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PRIVACY-ENHANCING TECHNOLOGIES
FOR MEDICAL TESTS USING GENOMIC
DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a U.S. National Stage Application of
International Application No. PCIT/EP2013/068658 filed
Sep. 10, 2013, which claims priority to European Application
No. 12184372.6 filed Sep. 14, 2012 and U.S. Provisional
Patent Application No. 61/700,897 filed Sep. 14, 2012.

INTRODUCTION

In this mvention, we propose privacy-enhancing technolo-
gies for medical tests and personalized medicine methods,
which utilize patients’ genomic data. First, we highlight the
potential privacy threats on genomic data and the challenges
of providing privacy-preserving algorithms. Then, focusing
specifically on a typical disease-susceptibility test, we
develop a new architecture (between the patient and the medi-
cal unit) and propose privacy-preserving algorithms.

1 BACKGROUND ART

Privacy control can be defined as the ability of individuals
to determine when, how, and to what extent information about
themselves 1s revealed to others. In this way, the usage of
private data will remain 1n context and 1t will be used exclu-
stvely for the purpose the data owner has in mind. Privacy 1s
usually protected by both legal and technological means. By
using legal actions, such as data protection directives and fair
information practices, privacy regulations can enforce pri-
vacy protection on a large scale. Yet, this approach 1s mostly
reactive, as it defines regulations after technologies are put in
place. To avoid this 1ssue, Privacy-Enhancing Technologies
(PETs) [1-3] can be incorporated into the design of new
systems 1n order to protect individuals” data. PETs protect
privacy by eliminating or obfuscating personal data, thereby
preventing misuse or involuntary loss of data, without atiect-
ing the functionality of the information system [4].

Their objective 1s to make 1t difficult for a malicious entity
to link information to specific users. In order to obfuscate
personal data, PETs often rely on cryptographic primitives,
such as anonymous authentication and encryption.

Genomics 1s becoming the next significant challenge for
privacy. The price of a complete genome profile has plum-
meted below $200 for genome-wide genotyping (i.e., the
characterization of about one million common genetic vari-
ants), which 1s offered by a number of companies (located
mostly 1n the US). Whole genome sequencing 1s also offered
through the same direct-to-consumer model (but at a higher
price). This low cost of DNA sequencing will break the phy-
sic1an/patient connection, because private citizens (from any-
where 1n the world) can have their genome sequenced without
involving their family doctor. This can open the door to all
kinds of abuse, not yet fully understood.

As a result of the rapid evolution in genomic research,
substantial progress 1s expected 1n terms of improved diag-
nosis and better preventive medicine. However, the impact on
privacy 1s unprecedented, because (1) genetic diseases can be
unveiled, (11) the propensity to develop specific diseases (such
as Alzheimer’s) can be revealed, (111) a volunteer accepting de
facto to have his genomic code made public (as 1t already
happened) can leak substantial information about his ethnic
heritage and genomic data of his relatives (possibly against
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their will), and (1v) complex privacy 1ssues can arise 1if DNA
analysis 1s used for criminal investigations and insurance
purposes. Such 1ssues could lead to genetic discrimination
(e.g., ancestry discrimination or discrimination due to geo-
graphic mapping of people). Even though the Genetic Infor-
mation Non-discrimination Act (GINA), which prohibits the
use of genomic information 1n health msurance and employ-
ment, attempted to solve some of these problems in the US,
these types of laws are very difficult to enforce.

An even more severe case, currently not widely considered,
1s where a malicious party imitiates a cross-layer attack by
utilizing privacy-sensitive information belonging to a person
retrieved from different sources (e.g., genomic data, location,
online social network, etc.), thus creating the opportunity for
a large variety of fraudulent uses of such data. For example, as
stated 1n the Personal Genome Project (PGP) consent form
[5], a malicious party could make synthetic DNA of a person
and plant 1t at a crime scene to falsely accuse him.

In this hypothetical situation, the attacker can make his
accusation stronger 1f he has the location patterns of the
person to be blamed, and hence, knows that the person was
close to the crime scene at the time of the crime. Similarly, an
attacker can easily obtain information on close relatives of a
target from online social network data, thus effectively
increasing the potential access to target’s genomic data 11 his
relatives” DNA has been sequenced. In other words, even 1t
the person has perfect privacy on his own genome, 1if the
attacker has access to the DNA sequence of the relatives, he
can obtain significant information about the person’s DNA
sequence.

Even though, at this stage, the field of genomics 1s gener-
ally free from serious attacks, 1t 1s likely that the above threats
will become more serious as the number of sequenced 1ndi-
viduals becomes larger. Such was the case of the Internet that
was 1nitially run and used by well-intentioned researchers.
However, once 1t became more widely used, 1t became
plagued by uncountable attacks such as spyware, viruses,
spam, botnets, Denial-of-Service attacks, etc. Therefore, the
need to adapt PETs to personal genomic data will only grow
with time, as they are key tools for preventing an adversary
from linking particular genomic data to a specific person or
from inferring privacy-sensitive genomic data about a person.

It 1s obvious that users need to reveal personal and even
privacy-sensitive information for genomic tests (e.g., pater-
nity tests, disease-susceptibility tests, etc.). Nevertheless,
they want to control how this information 1s used by the
service providers (e.g., medical units such as healthcare cen-
ters or pharmaceutical companies, depending on the type of
the test). Currently, the compamies and hospitals that perform
DNA sequencing store the genomic data of their customers
and patients. Of course, tight legislation regulates their activi-
ties, but 1t 1s extremely difficult for them to protect themselves
against the misdeeds of a hacker or a disgruntled employee. In
a non-adversarial scenario, however, making use of this data
requires legitimate professionals (e.g., physicians and phar-
macists) to access the data in some way. Therefore, new
architectures and protocols are needed to store and process
this privacy-sensitive genomic data, while still enabling its
utilization by the service providers (e.g., medical units).

In this work, our goal 1s to protect the privacy of users’
genomic data while enabling medical units to access the
genomic data in order to conduct medical tests or develop
personalized medicine methods. In a medical test, a medical
unit checks for ditferent health risks (e.g., disease suscepti-
bilities) of a user by using specific parts of his genome.
Similarly, to provide personalized medicine, a pharmaceuti-
cal company tests the compatibility of a user on a particular
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medicine, or a pharmacist checks the compatibility of a given
medicine (e.g., over-the-counter drug) to a given user. In both
scenarios, 1n order to preserve his privacy, the user does not
want to reveal his complete genome to the medical unit or to
the pharmaceutical company. Moreover, 1n some scenarios, it
1s the pharmaceutical companies who do not want to reveal
the genetic properties of their drugs. To achieve these goals,
we propose to store the genomic data at a Storage and Pro-
cessing Unit (SPU) and conduct the computations on
genomic data utilizing homomorphic encryption and proxy
encryption to preserve the privacy of the genomic data.

The rest of the paper 1s organized as follows. In the rest of
this section, we discuss the challenges 1n genomic privacy and
summarize the related work on genomic privacy. In Section 2,
we describe our proposed schemes for privacy-preserving,
medical tests and personalized medicine. Furthermore, we
analyze the level of privacy provided by the proposed
schemes for different design and genomic criteria. Then, 1n
Section 3, we discuss the implementation of the proposed
schemes and present their complexity and security evalua-
tions.

Finally, 1n Section 4, we conclude the paper and discuss
new research directions on genomic privacy.

1.1 CHALLENGES OF GENOMIC PRIVACY

Obviously, there are certain obstacles for achieving our

goals on genomic privacy. These are mostly due to (1) the
balance between privacy and reliability of the genomic data,
(11) the structure of the human genome, and (111) the evolution
of the genomic research.
PETs generally protect users’ privacy by either breaking
the link between individuals’ identities and the data they
provide (e.g., removing user’s 1dentities from the published
genomic data), or by decreasing the information provided
(c.g., by using cryptographic tools or obfuscation tech-
niques). Both techniques might reduce the reliability and the
accuracy of the genomic data. Thus, a major i1ssue to be
addressed when designing PET's 1s limiting private informa-
tion leakage while keeping an acceptable level of reliability
and accuracy of the genomic data for the researchers and
medical units.

Moreover, developing PETs for genomic data has many
unique challenges, due to the architecture of the human
genome. The human genome 1s encoded 1n double stranded
DNA molecules consisting of two complementary polymer
chains. Each chain consists of simple units called nucleotides
(A, C, G, T). The human genome consists of approximately
three billion letters. Existing privacy-preserving methods do
not scale to these large genomic data sizes; hence current
algorithms are inadequate for privacy protection on the
genomic level.

Finally, the rapid evolution 1n the field of genomics pro-
duces many new discoveries every year, which cause signifi-
cant changes 1n the known facts. For example, the sensitivity
of certain genomic information will change over time; hence
it 1s crucial to develop dynamic algorithms that can smoothly
adapt to this rapid evolution.

