12 United States Patent

US009270455B1

(10) Patent No.: US 9,270,455 B1

Ts’o 45) Date of Patent: Feb. 23, 2016
(54) CPU ASSISTED SEEDING OF A RANDOM OTHER PUBLICATIONS
NUMBER GENERATOR IN AN EXTERNALLY |
PROVABIE FASHION Taylor, et al., “Behind Intel’s New Random-Number Generator”,
Aug. 24, 2011, downloaded from internet http://spectrum.ieee.org/
(71) Applicant: Google Inc., Mountain View, CA (US) computing/hardware/behind-intels-new-randomnumber-generator
Feb. 14, 2014,
(72) Inventor: Theodore Yue Tak Ts’o, Mountain Heninger et al., “Mining Your Ps and Qs: Detection of Widespread
View, CA (US) Weak Keys in Network Devices”, pp. 1-21.
Intel Digital Random Number generator (DRNG), Software Imple-
(73) Assignee: Google Inc., Mountain View, CA (US) mentation Guide, Aug. 7, 2012.
http://arstechnica.com/security/2013/09/fatal-crypto-flaw-1n-some-
(*) Notice: Subject to any disclaimer, the term of this io"erfm;n;'?emﬁ_ed'smmga;d?;lm;gﬁ'forgery'a'snap/ , Wwebpage
patent 1s extended or adjusted under 35 ownloaded from internet Feb. 14, |
U.S.C. 154(b) by O days. * cited by examiner
(21) Appl. No.: 14/180,450
_ Primary Examiner — Thanhnga B Truong
(22) Filed: Feb. 14, 2014 (74) Attorney, Agent, or Firm — Fox Rothschild LLP
(51) Imt. Cl.
HO4L 9/00 (2006.01) (57) ABSTRACT
HO4L 9/08 (2006.01)
(52) U.S. CL A method of providing a secure, reliable and verifiable seed
CPC oot HO4L 9/0869 (2013.01) ~ generation a random number generator. 1he method includes
(58) Field of Classification Search determining a first input based upon at least one entropy
CPC GOGF 7/58: GOGF 7/588: GOGF 7/5%4: source related to operation of the processing device. For
""""" H 041 9/0%- I’{O AT, /08 69': HO04T. 9/06 43’ example, the entropy source can be random information
USPC 3é0 146. 250 277’_ 713/194. 189: related to the current operation of a computing device. The
"""""""""" ’ j 70é 750) 252” 5 A: method further includes accessing a secret input that 1s unique
See application file for complete search hi S’E ory j to the processing device and combining the first input and the
| secret mput via a secure cryptographic combining function,
(56) References Cited wherein the secret input and the secure cryptographic com-

bining function are stored in a hardware-based storage
medium associated with a specific processing device such
| that they are accessible only by that specific processing
5,903,646 A * 1071999 Fielderetal. 380/259 device. Based upon the combination, the method includes
0,728,740 B2 4/2004 Kelly et al determining a first output value and outputting the first output
7421462 B2 9/2008 Castejon-Amenedo et al. " & P PUttlLs P
value as a random seed for a random number generator.

U.S. PATENT DOCUMENTS

8,843,539 B2* 9/2014 Dey ..oooviiiiiiiiiiiinni 708/254
2010/0121896 Al 5/2010 Oram
2013/0073598 Al* 3/2013 Jacobsonetal. 708/252
2013/0304781 Al 11/2013 Dey 26 Claims, 4 Drawing Sheets

2~ CETERMINE FIRST
TESTINPUT

|
1 Y

LOAD FIRST CPU-SPECIFIC
SECRET AT FIRST CPU

l '

COMBINE THE FIRST TEST
L3 312 \NPUT AND THE SECOND CPU-
SPECIFIC SECRET

_~304 30~ | LOAD SECOND CPU-SPECIFIC
SECRETAT SECOND CPU

COMBINE THE FIRST TEST
INPUT AND THE FIRST CPU-
SPECIFIC SECRET

l '

GENERATE FIRST TEST L3086 34~.] GENERATE SECOND TEST
QUTPUT QUTPUT

l

16~ COMPARE FIRSTAND
SECOND TEST OUTPUTS

318
QUTPUTS
IDENTICAL?

PROVIDE AN INDICATION
30~.| THAT SECRETSARE NOT
UNIQUE

U.S. Patent Feb. 23, 2016 Sheet 1 of 4 US 9,270,455 B1

102 DETERMINE FIRST
INPUT

104 LOAD CPU-SPECIFIC
SECRET

COMBINE THE FIRST
106 AND THE CPU-SPEC

SECRET

108 GENERATE RANDOM SEED
BASED UPON COMBINATION

” OUTPUT THE RANDOM
SEED

FIG.1

U.S. Patent Feb. 23, 2016 Sheet 2 of 4 US 9,270,455 B1

202 DETERMINE FIRST
TEST INPUT

204 LOAD CPU-SPECIFIC
SECRET

COMBINE THE FIRST TEST
206 INPUT AND THE CPU-
SPECIFIC SECRET

ADD TO RESULTS
- SET

ADDITIONAL
RESULTS?

