication Data
US 2014/0359296 Al Dec. 4, 2014
Int. Cl.
HO41 9/32 (2006.01)
HO41 9/00 (2006.01)
U.S. CL
CPC HO4L 9/3247 (2013.01); HO4L 9/007

(2013.01); HO4L 9/3263 (2013.01); HO4L
2209/84 (2013.01)

Field of Classification Search
CPC ... HO4L 9/3247; HO4L 9/3263; GO6F 21/33;
GO6F 21/51; GO6F 21/64; GO6F 21/12;
GO6F 21/44

See application file for complete search history.

1*\ P —

(56) References Cited
U.S. PATENT DOCUMENTS
6,560,706 B1* 5/2003 Carbajal etal. 713/155
2009/0326759 Al* 12/2009 Henseletal. 701/33

* cited by examiner

Primary Examiner — Eleni Shiferaw
Assistant Examiner — Paul Callahan

(74) Attorney, Agent, or Firm — Ingrassia Fisher & Lorenz,
P.C.

(57) ABSTRACT

Methods are provided for securely loading software objects
into an electronic control unit. The methods include receiving
a first software object comprising a second level public key
certificate, a first encryption signature and a {first set of sofit-
ware. Once the first software object 1s recerved, validating the
first second level public key 1s validated with the embedded
root public key, the first encryption signature with the first
second level public key certificate, and the first set of software
with the first encryption signature. When the first set of soft-
ware 1s valid, then the first second level public key certificate
and the first set of software are stored to non-volatile memory.
Once stored, a consecutive software object 1s recerved com-
prising only a consecutive encryption signature and a con-
secutive set of soltware from the programming source. The
consecutive encryption signature 1s validated with the stored
second level public key certificate, and the consecutive set of
software 1s validated with the consecutive encryption signa-
ture.

4 Claims, 4 Drawing Sheets

US 9,270,468 B2

Sheet 1 of 4

Feb. 23, 2016

U.S. Patent

LR EERE R IR I I I I I I AR B A B B
LLoL

[y
4 h ko kA
[

114444

S
4k och o

SIS T

LR R R R R R RN

m.i...z.!:a.!ii::sasa:aﬁi.m

o

T N

R
) i - o
. “
i
- S S
n
'
'
'
r
r
r
r
r
-
a
-
-
-
,
-
-
-
-
-
,
r
. -
-
r
. -
-
-
,
-
-
-
-
-
-
-
-
-
' r
' r
' r
a
-
-
-
-
-
-
-
-
-
,
-
-
- -
r
. -
-
,
-
-
-
-
-
-
-
-
-
-
-
' r
' r
' r
-
-
-
-
-
-
-
-
-
,
-
-
r
. -
. -
. ,
-
-
-
-
'
'
'
111 .
= ol [H
i i i
b i i i
i i _ r r
- - |L#!_hr
[}
l‘-l lllllllllllllllllllllllllll ..* ll..‘-ll —I
-4 - !
I I 1 m i |
o s o - S S . .
_r.__ R - ““Q”IN- ¥
*
.Jv hrY
.l..#.l. i . . nl . . o ———— i — — . . . 2 2 2 2 i - -
L] Ll gl gl B B R Ll L e e e e R) L - L L L

10

._lun..l.ll l-]
A N SN
i - M.._;. .
L O T
CCRN T ILLr
N Pk
RERN N m m r_
LT LA A NSy
R e A
N LEE

R0, 1

US 9,270,468 B2

Sheet 2 of 4

Feb. 23, 2016

U.S. Patent

150

L L N N N N N N N N D N U N N N L L N N N N N N N U N N N L UL N N NN N N N N U L N N N N
+ + LIPS ETT + + ST .1.1.1.1.1.1iiiiiiiiii-iiiiiiiniiii

LB B DL NS B UL DL BN B BN B D BN D BN DN DN DL U D DN D DN D B N L D DN N B U B DL DD BB DD BB
LI I I B I L N NN

L DL L D D D D DL DR D L D D O B D O O

!
g,
. L
- -, -
' ’ *
. g
-
. -
*
L]
EIE N S N B N A N A N R I A D N O N N N D O LIRS N DR N A A A N D I D N D D O D D N D LI N N N N A A I A D D N D N D D D D D R D
L N N N BT N D Nk N B NN NN NN N N NN NN NN NN I N N N B I N N N N N N N N NN NN NN NN NN NN N N N B N O D N N N N NN N NN NN NN N NN N

LI I I I R R R LR R EREEE LR R EEEEREEREEENEEENENEEERNR!

