12 United States Patent

Ding et al.

US009269127B2

US 9,269,127 B2
Feb. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54) DE-NOISING OF REAL-TIME DYNAMIC
MAGNETIC RESONANCE IMAGES BY THE
COMBINED APPLICATION OF
KARHUNEN-LOEVE TRANSFORM (KLT)
AND WAVELET FILTERING

(71) Applicant: Ohio State Innovation Foundation,
Columbus, OH (US)

(72) Inventors: Yu Ding, Columbus, OH (US);
Prashanth Palaniappan, Folsom, CA
(US); Orlando P. Simonetti, Columbus,

GO6T 2207/10076 (2013.01); GO6T 2207/20064
(2013.01); GO6T 2207/20182 (2013.01); GO6T
2207/30045 (2013.01)

(38) Field of Classification Search
CPC e, GO06T 5/00; HO4N 1/00
USPC ... 382/128, 129, 130, 131, 132, 133, 134;
600/407, 410, 411, 425, 427
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

OH (US) 5,534,925 A *  7/1996 ZhONE w.ooovvveeeereea.. 348/384.1

8,675,942 B2* 3/2014 Chang ................ GO1R 33/4824

(73) Assignee: Ohio State Innovation Foundation, 382/131
2002/0002455 Al* 1/2002 Accardietal. ................ 704/226

Columbus, OH (US)

( *) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 70 days.

(21)  Appl. No.: 14/169,106

* cited by examiner

Primary Examiner — Aboliazl Tabatabai

(74) Attorney, Agent, or Firm — Meunier Carlin & Curfman
LLC

22) Filed Jan. 30, 2014 ) ABSTRACT
(22)  Filed A A hybrid filtering method called Karhunen Loeve Transform-
(65) Prior Publication Data Wavelet (K W) filtering 1s presented to de-noise dynamic car-
diac magnetic resonance 1mages that simultaneously takes
US 2014/0212015 Al Jul. 31, 2014 advantage of the intrinsic spatial and temporal redundancies

Related U.S. Application Data

(60) Provisional application No. 61/759,119, filed on Jan.
31, 2013.

of real-time cardiac cine. This filtering technique combines a
temporal Karhunen-Loeve transform (KLT) and spatial adap-
tive wavelet filtering. KW filtering has four steps. The first 1s
applying the KL'T along the temporal direction, generating a
series of “eigenimages”. The second 1s applying Marcenko-
Pastur (MP) law to identify and discard the noise-only e1gen-

images. The third applying a 2-D spatial wavelet filter with
(51) Int. CI. adaptive threshold to each eigenimage to define the wavelet
GO6K 9/00 (2006.01) filter strength for each of the eigenimages based on the noise
G061 5/00 (2006.01) variance and standard deviation of the signal. Lastly, the
G061 5/50 (2006.01) inverse KL'T 1s applied to the filtered eigenimages to generate
A618B 5/05 (2006.01) a new series of cine images with reduced 1image noise.

(52) U.S.CL
CPC . GO6T 5/002 (2013.01); GO6T 5/50 (2013.01);

100

"

30 Claims, 26 Drawing Sheets

Apply distribution
function to

discawd
aiseonhy

: I}r“ :
 noised
. ME

Spatial
- Wavelet
W filteringm |
| sigeniniage |
P ospace

 Dvaamie |
MBS | Application

of BLT

M AR
Lz i

02§ b 104

e |

L series
L 112

| elgeniniages |

106 108




US 9,269,127 B2

Sheet 1 of 26

Feb. 23, 2016

U.S. Patent

F Old

801

2} ou
sapras | |

Iz un

zasennuania || ] san
Ajpo-asioy || ] asemm

pReasIp R IR A

aseds
asRwnase | |
w4
EIEEGITON B
e

1T
o B e LY

SN

pasion

o 0} uojoun; R mmﬁwﬁm
~2(] m ]

uoinguisip Ajddy




US 9,269,127 B2

¢ Ol4

Sheet 2 of 26

(spwmayuestay) | e { e op peaoduweg) {saumiradean )

H

aouds ofunmuadiy | N 1T N souds oF

00<¢

Feb. 23, 2016

U.S. Patent



U.S. Patent

Image Frame

Feb. 23, 2016

Approximation §

— LL;

Horizontal
Detaill — HL,

Vertical Detall
— LH;

Diagonal Detall
— HH;

Sheet 3 of 26

Approximation
— LL;

Horizontal
Detaill — HL,

Vertical Detall
— LH>

Diagonal Detall
— HH,

FIG. 3

US 9,269,127 B2

Approximation
—LLs

Horizontal
Detaill — HL;

Vertical Detall
— LH,

Diagonal Detall
— HH;




U.S. Patent Feb. 23, 2016 Sheet 4 of 26 US 9,269,127 B2

FIG. 4A

—Vertical Details

............. H@nmntaiefﬁ@taﬁ

Signal Standard D

FIG. 4B



U.S. Patent Feb. 23, 2016 Sheet 5 of 26 US 9,269,127 B2

.* LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LT L L LT I S S o T T T TS ek kLR LR R L EEEEEEEEEEEEEE R R R LR LR R R R L L L F E L L L L L ELEEEEEEELEEEEE R R R R EEEEE R R R L L [T |,.._ .

-t L] ] . E & I L ]

& 4 L] -

.*. r. . - ..'- 1 Y

....... P P . -

3 .

e . -

5 .

P -

EY .

........ -

» .

P -

5 .

P -

& .

P -

3 .

P -

5 .

P -

EY .

P -

» .

P -

5 .

P -

EY .

P -

» .

P -

5 .

P -

& .

P -

3 .

........ -

5 .

o -

EY .

P -

& .

. *

.. .

"l!_ql_ LA

P -

3 .

P -

5 .

P -

& .

P -

» .

P -

5 .

P -

EY .

P -

» .

P -

5 .

P -

& .

P -

3 .

P -

5 .

P -

EY .

P -

» .

P -

5 .

P -

EY .

P -

» .

P -

5 .

P -

& .

i -

» .

P -

5 .

P -

EY .

P -

Mt ety

DY -.

& .

P -

3 .

P -

5 .

o -

EY .

P -

» .

P -

5 .

P -

EY .

P -

» .

P -

5 .

P -

& .

P -

3 .

P -

5 .

. P -
EY .

- . P -
. . » .
5 .

. P -

EY .

. h . P -
» .

. . P -
5 .

. - P -

oo oo * .
. . ST -
. » .

T » .

. tT. ) A i
» .

- L Y :
N t: : & .
- P -

3 .

. . P -
- » .
Im * -
. » ]
. P -

» .

. . P -
' » .

: I&. .*. -.
.. . P -
» .

| ka ..* .
----- * ‘.
- x .*. ‘.
o -* 0 . -
...... P L]
T . e -
.. . ‘.

5 .

' L ]

L S A e, '#W-ww W .
. » - Ll ."r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'iw W"‘ "'.!."""'""ﬂ."' m"‘."."'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"' rrrrrrrrrrrrrrrrrrrr -, r"'r"'."'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'r"'."'rw"'"F‘-"'-F' "'-ﬂp-"'""""'m“‘m"‘v"""'r,'-"'."'r"'r"'r"'r"'r"'."'r"'r"'r"'r"'r"'."'r"'r"'r"'r"'r'- rrrrrrrrrrr -, r-r*r'r*r*r*r-r*r'r*r'r*r-r*r'r-uﬁv "'m -

e T s e e e e e e e e e e e e e s e s, R R R T R R T T T T T e e T e T e e e e e e e e e e e s e e e s s Rl R R R T T T T T e e e T e e T e e T T e e e e e e e T T -

. : ) l4 ; x :' .

T .l"h“h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h h‘lh"h"h h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h "h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h“h"h" h"h h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h h"h h"h""‘h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h"h .‘h"h"h"h"h h“h‘-

5’3 ' 50 ‘iﬁﬁ

. '
i 'a._.a._a._.a._.a._a._.a._.a.__a._a._.a._a._.a._.a.__a._a._.a.__a._.a._.a._a._.a._.a.__a._a._.a._a._.a._.a.__a._a._.a.__a._a._.a._a._.a._.a.__a._a._.a.__a._.a._.a._a._a._.a.__a._a._.a._a. T T T N N N N N e a._q_.a.__a._a._.a._a._.a.‘a.__a._a._.a.__a._a.‘a.__a._a.‘q__a._a._.a.__a._.a._.a.__a._a._.a.__a._a._.J._a._a._.a.__a.__-.‘a.__a._a.‘a.__a._a.‘q__a._a.‘q__a._a.‘a.__a._a.‘a.__a._a.‘q__a._a.‘q__a._a.‘a.__a._a.‘a.__a._a.‘q__a._a._q T T T T T T T T T T T T T T T T T T N T T N T TN
L]
. r* _'l ' [ . . . L ..| [
. HLs .* . . . . .." e . T B - _ -.. o A R . . . .
- ¥ - . . . ) A . . . 1 . . . .
. . . . L ﬂ'. . . - . . . P . .
:+ SRR R, 1 X dJ . ) N E . 1 -
. .- . . ' . . . .
Tt ‘- . ' - 4 " <
. P . . . : . - T
! Ly N B, ; -
¥ h . .
r* 0 0
+ 1
¥ .
-

I
23
-3
ﬁ
fﬁ’
i
i
E

T
1
-

........ Dlagi}ﬁai {:}Etaiiﬁ

L]
.
L

1
k L
-|- -, -ll -|- Ill -, -|- LA AR AR RN R R R R R R R R R AR R R R R R R R R AR R R AR R R R AR R R R R R NN N

T
L
L |
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
]
[ ]
]
e

T T T T T T T T T T T T T T, T T T T T T T T T T, W T T T T T T T, T T T W T_ST T T CT_T, T T T_T, T T YT YT T_T_ YT, T_T_-1

MP Law Cutoff = 136

L)
. .

Fa

L}
]

B

.:.;

-f'-":lr"'"

g,,

----------------—-----—-----—--—--L-----—-----—-----—-----------—---l:--—-----—-----—-----—----.-—----q.—-:-—--—-----—-----—-----—-----—-----:--.-;--—-----—-----—-----—-----—--—H-—%

-

Thﬂ?ﬁh@ﬁ%%hmihﬁvﬁ?ﬁﬁﬁmﬁ%}

e T . T it i i e S e g e e R T S e S i T e e e N N e e e B
' .