NO

219 ANALYZE

RESULTS SET

FIG. 2

U.S. Patent Feb. 23, 2016 Sheet 3 of 4 US 9,270,455 B1

302 DETERMINE FIRST
TEST INPUT

LOAD FIRST CPU-SPECIFIC LOAD SECOND CPU-SPECIFIC
oECRETAT FIRST CPU SECRET AT SECOND GPU

COMBINE THE FIRST TEST COMBINE THE FIRST TEST
INPUT AND THE FIRST CPU- INPUT AND THE SECOND CPU-
oPECIFIC SECRET oPECIFIC SECRET

GENERATE FIRST TEST 308 314 GENERATE SECOND TEST
OUTPUT OUTPUT
316 COMPARE FIRST AND
SECOND TEST OUTPUTS

318

QUTPUTS
IDENTICAL?

YES

PROVIDE AN INDICATION
320 THAT SECRETS ARE NOT

UNIQUE

FIG. 3

U.S. Patent Feb. 23, 2016 Sheet 4 of 4 US 9,270,455 B1

450 INPUT 43
DISPLAY "

103 CPU MO~ INTERFACE
NISPLAY | 430
NTERFACE |

0

420 COMMUNICATION
410 415 440
425 MEMORY
DEVICE

FIG. 4

US 9,270,455 Bl

1

CPU ASSISTED SEEDING OF A RANDOM
NUMBER GENERATOR IN AN EXTERNALLY
PROVABLE FASHION

BACKGROUND

The ability to generate truly unpredictable numbers 1s criti-
cal for any number of security-related applications, including
digital signatures, encryption, virtual private networks, elec-
tronic commerce, etc. Typically, to generate an unpredictable
number, a processing device utilizes a random number gen-
crator. In operation, a seed 1s generated and mput mto the
random number generator. The random number generator
performs one or more transiformational operations on the
input seed and a random number 1s output. In normal opera-
tion, the uniqueness of the output of the random number
generator 1s based upon the uniqueness of the seed being
input.

Generating the seed for a random number generator can be
difficult because computing devices are designed to be pre-
dictable. In operation, computing devices do not provide an
casy way to determine entropy, or unknown mput variables,
for use 1n generating an unpredictable and random seed.
Devices having limited processing capabilities such as hand-
held mobile devices may not have inherent random entropy
that can be used to seed a random number generator that s, for
example, used to generate cryptographic keys (i.e., for appli-
cations such as generation of session keys and RSA public/
private keys). As such, keys generated by mobile devices may
be predictable 1f the means of generating the random number
generator seed 1s known. For example, 11 a third party knows
what specific algorithm or type of algorithm 1s used to gen-
crate the seed, as well as which specific random number
generation techniques are being used, the third party can
accurately reproduce both the seeds and the generated ran-
dom numbers, thereby compromising the security of the
mobile device.

One proposed solution for this problem 1s for a manufac-
turer to build support for seed generation directly into a cen-
tral processing unit (CPU) chip at the hardware level. During
operation of a particular application, 1f the application calls
for a random number generation, the CPU can quickly gen-
erate a seed for arandom number generator internally without
any extra software calls or access. However, one problem
with this approach is that third parties other than the manu-
facturer cannot verily that the seed generation 1s operating as
suggested by a manufacturer. If the seed generation includes
a security hole or tlaw, 1t could be exploited without the user’s
knowledge, thereby allowing a party to reproduce the output
of the random number generation by copying the generated
seed.

This patent document describes methods and systems that
are directed to addressing the 1ssues described above.

SUMMARY

This disclosure 1s not limited to the particular systems,
methodologies or protocols described, as these may vary. The
terminology used in this description 1s for the purpose of
describing the particular versions or embodiments only, and
1s not intended to limit the scope.