L L DL B EE B UL B BN BN BN O O BN D UL DN DN DR DN B BN D DN B BN BN DL DL DN B DN DN BN DN DN UL D BN DN DS DD BN

FlG. 2

LB BN BB B B B UL O B DL BN O D BN DL B D BN DL B B O DL B O DD B DL B B DL O B I R R

* F F FPFPFEFEPFEFE PSS F S FFEd S EES
iiiiiiiiiiiiiiiiiiiiiiiiiiii

-

L L N N N N N N N N D U U U N N

1

L N L R N R N L
iiiiii-iiiiiii.—iiiiiiiiiiiii

L L N N A N N N N N N U N N N N
L N N N L N N N

-
L
-
-
L
-
-
-
-
-
-
-
-
-
-
-
-
L
-
-
L
-
-
-
-
-
-
-
-
-
-
r
-
L
-
-
L
-
-
-
-
-
-
-
-
-
-
-
-
L

1

+ F PP FA S F SIS SRS
iiiiiiiiiiiiiiiiiiiiiii-iiii

LI I I R R R R R R RN R R R EREEREEREREERENEREEEREELRIENEENEENREELEIERIER!]

. Patent Feb. 23, 2016 Sheet 3 of 4 US 9,270,468 B2

o 200

LI L B I I R R NI NI N L L B O B O D DL D DN D DR D DO |
4 bk h ok h ok Ak h bk h vy kA Ak ke ko hh hh ko h o hE oy ko d hhh ek h o h hh

i'i"i‘_ﬁ*i*ﬁ*iﬁhﬁl‘*r*i*l

et

ll._ll

L N R N R RN]
L I NI N R R LR R RIS I

1
: .
' L L
- 4 4 .
I T E T EEEEERN R X -
ok -]
f . .
R 1
-
.
a
.
- I
MEREEEEEE R E R EE R E R E R E E R E R R E E E R]
T EEE R R EEE R E R I NI I
I
]
4 1" 4 b 4 L L L 4 - & 4 4 4l Ll ldad Ll Ll d - -
-
- -
- -
L]
- -
-
- -
-
- -
-
- -
L]
14 - i
4 4 -
T . .
- -
- -
-
" a
L]
- -
-
L] o
- -
-
- -
-
- -
4 b h vk Ak Ak hh hh bk bk bk hh kb ko ch Ak chh hch hch chh hh hch b bk hdhdd
IR ERE R E R R R R E R E R E R R e R E R E E R E E E]
.
- 4
L]
-
]
' -
L]
-
a
-
-
L]
-
L]
-
-
) . ..
o] L]
L]
L]]
a
L]
-
-
o
-
L]
-
-
-
-
'l'I'I'I'I'I'I'l'l'II'I'|'l'|'l'|'I'l'l'l'l'I'l'I'I'l'l'l'l'Il'l'!'l'!'l'I'I'l'l'I'l'l'l'I'I'l"l
MMEREEEEEEEERE EE E E E E E E A EE E EE E E E E E E E E R E E E E I E E E E E E E T
)
+ 4
. .
-
.
&
-
Y
1
L
]
M EEEEEEELEEEE O O EEE TS T e
I R A
Iy
]
-
-
+
.
-
-
-
o
L] "
-
-
-
-
-
L]
-
L L
-
-
-
. .
-
L]
-
.
-
-
*.
-
o
4 h ok h ok hch b h kb h v kv hdhhh hh chchhchhh hch kb hachdh hh hchochch ohh hh b
L i I TG I G T T T TR D TG G e T 0 DO I . DG T D D s D G TR e e I D D DG D R e e D e D S e
.
]
+ .
-
-
.
)
L] L L L 2 -
L]

L] LI B | ko4 LI | L] L L B B B B | []
CHE DR B UL BE IE N I B B I BE B DL B B DL B B B R B B B I)