A R T TR R S NG Sy R G NG, R R ey R AR, A I TR A IR R RN NG Sy R G, g g Rh,

-
“a

FIG. 5B



US 9,269,127 B2

Sheet 6 of 26

Feb. 23, 2016

FIG. 6A

U.S. Patent

W W

T YW OF W

X W ¥

W

e e e e e A
w

....
I

E
ar

ar ....”..rH.._.r......_..r.._..l”.r.-..r....I
w Y, H-.

i ur

L
X x
r

i
I"-_l-_........._....._....-..-_
»

Setetatetat et

iI" l'

oo e o e
xrnnvxrxx._.xxxrxuxvu.avnxnrrr

FIG. 7



US 9,269,127 B2

Sheet 7 of 26

Feb. 23, 2016

U.S. Patent

LA B e B B B B B T R B R B A R T R R R A R |

A

. wfwle

.

s

r

-

l'a.

4444q4444444dr########################

N A R N SN N )

'
NN )
B E

> EEFEFFEEFFEFEFFFFFEFR R L R R R R R R R R R R R R R R R R R R R

F]

4 a
*}*l

N

»

P

§

r

»

L
E

ir 8 4 & &8 &4 4 & 4 & 4 4 4 & A4 A S A

M

o
EEp

"""""*""""".'.

F r F wr bk rkrkrk ek ribkrerebkrerkrbiFrebkfrerkfrcrbfFfsredbresesrebreebrferebkFerere

1

$

”

e

d Function:

i

{ infensiy Profile

-

3N

* Orig
P ittad with Skgvmo

FIG. 8

X
PH

A F
Hl

F O
X E X
oM
i

u..

a7

A

K
]
Y
o
x
u..u..

H
k|
HJ

FY

HHFF

L,
,
.
o
.o
A
-
H

-]
r:r
analar:..rrax

:l!

u..u..
H

E
E

?lxﬂx?!!dxd < ?d F' o
S

A
x?t
HFHHH_!HHHIHHH'

L A )
L AN )
s
l..T.T.r.r.rl.r.r.r.rb..T.f

Hu..u.”H”v_.”lHH”H”I”H”l”..ﬂ”H”H”HHF”H”F”H”P“H”H”H”HP ]
b ]
k ”.H”HIHHPFHHHUU. Hv.HHv.H!.HHHHI!.HFIPH’.HHHHH’.PHIPHHH H v

FIG. 9D

FIG. 9C

FIG. 9A FIG. 9B



U.S. Patent Feb. 23, 2016 Sheet 8 of 26 US 9,269,127 B2

FIG. 10

ARV IAITCE

'I._. - E S E s s s EE S EE S S S EEEEESEEEEESE S ES S S EEEEE S S E S EEES S S EEEESSEESESEEE S E SN E S E S S EE S S ESSE S E S EEEE S EE S S ESEE S E S S SSE S E SN S E S S SSE S E S EE S S S S S SN

ol A
l‘_ 11.
I* 1-'
+ | ]
: 3 ¥ } $ . ; +
. . X L)
o g . y y
LI . A ™
l‘_ A 1-.
N, E s
" e s
: 2 :
> . »
. » . .. .. .. .
: ; A R : o3 :
: : R LR T BT i TR A 3 :
. A 2 o e ey o ¢ i g 'q:i-';' s ™
¥ a A .. e R - W i S ¥ . . -4 o .
.J- . x - l-.: X " " i'_"_ {.-‘l' -I' 'I
+ r : T .4 . »
. . a . . . Y ot
N F Tyt - LY PR ¥ n
N a - . - .
I* A - L ] .." T T T T O O T L T 8 1-'
lj_ A - L ] .|' A A A A A A A A A T.
N, A . L . ¥
LN FI - .. i ™
" E - ) I 1-.
N X - - L
+ - » r [ ]
n X - ) -
* . » r | ]
n y - - . -
+ - E) r ]
N X - [t ] L
+ . + r | ]
L | 5 - - LN ] k]
* - » r | ]
X e “ ; v ' M e AP -
- F 5 S-S % : M TE T PR B R :
: st : ™ ‘ e S SR Y SROY *
* n - r & i n . »
| | [ ) . E ] - [ W ] -'- [ ] l:.'. Y -.h_.,. L] .,f. [ ] [T LN :“ s T . 1 R -
+ . » r - [ ]
L | 5 - - AAAAAAAAAAAAAAAA LN ] L k]
* - A A A A A AN A A A NA MM L ) r | ]
: . o 2 - . :
.“ - " o -l'I'I-lallﬂllallﬂllallﬂllall ‘-I - r l-H'I-H-ﬂ'H-H-H!I-H-ﬂaﬂlﬂlﬂallﬂlﬂ . . - -lHI'I-l'I'I-lallﬂllallﬂllallﬂll' :I
* AAAAAAAAAAAAAAA & r AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA | ]
L | 4 - AAAAAAAAAAAAAAAA L AAAAAAAAAAAAAAAAA AdAdAAAAAAAAAAAAAA T
+ - AA A A AAAAAAAAAAA L r M A A A AAAAAAAAAAAA A M A A A A AAAAAAAAAAA N [ ]
L | L] - AAAAAAAAAAAAAAA L I AAAAAAAAAAAAAAAA AA A A A A AAAAAAAAAA r
+ . AAAdAAAAAAAAAAAA + r LE R EEEREEERELEERELEEREFN] AAAdAAAAAAAAAAAAAAA | ]
L | 5 - - AN A A AAAAAAAAAAAN LN ] A A A A AAAAAAAAAAAA N AAAAAAAAAAAAAAAA A k]
* - AAAAAAAAAAAAAAA L ) r AAAAAAAAAAAAAAAAA M AAAAAAAAAAAAAAAA | ]
L | 4 - AAAdAAAdAAAAAAAAAA L I AAAdAAAAAAAAAAAAAA AA A AAAAAAAAAAAAA T
+ - AA A A AAAAAAAAAAA & r M A A A AAAAAAAAAAAA A M A A A A A A A AAA AN [ ]
L | L] - AAAAAAAAAAAAAAAA L AAAAAAAAAAAAAAAAA L J r
+ - AAAdAAAAAAAAAAAA &+ r LE R EEEREEERELEERELEEREFN] | ]
L | &5 - M A A A A A AAAAAAAA N L AA A A A AAAAAAAAAAN & k]
* ' AAAAAAAAAAAAAAA & r AAAAAAAAAAAAAAAAA | ]
L | 4 - - AAAAAAAAAAAAAAAA L AAAAAAAAAAAAAAAAA L J T
+ - AA A A AAAAAAAAAAA L r M A A A AAAAAAAAAAAA A [ ]
.“ A i l-IlH'ﬂlﬂ‘ﬂ‘ﬂ“ﬂ‘ﬂ‘ﬂ“ﬂ‘ﬂ‘ﬂ“ﬂ‘ﬂlﬂ .-I' r l'ﬂ'IlH'ﬂlﬂ‘ﬂ‘ﬂ“ﬂ‘ﬂ‘ﬂ“ﬂ‘ﬂ‘ﬂ“ﬂ‘ﬂlﬂ * AAAdAAAAAAAAAAAAAAA 'I
L | , _ﬁ - - A -iI-:l-iI'illil-ilaillil-illillil-illillil-il [ .I' A l-IlI'llIlI'llllﬂ'llllﬂlllllﬂlllll & I-lHIlI'llIlﬂlllllﬂlllllﬂlllllﬂlll '!'
L | 4 - AAAdAAAdAAAAAAAAAA L I AAAdAAAAAAAAAAAAAA L J AA A AAAAAAAAAAAAA T
+ AMAAAAAAAAAAAAAAA & r M A A A AAAAAAAAAAAA A M A A A A AAAAAAAAAA A A [ ]
L | L] - AAAAAAAAAAAAAAAA L AAAAAAAAAAAAAAAAA L J AAAAAAAAAAAAAAAAA r
+ - AAAdAAAAAAAAAAAA &+ r LE R EEEREEERELEERELEEREFN] AaAdAAAAAAdAAAdAAAdAA | ]
L | &5 - M A A A A A AAAAAAAA N L AA A A A AAAAAAAAAAN & A A A A A A AAAAAAAAAA k]
* ' A AAAAAAAAAAAAAAA & r AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA | ]
:“ ': : ' :I:I:l:I:ﬂ:l:l:ﬂ:l:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ :-I: r '-:l:I:I:l:I:ﬂ:l:l:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ : --H-lallﬂllallﬂllallﬂllall o :I
+ . AAAAAAAAAdAAAdAaAAAA + r LE R EEEREEERELEERELEEREFN] | ]
L | 5 - - AN A A AAAAAAAAAAAN LN ] A A A A AAAAAAAAAAAA N & k]
* - AAAAAAAAAAAAAAA L ) r AAAAAAAAAAAAAAAAA | ]
X “ ; bl v e e . A A e -
+ - AAAAAAAAAdAAAdAaAAAA &+ r i AAAAAAAAAAAAAAAAAA AaAdAAAAAAdAAAdAAAdAA | ]
L | &5 - M A A A A A AAAAAAAA N L | AA A A A AAAAAAAAAAA A & A A A A A A AAAAAAAAAA k]
* A AAAAAAAAAAAAAAA & r W AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA | ]
L | 4 - AAAAAAAAAAAAAAAA L A AAAAAAAAAAAAAAAAA L J AdAdAAAAAAAAAAAAAA T
+ - AMAAAAAAAAAAAAAAA L r B AN AAAAAAAAAAAAAAAA M A A A A AAAAAAAAAAA N [ ]
L | L] - AAAAAAAAAAAAAAA L I | AAAAAAAAAAAAAAAAN) L J AA A A A A AAAAAAAAAA r
+ . AAAAAAAAAdAAAdAaAAAA + r i LE R EEEREEERELEERELEEREFN] | ]
X 7 X e v "l P v e "
.“ .* - -I--l-I-I-lnlll-lnlllllalllllall .“‘ " l-I l-I-I-l'I-I-lalll-lalllllalllllall L J I-l'I-I-l'I-I-lalllllalllllalllll' :.
+ - | &+ r i LE R EEEREEERELEERELEEREFN] AaAdAAAAAAdAAAdAAAdAA | ]
L | '.'-'- - &5 - L | AA A A A AAAAAAAAAAA A & A A A A A A AAAAAAAAAA k]
* & r W AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA | ]
L | L - ‘ 4 - L A AAAAAAAAAAAAAAAAA L J AdAdAAAAAAAAAAAAAA T
+ - L r B M A A A AAAAAAAAAAAA A M A A A A AAAAAAAAAAA N [ ]
L | 'E.‘ L] - L I | AAAAAAAAAAAAAAAAN) L J AA A A A A AAAAAAAAAA r
+ . + r i AAAAAAdAAAAdAAAAAAAAA AAAdAAAAAAAAAAAAAAA | ]
L | 5 - - LN ] A A A A A AAAAAAAAAAAA N & AAAAAAAAAAAAAAAA A k]
* - L ) r B AAAAAAAAAAAAAAAAA M AAAAAAAAAAAAAAAA | ]
L | 4 - L I | AAAdAAAdAAAAdAAAAAAAAA) L J AA A AAAAAAAAAAAAA T
+ - & L M AN AAAAAAAAAAAAAAAA M A A A A AAAAAAAAAA A A [ ]
L | L] - L A AAAAAAAAAAAAAAAAA L J AAAAAAAAAAAAAAAAA r
.: _ﬁ - ‘:-I : -: - :I:I:l:I:I:l:l:ﬂ:l:ﬂ:ﬂ:l:ﬂ:ﬂ:ﬂ:ﬂ: [ ] & -lHI'I-l-Ilﬂllallﬂllallﬂllallﬂll- '!:
L | 4 - - L A AAAAAAAAAAAAAAAAA L J T
+ - L r B M A A A AAAAAAAAAAAA A [ ]
L | L] - L I | AAAAAAAAAAAAAAAA L J r
.: _ﬁ - - -I:-:l:I:I:l:I:ﬂ:l:l:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ ‘:‘ : -:I -l:I:I:l:I:I:l:l:ﬂ:l:l:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ: & '!:
L | 4 - L I AAAdAAAAAAAAAAAAAA L J AA A AAAAAAAAAAAAA T
+ - & r M A A A AAAAAAAAAAAA A M A A A A AAAAAAAAAA A A [ ]
L | L] - L AAAAAAAAAAAAAAAAA L J AAAAAAAAAAAAAAAAA r
+ - &+ r LE R EEEREEERELEERELEEREFN] AaAdAAAAAAdAAAdAAAdAA | ]
L | &5 - L AA A A A AAAAAAAAAAN & A A A A A A AAAAAAAAAA k]
* ' & r AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA | ]
L | 4 - - L AAAAAAAAAAAAAAAAA L J AdAdAAAAAAAAAAAAAA T
+ - L r M A A A AAAAAAAAAAAA A M A A A A AAAAAAAAAAA N [ ]
L | ' o L] - L I AAAAAAAAAAAAAAAA L J AA A A A A AAAAAAAAAA r
> -'?-. .."""‘.- - - i i e o'y { i e e e e . e i .
* - A AAAAAAAAAAAAAAAA L ) r AAAAAAAAAAAAAAAAA M AAAAAAAAAAAAAAAA | ]
lj_ . g E_ 4 - -I'I'l'I'H-lnllﬂllallﬂllallﬂllall L ] l.-' A -'l'I'I'l'I'I-lallﬂllallﬂllallﬂll L ] L J AA A AAAAAAAAAAAAA T.
L | ‘ ' ." ' L] - AAAAAAAAAAAAAAAAA L L J r
+ L - AAAdAAAAAAAAAAAAA &+ r | ]
L | - o= &5 - A A A A AAAAAAAAAA A A AN L & k]
* ' AAAAAAAAAAAAAAAA & r | ]
L | 4 - - LE R EEEREEERELEERELEEREFN] L L J T
+ - AA A A A AAAAAAAAAAN L r [ ]
: . 5 - ey : AR :
* - L ) r AAAAAAAAAAAAAAAAA M AAAAAAAAAAAAAAAA | ]
L | 4 - L I AAAdAAAAAAAAAAAAAA L J AA A AAAAAAAAAAAAA T
+ - & r M A A A AAAAAAAAAAAA A M A A A A AAAAAAAAAA A A [ ]
L | L] - L AAAAAAAAAAAAAAAAA L J AAAAAAAAAAAAAAAAA r
+ - &+ r LE R EEEREEERELEERELEEREFN] AaAdAAAAAAdAAAdAAAdAA | ]
L | &5 - L AA A A A AAAAAAAAAAN & A A A A A A AAAAAAAAAA k]
l: A - ‘:‘ : ﬂ:I:H:ﬂ:I:H:ﬂ:l:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ: L J H-ﬂ'IlH'ﬂlIlﬂlﬂlllﬂlﬂlllﬂlﬂlllﬂlﬂl T:
L | L] - L I AAAAAAAAAAAAAAAAN) L J r
+ . + r LE R EEEREEERELEERELEEREFN] | ]
L | 5 - - LN ] AA A A A AAAAAAAAAAN & k]
* - L ) r AAAAAAAAAAAAAAAAA | ]
L | 4 - L I AAAdAAAdAAAAdAAAAAAAAA) L J T
+ - & r M A A A AAAAAAAAAAAA A [ ]
L | L] - L AAAAAAAAAAAAAAAA L J r
+ - &+ r LE R EEEREEERELEERELEEREFN] | ]
L | - &5 - L AA A A A AAAAAAAAAAA A & k]
* w & AAAAAAAAAAAAAAAAA | ]
:J' I’ il'. l. I‘. l. I‘. I‘.' ""' EF F l. *F F F FFFFEFBF A_RA_A_AA AAA A A A A A T FEFTEFYEFEFEYFTEFFTEFRETETRY "l“ l. I‘- I'. l. I‘- I'. l. I‘- I'. l. I‘- .'.
" . . . . . . . . . it
[ ] T
* | ]
L | T
+ [ ]
L | L]
+ | ]
. - gm e e e e e s . P . . . . . P o - . . . a PR . . P . . - . . .
- - . \ ,."'1. - . e i Y i »
n . - L EIL N I S . ~ " CER TR ' TN N A B » M. N " )
: fy Blalionady g 133y R LETRNIRTEI R SRR e :
. x AL I . TR L e LH e, T Iy . - 1 T 1 ;1. . L i .
:* . Foy | - - } . . o j" » - “ . - " ! A - :'
+ ]
L | L]
+ | ]
: :
+ .'.
l‘_ 11.
¥ . . . !'. i . -, .. . . . { . . . - - . .
» » , . " »
¥ . - . s . - . . - . - - a - o
: W it B W aeaint £ ; :
x . LA I S T i R A A Y A N >
I* 1-'
l‘_ 1‘
l‘_ 11.