As used 1n this document, the singular forms “a,” “an,” and
“the” include plural reference unless the context clearly dic-
tates otherwise. Unless defined otherwise, all technical and
scientific terms used herein have the same meanings as com-
monly understood by one of ordinary skill in the art. All
publications mentioned 1n this document are incorporated by

10

15

20

25

30

35

40

45

50

55

60

65

2

reference. All sizes recited in this document are by way of
example only, and the mmvention i1s not limited to structures
having the specific sizes or dimension recited below. As used
herein, the term “comprising” means “including, but not lim-
ited to.”

In one embodiment, a method of generating a seed for a
random number generator includes determining a first input
based upon at least one entropy source related to operation of
the processing device, accessing a secret mput that 1s unique
to the processing device, wherein the secret 1s stored 1n a
hardware-based non-transitory storage medium accessible
only by the processing device, combining the first input and
the secret input via a secure cryptographic combining func-
tion, wherein the secure cryptographic combining function 1s
stored 1n the hardware-based non-transitory storage medium
accessible only by the processing device, determining a first
output value based upon the combination of the first input and
the secret mput, and outputting the first output value as a
random seed for a random number generator.

In another embodiment, a system generating a seed for a
random number generator includes a processing device and a
hardware-based non-transitory storage medium operably
connected to the processing device and configured to store a
set of mnstructions. The set of instructions are configured such
that, when executed, the instructions cause the processing
device to determine a {first mput based upon at least one
entropy source related to operation of the processing device,
access a secret mput that 1s unique to the processing device,
wherein the secret 1s stored 1n a hardware-based non-transi-
tory storage medium accessible only by the processing
device, combine the first input and the secret mput via a
secure cryptographic combining function, wherein the secure
cryptographic combining function 1s stored in the hardware-
based non-transitory storage medium accessible only by the
processing device, determine a first output value based upon
the combination of the first mnput and the secret mnput, and
output the first output value as a random seed for a random
number generator.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a sample tlowchart for generating a seed for
a random number generator according to various embodi-
ments.

FIG. 2 depicts a sample tlowchart for verifying the genera-
tion of the seed according to various embodiments.

FIG. 3 depicts a sample tlowchart for veritying that a secret
1s unique to a particular central processing unit according to
various embodiments.

FIG. 4 depicts various embodiments of a computing device
for 1mplementing the wvarious methods and processes
described herein.

DETAILED DESCRIPTION

The following terms shall have, for purposes of this appli-
cation, the respective meanings set forth below:

A “computing device” as used herein refers to a device that
processes data 1n order to perform one or more functions. A
computing device may include any processor-based device
such as, for example, a server, a personal computer, a personal
digital assistant, a web-enabled phone, a smart terminal, a
dumb terminal and/or other electronic device capable of com-
municating 1n a networked environment. A computing device
may 1nterpret and execute computer-readable instructions of
a computer program or application.

US 9,270,455 Bl

3

A “processing device,” “central processing unit” or “CPU”
as used herein refers to the hardware component or compo-
nents within a computing device that carry out application
instructions during operation of the application by perform-
ing arithmetical, logical and mput/output operations required
by the application. A CPU can include a combination of
various components integrated into a single chip. For
example, CPU can include an arithmetic logic unit, a control
unit and a memory integrated into a single chip.

A “secret” or “CPU secret” as used herein refers to a
number or a vector that 1s generated by a manufacturer of a
CPU and stored within memory integrated into that CPU.
Each secret should be unique to a single CPU, and no two
CPUs should have the same secret. To ensure that no secrets
are duplicated by multiple manufacturers, each manufacturer
can be assigned a specific prefix or suifix to append to each
secret such that there 1s no duplication. For example, the first
8 bits of each secret may be manufacturer specific, and the
remainder of the secret can be set by the manufacturer accord-
ing to a manufacturer-specific algorithm or numbering
method. Additionally, the secret can be set at a length (e.g.,
128 bits) that effectively eliminates the potential that the CPU
manufacturer will require duplicating secrets during manu-
tacture of the CPUs.

A “random seed” or a “seed” as used herein refers to a
number or vector used to mitialize a random number genera-
tor (RNG). For each unique seed provided as an input, a RNG
outputs a unique random number. For computing devices
using the same RNG, duplicated seeds will result in dupli-
cated outputs of the RNGs.

The present disclosure describes a design to be used in
conjunction with an OS-level random number generator, such
as the /dev/random driver in the Linux kernel. A CPU 1nstruc-
tion takes, for example, a 128-bit input (which, for example,
can include a timestamp plus a nonce) and a 128-bit secret
that 1s statically stored in CPU memory at manufacturing,
time. The CPR may hash the two values using a cryptographic
hash function, such as SHA-2, and returns a 128-bit output
value. The output value can be used by the OS to seed a
random number generator. As the secret 1s unique for each
CPU, the simple use of a time-of-day clock 1s suilicient to
seed the random number generator without the potential of
multiple CPUs returning the same seed. For additional secu-
rity, other environmental noise related to the current operation
of the CPU (or to the computing device the CPU 1s associated
with) could also be used for additional security.