. Patent Feb. 23, 2016 Sheet 4 of 4 US 9,270,468 B2

L]
L]
-
-
-
& L]
-
L] -
-
-
-
L]
-
- -
- L]
- -
-
L]
-
L]
-
- -
L] -
LI I P) L]
- -
-
-
-
-
-ii
LI I I I I N I I N R R R RN NI
LB B B UL B B N B O B B O B O DL BN DL D B D B D B DL B D O B UL B DL D BN DL DL B DL B DL B BB BB

LI I I I I I NN R RN
LB B B DL B DL B B B B DL B DL O B DL B O DL B O DL DN DL BN D D D DL B DL D D DN D DL DD D BB DB B BB

ok kR
o ko F F F ko F FF S

LI} 4k h o ok hh o hhd kA
L I N N I B N I N N N B N I B N N B B

4 4
L I N N I B N I B N N B N I B N N N N B B B]
L N B R N N N N

&

L B B N UL I B B DL B O O I O O B B B BN

-
L EE NS B NE BE B U B B UL NE N N B B N B B N B B B B
L I I I I I I I I I I I I I]

ok kS
b o kS

LI I I I N NN EEREEREREEREREEENERENENEENENEEEIREEIEINREEEINRENEEE;R.]
L B N N B N N N N N B N N N N N I N N I N I I B I IOC RO B DO TN IO IOL DO DL IO O O DAL DAL L BOC O B DR BN B DR)

LI I N N I N N I DO N D L N B AL N IOE DO N DL DO B B)
LI I I I I I B I I B I O D D O D O I |

US 9,270,468 B2

1

METHODS TO IMPROVE SECURE FLASH
PROGRAMMING

TECHNICAL FIELD

The technical field generally relates to the secure program-
ming of a computing device. Specifically, methods are pro-
vided to reduce the bandwidth requirements required to load
certificate secured soltware programming.

BACKGROUND

The use of digital signature encryption methods 1s common
when computing devices are programmed for the first time or
reprogrammed later. A digital signature 1s a mathematical
construct for demonstrating the authenticity of a digital mes-
sage or document and gives a recipient reason to believe that
the message was created by a known sender, and that the
message was not altered in transit. Digital signatures are
commonly used for software distribution, financial transac-
tions, and 1n other cases where it 1s important to detect forgery
or tampering.

Digital signatures employ a type of asymmetric cryptog-
raphy and are equivalent to traditional handwritten signatures
in many respects. However, properly implemented digital
signatures are more difficult to forge than the handwritten
type. Digitally signed messages may be anything represent-
able as a bitstring such as electronic mail, computer pro-
grams, certificates, data, contracts, or a message sent via
some other cryptographic protocol.

In brief, a computing device to be loaded with software
typically includes aroot public key that is previously installed
or embedded 1n 1ts memory. Any new software to be loaded
has a certificate embedded therein that has been signed by a
corresponding root private key, or a derivative thereof, resid-
ing at a trusted entity. Herein, the derivative of the root (pub-
lic, private) key 1s a subordinate public key.

The subordinate private key, also known as a second level
private key, 1s used when the access to the root private key 1s
to be minimized. The subordinate public key, also known as a
second level public key, 1s contained 1n a certificate signed by
the root private key and the certificate 1tself 1s delivered with
the file content. The second level private key 1s then used to
sign the file content being transierred and uploaded to the
computing device.

When uploading new software files mto a computing
device, the embedded root public key 15 used to validate (or
certily) that the digital certificate traveling with the software
file(s) 1s genuine. The new software file(s) are commonly
created at a remote programming tool or other type of pro-
gramming apparatus. Programming tools are well known 1n
the art and will not be discussed herein 1n the interest of
simplicity and brevity.

The software 1s uploaded 1nto the computing device using
a boot loader which 1s an elementary software object that
usually exists in the operating system kernel that performs the
task of uploading and installing software into memory of the
computing device. Boot loaders are well known 1n the art and
details thereof will not be discussed 1n further detail 1n the
interest of simplicity and brevity.

Once the digitally certificated file(s) are received at the
computing device, the digital certificate containing the sec-
ond level public key 1s validated by the embedded root public
key. Certificate signature validation 1s well known in the art
and details thereof will not be discussed in further detail in the
interest of simplicity and brevity and will be referred to herein
as “validation.”