'_.

L]

I.*I.*I.*I.*I.*I.*I.*I.4!.4I.*I.4I.*I.*I.*I.*I.*I.4I.*I.*I.*I.*I.*I.4!.*I.4L4L*L*L*L*L*L4L4L*L4L*L*L4L*L4L4L*L*L*L*L*L4L*L4L4L:L*L4L*L4L4L4L*L4L*L*L4L*L4L4L*L*L*l*h*h4L*L4L4L*L*L4!.*I.4I.4!.4I.*I.4I.*I.4I.4!.*I.4I.4I.*I.*I.4!.*I.4I.4!.*I.4I.4I.*I.*I.4!.*I.4I.4!.4I.*I.4!.*I.4I.4!.*I.4I.4I.*I.*I.4!.*I.4I.4!.*I.*I.4I.*I.4I.4!.*I.4I.4L4L4L4L*L4L4L*L4L4L*L4L4L*L4L4L*L4L4L*L4L4L*L4L4l*2‘h4L*L4L4L*L4L4L*L4L4L*L4L4L*L4L4L*L4L4L*L4L4L*L4L4!.*I.4I.4!.*I.4I.4!.*I.4I.4!.*I.4I.4!.*I.4I.4!.*I.4I.4!.*I.4I.4I.*I.4I.4I.+

FIG. 11



L T T T T T T T T S T T T R N T T N T T U N R T N

P
’. .’” j . . . . .
l- - Hllﬂﬂﬂlﬂlﬂlﬂlxlﬂﬂﬂﬂ -
HIH HIH A AN N

e
E X R R
"R XX AR oM A | L . .
A o o o o e - ’
A A A A A AR » e
T
.r

US 9,269,127 B2

Sheet 9 of 26

. 12B

FIG

FIG. 12D

12A

Feb. 23, 2016

) : k lanarx”u”a“ana”x” ” .”M”uxnﬂnmxr...r. _Hv.rv
e
. . nannaan“nnn“nn

raTan
fa -

o et P
A e

- Ll

FIG

FIG. 12C

U.S. Patent

AA A A A A A A A AL




US 9,269,127 B2

Sheet 10 of 26

Feb. 23, 2016

U.S. Patent

. 13B

FIG

. 13A

FIG

AT ol R

FF F F F F F F F FFFFFFF

'?l"?l A,

FF F F F F F F F FFFFF

FF F F F F F F F F F FFFFFFFFFEFEFFEFFEFFF

FIG. 13D

FIG. 13C



U.S. Patent Feb. 23, 2016 Sheet 11 of 26 US 9,269,127 B2

FIG. 14A

FIG. 14B

o
lll.l!:l:l A
I"H"HHH"H A
I‘Iii'

X r

¥
.
¥

L
¥
X
x

T

a

i
>

A A
R M)

1
»

T T,
[
.

»
x
x

:Jp:..-'...-
b o
T i
o o roa

FIG. 14C FIG. 14D



U.S. Patent Feb. 23, 2016 Sheet 12 of 26 US 9,269,127 B2

R
' n
. .
'. . . . . . e e e . .