1.2 RELATED WORK

Due to the sensitivity of genomic data, research on the
privacy of genomic data has considerably accelerated over the
past few years. We can put the research on genomic privacy in
three main categories: (1) private string searching and com-
parison, (11) private release of aggregate data, and (1) private
clinical genomics.
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In [6], Troncoso-Pastoriza et al. propose a protocol for
string searching, which 1s then improved by Blanton and
Aliasgari [7]. In this approach, one party with his own DNA
smppet can verily the existence of a short template within his
smuppet by using a Finite State Machine 1n an oblivious man-
ner. To compute the similarity of DNA sequences, 1n [8], Jha
et al. propose techniques for privately computing the edit
distance of two strings by using garbled circuits. In [9],
Bruekers et al. propose privacy-enhanced comparison of
DNA profiles for identity, patermity and ancestry tests using
homomorphic encryption. Similar to our work, 1n [10], Kan-
tarcioglu et al. propose using homomorphic encryption to
perform scientific investigations on integrated genomic data.
In their scheme, all genomic data 1s encrypted by the same
public key of the data storage site, and there 1s a single key
holder site which can decrypt everything. Thus, a curious
party at the key holder site can obtain the genomic informa-
tion of all users 1n case of a possible data leakage from the data
storage site. Moreover, 1n [10], only the encrypted variants
(1.e., positions 1n the genome holding a nucleotide that varies
between individuals) o the users are stored at the data storage
site along with their plaintext locations (on the DNA), which
can leak substantial information to the data storage site about
the genomic sequences of the users, as we discuss 1n Section
2.4. As opposed to [10], we focus on personal use of genomic
data (e.g., in medical tests and personalized medicine meth-
ods), propose methods 1n which each user’s genomic data 1s
encrypted via his own cryptographic key, and prevent the
leakage of genomic data due to statistical dependence
between the variants. In one of the recent works [11], Bald1 et
al. make use of both medical and cryptographic tools for
privacy-preserving paternity tests, personalized medicine,
and genetic compatibility tests. Instead ol utilizing public key
encryption protocols, 1n [12], Canim et al. propose securing
the biomedical data using cryptographic hardware. Finally, in
[13], Eppstein et al. propose a privacy-enhanced method for
comparing two compressed DNA sequences by using Invert-
ible Bloom Filter [14].

When releasing databases consisting of aggregate genomic
data (e.g., for research purposes), it 1s shown that known
privacy-preserving approaches (e.g., de-identification) are
ineffective on (un-encrypted) genomic data [15, 16]. Homer
et al. [17] prove that the presence of an individual 1n a case
group can be determined using aggregate allele frequencies
and his DNA profile. In another recent study [18], Gitschier
shows that a combination of information, from genealogical
registries and a haplotype analysis of the Y chromosome
collected for the HapMap project, allows for the prediction of
the surnames of a number of individuals held 1n the HapMap
database. Thus, releasing genomic data (even in aggregate
form) 1s currently banned by many institutions due to this
privacy risk. In [19], Zhou et al. study the privacy risks of
releasing the aggregate genomic data. They propose a risk-
scale system to classity aggregate data and a guide for the
release of such data. Recently, using differential privacy was
proposed by Fienberg et al. [20]; they aim to ensure that two
aggregated databases, differing from each other by only one
individual’s data (e.g., DNA sequence), have indistinguish-
able statistical features.

Recently, 1mn [21], utilizing a public cloud, Chen et al.
propose a secure and efficient algorithm to align short DNA
sequences to a reference (human) DNA sequence (1.e., read
mapping). Finally, 1n [22], Wang et al. propose a privacy-
protection framework for important classes of genomic com-
putations (e.g., search for homologous genes), 1n which they
partition a genomic computation, distributing sensitive data
to the data provider and the public data to the data user.




US 9,270,446 B2

S

In this work, we focus on medical tests (e.g., disease-
susceptibility test) and personalized medicine methods by
using users’ genomic data while protecting user’s genomic
privacy. As a result of our extensive collaboration with geneti-
cists, clinicians, and biologists, we conclude that DNA string
comparison 1s msuificient 1n many medical tests (that use
genomic data) and would not be enough to pave the way to
personalized medicine. As 1t will become clearer 1n the next
sections, specific variants must be considered individually for
cach genetic test. Thus, as opposed to the above private string
search and comparison techniques, which focus on privately
comparing the distance between the genomic sequences, we
use the individual variants of the users to conduct genetic
disease susceptibility tests and develop personalized medi-
cine methods. We consider the individual contribution of each
variant to a particular disease, for which a string comparison
algorithm (such as Private Set Intersection| 23, 24]) would not
work. Further, in our proposed algorithms, we consider the
statistical relationship between the variants for the genomic
privacy ol the users. In addition, we make use of a Storage and
Processing Unit (SPU) between the user (patient) and the
medical unit to store the genomic data 1n encrypted form and

make computations on 1t using homomorphic encryption and
proxy encryption.

1.3 BRIEF DESCRIPTION OF THE INVENTION

The aim of the present invention 1s to propose a privacy-
enhancing method for medical tests and personalized medi-
cine methods, which utilize patients’ genomic data. It 1s pro-
posed a method to process genomic data comprising the steps
of:
at an 1mitialization stage:
associating a patient identification ID for a given patient P,
generating a pair ol asymmetric keys related to said patient
P comprising a private and a public key,

preparing a DNA sequence for said patient P comprising
approved variants (SNP), said approved variants being
approved by medical authorities, each approved variant
representing a position in the genome and a value rep-
resenting a nucleotide that varies between individuals,

extracting real and potential variants from said approved
variants, said real and potential vanants having each a
position, said real variants being a subset ol the approved
variants and are different for each human being, said
potential variants being the remaining part of the
approved variants,

encrypting the value of each real variant with the public key

of the patient,

storing the encrypted values with their respective positions

into a Storage and Processing Unit (SPU), as well as the
patient 1identification 1D,

dividing the private key ito at least a first and a second

part,

transmitting the first part of the private key to the SPU, at a

test stage:

providing the second part of the private key to a medical

unit MU,

selecting by the medical unit MU a genetic test to be carried

out and the related genetic markers, each marker having
a position and a contribution,

determining the contribution of each marker according to

the genetic test selected,

transmitting by the MU the genetic markers with their

respective contribution to the SPU as well as an 1denti-
fication ID of the patient P,
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retrieving by the SPU the encrypted values for said patient
P matching the position of the genetic markers, and for
said patient,

executing by the SPU a genetic test by using the retrieved

values, and the contribution of those markers thanks to
homomorphic operations,

decrypting the result of the genetic test using the first part

of the private key,

sending the decrypted result to the MU,

using the second part of the private key to obtain the final

result.

The method of the mvention 1s split into a first phase 1n
which the DNA sequence 1s processed and stored in the SPU
and a second phase during which a test 1s carried out.

During the first phase, the DNA sequence, produced by an
authorized laboratory, 1s processed and encrypted as
explained above. During this second phase, the medical test
selected by the medical unit 1s carried out without having the
possibility to retrieve all information of the patient.

The method proposed by the invention 1s based on the use
of homomorphic encryption and proxy encryption. Assuming
the whole genome sequencing 1s done by a certified institu-
tion, we propose to store patients’ genomic data encrypted by
their public keys at a Storage and Processing Unit (SPU).

The proposed algorithm lets the SPU (or the medical unit)
process the encrypted genomic data for medical tests and
personalized medicine methods while preserving the privacy
of patients’ genomic data. We extensively analyze the rela-
tionship between the storage cost (of the genomic data), the
level of genomic privacy (of the patient), and the character-
istics of the genomic data. Furthermore, we implement and
show via a complexity analysis the practicality of the pro-
posed schemes. Finally, we evaluate the security of the pro-
posed schemes and propose new research directions on
genomic privacy.

1.4 BRIEF DESCRIPTION OF THE FIGURES

The mvention will be better understood thanks to the
attached figures 1n which:

The FIG. 1 illustrates the General architecture between the
patient, SPU, and the medical unat.

The FIG. 2 1illustrates the Privacy-preserving protocol for
disease-susceptibility test using Method 1 or Method 2.

The FIG. 3 1llustrates the Average probability to correctly
infer the locations of patient’s real SNPs (for the curious party
at the SPU) with varying mean values of the number of LD
pairs per SNP (i.e., u(k)) and storage redundancy.

The FIG. 4 1llustrates the Average probability to correctly
infer the locations of patient’s real SNPs (for the curious party
at the SPU) with varying mean values of the LD strength
between two SNPs (1.e., u(l)) and storage redundancy.

The FIG. 5 1llustrates the Average probability to correctly
infer the locations of patient’s real SNPs (for the curious party
at the SPU) with varying standard deviation and mean values
of the number of LD pairs per SNP (1.e., o(k) and n(k)) and
storage redundancy.

The FIG. 6 1llustrates the Average probability to correctly
infer the locations of patient’s real SNPs (for the curious party
at the SPU) with varying standard deviation and mean values
of the LD strength between two SNPs (i.e., o(l) and u(l)) and
storage redundancy.

The FIG. 7 illustrates the Increase 1n genomic privacy of
different types of patients with 100% increments 1n the stor-
age redundancy. For example, increasing the storage redun-
dancy from 400% to 500% would increase the privacy of
Patient A (who carries mostly low severity real SNPs) by 5%,
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whereas the same scenario increases the privacy of Patient B
(who carries mostly high severity SNPs) by 13%.

The FIG. 8 illustrates the Level of genomic privacy, as
defined by (8), for different types of patients with varying
storage redundancy.

The FIG. 9 illustrates the Privacy-preserving protocol for
disease-susceptibility test using Method 3.

The FIG. 10 1llustrates the Privacy, practicality, and storage
overhead comparison of the proposed methods.