10

15

20

25

30

35

40

45

50

55

60

65

2

Once the digital certificate 1s validated, the second level
public key 1n the digital certificate 1s then in turn used to

validate the digital signature on the associated application
soltware or data file. Heremaftter, the application software,
data file, calibration packages, data package or “data” for
system operation to be loaded into the ECU may also be
referred to as the “soft part” of the file structure being loaded.
The “soft part” does not refer to certificates, keys or other
digital objects used for security purposes.

Conventionally, should multiple software applications,
calibration packages or data files need to be loaded, the same
certificate 1s usually attached to every data file 1n the soft part
and transmitted repeatedly from the programming tool to the
processor of the computing device. Such retransmission of
the second level key certificate for every data file 1n the soft
part requires consumption of excessive bandwidth on an
already limited capacity data bus and requires unnecessary
processing time for the actual re-validation by the processor.
Thus, 1t 1s desirable to develop mnovative methods of pro-
gramming a computing device to minimize bandwidth and
processor overhead used to validate a software upload.

Further, other desirable features and characteristics of the
present invention will become apparent from the subsequent
detailed description and the appended claims, taken 1n con-

junction with the accompanying drawings and the foregoing
technical field and background.

SUMMARY

A method for loading multiple software objects into a
computing device containing a root public key 1s provided.
The method comprises receiving a first software object from
a programming source, the first software object further com-
prising a second level public key certificate, a first encryption
signature and a first set of data and validating the first set of
data. When the first set of data 1s valid, the second level public
key certificate 1s stored 1n a memory of the computing device
and the first set of data 1s written 1nto the memory of the
computing device. The method further comprises receiving a
second software object from the programming source, the
second software object comprising a second encryption sig-
nature, a second set of data from the programming source but
lacking the second level public key certificate. Still further,
the method comprises validating the second encryption sig-
nature with the stored second level public key certificate and
validating the second software object with the second encryp-
tion signature and writing the second set of data to the
memory of the computing device.

A method 1s provided for loading multiple software objects
into a computing device containing an embedded public root
key and a stored first second level public key certificate when
there 1s a different subsequent second level encryption public
key certificate associated with a second software object being,
loaded. The method comprises recerving a first software
object comprising a first second level public key certificate,
an encryption signature and a first set of software from a
programming source. The method turther comprises deter-
mining that the second software object recetved 1s associated
with the subsequent second level public key certificate that 1s
different than the first second level public key certificate.
When the subsequent second level public key certificate 1s the
same as the first second level public key certificate, then the
encryption signature associated with the second software
object 1s validated and the second soitware object 1s written to
a non-volatile memory of the computing device. When the
subsequent second level public key certificate 1s different
from the stored first second level public key certificate, then

US 9,270,468 B2

3

validating the subsequent second level public key certificate
with the embedded public root key. The method further com-
prises validating the encryption signature using the subse-
quent second level public key certificate and validating the
second software object with their encryption signatures.
When the second software object 1s valid, then storing the
subsequent second level public key certificate to the non-
volatile memory and writing the second software object to a
non-volatile memory.

A vehicle 1s provided for and includes an electronically
controlled device, an electronic control unit (ECU) config-
ured to control the electronically controlled device, and a boot
loader. The boot loader 1s configured to load software 1nto the
ECU by recerving a first software object comprising a {irst
second level public key certificate, a first encryption signature
and a first set of software from a programming source, vali-
dating the first second level encryption key certificate with
public root encryption key, and validating the first encryption
signature using the first second level public key certificate.
The method further comprises writing the first set of software
to a non-volatile memory of the computing device and vali-
dating the first set of software with the first encryption signa-
ture. When the first set of software 1s valid, then the first
second level encryption key certificate and the first set of
soltware are accepted by the computing device. The method
also comprises recerving a consecutive software object from
the programming source comprising only the consecutive
encryption signature header and a consecutive set of software
from the programming source, validating the consecutive
encryption signature with the stored second level public key
certificate and validating the consecutive set of software with
the consecutive encryption signature and having the consecu-
tive set of soitware accepted by the computing device.

DESCRIPTION OF THE DRAWINGS

The exemplary embodiments will hereinafter be described
in conjunction with the following drawing figures, wherein
like numerals denote like elements, and wherein:

FIG. 1 1s an exemplary block diagram of a vehicle config-
ured to load software into an electronic control unit (ECU);

FIG. 2 are exemplary depictions of the structure of a con-
ventional application file and a calibration data file;

FIG. 3 are exemplary depictions of the structure of an
conventional application file and an calibration data file
according to embodiments described herein;

FI1G. 4 15 a logic diagram for loading multiple data files that
are associated with the same second level public key certifi-
cate;

FIG. S 1s a logic diagram for loading multiple data files that
are associated with at least one different second level public
key certificate.