Additionally, the present disclosure provides for a process
to assure someone that this random number seeding nstruc-
tion has been implemented correctly. Someone who wishes to
verily that a CPU has been designed honestly and 1s operating,
correctly can vernily that different CPUs result 1n different
outputs by using the same inputs to the seed generation
istruction, as each CPU 1s manufactured with a unique
secret. Such a process may be performed by a third party
manufacturer (e.g., a cellphone manufacturer assembling
devices using CPUs from a particular manufacturer) or
crowd-sourced to consumers who are using devices including
the CPUs (e.g., via a mobile application that provides a stan-
dard mput and records and compares the output against all
other users’ outputs to determine if there are any repeated
seeds). Furthermore, correct operation of a CPU can be veri-
fied by monitoring that the same 1input value always results 1n
the same output value for a particular CPU.

In a particular example, a CPU may be running a particular
soltware application, for example a virtual private network
client, and the application can request a randomly generated
number for determining a public/private key set. In response

e 4

10

15

20

25

30

35

40

45

50

55

60

65

4

to the request, the CPU may generate a seed for a RNG
according to a process as shown in FIG. 1. The CPU may
determine 102 a first input based upon at least one entropy
source related to the current operation of a computing device
associated with the CPU. As used herein, an entropy source
refers to a source 1s information occurring due to the present
operation of the CPU or the computing device associated with
the CPU. For example, the entropy source may include a time
stamp, a user mput recerved over a specific period of time
(e.g., a recording of all keystrokes made by a user over a
particular time period), network noise measured over a period
of time, communication noise collected from one or more
device drivers associated with the processing device, and
other common sources of entropy. Based upon the specific
parameters associated with the seed generation process, the
first input may be set to a specific size. For example, the first
input may be set as a 64 bit string, a 128 bit string, or a 256 bat
string. For illustrative purposes, the first mput will be
described as a 128 bit string.

Depending upon the size of the entropy source, the CPU
may combine the entropy source with a nonce (1.¢., an arbi-
trary character string) to determine 102 the first input. The
CPU may also access 104 its CPU-specific secret from a
secure hardware-based memory associated with the CPU and
accessible by only that specific CPU. As described above, the
secret can be a number or a vector that 1s generated by a
manufacturer of a CPU and stored within memory integrated
into that CPU. Each secret should be unique to a single CPU,
and no two CPUs should have the same secret. In this
example, the secret may have the same length as the first input
string, 1.¢., 128 bits. The length of the secret may be deter-
mined by the CPU manufacturer at the time of creation, and
may be based upon the set parameters for the random seed
generation process. For example, 11 the process includes a 128
bit first input, then the manufacturer can set the length of the
secret to 128 bits as well.

Additionally, 1n some embodiments the CPU can be con-
figured to access the secret only when the CPU 1s requested to
generate a seed for a random number generator. Thus, 1n such
embodiments the secret 1s not accessible outside of the opera-
tion of the CPU, and only then when the CPU 1s requested to
generate a seed for a random number generator.

Alternatively, the random seed generation process as
described herein may not have a set parameter for the length
of the secret or the first input. Rather, the random seed gen-
eration process may determine the length of the secret asso-
ciated with the CPU and set the first input to the same length
as the secret.

The CPU may combine 106 the first input and the secret via
a cryptographically secure function. For example, the CPU
may combine 106 the first mput and the secret by using a
cryptographic hash function. In a cryptographic hash func-
tion, the function takes various inputs, in this example the
determined 102 first input and the accessed 104 secret, and
securely maps the mput data and outputs an output string
having a fixed length. In this example, the output of the
cryptographic hash function may also be 128 bits. It should be
noted that a cryptographic hash function 1s shown by way of
example only, and additional secure functions such as, for
example, an encryption algorithm or a cryptographic check-
sum function may be used as well.

The CPU may generate 108 the random seed based upon
the output of the combination. For example, the CPU may
simply use the output of the secure function as the random
seed. Alternatively, the CPU may perform additional pro-
cesses or whitening to the random seed to reduce potential

US 9,270,455 Bl

S

bias or correlation between the input data (1.e., the first input
and the secret) and the resulting output.

After the random seed 1s generated 108, the CPU may
output 110 the random seed. For example, the CPU may use
the seed as an mput for a RNG, generate the random number,
and provide the random number to the requesting application
according to traditional random number generator tech-
niques. However, as the random seed has been securely gen-
erated, potential security faults or potential backdoor access
to the application are eliminated.