RS E LSl }
) .o N LT . .
. * "
] +
: : R N
. ¥ i "
L] AA A A A A A A A A A
Py * T i ::
. * T "
‘l * T ﬂ'-l"l'-l'-l'-lﬂll'-l L
"y * T ::
Py ot :
L] - AAA A A A A A A A A
. P * T ::
'|‘ - - + - -'---'---'-l--'-l | 3 ..
i ¥ A A A .
" ¥ =i e e e n
: : e 0 3 Y S e :
* * . B A A A A A A TR & o2t " " " "
iy : S o 1’ e :;:;:;:;:;:;:;:;:;:;:; : " b :
. A& wdea 4 o5 A e A A A .
: : 4T SERRIRSRR o S }
. . i LA i T T T T Tt i L,
' - gt ¥ Ty LT . =i e e e x A n
. ) i i i i A .
pooa e e :
e . ¥ . i x i n
: : HLR R LR :
Py * P I i T i i i P W R .
. * i i i i i "
‘l * '-l'-ll-lnlll-'-lﬂllaﬂ ' ) '- ) . ha - l-ﬂ'-l'-l'-l'-'-l'-'-l l'-l-'l'-l'-'-l-l'-l L]
- ¥ e e P X { 4 " A A A A e i n
'l + l-l-'-'-l“'-'-l-'-l-lnﬂ :{ *- '1“- . i .{ . -d l-'-l-l-'-l-l!'- --H-'-l-l-'-l-l-'-l-l-'- l-'--l--l--'--l-'- L ::
‘.‘ * '-l'-ll-lnlll-'-l'-'- ) -'-l'-'-lﬂll“-l -l'-l'-'-lﬂll'-lﬂll'-l l'-l-'-'-l--'-l--'-l L]
. * I i T g o A s i i i i i I i I P I s A hy
L + AAAAAAAA A AN - B f" AA A A A A A A AAAAAAAAAAAA AAAAAAAAAA A .l
. ol ¥ i i i "} . *Jl:.li‘} - i P I e i i "
3 i:} ¥ e e N . -} i i i i i n
* N - * o e e e W e - .- e i s e i e .\
. . ¥ ':.- . i‘-‘ L g I R i I P i i i i i e i i "
L] -'.‘- K. AAAAAAAAAAAA AAA A A A A A A A A MAAAAAAAAAAA AN A AN AAANN AN
. * ) +'¢-r L :} *;.i' -l:l' A A A A i e A A ::
. * o ' i i i i i i i "
i ¥ g a A g A A A A A A A A
"y * P I B i i i i P ::
" + = l-l-'-'-l“'-'-l-'-l-l-' -l-'-'-l-'-l-l-'-l-l!'- --H-'-l-l-'-l-l-'-l-l-'- l-'--l--l--'--l-'- L .'
‘.‘ * | '-l'-ll-lnlll-'-l'-'- 'l'-ll'l'-lﬂll'-lﬂll“-l -l'-l'-'-lﬂll'-lﬂll'-l l'-l-'-'-l--'-l--'-l L]
Py * i i I B i i i i T i i i P W R ::
. * i i i i i i i "
‘l * -l"l'-ll'l“-ll'l'-l"-'- -l'-ll-'-lﬂll'-lﬂll“-l l-ﬂ'-l'-l'-l'-'-l'-'-l l'-l-'l'-l'-'-l-l'-l L]
" ¥ e i i e n
" . It + -'-l'-l“-ll-“-lﬂll'-lﬂl -l"l“-lﬂll'-l"-'-ll-l --ll'l'-lﬂll'-lﬂll'-lﬂll l'---'---'-l--"l 3 .l
. - M ¥ L i i i i i i i i e i i "
h e ) e i e i i e i i e i .
. v L T T i e e i .
. * i i i i i "
i ¥ A A A A A A A A A A A
"y * o i i B i i P ::
] + AAA A A AAAA A A A A A A A AAAAAAAAA AAAAAAAAA A A
: ; ettt ettt ettt ettt Rttt ;
L + AAAAAAAAAAAA AAAAAAAAAA A
h ¥ P I e i i "
e ¥ i i i i n
" + --ll'l'-lﬂll'-lﬂll'-lﬂll l'---'---'-l--"l 3 .l
. ) e A A
* Hy . : e e :l-:':':':':':':':':':':': ':':-:':':-:':':-:':': X E
:- ..ﬁ"‘ . N i e :a:a:a:a:a:a:a:n:a:a:n:a :a:a:a:a:a:a:a:a:a:n:a ; E
i . ¥ A A A A A A A
" . ¥ i e n
" + --ll'l'-lﬂll'-lﬂll'-lﬂll l'---'---'-l--"l 3 .l
. ¥ i i i e i i "
h ¥ i i i i n
. T i e e i .
‘ : T R b b e, A :
"y * P I B i i P .
. * i T i i "
‘.‘ * '-l'-ll-lnlll-'-l'-'- -l'-l'-'-lﬂll'-lﬂll'-l l'-l-'-'-l--'-l--'-l L]
Py * P I B i i P W R ::
L + AAAAAAAA A AN AAAAAAAAAAAA AAAAAAAAAA A
: e e i
., .
. "
‘l ..
. oo ca . x
Fl . " Do ) . ) . a . . N
! n - * F i I L AN
; SEROFL AR 4 Ehambe :
. "
., .
: :
: }
'l . - IR IR C o e . . . . ot . . ... Ve .r. . .
iy D e W i s WA T A e e S R T o) &:_’*: by i )
: RE RN CN VI U I LT O N e thod v ;
: !
-':44444#44444;44444444;444444-44-4-44-444-4-444444-444-44-4-44-4-44-4-444444-44-4-44-4-44-4-444444-444-44-4-44-4-444444-444-444-44-4-44-4-44-4-444-4-44444-44-4-44-4-44-4-444-4-44-444-44-4-44-4-44-4-444-444-444-44-4-44-4-444-44;44#44#44;44#44#44;44#44;4\

FIG. 15



US 9,269,127 B2

Sheet 13 of 26

Feb. 23, 2016

U.S. Patent

. 16B

FIG

. T6A

FIG

AL N RN NN AN Hd

e
e

x.
-

_K_IX
A a A

KRR KR X XA
a A A

i

s

P K K

T W W W W W W W W W W W W W W

FIG. 16D

FIG. 16C



US 9,269,127 B2

Sheet 14 of 26

Feb. 23, 2016

U.S. Patent

17B

FIG

. T7A

FIG

TP N R

FIG. 17D

FIG. 17C



US 9,269,127 B2

Sheet 15 of 26

Feb. 23, 2016

U.S. Patent

. 18B

FIG

. 18A

FIG

.

LI
i"r'i

L
L]

&

E
»
L]

»
»
*

L]
X
»

*

)

i

)

X
L ]

h_]

FIG. 18D

FIG. 18C



U.S. Patent

L]

-l

d
L]

a
'

L]
r

d
L]

-l
r

d
L]

a
'

L]
r

d
L]

d
[
r

L]

et

r

r

d o _d o

L]

r

d
L]

r

r

r

d o _d o

L]

r

d
L]

r

£4

r

i
v

a
'

r

r

i
v

a
"\
.

r

i
v

a
'

r

r

o
b,

.
e

d
L]

a
M
'

L]
r

d
L]

-l
r

d
L]

a
'

L]
r

d
L]

-l
r

d
L]

a
n
'

L]
r

d
L]

-l
r

o i
ety

N
Ly
e

d

L]
r

d
L]

d
[
r

L]

r

r

r

d o _d o

L]

r

d

[
" "
‘plglg gl g g g g e d ol o ol ] e ] ] ] ] ]

o

Al ol ol ol ol ol -l
[ K DR BE R BE BE R BE BE K B CBE K B BE K B CBE R B R R B K R B K R B UK R B R R B K K I R BRI K K R R R K K B R B K B K K B K R B K K B B K BRI K B K K B R R BRI K IR K K B B R B K R B KRR B I K B BE K B R R CBE K BRI K R B B ]
[

L 36477

Feb. 23, 2016

t*i
- |
|

-]
|
-]
|
-]
il
3l

'#‘
-]
|
]
o
|
o
]
IIIIIIIIIIIIIHII
H ]

LN
|
o
F
N
|
N
F
o
|

'#‘
- |
|
&l
|
-]
|
&l
|
A

L
|
-]
|
-]
|
-]
|
Al

itiitiiiiitiiii
-]

]

-

]

o

]

N

]

H ]

r
|
|
|
F |

L ]
L ]

R N
R U e )
i-:;'ﬁ;.'-: RRE T A

Sheet 16 of 26

e o
e RN ,.,_;.'.f'.'- .-_.‘;'. i
lﬂ]ﬂ]ﬂ]ﬂ]ﬂ]ﬂ]ﬂ] B s

i e S £

11587

Sk By

EL L.y

US 9,269,127 B2

Wb e e
AA A A A A A A A
* ¥ -

I'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i_'l'-l'l_'i'l'i_'l'-l'l_'i'l'i_'l'-l'l_'i'l'i_'l'-l'l_'i'l'i'l'i'l'i'l'i'l'i'l'i'l'i_'l'-l'l_'i'l'i_'l'-l'l_'i'l'i'l'i'l'i'i'i'l'i'l'i'l'i'l'-l'l'i'l'i'l'i'l'i'l'i'l'i'l'i'i'i'l'i'l'i'l'iJ .

=
[
=
=
[
=
=
[
=
=
[
=
=
[
=
=
[
=
=
[
=
=
[
=
=
[
=
=
[
=
=
[
=
’



US 9,269,127 B2

Sheet 17 of 26

Feb. 23, 2016

U.S. Patent

20B

FIG

20A

FIG

kA .
A ek
a ey d

FIG. 20D

FIG. 20C



US 9,269,127 B2

Sheet 18 of 26

Feb. 23, 2016

U.S. Patent

. 21B

FIG

. 21A

FIG

rxvﬂxnn“x“x”x“xwr Y
o

FIG. 21D

FIG. 21C



US 9,269,127 B2

Sheet 19 of 26

Feb. 23, 2016

U.S. Patent

. 22B

FIG

. 22A

FIG

LM
LN

&

L LN

.
A

-

FY

|
|

]

FIG. 22D

FIG. 22C



U.S. Patent

¥

&

1

i
| ]
-

R R
2788

.

Lo

5

LEE N N N NSNS NSNS S S EE S EE S S NS EEEES SN S S E S EEEEEEEE SN S EE S EE S S NS S EEE S EEE S SE S E S EE S EEE NSNS SN S NN SN N &

LA

Rl ol

Feb. 23, 2016

by e g
gy - - A A A A
> pe ﬂ'.‘?':}.'-.'-'i. Feketatetut et ettt
e e gy oy o
St R R e

R

et s

Sheet 20 of 26

ey o P et
P j..t.r:_:‘::‘::?

US 9,269,127 B2



US 9,269,127 B2

Sheet 21 of 26

Feb. 23, 2016

U.S. Patent

24B

.
| ?l!?d

A,

FIG. 24D

FIG

FIG. 24C

. 24A

FIG




US 9,269,127 B2

Sheet 22 of 26

Feb. 23, 2016

U.S. Patent

258

FIG

. 25A

FIG

a e M kX kW
o F ]
MO M MMM

%

X
X rx:':': i
L ]

>,

oA

]

F N N
I’Hxﬂvﬂxﬂv‘d
h_]

!

FIG. 25D

FIG. 25C



US 9,269,127 B2

Sheet 23 of 26

Feb. 23, 2016

U.S. Patent

. 26A

FIG

KX IIH IIHII

. 26C

FIG

268

FIG

4 oa kA
- i

i
*b b*b
e
x ¥
¥

[ ]
r
i

.-..._..r.._.r....

ur

s
s

ar

F3

ir

¥

X r

vr*a-:#:
e
LN

X
B

ey

»

L)

¥
L)
»

L)

Ll
)
L

&
L
L]

o,
A
AR

'F!:HH.I
N AN

]

Mo N
oA

>, oA N M A
M

A
-

AN A A X A X

oM

A A AN KN

»

i
e
b

2
x
|

™

FIG. 26D



US 9,269,127 B2

Sheet 24 of 26

Feb. 23, 2016

U.S. Patent

i N
HHHIHH!IHI IHIH
LS

i

T T k]

e A A e e U A A A A A A A

ﬂﬂﬂﬂﬂﬂl‘ﬂﬂ.ﬂﬂﬂﬂﬂﬂllﬂﬂﬂ.ﬂﬂ.llﬂﬂ‘l‘ﬂ‘ﬂﬂﬂﬂl‘ﬂﬂﬂﬂﬂﬂl“"‘l‘

S A e e S A A

L
oo A M M N M AN A

i N A N A
iy i
A_N

] -'"]H

>,
.