DETAILED DESCRIPTION

The various illustrative components and logical blocks
described 1in connection with the embodiments disclosed
herein may be implemented or performed with a general
purpose processor, a digital signal processor (DSP), an appli-
cation specific mtegrated circuit (ASIC), a field program-
mable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the Tunctions described herein. A general-purpose processor
may be a microprocessor, but 1n the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as

10

15

20

25

30

35

40

45

50

55

60

65

4

a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
One or more microprocessors in conjunction with a DSP core,
or any other such configuration.

The word “exemplary” 1s used exclusively herein to mean
“serving as an example, instance, or illustration.”” Any
embodiment described herein as “exemplary” 1s not neces-
sarily to be construed as preferred or advantageous over other
embodiments.

The steps of amethod or algorithm described 1n connection
with the embodiments disclosed herein may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. Software may
reside mn RAM memory, flash memory, ROM memory,
EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage
medium known 1n the art. An exemplary storage medium 1s
coupled to the processor such that the processor can read
information from, and write information to, the storage
medium. In the alternative, the storage medium may be inte-
gral to the processor. The processor and the storage medium
may reside 1 an ASIC.

In this document, relational terms such as first and second,
and the like may be used solely to distinguish one entity or
action from another entity or action without necessarily
requiring or implying any actual such relationship or order
between such entities or actions. Numerical ordinals such as
“first,” “second,” “third,” etc. sitmply denote different singles
of a plurality and do not imply any order or sequence unless
specifically defined by the claim language. The sequence of
the text 1n any of the claims does not imply that process steps
must be performed 1n a temporal or logical order according to
such sequence unless 1t 1s specifically defined by the language
of the claim. The process steps may be mterchanged 1n any
order without departing from the scope of the invention as
long as such an interchange does not contradict the claim
language and 1s not logically nonsensical.

Further, depending on the context, words such as *“con-
nect” or “coupled to” used in describing a relationship
between different elements do not imply that a direct physical
connection must be made between these elements. For
example, two elements may be connected to each other physi-
cally, electronically, logically, or in any other manner,
through one or more additional elements.

FIG. 1 1s a simplified functional block diagram of a vehicle
1 incorporating a common boot loader 8 according to various
embodiments. The vehicle 1 may be any vehicle incorporat-
ing one ol more electronically controlled devices 3 that are
controlled by a computing device or an electronic control unit
(ECU) 5. Although depicted as an automotive ground vehicle,
the description herein 1s not itended to be so limiting. A
vehicle may also include aircraft and watercrait, and other
land vehicles of all types currently known or developed in the
tuture. The ECU may be any type of computing device con-
figured for any use.

The electronically controlled device 3 may have a power
supply 4 (e.g., a battery) and a sensor package 2 comprising,
any number or type of sensors as may be determined to be
usetul for a particular situation. Output signals from the sen-
sor package 2 may be transmitted to the ECU 5 via a data bus
11.

The ECU 5 comprises at least a boot loader 8 configured to
load content or the “soft part” of a file (e.g., application
soltware, calibration data, data files, etc.) into the ECU 5 from
a programming tool 10, which 1s depicted as being located
outside the vehicle. However, the location of the program-
ming tool 10 1s not mtended to be limited to an external

US 9,270,468 B2

S

location. The programming tool 10 may be located 1nside the
vehicle 1 as well. In preferred embodiments, the ECU S 1s a
secure computing device as may be known to those or ordi-
nary skill in the art or that may be devised 1n the future.

The ECU 5 includes a processor 7 and at least one volatile
or non-volatile memory device(s) 6. The non-volatile
memory device 6 may be any non-volatile memory storage
device known 1n the art. Non-limiting example ol non-vola-
tile memory devices includes read only memory, flash
memory, electronically erasable read only memory (EE-
PROM) and the like that may currently exist or exist in the
future.