2 PETS FOR MEDICAL TESTS AND
PERSONALIZED MEDICINE METHODS

In the present case, we study the privacy i1ssues of medical
tests and personalized medicine methods. Most medical tests
and personalized medicine methods (that use genomic data)
involve a patient and a medical unit. The patient 1s identified
by a patient identification (ID), which could be a user name or
a pseudonym (e.g., hash value of his social security number).
In general, the medical unit 1s the family doctor, a physician,
a pharmacist, or a medical council. In this study, we consider
a malicious medical unmit as the potential attacker. That 1s, a
medical unit can be a malicious institution trying to obtain
private information about a patient. Even 11 the medical unitis
non-malicious, it 1s extremely difficult for medical units to
protect themselves against the misdeeds of a hacker or a
disgruntled employee. Similarly, the genomic data 1s too sen-
sitive to be stored on users’ personal devices (mostly due to
security, availability, and storage 1ssues), hence 1t 1s risky to
leave the users’ genomic data in their own hands. In addition,
extreme precaution 1s needed between the patient and the
medical unit due to the sensitivity of genomic data. Thus, we
believe that a Storage and Processing Unit (SPU) should be
used to store and process the genomic data. We note that a
private company (e.g., cloud storage service), the govern-
ment, or a non-profit organization could play the role of the
SPU. We also assume that the SPU 1s an honest organization,
but 1t might be curious (e.g., existence of a curious party at the
SPU), hence genomic data should be stored at the SPU 1n
encrypted form (1.e., the SPU should not be able to access the
content of patients’ genomic data). This general architecture
1s 1llustrated in FIG. 1. For the simplicity of presentation, 1n
the rest of this section, we will focus on a particular medical
test (namely, computing genetic disease susceptibility). We
note that similar techniques would apply for other medical
tests and personalized medicine methods. In a typical disease-
susceptibility test, a medical unit (MU) wants to check the
susceptibility of a patient (P) to a particular disease X (1.e.,
probability that the patient P will develop disease X). It 1s
shown that a genetic disease-susceptibility test can be real-
ized by analyzing particular Single Nucleotide Polymor-
phisms (SNPs) of the patient via some operations, such as
welghted averaging [25] or Likelithood Ratio (LR ) test [26]. A
SNP 1s a position 1n the genome holding a nucleotide (A, T, C
or 3), which varies between individuals. For example, it 1s
reported that there are three particular genes bearing a total of
ten particular SNPs necessary to analyze a patient’s suscep-
tibility to Alzheimer’s disease[27]. Each SNP contributes to
the susceptibility 1n a different amount and the contribution
amount of each SNP i1s determined by previous studies on
case and control groups (these studies are published in several
papers). Furthermore, some of the SNPs contribute to the
development of a disease, whereas some are protective.

In general, there are two alleles observed at a given SNP
position: (1) The major allele 1s the most frequently observed
nucleotide, and (11) the minor allele 1s the rare nucleotide.
Everyone inherits one allele of every SNP location from each
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ol his parents. If an individual receives the same allele from
both parents, he 1s said to have a homozygous variant for that
SNP location. I, however, he inherits a different allele from
cach parent (one minor and one major), he has a heterozygous
variant. There are approximately 40 million approved vari-
ants (SNPs) 1n the human population as of now (according to
the NCBI dbSNP [28]) and each patient carries on average 4
million SNPs (i.e., real variants) out of this 40 million. More-
over, this set ol 4 million SNPs 1s different for each patient.
From now on, to avoid confusion, for each patient, we refer to
these 4 million varnants as the real SNPs and the remaining,
non-variants (approved SNPs that do not exist for the consid-
ered patient) as the potential SNPs of the patient; when we
only say “SNPs”, we mean both the real and potential SNPs.

At this point, 1t can be argued that these 4 million real SNPs
(nucleotides) could be easily stored on the patient’s computer
or mobile device, instead of the SPU. However, we assert that
this should be avoided due to the following 1ssues. On one
hand, the number of approved SNPs in human population
continues to increase with new discoveries. Further, types of
variations 1 human population are not limited to SNPs, and
there are other types of variations such as Copy-Number
Variations (CNVs), rearrangements, or translocations (our
proposed privacy-preserving mechanisms can be smoothly
adapted for these alternative variations), consequently the
required storage per patient 1s likely to be considerably more
than only 4 million nucleotides. This higher storage cost
might still be affordable to an average patient (via desktop
computers or USB drives), however, genomic data of the
patient should be available any time (e.g., for emergencies),
thus 1t should be stored at a reliable source such as the SPU.
On the other hand, as we discussed before, leaving the
patient’s genomic data 1n his own hands and letting him store
it on his computer or mobile device 1s risky, because his
mobile device can be stolen or his computer can be hacked.

A potential attacker can learn about the susceptibilities of
the patient to privacy-sensitive diseases 1i he obtains some
specific real SNPs of the patient. Moreover, the knowledge of
75 real SNPs (out of approximately 4 million), 11 not fewer,
will enable the attacker to identify a person[29]. These situ-
ations could lead to genetic discrimination such as denying a
person’s access to health (or life) msurance or obstructing his
employment opportunities. As we discussed before, 1n our
setting, both the MU and SPU pose a threat to the patient’s
privacy. On one hand, the MU can either be a malicious
istitution trying to obtain private information about the
patient or 1t can be hacked by another malicious entity. On the
other hand, the SPU 1s considered as an honest but curious
entity. Thus, our goal 1s to build mechanisms 1n which the
patient can preserve the privacy of his genomic sequence (his
real SNPs) while enabling the MU to access his genomic data
and conduct genetic tests.

We assume that the whole genome sequencing 1s done by a
Certified Institution (CI) with the consent of the patient.
Moreover, the genomic data of the patient 1s encrypted by the
same CI (using the patient’s public key) and uploaded to the
SPU so that only the patient can decrypt the stored (potential
or real) SNPs, and the SPU cannot access the SNPs of the
patient. We are aware that the number of discovered SNPs
increases with time. Thus, the patient’s complete DNA
sequence 15 also encrypted as a single vector file (via sym-
metric encryption using the patient’s key) and stored at the
SPU, thus when new SNPs are discovered, these can be
included 1n the pool of the previously stored SNPs of the
patient. We also assume the SPU does not have access to the
real 1dentities of the patients and data 1s stored at the SPU by
using pseudonyms; this way, the SPU cannot associate the
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conducted genomic tests to the real 1dentities of the patients.
As an alternative, the privacy of the genomic data at the SPU
can be further increased using privacy enhanced access con-
trol [30] or Oblivious RAM (G-RAM) storage [31] tech-
niques, in which the data access patterns are completely hid-
den from the server (SPU). Note that even the most efficient
implementation of O-RAM introduces high storage overhead
to the client (patient), and 1t itroduces 20~25 times more
overhead with respect to non-oblivious storage. Thus once 1t
becomes more efficient, O-R AM storage could be considered
as a future add-on to the proposed privacy-preserving mecha-
nisms.

Depending on the access rights of the MU, the SPU can
either (1) compute Pr(X), the probability that the patient will
develop the disease X by checking the patient’s encrypted
SNPs via homomorphic encryption techniques [33] (In one of
our proposed schemes, see Method 3 1n Section 2.4, Pr(X) 1s
computed at the MC via homomorphic operations), or (11)
provide the relevant SNPs to the MU (e.g., for complex dis-
cases that cannot be mterpreted using homomorphic opera-
tions). These access rights are defined either jointly by the
MU and the patient or by the medical authorities. Further,
access rights can be enforced by using a secure attributebased
system as 1n [34]. We note that homomorphic encryption lets
the SPU (or MU) compute Pr(X) using encrypted SNPs of the
patient P. In other words, the SPU (or MU) doesnotaccess P’s
SNPs to compute his predicted disease susceptibility. We use
a modification of the Paillier cryptosystem (described in Sec-
tion 2.1) to support the homomorphic operations at the SPU
(or MU).

We propose four different techniques for the storage and
process of the SNPs at the SPU and the preservation of the
patient’s privacy: (1) Method 0 in Section 2.2, (11) Method 1 in
Section 2.3, (111) Method 2 1n Section 2.4, and (v1) Method 3
in Section 2.5. We describe these proposed techniques in
detail 1n the following subsections. We also discuss the com-
putation of genetic disease susceptibility by using homomor-
phic operations 1n Section 2.6.

In the rest of this work, for simplicity of the presentation,
we do not consider the type of the vaniant at a real SNP
location (i.e., whether the variation 1s homozygous or het-
erozygous for that real SNP); we only consider whether the
patient has a real SNP or not at a particular location. However,
the proposed approaches and the analysis (in Section 2.4) can
casily be extended to cover the types of the variants. In order
to facilitate future references, frequently used notations are
listed 1n Table I for the different stages of the proposed
schemes.

TABLE 1

NOTATIONS AND DEFINITIONS.

General Notations

SNP Type of SNP i, SNP,, of the patient P. SNP” € {0,1},0
representing a potential SNP (1.e., non-variant) for P, and 1
representing a real SNP (i.e., a variant) for P.

P 5" Predicted susceptibility of the patient P to disease X.

15 Set of real SNPs of the patient P (SNPs at which P has a
variant: around 4 million at each patient).

p Set of potential SNPs of the patient P (SNPs at which P does
not have a variant: around 36 million at each patient).

Cryptographic Notations
n,g Public parameters of modified Paillier cryptosystem.

X Weak private key of the patient P.

i”* share of the patient P’s private key.

Public key of the patient P.

Encryption of message m with the patient P’s public key.
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TABLE I-continued

NOTATIONS AND DEFINITIONS.

Susceptibility Test via Weighted Averaging

pj.f(X) Probability that P would develop disease X, given SNP = |,
Pr(XISNP/ = j).
C* Contribution of SNP; to the susceptibility to disease X.
Susceptibility Test via Likelihood Ratios
I Initial risk of the patient P for disease X.
L+*(j) Likelithood Ratio (LR) when SNP, = for disease X.

2.1 PAILLIER CRYPTOSYSTEM

In this section, we brniefly review the modified Paillier
cryptosystem (described in detail 1n [33,35]), which we use 1n
this work, and 1ts homomorphic properties. We note that the
usual notation 1n Paillier cryptosystem 1s to use a pair of keys
named public and secret key. However, for the present
description, we will use the denote the keys as public and
private.

The public key of the patient P 1s represented as (n, g,
h=g"), where the strong private key 1s the factorization of
n=pq (p, q are sate primes), the weak private key 1s xe [1,
n*/2], and g of order (p—1)(q—1)/2. Such a g can be easily
found by selecting a random a €Z, >*, and computing g=—a~".
Encryption of a Message:

To encryptamessage meZ. »*, we first selectarandomre| 1,
n/4] and generate the ciphertext pair (T,, T,) as below:

T,=¢" mod »* and 7=k (1+m#n)mod »* (1)

Re-Encryption of a Message:
An encrypted message (T, T,) can be re-encrypted under
the same public key, using a new random number r, €[ 1, n/4]

as below:
7,=¢"'T, mod »* and 75=K"T, mod »*. (2)

Decryption of a Message:
The message m can be recovered as follows:

m=A(To/T\"), (3)

where

(¢ — )mod r* 5
yforue{u<n |lu=1 mod ul.