0 0 0 0 0 00 0 0 0, 0 0 0 0 0

]
]
L

KX

NN

»

¥
Xk x
oy

A

F b
Bk RNk k kK

X
LN
T,

O N A N

r
P

[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[ 3
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
L
[}
[ 3
[}
[}
[}
[}
[}

-

e

'

Y

Y

'

Y

Y

-

F

Y

'

Y

Y

'

-

Y

'

-

*I.

'

Py

-

-

Y

-

Y

Y

-

-

Y

-

-

Y

-

Y

Y

-

FIG. 27



U.S. Patent Feb. 23, 2016 Sheet 25 of 26 US 9,269,127 B2

e i i a E  E B E a

-* -
*- *-
-‘- . P *-
* LR T T *
* L) .‘t‘::.. . - +,
* ] "".. . x,
s AN v ¥,
'y . ¥,
'y . 'y
¥, . ¥,
- . ¥,
'y . 'y
¥, . ¥,
'y . ¥,
‘- *. DT - *-
:. ..- {- . I?- . 5:. .It . 'Ir:‘ :_
4 IR o L RS B T2 S e s me e s ;
B e gy . S T R e A LD & A e - ¥,
. . 5 . et .
x N1 . T iy e . _ : e O NS O S M v
, A . . -h . . e . . . R L A e = ,.
. .o x .-‘..ﬂ.',... Nt A a . . . . . . . . L .
. ¥ . . . .
'y . 'y
*u '. 0 - 0 0 0 0 0 LR *-
*, ._' DT TN, T O O T T T O O O O L
*, ._' A A A AN AHAHNAANANNAN ) ) ) ; . +
* v n -% L __‘r-_'\-_}’- I:;'r : ¥
; . : ..:‘ ,} : :
. ¥ » . " 3 . " - .; .
» . 'n L R, ¥
. r B R R . . -
- ... " . P - - x,
*, ._' | d L
L ' || +
» ‘' r. n > . N b ¥
' L= L ] AAAAAAAAAAAAAAAA * L] L] -
» \;'{ . n A A A A A A A » ¥
- - L] AAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAA ] -
¥, “_"i 1‘. " A IlI'I“Ilﬂlllllﬂlﬂlllﬂlllllﬂl + : IHI'lHIlﬂ“ﬂ“ﬂ“ﬂ‘l“ﬂ‘ﬂ“ﬂ“ﬂ“ﬂ‘ﬂ“ﬂ 'i b
& - | AA A A AAAAAAAAAAA AN M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAA | ] * - AA A A A AAAAAAAAAAAA L] -
* . | AAAdAAAdAAAdAAAAAAAAR)] L AAAAAAAAAAAAAAAAA L] +
- L] A A A A AAAAAAAAAAAA [ + = AMAAAAAAAAAAAAAA AN ] -
L ' || AAAAAAAAAAAAAAAAN)] HAAAAAAAAAAAAAAAA L) +
. L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] -
& - | A A A A AAAAAAAAAAA A N M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAA | ] L L] AAAAAAAAAAAAAAAAA L] -
* . || AAAdAAAAAAAAAAAAANR)] AAAdAAAAAAAAAAAAAAA L] +
- L] A ANAAAAAAAAAAAAAA A [ + - A A A A AAAAAAAAAAA AN ] -
L ' | AAAAAAAAAAAAAAAAN)] HAAAAAAAAAAAAAAAA L) +
. L LR EEERELEENERELENRLENNRL] + L] AAAAAAAAAAAAAAAaAA L] -
& - | AA A A AAAAAAAAAAA AN M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAAA | ] * - AA A A A AAAAAAAAAAAA L] -
* . | AAAdAAAdAAAdAAAAAAAAR)] AAAAAAAAAAAAAAAAA L] +
- L] A A A A AAAAAAAAAAAA [ - = AMAAAAAAAAAAAAAA AN ] -
L ' || AAAAAAAAAAAAAAAAN)] HAAAAAAAAAAAAAAAA L) +
. L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] -
& - | A A A A AAAAAAAAAAA A N M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAA | ] * L] AAAAAAAAAAAAAAAAA L] -
* . || LR EEEREEEEREEREELEELEREELEEN * AAAdAAAAAAAAAAAAAAA L] +
- L] A ANAAAAAAAAAAAAAA A [ + - A A A A AAAAAAAAAAA AN ] -
L ' | AAAAAAAAAAAAAAAAN)] HAAAAAAAAAAAAAAAA L) +
. L LR EEERELEENERELENRLENNRL] + L] AAAAAAAAAAAAAAAaAA L] -
& - - | AAAAAAAAAAAAAAA A AN M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAAA | ] * - AA A A A AAAAAAAAAAAA L] -
* {ﬁ . | AAAdAAAdAAAdAAAAAAAAR)] AAAAAAAAAAAAAAAAA L] +
- L] A A A A AAAAAAAAAAAA [ - = AMAAAAAAAAAAAAAA AN ] -
L " ' || AAAAAAAAAAAAAAA A A K] HAAAAAAAAAAAAAAAA L) +
. E P L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] -
& | A A A A AAAAAAAAAAA A N M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAA | ] * L] AAAAAAAAAAAAAAAAA L] -
* . || LR EEEREEEEREEREELEELEREELEEN * AAAdAAAAAAAAAAAAAAA L] +
- L] A ANAAAAAAAAAAAAAA A [ + - A A A A AAAAAAAAAAA AN ] -
* . n N A A A A A WA A A A A A » ¥
. " .
& . : - | 'l:I:I:l:I:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ & = . : -:ﬂ:l:I:I:l:l:ﬂ:l:l:ﬂ:l:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ: -I: :llIlI'llIlﬂlllllﬂlllllﬂlllllﬂlll + .
* . | LR EEEREEEEREEREELEELEREELEEN * AAAAAAAAAAAAAAAAA L] A A AAAAAAAAAAAAA +
- L] A A A A AAAAAAAAAAAA [ + = AMAAAAAAAAAAAAAA AN ] M A A A A AAAAAAAAAAA N -
L ' || AAAAAAAAAAAAAAA A A K] HAAAAAAAAAAAAAAAA L) AA A A A A AAAAAAAAAA +
. L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] AAAdAAAAAAAAAAAAAAA -
& - | M A A A AAAAAAAAAAAAAA M A A A A AAAAAAAAAAA A & A A A A AAAAAAAAAAA A +
' L ] AAAAAAAAAAAAAAAA L L] AAAAAAAAAAAAAAAAA L] MAAAAAAAAAAAAAAAA -
* . || AAAdAAAAAAAAAAAAA AAAdAAAAAAAAAAAAAAA L] AA A AAAAAAAAAAAAA +
- L] A ANAAAAAAAAAAAAAA A + - A A A A AAAAAAAAAAA AN ] -
L ' | AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) +
. L LR EEERELEENERELENRLENNRL] + L] AAAAAAAAAAAAAAAaAA L] -
& - | A A A A AAAAAAAAAAAAAA M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAAA * - AA A A A AAAAAAAAAAAA L] -
: : : ettt : - e e : :
. L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] AAAdAAAAAAAAAAAAAAA -
& - | M A A A AAAAAAAAAAAAAA M A A A A AAAAAAAAAAA A & A A A A AAAAAAAAAAA A +
' L ] AAAAAAAAAAAAAAAA L L] AAAAAAAAAAAAAAAAA L] MAAAAAAAAAAAAAAAA -
* [] . || L B EEEREEEEEREEELENREELEREN] AAAdAAAAAAAAAAAAAAA L] AA A AAAAAAAAAAAAA +
- - L] A ANAAAAAAAAAAAAAA A + - A A A A AAAAAAAAAAA AN ] MAAAAAAAAAAAAAAA N -
L ' | AN AAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) AA A AAAAAAAAAAAA A +
. - L LR EEERELEENERELENRLENNRL] + L] AAAAAAAAAAAAAAAaAA L] AAAAAAAAAAAAAAAAA -
» . n moma A A A A A oA A A A A » A o A A A ¥
. - .
*, : . | 'l:H:I:I:I:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ . : l:H:l:I:I:l:l:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ: -I: -HlIlI'IlIlﬂlﬂlllﬂlllllﬂlﬂlllﬂlll L
L ' || A AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) +
. L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] -
& - | M A A A AAAAAAAAAAAA N M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAA L L] AAAAAAAAAAAAAAAAA L] -
> . iy ey : y e i 3 g b e K
. L LR EEERELEENERELENRLENNRL] + L] AAAAAAAAAAAAAAAaAA L] AAAAAAAAAAAAAAAAA -
& - | AA A A A AAAAAAAAAAN M A A A A AAAAAAAAAAA A & A A A A A A AAAAAAAAAA +
' L ] AAAAAAAAAAAAAAAAA * - AA A A A AAAAAAAAAAAA L] HAAAAAAAAAAAAAAAA -
* . | A AaAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA L] A A AAAAAAAAAAAAA +
- L] A A A A AAAAAAAAAAAA + = AMAAAAAAAAAAAAAA AN ] M A A A A AAAAAAAAAAA N -
L ' || AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) AA A A A A AAAAAAAAAA +
. L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] -
& - | M A A A AAAAAAAAAAAA N M A A A A AAAAAAAAAAA A & +
' L ] AAAAAAAAAAAAAAAA * L] AAAAAAAAAAAAAAAAA L] -
* . || AAAdAAAAAAAAAAAAA AAAdAAAAAAAAAAAAAAA L] +
- L] A ANAAAAAAAAAAAAAA A + - A A A A AAAAAAAAAAA AN ] -
L ' | AN AAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) +
. L LR EEERELEENERELENRLENNRL] + o L] AAAAAAAAAAAAAAAaAA L] -
& -I} 4 - | AA A A A AAAAAAAAAAN M A A A A AAAAAAAAAAA A & +
' - L ] AAAAAAAAAAAAAAAAA * - AA A A A AAAAAAAAAAAA L] -
* . | AAAdAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA L] +
- - L] A A A A AAAAAAAAAAAA + = AMAAAAAAAAAAAAAA AN ] -
L i ' || AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) +
. "hll L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] | -
& - | A A A A AAAAAAAAAAAN M A A A A AAAAAAAAAAA A & +
' ' L ] AAAAAAAAAAAAAAAA * L] AAAAAAAAAAAAAAAAA L] MAAAAAAAAAAAAAAAA -
* . || AAAdAAAAAAAAAAAAA AAAdAAAAAAAAAAAAAAA L] AA A AAAAAAAAAAAAA +
- L] A ANAAAAAAAAAAAAAA A + - A A A A AAAAAAAAAAA AN ] MAAAAAAAAAAAAAAA N -
L ' | AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) AA A AAAAAAAAAAAA A +
. L LR EEERELEENERELENRLENNRL] + o L] AAAAAAAAAAAAAAAaAA L] AAAAAAAAAAAAAAAAA -
& - | AA A A A AAAAAAAAAAN M A A A A AAAAAAAAAAA A & A A A A A A AAAAAAAAAA +
' L ] AAAAAAAAAAAAAAAAA * - AA A A A AAAAAAAAAAAA L] HAAAAAAAAAAAAAAAA -
* . | AAAdAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA L] A A AAAAAAAAAAAAA +
- L] A A A A AAAAAAAAAAAA + = AMAAAAAAAAAAAAAA AN ] M A A A A AAAAAAAAAAA N -
L ' || AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) AA A A A A AAAAAAAAAA +
. L AAAAAAAAAAAAAAAAA + - AAAAAAAAAAAAAAAAA L] | -
& - | A A A A AAAAAAAAAAAN M A A A A AAAAAAAAAAA A & A A A A AAAAAAAAAAA A +
' L ] AAAAAAAAAAAAAAAA L L] AAAAAAAAAAAAAAAAA L] MAAAAAAAAAAAAAAAA -
* . || AAAdAAAAAAAAAAAAA AAAdAAAAAAAAAAAAAAA L] AA A AAAAAAAAAAAAA +
- L] AAAAAAAAAAAAAAAA + - A A A A AAAAAAAAAAA AN ] MAAAAAAAAAAAAAAA N -
L ' | AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) AA A AAAAAAAAAAAA A +
. L LR EEERELEENERELENRLENNRL] + L] AAAAAAAAAAAAAAAaAA L] AAAAAAAAAAAAAAAAA -
& - | AA A A A AAAAAAAAAAN M A A A A AAAAAAAAAAA A & A A A A A A AAAAAAAAAA +
' L ] AAAAAAAAAAAAAAAA * - AA A A A AAAAAAAAAAAA L] A A A A AN A A A -
* . | AAAdAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA L] A A AAAAAAAAAAAAA +
- L] A A A A AAAAAAAAAAAA + = AMAAAAAAAAAAAAAA AN ] M_A_A_A A A_M -
L ' || AAAAAAAAAAAAAAAA HAAAAAAAAAAAAAAAA L) A_A +
. L AAdAAdAAAAAAAAAAAAA h - AAdAdAAdAAAAAAAAAAAA L] -
» . n S o A o A i i i e i e e e » ¥
. L WA A A A A L WA A A A A . .
» x
*- *-
‘- CRE - e e e - e e e L ) - CRE *-
» . . . . . ¥
. . . . , g s . .. . P vy .
: SO harainey Wiy ey :
» et - AL x - e .-'n LI Y L 'y
*- PR - . . .- . . .- - . ----.- . . *-
‘- *-
*u *-
*- *-
‘- *-
*u 0 - - *-
* - .l.' L L
» l‘ﬁ'd‘} -. r' 3 I"‘}..:l- ¥
. . . . . 2 .
'y 5. . ,.:' ‘:i l'}a-. v K k: L ¥,
» "'“ ' - LT ] LI ¥
‘- *-
*u *-
*- *-
-‘- *-
& L 4