In order to increase the security of the random seed gen-
eration processes and techniques described, a process for
veritying the operation of the random seed generation process
1s provided as well. FIG. 2 illustrates a sample flowchart for
veritying the generation of the seed by vernifying the repeat-
ability of the generation process. To verily the operation of
the seed generation process, the CPU may determine 202 a
first test input. The test input may simply be a predetermined
string of a set length such as 128 bits as described above. As
the test input 1s being used for verification purposes, and not
for generation of a seed that will be used to generate a random
number, the first test mnput can be determined without any
entropy source.

The CPU may access 204 1ts CPU-specific secret from a
secure memory associated with the CPU and combine 206 the
first test input and the secret via a cryptographically secure
function. As before, the CPU may combine 206 the first test
input and the secret by using a cryptographic hash function.
The CPU may generate a random seed based upon the output
of the combination and add 208 the generated seed to a results
set of random seeds previously generated using the first test
input. The CPU may determine 210 1f additional results
should be generated to provide an adequate result set for
analysis. If the CPU determines 210 that additional results
should be generated, the CPU combines 206 the first test input
and the secret again using the same secure function, and adds
208 the newly generated random seed to the results set.

This process may continue until the CPU determines 210
that the results set includes a large enough number of gener-
ated random seeds to accurately analyze and verily the opera-
tion of the random seed generation process. For example, a
results set of ten generated random seeds may be optimal for
analysis and verification purposes. At a minimum, two results
should be generated prior to analysis.

Once the CPU determines 210 that no additional results
should be generated, the CPU can analyze 212 the results set
to determine 11 the random seed generation process (e.g., the
process as shown in FIG. 1) i1s operating properly. For
example, the CPU may analyze 212 the results set to deter-
mine 11 each stored result 1s identical. As the process shown in
FIG. 2 used the same first test input and secret as the inputs for
cach combining step, and the process used the same secure
tfunction during the combination, each random seed in the
results set should be 1dentical. If the results are 1dentical, the
CPU can confirm that the random seed generation process 1s
verified and 1s operating as expected. However, 1f the CPU
determines that there are different random seeds 1n the results
set, the operation of the random seed generation process 1s not
verified.

Such a verification process as that shown in FIG. 2 and
described above may be implemented by a third party manu-
facturer prior to 1nstalling the CPU 1nto a computing device
(e.g., quality assurance product verification prior to assem-
bly). Alternatively, the verification process may be performed
by an end user of a computing device to provide assurance
that the random seed generation process 1s operating cor-
rectly.

10

15

20

25

30

35

40

45

50

55

60

65

6

In addition to verilying the operation of the random seed
generation process at a single device, a verification process
may be spread over multiple devices to provide verification
that each device’s CPU has a unique secret. For example, a
verification application may be made available to all owners
of a specific mobile device, and the owners encouraged to run
the application, eflectively crowd-sourcing the verification
process to owners ol the devices.

FIG. 3 1llustrates a sample flowchart illustrating a process
for veritying each of multiple computing devices has a unique
secret associated with 1ts respective CPU. As described
above, a verification application may be used to compare and
verily that multiple devices each have a unique secret. The
soltware application may include a first test input to be used
in the verification process. Similar to the process as shown 1n
FIG. 2, by using the same test input for each device, it can be
determined whether each secret 1s umique as two devices
using the same secret will output the same random seed. Each

computing device being verified may determine 302 the first
test input. It should be noted that, as shown 1n FIG. 3, only two
unique computing devices are illustrated for clarity. It should
be noted that the process as described 1n FIG. 3 can be applied
to large numbers of computing devices. To provide a com-
plete verification, the process as shown 1 FIG. 3 can be
applied to each and every device including, for example, a
specific model of CPU, or to every device that incorporates
the random seed generation process as disclosed herein.

A CPU associated with a first computing device may
access 304 1ts CPU-specific first secret from a secure memory
associated with the CPU and combine 306 the first test input
and the first secret via a cryptographically secure function. As
betore, the CPU may combine 306 the first test input and the
first secret by using a cryptographic hash function. The first
device’s CPU may generate 308 a first test output based upon
the output of the combination 306.

Similarly, a CPU associated with a second computing
device may access 310 1ts CPU-specific second secret from a
secure memory associated with the second device’s CPU and
combine 312 the first test input and the second secret via the
same cryptographically secure function as used by the first
CPU when combining 306 the first test input and the first
secret. As before, the second device’s CPU may combine 312
the first test input and the second secret by using a crypto-
graphic hash function. The second device’s CPU may gener-
ate 314 a second test output based upon the output of the
combination 312.