Alu) =

Homomorphic Properties:

Assume two messages m, and m, are encrypted using two
different random numbers r, and r,, under the same public
key, (n, g, h=¢"), such that E(m,, r,, €)=(T,", T,") and E(m.,
r,, 2)=(T,>, T,%) Assume also that ¢ is a constant number.
Then the below-mentioned homomorphic properties are sup-
ported by Paillier cryptosystem:

The product of two ciphertexts will decrypt to the sum of

their corresponding plaintexts.

D(E(ml,rl,gx)-E(mEJPE:gX))ZD(TlI-le, Tzl'T22 mod
n2)=m +m, mod #.

(4)

An encrypted plaintext raised to a constant ¢ will decryptto
the product of the plaintext and the constant.

D(E(m,r,g))=D(T 1)‘?,(2”2 l)f mod nz)zcml mod z. (5)

These homomorphic operations are conducted at the SPU
(or MU depending on which approach 1s used) to compute the
predicted susceptibility of the patient P to disease X, as will
be discussed 1n Section 2.6.
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Proxy encryption: The patient’s weak private key X 1s
divided (preferably randomly or by any other rule) into two
shares: x* and x‘* (such that x=x"+x®). x'!’ is given to the
SPU and x*® is given to the MU. Using the above Paillier
cryptosystem, an encrypted message (1,, T,) (under the
patient’s public key) can be partially decrypted by the SPU
(using x'"’) to generate the ciphertext pair (T,”, T,”) as
below:

T,%=T, and T>%=T5/T," "mod 1.

(6)

Now, (T,”, T,”) can be decrypted at the MU using x**’ to
recover the original message. x'*’ can be provided to the MU
once the patient 1s registered to the medical unit or through the
patient’s digital ID card. Further details about the distribution
of shares are out of the scope of this paper. We note that this
approach 1s not proxy re-encryption; it 1s based on secret-
sharing.

Overall, this modified Paillier cryptosystem 1s not key opti-
mal, because the size of the MU’s and SPU’s secret storages
do not remain constant. That 1s, both the MU and SPU need to
store a secret for every patient.

However, this storage cost can be considered negligible
when compared to the storage of the genomic data. Further,
the shares (e.g., x'*’ and x*) can be stored by the patient and
sent to the MU and SPU only when 1t 1s needed 1n order to
resolve this storage 1ssue at the expense of extra communica-
tion overhead. Furthermore, the above modified Paillier cryp-
tosystem 1s not proxy invisible, because all participants of the
systems (1.e., P, MU and SPU) should be aware of the exist-
ence of the proxy. We discuss the security evaluation of this
cryptosystem 1n Section 3.2.

2.2 METHOD 0: ONLY STORE THE REAL SNPS
Al THE SPU

In this approach, the real SNPs of the patient are stored

encrypted (via the patient’s public key) and the locations of
the corresponding real SNPs are stored in plaintext at the
SPU.

We assume that SNP, at the patient P 1s represented as
SNP,” and SNP/=1, if P has a real SNP (i.e., variant) at this
location, and SNP/=0, if P does not have a variant at this
location. We let v, be the set of real SNPs of the patient P (at
which SNP,”=1). We also let P represent the set of potential
SNPs (at which SNP,“=0).

Below, we summarize the proposed approach for the pri-
vacy protecting disease-susceptibility test by using this par-
ticular storage technique.

Step 0: The asymmetric keys (public and private keys) of
cach patient are generated and distributed to the patients
during the imitialization period. Then, symmetric keys
are established between the parties, using which the
communication between the parties 1s protected from an
cavesdropper. We note that the distribution, update and
revocation of cryptographic keys are handled by a
trusted entity (similar to e-banking platforms).

Step 1: The patient (P) provides his sample (e.g., his saliva)
to the Certified Institution (CI) for sequencing.

Step 2: The Cl sequences P, and encrypts the contents of his

real SNP locations (in v,) by using P’s public key.
Step 3: The CI sends the encrypted real SNPs of P to the

SPU (so that the SPU cannot access to P’s SNPs).
Step 4: We divide the private key 1into a first and a second
part, the patient provides the first part of his private key

(x) to the SPU.
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Step 5: The MU wants to conduct a susceptibility test on P
to a particular disease X, and P provides the second part
of his private key (x*) to the MU as well as his identi-
fication ID.

Step 6: The MU provides genetic variant markers, along
with their individual contributions (to the disease sus-
ceptibility), to the SPU.

Step 7: 11 the disease susceptibility can be mterpreted by
homomorphic operations, the SPU computes P’s total
susceptibility to disease X from the individual effects of
SNPs by using the homomorphic properties of the
Paillier cryptosystem as described i Section 2.6. Oth-
erwise, the SPU provides the relevant real SNPs to the
MU based on MU’s access rights.

Step 7: The SPU partially decrypts the end-result (or the
relevant SNPs) using the first part of P’s private key for
example by following a proxy encryption protocol (Sec-
tion 2.1).

Step 8: The SPU sends the partially decrypted end-result
(or the relevant real SNPs) to the MU.

Step 9: The MU decrypts the message recerved from the
SPU using the second part of P’s private key and recov-
ers the end-result (or the relevant real SNPs).

23 METHOD 1: PLAINTEXT LOCATIONS AT
THE SPU

Method 0 1n Section 2.2 might leak private information to
the curious party at the SPU. As the locations of the SNPs are
stored 1n plaintext, if the SPU only stores the real SNPs 1n v,
a curious party at the SPU can learn all real SNP locations of
the patient, and hence, much about his genomic sequence.
The nucleotides corresponding to variants at particular loca-
tions of the DNA sequence are public knowledge. Thus, even
though the contents of patient’s real SNPs are encrypted, a
curious party at the SPU can infer the nucleotides correspond-
ing to these SNPs from their plaintext locations. Therefore, 1n
this method, the SPU stores the contents of both real and
potential SNP locations (in {y,U€2,}) in order to preserve the
privacy of the patient. The locations of the corresponding
SNPs are again stored in plaintext at the SPU. This 1s because,
when a particular SNP (or set of SNPs) are queried by the
MU, the SPU should know which SNPs to process (or send to
the MU).

As belore, we assume that SNP, at the patient P 1s repre-
sented as SNP,” and SNP/=1, if P has a real SNP (i.e.,

variant) at this location, and SNP,”=0, if P does not have a
variant at this location. We lety ., be the set of real SNPs of the
patient P (at which SNP,/=1). We also let P represent the set
of potential SNPs (at which SNP,”=0). Below, we summarize
the proposed approach for the privacy protecting disease-
susceptibility test by using this particular storage technique.
This approach 1s illustrated 1n FIG. 2.

Step 0: The asymmetric keys (public and private keys) of
cach patient are generated and distributed to the patients
during the mitialization period. Then, symmetric keys
are established between the parties, using which the
communication between the parties 1s protected from an
cavesdropper. We note that the distribution, update and
revocation of cryptographic keys are handled by a
trusted entity (similar to e-banking platforms).

Step 1: The patient (P) provides his sample (e.g., his saliva)
to the Certified Institution (CI) for sequencing.

Step 2: The Cl sequences P, and encrypts the contents of his
real and potential SNP locations (1n (y-UE2,) by using
P’s public key.
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Step 3: The CI sends the encrypted SNPs of P to the SPU
(so that the SPU cannot access to P’s SNPs).

Step 4: We divide the private key 1nto a first and a second
part, the patient provides the first part of his private key
(x*) to the SPU.

Step 5: The MU wants to conduct a susceptibility test on P
to a particular disease X, and P provides the second part
of his private key (x'*)) to the MU as well as his identi-
fication ID.

Step 6: The MU provides genetic variant markers, along
with their individual contributions (to the disease sus-
ceptibility), to the SPU.

Step 7: If the disease susceptibility can be interpreted by
homomorphic operations, the SPU computes P’s total
susceptibility to disease X from the individual effects of
SNPs by using the homomorphic properties of the
Paillier cryptosystem as described in Section 2.6. Oth-
erwise, the SPU provides the relevant SNPs to the MU
based on MU’s access rights.

Step 7: The SPU partially decrypts the end-result (or the
relevant SNPs) using the first part of P’s private key for
example by following a proxy encryption protocol (Sec-
tion 2.1).

Step 8: The SPU sends the partially decrypted end-result
(or the relevant SNPs) to the MU.

Step 9: The MU decrypts the message recerved from the
SPU using the second part of P’s private key and recov-
ers the end-result (or the relevant SNPs).

The above technique provides a high level of privacy and
practicality for the patient, because (1) from the view point of
a curious party at the SPU, inferring the locations of the
patient’s real SNPs with the stored information 1s equivalent
to inferring them with no information about the patient, and
(11) the patient 1s not involved in the protocol after the
sequencing (except for the consent between the patient and
the MU {for a particular test). However, this level of privacy
and practicality comes at the cost of extra storage overhead at
the SPU (due to the storage of both real and potential SNPs as
discussed 1n Section 3.1).

2.4 METHOD 2: REDUNDANT STORAGE AT
THE SPU

Due to the significant storage overhead mentioned 1n Sec-
tion 2.3, here we propose another technique that reduces the
storage overhead at the SPU at the expense of decrease 1n
privacy. In a nutshell, we leave everything the same as in
Section 2.3, but, instead of storing the contents of all potential
and real SNP locations, we store the real SNPs of the patient
along with a certain level of redundancy (1.e., contents of
some potential SNP locations). In other words, to mislead a
curious party at the SPU, among the 40 million discovered
SNPs, we store the approximately 4 million real SNPs (for
which SNP/=1, iey, ) along with some redundant content
from €2, (with SNP"=0), for each patient.