The boot loader 8 1s a software object that 1s written and
embedded 1n the operating device that loads other content,
such as the operating system kernel, application soitware and
calibration data into memory. In preferred embodiments, the
boot loader 8 has access to secure storage, where embedded
encryption codes, keys and certificates, such as root public
key 9, may reside. Such encryption codes, keys and certifi-
cates may also be stored in unsecured memory. However,
such unsecured storage could adversely affect the security
methods and systems being disclosed herein below.

Although the subject matter disclosed herein 1s compatible
with other types of encryption/authentication techniques
(e.g., symmetric digital key validation), the following disclo-
sure of various embodiments will be discussed 1n the frame-
work of asymmetric digital key validation for ease of discus-
sion and simplicity.

In brief, a digital signature scheme typically consists of
three algorithms:

1) A key generation algorithm that selects a private key and
outputs the private key and a corresponding public key
(here the root public key and the root private key).

2) A signing algorithm that, given a message and a private
key, produces a signature.

3) A signature verifying algorithm that, given a message,
public key and a signature, either accepts or rejects the
message’s claim to authenticity.

Two main properties of the algorithms are required. First, a
signature generated from a fixed message (such as a hash of
the message) and fixed private key should verily the authen-
ticity of that message by using the corresponding public key.
Secondly, 1t should be computationally infeasible to generate
a valid signature for a party who does not possess the private
key.

A typical asymmetric digital key validation uses two dif-
terent but mathematically related keys to sign, and then vali-
date, a digital certificate: a private key and a public key. The
private key 1s known only to a sending unit while the root
public key 9 1s given to any recerving computer such as ECU
5.

Typically, a file 1s validated by decrypting the embedded
signature with a corresponding public key that 1s associated
with the content of the file. A hash 1s then taken of the content
of the file. If the hash matches the decrypted signature then the
file 1s validated. This means of decryption 1s merely exem-
plary. Other equivalent decryption methods and variations
may exist and be used without departing from the scope of the
inventive subject matter herein. This and other validation
methods are well known i the art and will not be described
turther herein 1n the iterest of clarity and brevity. The term
“validation” used herein after refers to any suitable validation
algorithm used 1n the art that may be found to be usetul to
meet a design requirement.

FI1G. 2 1s a simplified rendition of an exemplary set of data
files that may be conventionally loaded into ECU 5 by pro-
gramming tool 10 via boot loader 8. In this rendition an

10

15

20

25

30

35

40

45

50

55

60

65

6

application software file 110 and a calibration data file 150 are
depicted, although their order in the drawing 1s merely exem-
plary and 1s not meant to be limiting. The exemplary appli-
cation software file 110 includes application software 116, an
encryption signature 114, and a second level public key cer-
tificate 112. The second level public key certificate 112 1s
signed by the root private key (not shown). The exemplary
calibration data file 150 also comprises the second level pub-
lic key certificate 112, an encryption signature 152 and the
calibration data 154 1tself. The encryption signatures 114 and
152 contain the digital signature for the respective data files.

FIG. 3 1s a simplified rendition of one exemplary set of
required data files according to novel embodiments described
herein below that may be loaded mnto ECU 5 by programming
tool 10. In this rendition an application software file 110 and
a calibration data file 150 according to embodiments herein
are represented, although their order in the drawing 1s merely
exemplary and not meant to be limiting. The exemplary appli-
cation software file 110 includes the application software
116, an encryption signature 114 and a second level public
key certificate 112. The exemplary calibration data file 150
comprises only the encryption signature 152 and the calibra-
tion data 154 1tself. In embodiments disclosed herein, there 1s
no need for the second level public key certificate 112 to be
included.

An advantage of the methods described herein below 1s to
reduce the bandwidth requirements on the data bus 11 when
loading software by dispensing with the need to transmit the
second level public key certificate 112 with each consecutive
file that 1s being loaded after the first file that includes the
second level public key certificate. For example, if the loading
of an application software file 110 requires the subsequent or
consecutive loading of 21 calibration data files 150, then
conventionally the second level public key certificate 112 was
transmitted 22 times, once with each file.

However, the required amount of computing resources
may be reduced, by storing the validated second level public
key certificate 112 mnto memory 6, or even into volatile
memory such as random access memory. Thus, multiple con-
secutive files may be loaded 1into ECU 5 more efliciently by
not having to transmit the second level public key certificate
112 for every file. The second level public key certificate 112
may be attached to any of the software objects being
uploaded. However, the second level public key certificate
112 need only be attached to a software object (e.g., 112, 114,
116, 152, 154) when the second level public key certificate
112 1s different from a previous version.