s s s s s s asbssbshasabhasbsassassasbshshshsbssbssbsasabssbsassasbhasbshasbsshssbsasbssbssbssbsasbsasabsasbssbsasbsshshsbhasbsasbsassasbsasbsasbhasbsshshsbhsbssbshasabhashsssassshshsbshshsbsasbsasbsasbsassasbsasabhsbsshasbsasbsasbhasbsassasabhasbshshssbhsasbsshshsbhsbsasbsasbhasbhssasbhasbshshshsbhsbsasbsasabshasbhsssasbhasbshshshshsbsasbsasbhasbsasbsashsasabshasasashas .

FIG. 28



U.S. Patent

Feb. 23,2016 Sheet 26 of 26 US 9,269,127 B2

FIG. 29

2900
PROCESSOR MEMORY
2910 2930
A i
2950
Y 4 ‘ _
A A
Y Y
NON-VOLATILE
STORAGE NETWORK INTERFACE

2940

2920




US 9,269,127 B2

1

DE-NOISING OF REAL-TIME DYNAMIC
MAGNETIC RESONANCE IMAGES BY THE
COMBINED APPLICATION OF

KARHUNEN-LOEVE TRANSFORM (KLT)
AND WAVELET FILTERING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Patent
Application No. 61/759,119, filed Jan. 31, 2013, entitled *“De-
Noising of Real-Time Dynamic Magnetic Resonance Images
by the Combined Application of Karhunen-Loeve Transform
(KLT) And Wavelet Filtering,” which 1s incorporated herein
by reference 1n 1ts entirety.

BACKGROUND

Real-time (R1) cardiac magnetic resonance (MR) cine
imaging 1s clinically important for the diagnosis and evalua-
tion of patients sulfering from congestive heart failure,
arrhythmias and other conditions. RT imaging is also benefi-
cial in pediatric cases and under conditions where patients are
unable to hold their breath. RT cardiac MR cine images are
often corrupted by noise during acquisition and reconstruc-
tion. This happens because RT 1maging typically sacrifices
signal-to-noise ratio (SNR) to achieve suificient temporal and
spatial resolution.

Maintaining SNR 1s crucial in order to preserve clinically
relevant information. Two factors contribute to noise in MR
cine images: acquisition hardware and physiological sources.
Image noise affects the quality and interpretation of climically
relevant data 1n varying degrees, depending on the parameters
and type ol image acqusition. A number of de-noising
approaches have been established over the years to improve
SNR of MR cine images. De-noising techniques generally
fall into three broad categories: spatial filtering; temporal
filtering; and a combination of spatial and temporal filtering.

Spatial filtering techniques make use of the spatial redun-
dancies in the image. In other words, the low-spatial ire-
quency domain contains most of the information. An example
spatial filtering technique 1s Wavelet filtering, which 1s widely
used for generic de-noising of images, including MR 1mages,
because 1t can preserve the edge better than the Fourier trans-
form-based low-pass filter.

Temporal filtering techniques make use of the temporal
redundancies 1n series of 1mages acquired over time.
Dynamic images of physiological process often show a high
degree of temporal correlation. Since RT cardiac MR cine
image series oiten span multiple heartbeats, they are quasi-
periodic. Some frames 1n such 1image series show substan-
tially similar features, which makes MR cine image series
good candidates for temporal filtering.

Combinations of spatial and temporal filtering can be used
to de-noise 1mage series. A 3D Wavelet comprised of a 2D
spatial Wavelet filter combined with a 1D temporal Wavelet
filter has been proposed for video de-noising. Different spa-
tial or temporal filters can be combined with each other
depending on the characteristics of the 1image series. Spatial
filters have been used as a means of removing noise from MR
images. An example of a spatial filtering technique 1s Fourier-
based low-pass filter. A major drawback of this method was
that while removing noise, 1t also removes high-frequency
signal components, thereby blurring the edges and fine struc-
tures 1n the MRI images.

Early Wavelet-based de-noising methods incorporate
thresholds based on statistical models of the behavior of noise
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across different scales of Wavelet decomposition. These
methods assume the noise 1s spatially white, and a single
Wavelet threshold 1s applied. An example method proposed
implements a threshold value T (a universal threshold) that 1s
based on the standard deviation of noise and the number of
samples (pixels). The main drawback with single-threshold
method 1s there 1s a trade-off between signal loss and SNR
gain. More aggressive threshold leads to high SNR gain and
high degree of image blurring, and vice versa.

A number of Wavelet-based de-noising methods have been
established to preferentially remove noise imn MR images
while preserving edges and details. Although methods based
on scale space filtering are effective in preserving edges while
removing noise, important signal details that have low ampli-
tude might also be eliminated.

In parallel MRI, SNR reduces by at least the square root of
acceleration factor and noise displays inhomogeneous spatial
distribution. An edge detection algorithm may be used com-
bined with a spatially adaptive thresholding algorithm to
remove noise from 1mages acquired using parallel MRI while
preserving edge iformation. A specific threshold value 1s
calculated for each pixel based on the noise map. This method
makes use of soft-thresholding as well. The main disadvan-
tage with using edge detection algorithms along with spatial
filtering 1s that they increase complexity of the filtering pro-
cess by applying separate thresholds for edge and non-edge
regions. Also, output of edge detection algorithm might not
always be reliable.

An alternative to edge detection algorithm 1s to make use of
a threshold that 1s adaptive to the noise and signal content of
the image. After Wavelet decomposition, the threshold for a
specific sub-band 1s determined 1n accordance with the noise
variance and the standard deviation of signal 1n that sub-band.
Since the noise variance varies for different sub-bands, every
sub-band has a unique threshold value. Temporal filters are
elfective in removing noise 1n MR 1mages as well. One such
temporal filtering method mvolves applying a Wavelet trans-
form to the time-course (TC) of each pixel and performing
Wavelet-domain de-noising independently on each such TC.
As a consequence ol WP transtform, the Gaussian noise dis-
tribution 1s preserved in each of the sub-bands and correlated
noise 1s eflectively de-correlated across the different sub-
bands of the WP decomposition.

Another temporal filtering technique i1s based on the Kar-
hunen-Loeve Transform (KL, a.k.a. Principal Component
Analysis). It exploits the high temporal correlation present on
real-time dynamic cardiac MR image series spanning mul-
tiple heartbeats. KL'T uses this high temporal correlation to
compress signal information into a finite set of eigenimages;
the remaining eigenimages contain mostly noise. By using a
suitable method to filter out these noise-only eigenimages,
cifective de-noising can be achieved. Alternatively, the KLLT
may be performed using singular value decomposition
(SVD).

All of the filtering techniques discussed above either oper-
ate 1n the spatial domain or 1n the temporal domain. There are
certain established methods that exploit redundancies in both
spatial and temporal domains. Such methods use some com-
bination of spatial and temporal filtering techniques and a
selective Wavelet shrinkage method which exploits the geom-
etry of the Wavelet sub-bands of each video frame by using a
two-threshold criterion. Two criteria are typically used to
determine the degree of filtering: an estimated level of noise
corruption; and an amount of motion, 1.e., degree of similarity
between consecutive frames. However, the above method
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does not take advantages of the possible long-range temporal
correlations in the 1image series, and may lead to suboptimal

filtering.