A computing device such as a central server configured to
aggregate and analyze all the test outputs may compare 316
the first test output as generated 306 by the first computing
device and the second test output as generated 314 by the
second computing device. The computing device may deter-
mine 318 ifthe test outputs are 1dentical. I the test outputs are
determined to be 1dentical, the computing device can provide
320 an indication to the users that the secret associated with
their device 1s not unique as another device has the same
secret.

To continue the above example, the crowd-sourced verifi-
cation application may also include a function that automati-
cally reports a generated test output to a central server to
collect and analysis. As additional users run the verification
application, the test results collected at the central server
increases. The server may continually update the results as
new test outputs are recerved, and notify any (or all) users 1t
any duplication of test results occurs. Such duplication may
indicate that at least two of the devices share a common
secret. The users of those devices may be automatically

US 9,270,455 Bl

7

prompted that their secret may not be unique, and may further
be prompted to run the application again to verity that the
results are accurate.

As described herein, the processes shown 1n FIGS. 1-3 are
discussed as being executed by a CPU associated with a
computing device. However, this 1s shown by way of example

only, and additional processing devices may be configured to
perform the processes and techniques as described herein. For
example, a support chip set may be implemented and incor-
porated into a computing device such that the seed generation
1s performed by the support chip set. This can provide a way
to supplement existing CPUs with the secure seed generation
techniques as described herein. Similarly, a cryptographic
chip set may be manufactured including a processor config-
ured to generate a random seed according to the processes and
techniques as described herein, as well as generate a random
number based upon the generated seed, thereby adding an
additional level of security as both the seed generation and the
random number generation are performed by the same hard-
ware component.

The calculations and derivations as described above may
be performed and implemented by a computing device. FIG.
4 depicts a block diagram of internal hardware that may be
used to contain or implement the various computer processes
and systems as discussed above. An electrical bus 400 serves
as the main information highway interconnecting the other
illustrated components of the hardware. CPU 405 1s the cen-
tral processing unit of the system, performing calculations
and logic operations required to execute a program. CPU 405,
alone or in conjunction with one or more of the other elements
disclosed in FIG. 4, 1s a processing device, computing device
or processor as such terms are used within this disclosure.
Read only memory (ROM) 410 and random access memory
(RAM) 415 constitute examples of memory devices.

A controller 420 interfaces with one or more optional
memory devices 425 to the system bus 400. These memory
devices 425 may 1nclude, for example, an external or internal
DVD drive, a CD ROM drive, a hard drive, flash memory, a
USB drive or the like. As indicated previously, these various
drives and controllers are optional devices. Additionally, the
memory devices 425 may be configured to include individual
files for storing any software modules or instructions, auxil-
1ary data, incident data, common files for storing data, or one
or more databases for storing the information as discussed
above.

Program instructions, software or interactive modules for
performing any of the functional steps associated with the
processes as described above may be stored 1n the ROM 410
and/or the RAM 4135. Optionally, the program instructions
may be stored on a non-transitory computer readable medium
such as a compact disk, a digital disk, flash memory, a
memory card, a USB drive, an optical disc storage medium, a
distributed computer storage platform such as a cloud-based
architecture, and/or other recording medium.

An optional display interface 430 may permit information
from the bus 400 to be displayed on the display 435 1n audio,
visual, graphic or alphanumeric format. Communication with
external devices may occur using various communication
ports 440. A communication port 440 may be attached to a
communications network, such as the Internet or a local area
network.

The hardware may also include an interface 445 which
allows for receipt of data from input devices such as a key-
board 450 or other mput device 455 such as a mouse, a
joystick, a touch screen, a remote control, a pointing device,
a video mput device and/or an audio mput device.

10

15

20

25

30

35

40

45

50

55

60

65

8

It will be appreciated that various of the above-disclosed
and other features and functions, or alternatives thereof, may
be desirably combined into many other different systems or
applications or combinations of systems and applications.
Also that various presently unforeseen or unanticipated alter-
natives, modifications, variations or improvements therein
may be subsequently made by those skilled in the art which
are also intended to be encompassed by the following claims.