In addition to the exemplary methods disclosed herein,
there 1s a plethora of similar, alternative varnations of the
following exemplary methods depending on where the sec-
ond level public key certificate(s) are residing 1n the various
files uploaded or how the certificate 1s stored in memory.
These variations would be readily apparent to those of ordi-
nary skill in the art after having read Applicant’s specifica-
tion. For example, the second level public key certificate 112
may be located in the actual application software 116 or
within the calibration data 154.

FIG. 4 1s an exemplary logic flow diagram of a method 200
that may be used to efliciently load multiple files assuming
only one second level public key certificate 112 1s used for all
files. The method 200 also allows a special purpose key
replacement file package to be dispensed with. It should be
noted that processes 1llustrated may be broken down into
sub-processes and sub-processes combined together without
departing from the scope of this disclosure. Further, processes
may be rearranged 1n order to produce alternative but func-
tionally equivalent embodiments.

US 9,270,468 B2

7

In this example the application software 116 and one or
more calibration data files 154 are being loaded. The method
begins when the boot loader 8 recerves an application soft-
ware file 110 file from the programming tool 10 at process
206. At process 212, the boot loader 8 validates the second
level public key certificate 112 of the application softwarefile
110 using the root public key 9 that was embedded in ECU
memory 6 at manufacture. If not valid then the process pro-
duces an error at process 260. Once validated by the root
public key 9, the second level public key certificate 112 1s
used to then validate the digital signature 1n the encryption
signature 114 of the application software 116 at process 218.

Once the encryption signature 114 1s validated at process
224, the application software 116 1s 1n turn validated based 1n
part on the digital signature from the encryption signature 114
at process 230. The application software 116 1s written to
memory 6. In addition, at process 230, the validated second
level public key certificate 112 1s also stored to memory 6 for
subsequent use at process 242. The writing of the application
software file 110 to memory 6 1s completed at process 231.

In equivalent alternative embodiments, the application
software 116 may be written to flash memory 6 first at process
230 and then subsequently validated by the boot loader 8 at
process 224. In this case the boot loader 8 would enable the
application software 116 only after only after 1t was validated.
This embodiment may be useful where an ECU memory
butifer (not shown) 1s too small to hold the entire application
software 116. Hence, the larger main nonvolatile memory 6
may be used as an alternative butifer to the boot loader 8.

At process 236, the boot loader 8 recerves the next {ile,
which in this example 1s a calibration data file 150. At process
242, the encryption signature(s) 152 of any consecutive file(s)
are validated using the second level public key certificate 112
that was stored 1n memory 6 at process 231 in the same or
equivalent manner as used at process 212. The calibration
data 154 1s written to memory 6 at process 248 and validated
by the validated encryption signature 152 at process 254.

As discussed above, in equivalent embodiments the cali-
bration data 154 may be written to flash memory first at
process 248 and then subsequently validated by the boot
loader 8 at process 231. In this case the boot loader 8 would
cnable the calibration data 154 only after only after it was
validated. This embodiment may be useful where an ECU
memory bufler (not shown) 1s too small to hold the entire
calibration data 154. Hence, the larger main nonvolatile
memory 6 may be used as an alternative buifer.

If the calibration data 1s the last data being transmitted from
the programming tool 10 at decision point 254, then the
method 200 ends at 270. Otherwise, the method 200 loops
back to process 236 where the next file 1s recerved.

FI1G. 5 1s an exemplary logic tlow diagram of a method 300
that may be used to efliciently load multiple files assuming,
different consecutive second level public key certificates 112
are used for some files. In this case, a different second level
public key certificate 1s utilized with 1ts associated software
on a limited basis. In this example the application software
116 and one or more calibration data files 154 are being
loaded. The method begins when the boot loader 8 recetves a
soltware object (e.g., a file 110/150) from the programming
tool 10 at process 306.

At process 312, the boot loader 8 determines when the file
received (110 or 150) 1s associated with a different second
level public key certificate 112 than a second level public key
certificate that has previously been stored in the ECU memory
6.