SUMMARY

Systems and methods for providing a Karhunen-Love
Transtform Wavelet (KW) Filter that suppresses random noise
in dynamic MR 1mage series without significant loss of
important information such as edge sharpness. The 1mple-
mentations of the present disclosure perform de-noising of
dynamic image series by simultaneously taking advantage of
the spatial and temporal redundancies in RT cardiac cine. The
Karhunen Loeve Transform-Wavelet (KW) filtering of the
present disclosure combines 1D temporal KT with 2D spa-
tial Wavelet filtering to achieve a significant reduction in
image noise with minimal loss 1n 1image sharpness. KW {il-
tering may be implemented as a fully automatic method that
neither requires user selection of any free parameters nor
acquisition of training data.

In accordance with implementations disclosed herein, a
method of providing KW filtering may include applying the
KLT to the dynamic 1mage series to compress important
signal information into a finite set of frames; discarding the
noise-only frames using Marcenko-Pastur (MP) Law
method; applying an adaptive Wavelet threshold to remaining
frames; and applying an inverse KL'T to obtain the de-noised

image series. The KW filter may also use KL'T to compress
important signal information nto a finite set of frames. This
helps the subsequent adaptive threshold Wavelet filter to
reduce noise more effectively while preserving important
signal information.

In accordance with some 1mplementations disclosed
herein, there 1s a method of providing of suppressing random
noise in an 1mage series with M frames. The method includes
applying a transform to the image series to convert a temporal
series of frames 1nto a series of eigenimages having eigenval-
ues; applying a probability distribution function to determine
noise-only eigenimages in the series of eigenimages to deter-
mine a set ol remaining e1genimages; applying a wavelet filter
with an adaptive threshold to each eigenimage 1n the set of
cigenimages to define the wavelet filter strength for each of
the eigenimages 1n the set of eigenimages; and applying an
inverse transiform to obtain a de-noised 1image series.

It should be understood that the above-described subject
matter may also be implemented as a computer-controlled
apparatus, a computer process, a computing system, or an
article of manufacture, such as a computer-readable storage
medium.

Other systems, methods, features and/or advantages will
be or may become apparent to one with skill in the art upon
examination of the following drawings and detailed descrip-
tion. It 1s intended that all such additional systems, methods,
features and/or advantages be mcluded within this descrip-
tion and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood
with reference to the following drawings. The components in
the drawings are not necessarily to scale, emphasis instead
being placed upon clearly illustrating the principles of the
present disclosure.

FI1G. 1 1llustrates an overview of the processes performed
in Karhunen-Love Transform Wavelet (KW) Filtering 1n
accordance with aspects of the present disclosure;
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FIG. 2 illustrates the processes of the Karhunen-Loeve
Transtorm (KL'T);

FIG. 3 illustrates sub-bands of redundant 2D wavelet trans-

form;
FIGS. 4A and 4B illustrate the standard deviation of the

signal without KLL'T and with KLT;

FIGS. SA and 3B 1illustrate wavelet filter thresholds for the
three “details” derrved from series of standard cine 1mages
and eigenimages dertved using KLT;

FIGS. 6 A and 6B illustrate a digital phantom series having
a phantom based on dynamic ellipsoids;

FIG. 7 illustrates a noisy phantom image showing a region
of interest (ROI) for estimating signal and ROI for estimating
noise;

FIG. 8 illustrates an 1mage intensity profile that 1s read
along the line and then fitted with a sigmoid function

FIGS. 9A-9D respectively illustrate a noisy phantom
image, results from KW filter, results from a Wavelet filter,

and results from KL'T filter:;

FIG. 10 1llustrates different edges;

FIG. 11 1llustrates an edge sharpness measurement for each
filter shown as percentage of sharpness of original noise-free
image;

FIGS. 12A-12D 1llustrate a 2 chamber view of rate 4 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
1mage;

FIGS. 13A-13D 1llustrate a short axis view of rate 4 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
1mage;

FIGS. 14 A-14D illustrate a 4 chamber view of rate 4 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1image, a Wavelet filtered image, and a KLT filtered
1mage;

FIG. 15 1llustrates a signal to noise ratio (SNR) gain of
filters for single rate 4 volunteer data

FIGS. 16 A-16D 1llustrate a 2 chamber view of rate 5 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
1mage;

FIGS. 17A-17D 1llustrate a short axis view of rate 5 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
1mage;

FIGS. 18A-18D illustrate a 4 chamber view of rate 5 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1image, a Wavelet filtered image, and a KLT filtered
1mage;

FIG.19. SNR gain of filters for single rate 5 volunteer data;

FIGS. 20A-20D 1llustrate a 2 chamber view of rate 6 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
1mage;

FIGS. 21 A-21D 1llustrate a short axis view of rate 6 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered 1image, and a KLT filtered
1mage;

FIGS. 22A-22D illustrate a 4 chamber view of rate 6 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
1mage;

FIG. 23 1llustrates a SNR gain of filters for single rate 6
volunteer data:

FIGS. 24 A-24D 1llustrate a 2 chamber view of rate 5 vol-

unteer data respectively showing a noisy input image, a KW
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filtered 1mage, a Wavelet filtered 1image, and a KLT filtered
image; SNR gain of all three filters were matched;

FIGS. 25A-25D 1llustrate a short axis view of rate 5 vol-
unteer data respectively showing a noisy mput image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
image; SNR gain of all three filters were matched;

FIGS. 26A-26D illustrate a 4 chamber view of rate 5 vol-
unteer data respectively showing a noisy input image, a KW
filtered 1mage, a Wavelet filtered image, and a KLT filtered
image; SNR gain of all three filters were matched;

FI1G. 27 illustrates the effect of different filters on myocar-
dial edge sharpness with a focus on the heart;

FI1G. 28 1llustrates an edge sharpness measurement for each
filter shown as percentage of sharpness of original image; and

FIG. 29 illustrates an example computing device.

DETAILED DESCRIPTION

In accordance with certain implementations, de-noising,
RT cardiac cine images may be performed using a hybrid KW
filtering technique that combines filtering 1n both spatial and
temporal domains. The KW filter incorporates a combination
of 1D KLT 1n the temporal domain and 2D Wavelet filtering 1n
the spatial domain to provide higher performance than either
of the individual filter components. As discussed above, {il-
tering techniques for de-noising purposes can be applied in
the spatial domain, the temporal domain or both, depending,
on the characteristics of the signal. Temporal filtering tech-
niques such as Karhunen-Loeve Transform (KLT) may be
applied to any 1mage series that show a high degree of tem-
poral correlation while spatial filtering techniques like Wave-
let filtering and low pass Fourier filtering 1s applied to images
that exhibit high spatial correlation. RT cardiac MR cine
image series can exhibit high temporal correlation as well as
high spatial correlation.

With reference to FIG. 1, there 1s 1llustrated an overview of
the processes 100 performed by the Karhunen-Love Trans-
form Wavelet (KW) Filter 1n accordance with aspects of the
present disclosure. At 102, a dynamic MR 1mage series 1s
acquired. The MR 1mage series may be acquired by conven-
tional imaging techniques and stored in an 1mage database for
retrieval and filtering 1n accordance with the present disclo-
sure.

Next, at 104, a Karhunen-Loeve Transform (KLT) 1s
applied in the temporal domain to convert a temporal series of
frames 1nto a series of eigenimages where the signal 1s con-
centrated 1nto a subset of eigenimages. As a result of the KLT,
the remaining eigenimages contain mostly noise. The KLT
compresses important signal information 1nto a finite set of
frames (eigenimages) and improves the subsequent Wavelet
filtering because the threshold value used to {filter noise 1n
cach frame 1s adaptive to signal content as well as noise
content 1n that frame.

In general, KLT 1s a linear transformation that decorrelates
the data in such a way that most of the signal energy i1s
concentrated 1into a few e1genimages. It 1s a well-known sig-
nal processing technique for image compression and filtering,
and 1s used herein to exploit the high temporal correlation
present 1n quasi-periodic dynamic MR 1mages. Consider M
frames of a noisy dynamic MR 1mage series. If each image
frame consists of N pixels, then the entire image series can be
represented by an MxN matrix I, where each row corresponds
to a no1sy 1image frame. The MxM empirical temporal cova-
riance matrix R=IT"/N has M eigenvalues (A, <h.=<... =h,,)
and a corresponding eigenvector matrix E, with eigenvectors
as rows. Applying E to I yields an eigenimage matrix X

X=E1

(1)
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In the matrix X, the eigenimages represented by rows are
sorted by their eigenvalues 1n ascending order. This means
that the eigenimages are sorted by information content; the
first several eigenimages contain small eigenvalues (1.e., less
signal information or mostly noise) and most of the signal
information is stored in the last few eigenimages.

Referring now to FIG. 2, there 1s a block diagram 200
illustrating the function of the KLT. As illustrated, the KLLT

converts information from an 1mage space 1nto an eigenimage
space. In the original images, information content 1s approxi-
mately equal 1n all temporal frames. By generating the series
of eigemimages, the information content 1s concentrated into
tewer frames (e.g., the last few). The KL'T may be applied 1n
accordance with the disclosure of U.S. Pat. No. 8,208,709, to

Ding et al., which 1s incorporated herein by reference 1n 1ts
entirety. Subsequent Wavelet filtering (described below at
108) uses a thresholding technique that 1s adaptive to noise
and signal information of each frame, a stronger level of
filtering will be automatically applied to the eigenimages
containing mostly noise. This leads to improved noise reduc-
tion as well as better signal preservation. Therefore, the tem-
poral KLT can be used to enhance the effectiveness of subse-
quent Wavelet filtering.

Referring again to FIG. 1, at 106, a distribution function 1s

applied to define the noise-only eigenimages, which are then
discarded. For example, the Marcenko-Pastur (MP) Law
method 1s used define the noise-only eigenimages. A consid-
eration for the filtering method of the present disclosure (e.g.,
the KLT filter), 1s to define an approprate cutoif or threshold
that results 1n noise suppression without sacrificing signal. In
the case of the KLT, 1t 15 a goal to remove the noise-only
cigenimages while preserving the eigemimages that contain
useiul signal. Thus, in accordance with implementations
herein, the MP Law may be used to select the noise-only
eigenimages. This 1s based on the principle that the eigenval-
ues associated with noise-only eigenimages follow the MP
distribution, whereas the noise-only eigenimages can be 1den-
tified using a hypothesis-test method employing the good-
ness-of-fit. Other functions that can be applied to i1dentily
noise-only eigenimages based on a distribution of noise may
be used at 106.