Again, we assume that the location of the encrypted (real or
potential) SNPs are stored 1n plaintext at the SPU and there
ex1sts a potential curious party at the SPU trying to infer the
real SNPs of the patient (iny, ). An important issue to consider
in this approach 1s the Linkage Disequilibrium (LD) between
SNPs [36].

LD occurs when SNPs at two loci (SNP positions) are not
independent of each other. For simplicity, we represent the

LD relationship between two SNPs 1and j as Pr(SNP,ISNP,)),
where SNP, (or SNP)) takes values from the set {0, 1}. In
compliance with genetic observations, we assume that the LD

between two SNPs are not symmetric, i.e., Pr(SNP;ISNP,)=Pr
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(SNP,ISNP;). We note that LD relationships are defined
among all 40 million discovered SNPs, regardless of their
type (1.e., real or potential) at a particular patient.

As 1 Section 2.3, the SPU provides the end-result of a
disease-susceptibility test or the relevant SNPs to the MU.
However, 1n this case, 1f a particular potential SNP (requested
by the MU or needed in the susceptibility test) 1s not stored at
the SPU (1.e., SNPjP =0), one of the following two scenarios
occurs: (1) If the SPU provides the relevant SNPs to the MU,

MU infers the missing potential SNPs from the reference
genome (since 1t 1s known that the missing potential SNPs are
not a variant for P), or (11) 1f the SPU provides the end-result
of the susceptibility test, the SPU uses the fact that SNPjP =0
for each missing potential SNP..

As expected, the amount of storage redundancy (due to the
storage of the content from €2 ), along with the LD between
the SNPs and their characteristics, determine the level of a
patient’s genomic privacy.

Therefore, 1n the rest of this section, we analyze the rela-
tionship between the amount of redundancy, LD values, char-
acteristics of the SNPs, and the level of privacy. To do so, first,
we observe the average probability of correctly inferring the
locations of P’s real SNPs (in y,) considering varying
amounts of redundancy and the LD values between the SNPs.
That 1s, how much information from a patient’s un-stored
potential SNPs 1s revealed to the curious party at the SPU
about the locations of his real SNPs ? This problem can also
be formulated similarly 1f the goal of the attacker 1s to deter-
mine the type of the vanant at a real SNP location (e.g.,
homozygous or heterozygous). In this case, SNP,” can take
three different values from the set {0, 1, 2}, O representing a
potential SNP (i1.e., non-variant) 1 representing a real
homozygous SNP, and 2 representing a real heterozygous
SNP for P. It 1s worth noting that for this study, we create
realistic models for the LD values and the characteristics of
the SNPs. Further, for the created models, we try a wide range
of parameters and observe a wide range of results to address
most potential scenarios. However, as the field of genomics
becomes more mature, our models can be replaced by the
values obtained from the medical research.

Welet £2 °and €2 “ denote the set of P’s potential SNPs that
are stored (for redundancy) and not stored at the SPU, respec-
tively (€2,°UL2 “=€2 ). Further, K, 1s the set of SNPs with
which a particular SNP, has LD, and IK,|=k (for each SNP,
these k SNPs are chosen among approximately 40 million
SNPs). We assume that k=0 and it 1s a truncated Gaussian
random variable with only discrete values and obtained from
a distribution with mean o(k) and standard deviation (k).

Initially, we compute Pr(SNP,") for all (real and potential)
SNPs in {y,U€2,°} by using the LD relationships between
these SNPs and those in €. As all SNPs in {y,UQ °} are
encrypted and stored at the SPU, only the LD relationships
between these SNPs and the un-stored SNPs 1n €2 * are help-
tul for the curious party.

Theretore, for each real SNPey, we observe
Pr(SNP,/=1ISNP, “=0) for all me{K , (1)N=Q p’ s}-}, get
the average of these values, and compute Pr(SNP,"=1). Simi-
larly, for each potential SNP €£2 °, we observe Pr(SNPjP =0
SNP,,"=0) forall me{K,N:€Q *} 7 , average these values, and
compute Pr(SNPjP =0). We let/be the indicator of the LD
strength  between two SNPs. Thus, we represent
Pr(SNP,"=1ISNP, “=0)=(ey,, = me{K,N:iQ “}1)  and
Pr(SNP/=0ISNP, “=0)=/(jeQ p’ s, me{K, (j)NQ, pu}) as
truncated Gaussian random variables with range [0.5, 1],
obtained from a distribution with mean u(l) and standard
deviation o(l).
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Finally, 1t IK;/=k=0 or [K,N& “|=0 for a SNP 1 in
1v,UQ °}, we update Pr(SNP,"=1) considering the fact that
the expected value of all stored SNPs 1s known by the curious

party as below:

1
YrUQS

1Y pl
YU

(7)

Z (SNPT)x Pr(SNP%) =

&

In the following, we illustrate our numerical results that
represent the relationship between storage, inference power
of the curious party at the SPU, and LD values. We assume
v »|=4 million and |y ,U£251=40 million. We define the per-
centage of storage redundancy at the SPU as

€21
¥l

PlIx100

and compute the average value of Pr(SNP,/=1) for a SNP in
Y for varying values ot n(k), (k), u(l), and o(l). Higher values
of Pr(SNP,/=1) indicate a higher inference power for the
curious party at the SPU. We repeat each simulation 100 times
to obtain an average. Note that Method 1 (1in Section 2.3) 1s a
special case of Method 2 (when the storage redundancy at the
SPU 1s 900%), hence its privacy 1s the same as 900% redun-
dancy 1n the following results.

In FIG. 3, we 1llustrate the variance in the average value of
Pr(SNP,/=1) for different values of n(k), when u(1)=0.8,
o(1)=0.13, and o(k)=0.75. We note that “no LD curve 1in the
figure represents the case 1n which the LD values between the
SNPs are 1gnored. We observe that as the available side infor-
mation (1.e., number ot un-stored potential SNPs 1n £2 * hav-
ing LD with the stored ones) increases, the inference power of
the curious party increases, especially for low values of stor-
age redundancy. For example, to have the same inference
power for the curious party, 200% storage redundancy 1s
required when u(k)=0, whereas i1t 1s 700% when u(k)=4.
Furthermore, even at the maximum (1.e, 900%) storage
redundancy, the curious party still has a slight probability of
inferring the variants of the patient, because 1t knows that 4
out of 40 million of the stored content are variants. Next, in
FIG. 4, we 1llustrate the variance 1n the same probability, this
time for different values of u(l), when wk)=2, o(k)=0.75, and
o(1)=0.23. For higher values of o(l), the gap between the
different u(l) curves becomes negligible, because the distri-
bution becomes almost uniform, rather than truncated Gaus-
sian. As expected, the inference power of the curious party
increases when the strength of LD between the SNPs
increases (1.e., when u(l) increases).

We observe that the strength of LD, however, does not
aifect the inference power as strong as k. Then, FIG. 3 1llus-
trates the average probability to correctly infer the locations
of patient’s real SNPs (for the curious party at the SPU) with
varying mean values of the number of LD pairs per SNP (1.¢.,
w(k)) and storage redundancy.

The FIG. 4 illustrates the average probability to correctly
infer the locations of patient’s real SNPs (for the curious party
at the SPU) with varying mean values of the LD strength
between two SNPs (1.e., u(l)) and storage redundancy.

In the FIGS. 5 and 6, we show the Average{Pr(SNP/=1)!
for varying standard deviations of k and 1, and with 500%
storage redundancy as follows: (1) 1n FIG. 5, we vary o(k) and
w(k), when u(1)=0.8 and o(1)=0.15, and (11) in FIG. 6, we vary
o(l) and (1), when w(k)=2 and o(k)=0.75. We observe that the
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inference power of the curious party varies (either increases
or decreases) with an increasing value of o(k) (o(l)) depend-
ing on w(k) (u(l)), and, as expected, all curves converge to a
single value for higher values of o(k) (o(1)).

Next, considering the individual characteristics of the real
SNPs (i.e., their severity levels), we analyze the level of
genomic privacy of a patient against a curious party at the
SPU. By the level of genomic privacy, we understand the level
of iformation that a third party can infer about the real
variants of a patient. The severity of a SNP, can be defined as
the privacy-sensitivity of the SNP when SNP,”=1 (i.e., when
it exists as a variant at the patient P). For example, a real SNP
revealing the predisposition of a patient for Alzheimer’s dis-
case can be considered more severe than another real SNP
revealing his predisposition to a more benign disease. Sever-
ity values of the SNPs are determined as a result of medical
studies (depending on their contributions to various diseases)
and tables of disease severities provided by msurance com-
panies (€.g., percentage of imvalidity). We denote the severity

of a real SNP 1 as Vi, and 0=Vi=1 (1 denotes the highest

severity). Thus, we define the genomic privacy of the patient
P as below:

_ Z log,(PHSNPF = 1)) x V, (3)

EETP‘

We do not use the traditional entropy metric [37, 38] to
quantify privacy, as only one state of SNP” poses privacy
risks (i.e. SNP/=1), as discussed before.

First, we study the relationship between the storage redun-
dancy and the severity of the real SNPs by focusing on three
types of patients: (1) patient A, carrying mostly low severity
real SNPs (invy ,), (1) patient B, carrying mostly high severity
real SNPs (in vz), and (111) patient C, carrying mixed severity
real SNPs (1inv ). For each patient, the highest level of privacy
1s achieved when the storage redundancy 1s maximum (as 1n
Method 1 1n Section 2.3). Thus, we recognize this level as
100% genomic privacy for the patient. For the evaluation, we
take the highest privacy level of patient C as the base and
normalize everything with respect to this value. We use the
following parameters for the simulation. The severities of
patient A’s and patient B’s real SNPs are represented as
truncated Gaussian random variables with (LA, cA)=(0.25,
0.15) and (uB, oB)=(0.75, 0.15), respectively. Furthermore,
the severity of patient C’s real SNPs are represented as a
uniform distribution between O and 1. We also set u(1)=0.8,
o(1)=0.235, u(k)=2, and o(k)=0.75. In FIG. 7, we 1llustrate the
increase in privacy with increments in the storage redundancy
tor these three types of patients (A, B, and C).