What 1s claimed 1s:

1. A method of generating a seed for a random number
generator, the method comprising:

determiming, by a processing device, a first input based

upon at least one entropy source related to operation of
the processing device;
accessing, by the processing device, a secret mput that 1s
unique to the processing device, wherein the secret input
comprises a number or a vector and 1s stored 1n a hard-
ware-based non-transitory storage medium accessible
only by the processing device;
combining, by the processing device, the first input and the
secret input via a secure cryptographic combining func-
tion, wherein the secure cryptographic combining func-
tion 1s stored 1n the hardware-based non-transitory stor-
age medium accessible only by the processing device;

determiming, by the processing device, a seed for a random
number generator based upon the combination of the
first input and the secret input;
veritying generation of the seed for the random number
generator, wherein the verilying comprises:
determining, by the processing device, a first test input,
accessing, by the processing device, the secret input,
combining, by the processing device, the first test input
and the secret mput multiple times via the secure
cryptographic combining function to generate a plu-
rality of test outputs, and
determining, by the processing device, 1f the plurality of
test outputs are identical; and
outputting the seed for the random number generator.
2. The method of claim 1, wherein the hardware-based
non-transitory storage medium 1s an integrated memory com-
ponent of the processing device.
3. The method of claim 1, wherein the processing device 1s
configured to access the secret input only when the process-
ing device 1s requested to generate a random number.
4. The method of claim 1, wherein determining the first
input comprises combining the at least one entropy source
with a nonce to generate the first mput.
5. The method of claim 4, wherein the at least one entropy
source comprises at least one of a time stamp, a user 1nput
received over a period of time, network noise measured over
a period of time, and communication noise collected from one
or more device drivers.
6. The method of claim 1, further comprising verifying the
secret input 1s unique to the processing device, wherein the
veriiying comprises:
determinming a second test input;
accessing, by the processing device, the secret mput;
combining, by the processing device, the second test input
and the secret mput via the secure cryptographic com-
bining function to generate a first test output;

accessing, by a second processing device, a second secret
input;

combining, by the second processing device, the second

test mput and the second secret mput via the secure
cryptographic combining function to generate a second
test output;

US 9,270,455 Bl

9

determining whether the first test output and the second test

output are 1dentical; and

if the first test output and the second test output are 1den-

tical, providing an 1ndication that the secret input 1s not
umque to the processing device.

7. The method of claim 1, wherein the secure cryptographic
combining function 1s a cryptographic hash function.

8. The method of claim 1, wherein the first input and the
secret iput are 128 bits.

9. A system for generating a seed for a random number
generator, the system comprising:

a processing device; and

a hardware-based non-transitory storage medium operably

connected to the processing device and configured to
store a set of instructions that, when executed, cause the
processing device to:
determine a first input based upon at least one entropy
source related to operation of the processing device,
access a secret input that 1s unique to the processing
device, wherein the secret input comprises a number
or a vector and 1s stored 1n a hardware-based non-
transitory storage medium accessible only by the pro-
cessing device,
combine the first input and the secret input via a secure
cryptographic combining function, wherein the
secure cryptographic combining function 1s stored in
the hardware-based non-transitory storage medium
accessible only by the processing device,
determine a seed for a random number generator based
upon the combination of the first input and the secret
input, and
verily the generation of the seed for the random number
generator, by:
determiming a first test input,
accessing the secret input,
combining the first test mput and the secret input
multiple times via the secure cryptographic com-
bining function to generate a plurality of test out-
puts, and
determining 11 the plurality of test outputs are 1denti-
cal,
output the seed for the random number generator.

10. The system of claim 9, wherein the hardware-based
non-transitory storage medium 1s an integrated memory com-
ponent of the processing device.

11. The system of claim 9, wherein the processing device 1s
configured to access the secret input only when the process-
ing device 1s requested to generate a random number.

12. The system of claim 9, wherein the instructions for
causing the processing device to determine the first mput

comprises further instructions for causing the processing
device to combine the at least one entropy source with anonce
to generate the first input.

13. The system of claim 12, wherein the at least one
entropy source comprises at least one of a time stamp, a user
input recerved over a period of time, network noise measured
over a period of time, and communication noise collected
from one or more device drivers.

14. The system of claim 9, further comprising istructions
for causing the processing device to verily the secret input 1s
unique to the processing device, wherein the instructions for
verilying the secret imnput comprise instructions for causing,
the processing device to:

determine a second test input;

access the secret input;