When the file recerved 1s associated with a second level
public key certificate already stored in the ECU memory 6,

10

15

20

25

30

35

40

45

50

55

60

65

8

the encryption signature 114 of the consecutive set of soft-
ware (110/150) 1s validated with the stored second level pub-
lic key certificate, which 1n turn 1s used to validate the con-
secutive set of software at process 315. The consecutive set of
soltware 1s then written to the ECU memory 6.
When the file received 1s not associated with a second level
public key certificate already stored in the ECU memory 6,
the second level public key certificate 112 of the recerved file
1s validated by the embedded root public key 9 at process 318.
If 1t can’t be validated an error 1s generated at 360. In turn, the
encryption signature 114 1s validated using the validated sec-
ond level public key certificate 112 at process 324.
At process 330, the second (or the consecutive) set of
application software 116 1s then validated with the associated
validated encryption signature 114 and 1s written to memory
6 at process 336. As discussed above the memory 6 may also
be used as an alternative memory builer where the second set
ol software 1s stored to memory 6 at process 336 and subse-
quently validated at process 330.
I1 the second set of application software 116 1s the last set
ol software to be loaded then the method ends 370. If not the
method 300 loops back to process 306.
While at least one exemplary embodiment has been pre-
sented 1n the foregoing detailed description, it should be
appreciated that a vast number of variations exist. It should
also be appreciated that the exemplary embodiment or exem-
plary embodiments are only examples, and are not intended to
limit the scope, applicability, or configuration of the disclo-
sure 1n any way. Rather, the foregoing detailed description
will provide those skilled 1n the art with a convement road
map for implementing the exemplary embodiment or exem-
plary embodiments. It should be understood that various
changes can be made 1n the function and arrangement of
clements without departing from the scope of the disclosure
as set forth 1n the appended claim and the legal equivalents
thereof.
What 1s claimed 1s:
1. A method for loading multiple software objects into a
computing device containing an embedded public root key
and a stored first second level public key certificate when
there 1s a different subsequent second level public key certifi-
cate associated with a second software object being loaded,
the method comprising:
recerving a first software object comprising a first second
level public key certificate, an encryption signature and
a first set of software from a programming source;

determining that the second software object received 1s
associated with the subsequent second level public key
certificate that 1s different than the first second level
public key certificate;
when the subsequent second level public key certificate 1s
the same as the first second level public key certificate,
then validating the encryption signature associated with
the second software object with the first second level
public key certificate and writing the second software
object to a non-volatile memory of the computing
device;
when the subsequent second level public key certificate 1s
different from the stored first second level public key
certificate, then validating the subsequent second level
public key certificate with the embedded public rootkey;

validating the encryption signature using the subsequent
second level public key certificate;

validating the second software object with their encryption

signatures; and

when the second software object 1s valid, then storing the

subsequent second level public key certificate to the

US 9,270,468 B2

9

non-volatile memory and writing the second software
object to a non-volatile memory.
2. The method of claim 1, wherein the embedded public
root key 1s an asynchronous public encryption key.
3. A vehicle comprising:
an electronically controlled device;
an electronic control umt (ECU) configured to control the
clectronically controlled device, the ECU containing an
embedded public root key and a stored first second level
public key certificate; and
a boot loader, the boot loader configured to load software
into the ECU when there 1s a different subsequent sec-
ond level public key certificate associated with a second
soltware object being loaded by:
receiving a first software object comprising a first sec-
ond level public key certificate, an encryption signa-
ture and a first set of software from a programming
SOUrce;

determining that the second soitware object recerved 1s
associated with the subsequent second level public
key certificate that 1s different than the first second
level public key certificate;

10

15

20

10

when the subsequent second level public key certificate
1s the same as the first second level public key certifi-
cate, then validating the encryption signature associ-
ated with the second software object with the first
second level public key certificate and writing the
second soitware object to a non-volatile memory of
the computing device;

when the subsequent second level public key certificate
1s different from the stored first second level public
key certificate, then validating the subsequent second
level public key certificate with the embedded public
root key;

validating the encryption signature using the subsequent
second level public key certificate;

validating the second software object with their encryp-
tion signatures; and

when the second software object1s valid, then storing the
subsequent second level public key certificate to the
non-volatile memory and writing the second software
object to a non-volatile memory.

4. The vehicle of claim 3, wherein the embedded public
root key 1s an asynchronous public encryption key.

x s * = e

	Front Page
	Drawings
	Specification
	Claims