We observe that by increasing the storage redundancy, a
patient with high severity real SNPs gains more privacy than
a patient with lower severity real SNPs, hence the storage
redundancy can be customized for each patient differently
based on the types of his real SNPs. It can be argued that the
amount of storage redundancy for a patient can leak informa-
tion (to the curious party the SPU) about the seventies of his
real SNPs. However, the severity of the SNPs 1s not the only
criteria to determine the storage redundancy for a desired
level of genomic privacy as we discuss next.

Finally, we study the relationship between the severity of
the real SNPs, the number of LD pairs per SNP (number of
SNPs with which a particular SNP has LD, 1.e., k), and the
storage redundancy. We assign the Vi values of the real SNPs
(1n v,) following a uniform distribution between 0 and 1. We

set the LD parameters as u(1=0.8, o(1)=0.25, wk)=2, and
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o(k)=1.5. Then, we observe and compare the following
potential scenarios 1n different types of patients: (1) The real

low severity SNPs of the patient (1.e., his real SNPs with low
V1 values) have a higher number of LD pairs (1.e., higher k
values) with respect to his high severity real SNPs (we note
that, 1n all cases, k values are obtained from the same trun-
cated Gaussian distribution with uw(k)=2, and o(k)=1.5); (11) k
values are assigned randomly to the SNPs; and (111) the real
high severity SNPs of the patient (1.e., his real SNPs with high
V. values) have a higher number of LD pairs (1.e., higher k
values) with respect to his low severity real SNPs. Again, we
set a patient’s genomic privacy to 100% when the storage
redundancy 1s maximum at the SPU (as in Method 1 1n Sec-
tion 2.3). We illustrate our results in FIG. 8, and show differ-
ent storage redundancy requirements for different types of
patients (to provide the same level of privacy). For example,
to achieve 40% genomic privacy, the SPU requires 400%
storage redundancy for a patient whose less severe real SNPs
have more LD pairs, whereas 1t requires 600% storage redun-
dancy for another patient whose more severe real SNPs have
more LD pairs (which means more storage per patient, as
discussed 1n Section 3.1). This result also supports our belief
to customize the storage redundancy for each patient.

We obtained similar patterns for further variations of the
variables but we do not present these results due to the space
limitation. In summary, depending on the actual u(k), o(k),
w(l), o(l), and V, values (which will be determined as a result
of the medical research), the storage redundancy can be deter-
mined (and customized for each patient based on the types of
his variations) for this approach to keep the genomic privacy
of the patient at a desired level. Note that the curious party at
the SPU cannot infer the real SNPs of the patient (or the
severities ol the patient’s real SNPs) from the amount of
customized storage redundancy, because the storage redun-
dancy (for a desired level of genomic privacy) depends on
various factors. For example, a patient with low storage
redundancy (for a desired level of genomic privacy) could
mean that (1) he carries mostly low severity real SNP (as in
FIG. 7), (11) he carries mixed severity real SNPs, but his less
severe real SNPs have more LD pairs (as in FIG. 8), (111) his
real SNPs (regardless of their severities) have low number of
LD pairs (as in FIG. 3), or (1v) his real SNPs (regardless of
their seventies) have low LD strengths (as in FIG. 4).

2.5 METHOD 3: ENCRYPITED LOCATIONS Al
THE SPU

Let L”={L:iey,} represent the set of locations (on the
DNA sequence) of the patient P’s real SNPs (in y,). As
opposed to the previous two approaches, here, we propose to
encrypt the locations of the SNPs along with their contents.
By doing so, we save storage costs by storing only the real
SNPs in v, at the SPU (around 4 million) while providing the
highest level of privacy (as i Section 2.3). These benefits,
however, come with a cost 1n the practicality of the algorithm,
introducing extra steps for the patient (P) during the protocol.
Although we can assume that these extra steps can easily be
handled via the patient’s device such as smart card or mobile
device, this approach still requires more message exchanges
(as will be described next) between the parties, compared to
the previous two approaches.

In some environments, dividing the weak private of the
patient, and distributing two shares of the weak private key to
the SPU and MU might not be acceptable (e.g., when 1t 1s
likely that the SPU and MU will collaborate to retrieve
patient’s weak private). Theretfore, for the sake of complete-
ness, 1n the following, we present Method 3 with and without
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proxy encryption (i.e., without distributing the patient’s pri-
vate key to other parties). The Method 1 and Method 2 can
also be modified similarly to avoid proxy encryption.

2.5.1 WITH PROXY ENCRYPTION

The 1nitial steps of the protocol are the same as in Section
2.3, except for Steps 2 and 3 1n which the locations of the
SNPs are encrypted and a Bloom filter [39] 1s generated.
Below, we summarize the different steps of this approach (the

unchanged steps are not repeated). These steps are illustrated

in FI1G. 9.

Step 2: The Certified Institution (CI) first determines the
locations of P’s real SNPs (in y,) and constructs L*.
Then, the CI constructs a Bloom filter using the elements
of L* as inputs.

A Bloom filter 1s a simple space-efficient randomized data
structure for representing a set 1 order to support member-
ship queries [39]. A Bloom filter for representing a set L? is
described by an array of K bits, mnitially all set to 0. It employs

independent hash functionsH,, ..., H, withrange {1, ...,k }.
For every element L €l.”, the bits H (L), . . ., H, (L,) i the
array are setto 1. A location can be set to 1 multiple times, but
only the first change has an effect.

After constructing the Bloom filter, the CI encrypts each
element in L” by using a symmetric key shared between the
CI and P (established during Step O as 1n Section 2.3) and
generates L. ={E(L,):iey,}. The CI also encrypts a dummy
variant (representing the potential SNPs 1n €2,,) along with the
real SNPs of the patient (using P’s public key). Furthermore,
the Cl associates a dummy position L, for this dummy variant
and encrypts L, using the symmetric key between the CI and
P to obtain the encrypted dummy position E(L,).

Step 3: The CI sends the constructed Bloom filter and the
encrypted dummy position E(L,) to the patient for stor-
age 1to the patient device, and encrypted SNPs and
locations to the SPU.

Step 6: The MU tells the patient the locations of the SNPs
that are required for the susceptibility test or requested
directly as the relevant SNPs.

Step 7: 'The patient inputs each requested location L, to the
Bloom filter to determine 1f the corresponding location
1s stored at his Bloom filter (1.e., to determine 1f he has a
real SNP at the corresponding location).

To check1f L, belongs to [”, the patient checks whether all
H,({L),...,H (L) are set to 1. If not, L, definitely does not
beleng to LP Otherwme the patient as Sumes L, el.”, although
this may be wrong with some probability. That 1s, a Bloom
filter could yield a false positive, where 1t suggests that L, 1s in
L” even though it is not. This probability can be decreased at
the expense of increasing Bloom filter length (i.e., ). Further,
the false positive probability can be significantly reduced by
using some proposed techniques such as [40, 41]. As a result
of this process
(a) If the location 1s 1n his Bloom filter (1.e., 1f he has a real
SNP at the corresponding location), P encrypts the location
with the symmetric key between the CI and P.

(b) If the location 1s not 1in his Bloom filter (1.e., 11 he does not
have a real SNP at the corresponding location), P uses E(L)
as the encrypted location.

We note that the above operations can be easily done via the
patient’s device (e.g., by reading the patient’s device at the
MU as a consent to the test) or mobile device (e.g., by con-
senting via a smart phone application) by using the stored

Bloom filter output, E(L,), and symmetric key between the CI
and P.
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Step 8: The patient sends the SPU the encrypted locations
of the SNPs which will be provided to the MU.

Step 9: The encrypted SNPs are sent to the MU 1n the same
order as they are requested 1n Step 6.

(a) If only the end-result 1s requested, the corresponding
SNPs are re-encrypted at the SPU under the patient’s public
key (re-encryption under the same public key 1s discusses 1n
Section 2.1). As there 1s only one value stored at the SPU
representing the contents of the potential SNPs at which P
does not have a variant (at position E(L,)), this value 1s
re-encrypted for each different request of a non-variant, so
that the MU cannot infer the locations of the non-variants of
the patient.

b) If relevant SNPs are requested, the SPU partially decrypts
the relevant SNPs by using a part of P’s private key following
a proxy encryption protocol (Section 2.1).

Step 10: Re-encrypted (or partially decrypted) SNPs are
sent to the MU by the SPU.

Step 11: One of the following two scenarios occur at the
MU: (a) If only the end-result 1s requested, the MU
computes P’s total susceptibility to disease X by using
the homomorphic properties of the Paillier cryptosystem
(stmilar to the discussion in Section 2.6) under the
patient’s public key. Although the discussion 1n Section
2.61s held considering Method 1 (or Method 2), a similar
technique 1s used for this approach at the MU, hence we
do not discuss 1t again.

(b) If relevant SNPs are requested, the MU decrypts the
message received from the SPU by using the other part of P’s
private key and recovers the relevant SNPs.

Step 12: The MU sends the encrypted end-result to the
SPU.

Step 13: The SPU partially decrypts the end-result using a
part of P’s private key by following a proxy encryption
protocol (Section 2.1) and sends 1t back to the MU.

Step 14: The MU decrypts the message received from the
SPU by using the other part of P’s private key and
recovers the end-result.

2.5.2 WITHOU'T PROXY ENCRYPTION

In this approach, the SPU stores only the encrypted SNPs
and encrypted locations. Genomic data encrypted by P’s pub-
lic key 1s only decrypted at P, and the weak private key of P
remains only at P (1.e., shares of the weak private key are not
distributed to the SPU or MU). Most of this approach 1s the
same as Method 3 with proxy encryption. Indeed, the first 8
steps of the algorithm are the same, except for the distribution
of parts of P’s private key. The only difference 1s the transfer
of the end-result or the relevant SNPs to the MU as follows:

It the relevant SNPs are requested by the MU, the SPU
sends the encrypted SNPs (by P’s public key) to P. P
decrypts these SNPs (using his weak private key) and
sends them to the MU.