10

15

20

25

30

35

40

45

50

55

60

65

10

combine the second test input and the secret input via the
secure cryptographic combining function to generate a
first test output;
access a second secret 1nput;
combine the second test input and the second secret input
via the secure cryptographic combining function to gen-
crate a second test output;
determine whether the first test output and the second test
output are 1dentical; and
11 the first test output and the second test output are 1den-
tical, provide an indication that the secret input 1s not
unique to the processing device.
15. The system of claim 9, wherein the secure crypto-
graphic combining function 1s a cryptographic hash function.
16. The system of claim 9, wherein the first imnput and the
secret input are 128 bits.
17. A method of generating a seed for a random number
generator, the method comprising:
determiming, by a processing device, a first input based
upon at least one entropy source related to operation of
the processing device;
accessing, by the processing device, a secret mput that 1s
unique to the processing device, wherein the secret input
1s a number or a vector stored in a hardware-based non-
transitory storage medium accessible only by the pro-
cessing device;
veritying the secret input 1s unique to the processing
device, wherein the verifying comprises:
determining a {irst test iput,
accessing, by the processing device, the secret input,
combining, by the processing device, the first test input
and the secret input via the secure cryptographic com-
bining function to generate a first test output,
accessing, by a second processing device, a second
secret iput,
combining, by the second processing device, the first test
input and the second secret input via the secure cryp-
tographic combining function to generate a second
test output,
determining whether the first test output and the second
test output are 1dentical, and
if the first test output and the second test output are
1dentical, providing an indication that the secret input
1s not unique to the processing device;

combining, by the processing device, the first input and the
secret input via a secure cryptographic combining func-

tion, wherein the secure cryptographic combining func-
tion 1s stored 1n the hardware-based non-transitory stor-
age medium accessible only by the processing device;
determining, by the processing device, a first output value
based upon the combination of the first imnput and the
secret input; and

outputting the first output value as a seed for a random

number generator.

18. The method of claim 17, further comprising verifying
the generation of the seed for the random number generator,
wherein the verifying comprises:

determining, by the processing device, a second test input;

accessing, by the processing device, the secret input;

combining, by the processing device, the second test input
and the secret input multiple times via the secure cryp-
tographic combining function to generated a plurality of
test outputs; and

determining, by the processing device, 1f the plurality of

test outputs are identical.

US 9,270,455 Bl

11

19. The method of claim 17, wherein the processing device
1s configured to access the secret input only when the pro-
cessing device 1s requested to generate a random number.

20. The method of claim 17, wherein determining the first
input comprises combining the at least one entropy source
with a nonce to generate the first mnput.

21. The method of claim 20, wherein the at least one
entropy source comprises at least one of a time stamp, a user
input received over a period of time, network noise measured
over a period of time, and communication noise collected
from one or more device drivers.

22. A system for generating a seed for a random number
generator, the system comprising:

a processing device; and

a hardware-based non-transitory storage medium operably

connected to the processing device and configured to
store a set of instructions that, when executed, cause the
processing device to:
determine a first input based upon at least one entropy
source related to operation of the processing device,
access a secret mput that 1s unique to the processing
device, wherein the secret mput 1s a number or a
vector stored 1n a hardware-based non-transitory stor-
age medium accessible only by the processing device,
verily the secret input 1s unique to the processing device,
wherein the 1nstructions for verifying the secret input
comprise 1instructions for causing the processing
device to:
determine a first test input,
access the secret input,
combine the first test input and the secret input via the
secure cryptographic combining function to gener-
ate a first test output,
access a second secret 1nput,
combine the first test input and the second secret input
via the secure cryptographic combining function to
generate a second test output,
determine whether the first test output and the second
test output are i1dentical, and

10

15

20

25

30

35

12

11 the first test output and the second test output are
identical, provide an indication that the secret input
1s not unique to the processing device,

combine the first input and the secret mput via a secure
cryptographic combining function, wherein the
secure cryptographic combining function 1s stored in
the hardware-based non-transitory storage medium
accessible only by the processing device,

determine a first output value based upon the combina-
tion of the first input and the secret input, and

output the first output value as a seed for a random
number generator.

23.The system of claim 22, further comprising instructions
for causing the processing device to verily the generation of
the seed for the random number generator, wherein the
instructions for veritying the generation of the seed comprise
instructions for causing the processing device to:

determine a second test iput;

access the secret mput;

combine the second test input and the secret input multiple

times via the secure cryptographic combining function
to generated a plurality of test outputs; and

determine 11 the plurality of test outputs are identical.

24. The system of claim 22, wherein the processing device
1s configured to access the secret input only when the pro-
cessing device 1s requested to generate a random number.

25. The system of claim 22, wherein the instructions for
causing the processing device to determine the first mput
comprises further istructions for causing the processing
device to combine the at least one entropy source with a nonce
to generate the first input.

26. The system of claim 25, wherein the at least one

entropy source comprises at least one of a time stamp, a user
input received over a period of time, network noise measured
over a period of time, and communication noise collected
from one or more device drivers.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