If the end-result of the susceptibility test 1s requested by the
MU, the disease-susceptibility test 1s done (via homo-
morphic operations) at the MU and the encrypted end-
result 1s sent to P. Then, P decrypts the end-result and
sends 1t back to the MU.

We note that the security of the communication between P
and the MU 1s provided by symmetric keys as discussed
betore. The above operations put some more burdens on the
patient during the protocol. However, we emphasize that
these operations can be smoothly done on the patient’s device
without requiring a substantial effort from the patient himself.

In summary, as the locations of the real SNPs are
encrypted, a curious party at the SPU cannot infer the con-
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tents of the SNPs from their locations (as i Section 2.3),
hence 1t 1s enough to store only the real SNPs 1n v,. Further-
more, the privacy provided by this approach (with or without
proxy encryption)is the same as 900% redundancy in Method
2 (1.e., stmilar to Method 1), hence we do not discuss 1t again.
Another advantage of this approach (1.e., Method 3 1n gen-
eral) 1s that individual contributions of the genetic variant
markers remain secret at the MU, because the homomorphic
operations are conducted at the MU. This advantage might
become more significant when this approach 1s used for per-
sonalized medicine methods in which the pharmaceutical
company (embodied 1n this case as the medical unit) does not
want to reveal the genetic properties of its drugs. Thus, 1
introducing the described extra steps for the patient and few
additional message exchanges between the parties are toler-
ated, this approach operates with relatively modest storage
and yet provides very good privacy.

2.6 COMPUTING DISEASE SUSCEPTIBILITY
VIA HOMOMORPHIC OPERATIONS

We now present the disease-susceptibility test via homo-
morphic operations at the SPU for Method 1 (Section 2.3) and
Method 2 (Section 2.4). Stmilar techniques can be used for
Method 3 at the MU, as discussed 1n Section 2.5.

The SPU uses a proper function to compute P’s predicted
disease susceptibility via homomorphic encryption. There
are different functions for computing the predicted suscepti-
bility. In [25], focusing on one example of many diseases that
require a susceptibility test involving multiple SNPs, Kathire-
san et al. propose to count the number of unfavorable alleles
carried by the patient for each SNP related to a particular
disease. Similarly, 1n [26], Ashley et al. propose to multiply
the Likelihood Ratios (LRs) of the most important SNPs for
a particular disease 1n order to compute a patient’s predicted
susceptibility. LR values are determined as a result of medical
studies. Furthermore, a weighted averaging function can also
be used, which computes the predicted susceptibility by
weighting the contributions of SNPs by their contributions
(e.g., LR values ol the SNPs). Note that our proposed privacy-
preserving mechanisms are not limited by the types of the
functions (used to test the disease susceptibility). It 1s
expected that these functions will evolve over time; hence the
proposed algorithms can be developed to keep up with this
evolution.

In the following, we discuss how to compute the predicted
disease susceptibility at the SPU by using a toy example to
show how the homomorphic encryption 1s used at the SPU.
Initially, we assume that the function at the SPU 1s weighted
averaging (which 1s an advanced version of the function pro-
posed 1n [25]) and show how the predicted susceptibility 1s
computed using encrypted SNPs. Then, we show how the

function proposed 1n [26] (1.e., multiplication of LR values)
can be utilized at the SPU.

2.6.1 WEIGHTED AVERAGING

Assume that (for simplicity) the susceptibility to disease X
is determined by the set of SNPs Q={SNP__.SNP, }, which
occur at particular locations of the DNA sequence. SNP,
and SNP * are not necessarily among the real SNPs of the
patient P (i1.e., P does not need to have a variant at those
locations). The contributions of different states of SNP,” for
ie{m, n} to the susceptibility to disease X are computed via

previous studies (on case and control populations) and they
are already known by the MU. That is, p,(X) @Pr

(XISNP,”=0) and p,’(X) @Pr(XISNP,/=1) (ie{m, n}) are
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determined and known by the MU. Further, the contribution
(e.g., LR value) of SNP, to the susceptibility to disease X is

denoted by C,;*. Note that these contributions are also com-
puted by previous studies on case and control groups and they
are known by the MU.

As we have discussed before, the SPU stores the set of
SNPs of the patient P, encrypted by P’s publickey (n, g, h=g").
Encryption i1s done using the modified Paillier cryptosystem
as discussed in Section 2.1. Thus, the SPU uses E(SNP_*, g¥)
and E(SNP, *, ¢*) for the computation of predicted suscepti-
bility of P to disease X. From now on, we drop the r values in
the above encrypted messages for the clarnity of the presenta-
tion (r values are chosen randomly from the set [1, n/4] for
every encrypted message as discussed 1n Section 2.1). Simi-
larly, the MU provides the following to the SPU in plaintext:
(1) the markers for disease X (SNP,, and SNP,), (11) corre-
sponding probabilities p,'(X), 1e{m n} and je{0,1}, and (iii)
the contributions of each SNP C/*

Next, the SPU encrypts J(]E{O 1}) using P’s public key to
obtain E(0, g*) and E(1, g*) for the homomorphic computa-
tions. This encryption can also be done at the MU and sent to
the SPU. Alternatively, we might assume that SNPs of a
patient are stored at the SPU in pairs of {E(ISNP,”-0l, g"),
E(ISNP,”-11,g")} foreach SNP,”, instead of the actual values
of the SNPs. In this case, the above encryption at the SPU
would not be required.

The SPU computes the predicted susceptibility of the
patient P to disease X by using weighted averaging.

This can be computed 1n plaintext as below:

1 [ Ph(X)
CX 1 CX ZC{(O—U[SNPP‘”

=M

(9)
10 [SNPF — 0]}.

The computation 1n (9) can be realized using the encrypted
SNPs of the patient (and utilizing the homomorphic proper-
ties of the Paillier cryptosystem) to compute the encrypted
disease susceptibility, E(S~, g°) as below:

| NC& 0 (10)
{[E(SNPP,@E(L@I]W 1 }
- . where

E(Sp. ¢") :{H

2
i U [EGSNPE, g)EQ0, g7
PL(X) (11a)
1 _ *0

A= 5T
A2 o P (X) (11b)

T 10
1 (11¢)

0= CX +CX’

We note that the end-result in (10) 1s encrypted by P’s
public key.

Then, the SPU partially decrypts the end-result E(S~, g)
using its share (x*) of P’s prwate key (X) as dlscussed 1n
Section 2.1 to obtain E(S,", gx ) and sends 1t to the MU.
Finally, the MU decrypts E(S ;" gx ) using its share (x'*)) of
P’s private key to recover the end result S~

In some genetic tests, the types of the real SNPs (e.g.,
homozygous or heterozygous) become also important. In this
case, SNP/” can take three different values from the set 10, 1,
2} to represent a potential SNP (i.e., nonvariant), a real
homozygous SNP, and a real heterozygous SNP, respectively.
In such a scenario, to conduct the disease-susceptibility test
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via homomorphic operations, the SPU should store the
squared values of the SNPs. That is, for each SNP,” of the

patient P, the SPU should store E((SNP,/)*, g*). Depending,

on the types of genomic tests that would be supported by the
SPU (and the functions required for these tests), the format of
storage of patient’s SNPs can be determined beforehand, and
SNPs can be stored accordingly just after the sequencing
process.

2.6.2 LIKELIHOOD RATIO TEST

We now assume that the predicted disease susceptibility 1s
computed from the multiplication of Likelihood Ratios (LRs)
of the corresponding SNPs as 1n [26] and show how such a
computation would be handled at the SPU by using homo-
morphic operations.

In this approach, the predicted disease susceptibility 1s
computed by multiplying the initial risk of the patient (e.g.,
for disease X) by the LR value of each SNP related to that
disease (LR value of a SNP i depends on the value of SNP/
atthe patient P). The mitial risk of the patient P for the disease
X is represented as 1,”. We note that 1. is determined by
considering several factors (other than patient’s genomic
data) such as patient’s age, gender, height, weight, and envi-
ronment. Thus, this mnitial risk can be computed directly by
the MU. We also note that 1f the LR value corresponding to a
particular SNP 1s less than one, the risk for the disease
decreases. Otherwise, 1f the LR value 1s greater than one, the
risk increases for the corresponding disease.

Similar to before, we assume that the susceptibility to
disease X is determined by the set of SNPs in Q={SNP,_ .
SNP, }. We denote the LR values due to SNP/=0 and
SNP, =1 for disease X as L, (0) and L,/ (1), respectively.

The SPU stores the SNPs of the patient P, encrypted by P’s

public key. The MU sends the following to the SPU: (i) L+’ (§)
values (ie{m, n} andje{0,1}) in plaintext, and (ii) the markers
for disease X. The MU also encrypts the log of 1imtial risk
value, In(I,”), by P’s public key and sends E(In(1,"), g) to the
SPU. Alternatively, the contribution of the initial risk to the

disease susceptibility can be included to the end-result at the
end, at the MU.

The Paillier cryptosystem does not support multiplicative
homomorphism in ciphertext (1t only supports the multipli-
cation of a ciphertext with a constant as discussed 1n Section
2.1). Thus, mstead of multiplying the LR values, we propose
using addition in log-domain at the SPU. Thus, the SPU
computes the predicted susceptibility of P to disease X as
below:

E(In(Sp, g) = (12)

E(In(I}, g%) % ]—I

icman .

([E(SNPE, ¢)-E(L, )\ x }
2 where
[E(SNPE, g%)-E@©, g°)!

_ In(L), (0)) (13a)

O -1)

[
e ;

1 _
j

> In(L (1) (13b)

T (1-0)

We note that (12) corresponds to the below computation 1n
plaintext:
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[n(S%) = (14)

In(f%) + Z {[SNP? ~1]x%

ISm,N

In(L'y (0))

=T + [SNPF — 0] x

In(Ly (1))
(1-0) [

As betore, the SPU partially decrypts E(In(SX P), g*) using
x(1) (its share of P’s private key) to obtain E(In(S ;*), g"@) and
sends it to the MU. Finally, the MU decrypts E(In(S ), gx(z))
using x* (its share of P’s private key) to recover In(S ;*), and
computes

(5P

to obtain S,*. Similar to weighted averaging, if the types of
the real SNPs are used for the test (in which there are three

possible states for SNP,"), squared values of the SNPs should
be stored at the SPU for each patient.

3 EVALUAITION AND IMPLEMENTATION OF
THE PROPOSED METHODS

In F1G. 10, based on the discussion in the previous sections,
we graphically compare the proposed methods considering
the level of privacy they provide, their practicality (for the
patient), and their storage requirements (at the SPU). In this
section, we report our findings about the complexity and
security of the proposed methods.

3.1 IMPLEMENTATION AND COMPLEXITY
EVALUATION

To evaluate the practicality of the proposed privacy-pre-
serving algorithms, we implemented them, and assessed their

24

bility using weighted averaging (at the SPU or MU, see Sec-

tion 2.6.1 as well as LR test 1n Section 2.6.2 which also has

similar complexity) and real SNP profiles from [42]. Our

implementation relies on a MySQL 5.5 database managed by
> the open source tool MySQL Workbench. To provide a plat-
form-independent implementation, we used the Java pro-
gramming language along with the open-source Integrated
Development Environment, NetBeans IDE 7.1.1., for the
implementation of the Java code. We note that our code for the
implementation 1s not optimized, and better results can be
expected with an optimized implementation.

10

In Table II, we summarize the computational and storage

complexities of the proposed methods at (1) Certified Institu-
tion (CI), (1) SPU, (11) MU, and (1v) P. We evaluate the
proposed methods considering the following costs: (1)

15

encryption of patient’s variants, (1) disease-susceptibility
test at the SPU via homomorphic operations (using ten vari-
»o ants), (111) decryption of the end-result (or relevant SNPs), (1v)
proxy encryption, and (v) storage costs, in which 0 represent

the percentage of storage redundancy at the SPU. We did not

explicitly implement the Bloom filter (for Method 3) and

symmetric encryption/decryption between the parties for the

= security of the communication. However, the computational

costs due to these operations are negligible compared to
Paillier encryption/decryption and homomorphic operations.

We emphasize that the encryption of the variants at the CI
1s a one-time operation and 1s significantly faster than the
sequencing and analysis of the sequence (which takes days).
Further, this encryption can be conducted much more eifi-
ciently by computing some parameters, such as (g', h") pairs,
olftline for various r values, for each patient. Indeed, by com-
puting (g, h") pairs offline, we observe that the encryption
takes only 0.017 ms per variant at the CI.

30

35

TABLE 2

Computational and Storage Complexities of the Proposed Methods

@CI

Method 1 and Method 2

30 ms./variant

@SPU @MU
Paillier Encryption Homomorphic Operations Proxy Encryption Storage Paillier Decryption
1 sec. (10 variants) 2 ms. 26 ms.

9
500 x (1 n m)MB/patient

Method 3 with proxy encryption

@ ClI @SPU @MU
Paillier Encryption Proxy Encryption Storage Homomorphic Operations Paillier Decryption
30 ms./variant 2 ms. 500 MB/patient 1 sec. (10 variants) 26 ms.
Method 3 without proxy encryption
@CI @SPU @MU @P
Paillier Encryption Storage Homomorphic Operations Paillier Decryption

30 ms./variant

storage requirements and computational complexities on
Intel Core 17-2620M CPU with 2.70 GHz processor under
Windows 7 Enterprise 64-bit Operating System. We set the

s1ze of the security parameter (n 1n Paillier cryptosystem 1n
Section 2.1) to 1024 bits. We computed the disease suscepti-

500 MB/patient 26 ms.

1 sec. (10 variants)

It 1s also possible to conduct private statistical tests (by a
medical researcher) on the data stored at the SPU 1n order to
65 get statistics about the variants of multiple patients. Conduct-

ing such a statistical test for a variant (about its type) on 100K
patients takes around 55 minutes at the SPU and scales lin-
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carly with the number of patients. Note that such a statistical
test 1s only possible with Method 1 or Method 2; using
Method 3 and querying the encrypted locations of SNPs from
100K patients 1s not practical for this application.

In summary, all these numbers show the practicality of our
privacy-preserving algorithms.

3.2 SECURITY EVALUAITTON

The proposed schemes preserve the privacy of patients’
genomic data relying on the security strength of modified
Paillier cryptosystem (1in Section 2.1). The extensive security
evaluation of the modified Paillier cryptosystem can be found
in [33]. Below we summarize two important security features
of this cryptosystem.

One-wayness: This property means that no efficient adver-
sary has any significant chance of finding a preimage to
the ciphertext when he sees only the ciphertext and the
public key of the patient. It 1s shown 1n [33] that the
one-wayness of the modified Paillier cryptosystem can
be related to the Lift Diflie-Hellman problem which 1s
shown to be as hard as

the partial Discrete Logarithm
problem.

Semantic security: This property ensures that an adversary
will be unable to distinguish pairs of ciphertexts based
on the message they encrypt. It 1s shown 1n [33] that 1f
Decisional Diffie-Hellman Assumption (a computa-
tional hardness assumption about a certain problem
involving discrete logarithms 1n cyclic groups) in Z, 2
holds, then the modified Paillier cryptosystem 1s seman-
tically secure.

Finally, if the weak private key of the patient, x, 1s ran-
domly divided and distributed to the Storage and Processing
Unit (SPU) and Medical unit (IMU) as in Method 1, this weak
private key could be revealed 1t the MU colludes with the
SPU, but the factors n, p, and q remain secret. We note that
such a collusion 1s not considered 1n this study. However, for
the sake of completeness, 1n Section 2.5.2, we present an
alternative approach (Method 3 without proxy encryption)
that avoids distributing the patient’s weak private key to other
parties, hence 1s robust against such a collusion.
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The invention claimed 1s:
1. A method to process genomic data comprising the steps
of:

associating, by a Certified Institution, a patient identifica-
tion for a given patient;

generating, by the Certified Institution, a pair of asymmet-
ric keys related to said patient comprising a private and
a public key;

analyzing, by the Certified Institution, an output of a Deox-
yribonucleic Acid (DNA) sequencer and preparing an
aligned genomic data for said patient comprising
approved variants, said approved variants being
approved by medical authorities, each approved variant
representing a position i1n the genome and a value rep-
resenting a nucleotide that varies between individuals;

extracting, by the Certified Institution, real and potential
variants from said approved variants, said real and
potential variants having each a position, said real vari-
ants being a subset of the approved varants and being
different for each human being, said potential variants
being the remaining part of the approved variants;

selecting, by the Certified Institution, all or part of the
potential variants;

analyzing, by the Certified Institution, the correlation
between the selected potential variants and a privacy
sensitivity of the real variants;

selecting, by the Certified Institution, a number of other
potential variants, said number being determined
according to the previous analysis and a level of privacy
required;

encrypting, by the Certified Institution, the value of each
real variant and selected potential variants with the pub-
lic key of the patient;

storing, by the Certified Institution, the encrypted values
with their respective positions and the patient 1dentifi-
cation 1nto a Storage and Processing Unit;

dividing, by the Certified Institution, the private key into at
least a first and a second part;

storing, by the Certified Institution, the second part of the
private key 1n the Certified Institution or in a patient
device;

transmitting, by the Certified Institution, the first part of the
private key to the Storage and Processing Unit;

selecting by a medical unit a personalized clinical test to be
carried out and related genetic markers, each marker
having a position and a contribution;

determiming, by the medical unit, the contribution of each
marker according to the personalized clinical test
selected;

receving, by the Storage and Processing Unit from the
medical unit, genetic markers related to the personalized
clinical test, the respective contributions of the related
genetic markers and the patient i1dentification of the
patient;

retrieving by the Storage and Processing Unit the
encrypted values for said patient matching the position
of the related genetic markers;
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executing by the Storage and Processing Unit a genetic test
by using the retrieved values, and the contribution of the
respective genetic markers thanks to homomorphic
operations;

partially decrypting by the Storage and Processing Unit the
result of the genetic test using the first part of the private
key:

sending by the Storage and Processing Unit the decrypted
result to the medical unit;

whereby the medical unit can use the second part of the
private key to obtain the result of the performed person-

alized clinical test.
2. The method to process genomic data according to claim

1, further comprising:

generating, by the Certified Institution, a dummy variant
comprising a dummy position and a dummy value, said
dummy position being outside of the overall vanant
positions ol a sequence;

encrypting, by the Certified Institution, the positions of the
real variants with the symmetric key of the patient;

encrypting, by the Certified Institution, the dummy value
with the public key of the patient;
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encrypting, by the Certified Institution, the position of the
dummy varniant with the symmetric key of the patient;

storing, by the Certified Institution, together with the
encrypted vanants, the dummy variant as well as the
encrypted positions and the encrypted dummy position
into a Storage and Processing Unit;

storing, by the Certified Institution, the position of the
dummy variant into the patient device;

determining by the Certified Institution a set of positions
which are common between the marker’s position and
the real variant’s positions;

recerving by the Certified Institution from the medical unit
an encrypted set of positions with the symmetric key of
said patient, and for the marker’s positions not present in
the variant’s position, dummy positions;

sending by the Certified Institution to the Storage and
Processing Unit the encrypted marker’s positions as
well as the patient 1dentification; and

retrieving by the Storage and Processing Unit the
encrypted values for said patient at these encrypted loca-
tions and sending them to the medical unit.
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