The MP-law states that the eigenvalues of the noise-only
cigenimages follow a specific probability distribution func-
tion:

1
Incaila

(2)

p(A) = vV max(0, (Amax — A)(A — Amin)

Amax, min = o>(1 + \{;)2 (3)

where 0~ is the noise variance, Amax is the maximum eigen-
value of the noise-only eigenimages, Amin 1s the minimum
cigenvalue of the noise-only eigenimages and o=(M-r)/N
where M 1s the total number of images, r 1s the cutodl, 1.e. M-r
1s the number of noise only eigenimages, N 1s the pixel
number per 1mage.
The following are examples steps for estimating the noise
variance 1n a series of dynamic images using the MP Law:
1. For the mnput RT cardiac MR cine image series, compute
the eigenimages and corresponding eigenvalues using
KLT
11. Assuming the total number of frames 1n the input image
series 1s M, select one eigenimage cutoll r and calculate
o (noise variance) as the average of first M—-r eigenim-
ages using the relationship shown below:

L pmin "M (MdA (4)
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111. Vary the pixel number N (pixels in each frame) to
maximize the goodness-oi-fit (GOF) between the MP-
distribution and the first M-r e1genvalues using the Kol-
mogorov-Smirnov (KS) Test. The KS-test uses the
maximum difference between the cumulative distribu-
tion function of the target PDF and the empiric cumula-
tive distribution function of samples as the measure of
GOF.

1iv. Repeat steps 2 (varying r) and 3 (varying N) using a
double resolution coarse-fine searching algorithm until
the global maximum of GOF 1s found at eigenimage
cutoll r=r, and pixel number N=N,,.

v. The first M-r, eigenimages are noise-only eigenimages.

For each pixel, the noise variance 1s evaluated from the

intensity fluctuation across these noise-only eigenim-
ages.

After the noise-only eigenimages are identified using MP
Law, they are discarded (e.g., zero-filled) so that only the
cigenimages with signal information remains. This approach
has been validated in MR dynamic images with parallel
reconstruction.

Next, at 108, the preserved eigenimages are subjected to
spatial Wavelet filtering. In accordance with some implemen-
tations of the present disclosure, the Wavelet filtering 1s
implemented using a soit thresholding method where the
Wavelet threshold 1s directly proportional to noise variance
and inversely proportional to signal standard deviation of
cach eigenimage. A Wavelet threshold that 1s adaptive to
signal content 1s to apply stronger filtering to eigenimages
with low signal information and weaker filtering to eigenim-
ages with significantly high signal information. Such an adap-
tive Wavelet threshold improves noise reduction while pre-
serving significant signal information.

In accordance with some implementations of the present
disclosure, the Wavelet filtering method uses an adaptive
Wavelet threshold, as proposed by Chang et al 1n Adaptive
Wavelet Thresholding for Image Denoising and Compres-
sion, IEEE Trans. Image Processing, Vol. 9, No. 9: 1532-1546
(2000) the disclosure of which 1s incorporated by reference
in its entirety. The determination of the adaptive Wavelet
threshold may be a fully automatic method. The adaptive
Wavelet threshold may be computed as the ratio of noise
variance to signal standard deviation in a particular image,
and 1t 1s optimal 1n the Bayesian sense. Such a threshold 1s
then applied to each eigenimage that remains after noise-only
cigenimages are discarded using MP Law. By performing the
Wavelet filtering method at 108, additional suppression of
noise beyond that which 1s provided by the KLT filter alone 1s
provided. Since KLT acts to push important signal informa-
tion 1nto few eigenimages, this improves the effectiveness of
the adaptive Wavelet filter which assigns a higher Wavelet
threshold for eigenimages with more noise (or less signal
information) and lower threshold for eigemimages with less
noise (or more signal information).

Spatial Wavelet filtering may consist of applying a Wavelet
transformation followed by an adaptive threshold calculation,
and then followed by an inverse Wavelet transformation. Each
will be described in further detail below. The first step of
applying a Wavelet transform may be performed as a 3-level
non-decimated Wavelet transform that 1s applied to each
remaining eigenimage after noise-only eigenimages are dis-
carded using MP Law at 106. A non-decimated Wavelet algo-
rithm may be used as 1t produces better de-noising results than
a decimated Wavelet algorithm. For example, applying a non-
decimated algorithm rather than a decimated algorithm for
de-noising applications improves the result by more than
1'70% (2.5 dB). The non-decimated algorithm saves the detail
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coellicients 1n each level and uses the low-1frequency coetli-
cients for the next level. This way the size of the Wavelet
coellicients does not diminish from one level to the next. By
using all coelficients in one level, high frequency information
1s well defined across all levels.

Applying a 2-D Wavelet transform divides an 1mage into
one low frequency component called “approximation™ and

three high frequency components (vertical, horizontal and
diagonal) called “details.” FIG. 3 illustrates sub-bands
obtained for a redundant Wavelet transform with three scales
of decomposition. As shown 1n FIG. 3, the “approximation”
contains most of the important signal information and the
“details™ contain high frequency information as well as noise.
Therefore, the Wavelet thresholding procedure removes noise
by thresholding only the Wavelet coetlicients of the detail
sub-bands, while keeping the low resolution approximation
coellicients unaltered.

The next step of applying an adaptive threshold calculation
may be performed i accordance with the thresholding
method of Chang, which 1s optimal in Bayesian analysis with
Gaussian prior. Noise 1s mostly concentrated in the high-
frequency detail coellicients, thus the Wavelet threshold 1s
calculated and applied for each detail coellicient in each of
the 3 levels. It 1s described by the relationship:

(5)
Tox) = —

where o~ is the noise variance calculated and averaged over
all the noise-only e1genimages determined by MP Law. This
value of noise variance 1s held constant while computing the
Wavelet threshold value for all detail coetlicients. The signal
standard deviation o,-0f each sub-band 1s computed using the
following relationship:

\/max(ﬂ'},— ~0%,0) (6)

where o, is the variance of pixel values in a sub-band that
include both signal information and noise.

After finding the standard deviation of the signal o,.1n each
detail sub-band, the data-driven, sub-band-dependent sofit-
threshold T can be calculated using Eq. 5. This threshold T 1s
calculated and applied for sub-bands of eigenimages. As the
threshold 1s calculated for each of the three details (horizon-
tal, vertical and diagonal), three thresholds are obtained for
cach scale of decomposition for each eigenimage.

The next step of applying an inverse Wavelet transform
involves subjecting the eigenimages to the inverse Wavelet
transform. This 1s represented in Eq. 7 below.

D=Ww"'T (7)

where D= {dy}I , represents the matrix of de-noised eigenim-
ages, W™ represents the 2D dyadic inverse Wavelet transform
operator and T=1t, }, - represents the matrix of Wavelet coef-
ficients after apphcatlon of Wavelet threshold.

Referring again to FI1G. 1, at 110, an inverse KLT 1s applied
to revert back to 1image space from eigenimage space, which
1s the final step i1n the implementation of KW filter. The
iverse KLT 1s used to transform back to image space from
cigenimage space. At 112, the output image series obtained
alter inverse KT will be the de-noised image series. The final
de-noised output 1image series 1s represented by the matrix

F={f,},,and is shown below in Eq. &:
F=E'D (8)

where E' represents the inverse KLT operator.
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As described above, the KLT acts to concentrate important
signal energy 1nto a finite number of eigenimages. Since the
Wavelet threshold for subsequent filtering 1s calculated as the
ratio of noise variance to the signal standard deviation, this
results 1n stronger filtering of eigenimages that contain sig-
nificant noise. With reference to FIGS. 4A and 4B, to observe
the effect of KLT 1n subsequent Wavelet filtering, the short
ax1s image series of arate 5 volunteer data may be considered,
which contains a total of 256 frames. After three levels of
Wavelet decomposition, the signal information stored in the
three details (horizontal, vertical and diagonal) of each image
frame 1s analyzed with and without the application of KLT.

FIG. 4A shows the standard deviation of the signal stored
in the details across all 256 frames of a standard cine image
series 1n level 3 of Wavelet decomposition. For the applica-
tion of Wavelet filtering alone without KLT, the filtering pro-
cess 15 done 1n 1mage space rather than eigemimage space.
From FIG. 4A, 1t can be seen that the signal information
stored 1n the details appears to be constant across all 256
frames 1n 1mage space. As mentioned earlier, KT converts an
input 1mage series mnto a set of eigenimages. These eigenim-
ages are sorted 1n ascending order of corresponding eigenval-
ues, 1.e., ascending order of information content. This means
that the first few eigenimages show very low signal informa-
tion and therefore, they contain mostly noise; most of the
signal information 1s stored 1n the last few eigenimages. FIG.
4B shows how KLT acts to push the important signal infor-
mation to the last few e1genimages.

With reference to FIGS. SA and 5B, there 1s shown Wavelet
filter thresholds for the three “details” (at decomposition level
no. 3) dertved from series of standard cine images (FIG. SA)
and eigenimages dertved using KLT (FIG. 3B). The vanation
in threshold seen 1in FIG. 5B reveals that a stronger level of
Wavelet filtering will be automatically applied to the eigen-
images containing mostly noise. FIG. SA shows the Wavelet
threshold computed for the details across all 256 frames of a
standard cine 1mage series 1n level 3 of Wavelet decomposi-
tion. From FIG. 4A, since the signal standard deviation of the
details appears to be uniformly spread across all 256 frames 1n
image space (without KLT), the Wavelet threshold also

appears to be uniformly spread across all frames because
Wavelet threshold 1s computed as the ratio of noise variance
to signal standard deviation.

From FIG. 5B, 1t 1s evident that the threshold value for the
details 1n eigenimage space gradually decreases with increas-
ing frame index because KLT acts to concentrate signal infor-
mation into the last few eigemmages. Since Wavelet threshold
1s inversely proportional to the signal standard deviation, this
gradual decrease 1s visible starting from the MP Law cutoil.
The cutoif determined by MP Law method 1s labeled 1n FIG.
5B. Figenimages below the MP Law cutoll are zero-filled to
climinate the contribution of noise into the filtered 1image
Series.

Thus, a KW filter 1s described above that 1s superior to
spatial Wavelet filtering, as the KW filter exploits temporal
correlations via KL'T. Preceding the spatial Wavelet filter by
KLT concentrates signal into a subset of frames, allowing
stronger spatial Wavelet filtering of those frames containing
primarily noise. The KW filter approach 1s also compared
with temporal KLT filtering. Temporal KLT filter functions
by first applying a KL'T and then discarding the noise-only
frames as determined by MP-Law cutoil, leaving the remain-
ing frames untouched. Applying adaptive Wavelet filtering to
the remaining frames improves on KLT filtering by removing,
noise from these frames, while preserving important signal
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information. For these reasons, the KW filter offers superior
noise reduction performance to either spatial Wavelet or tem-
poral KLT filtering alone.

Alternatively or additionally to the above, the KW filter can
be applied to any data set that can be represented as a 3-D
array. The KLT can be applied 1n one dimension, and the 2-D
Wavelet filter can be applied 1n the eigenimage domain. In
addition, the KL'T can be applied 1in any data set that can be
represented as 2-D array. The KLT can be applied 1n the first
dimension, and the 1-D Wavelet filter can be applied 1n the
cigenvector domain (the second dimension).

Example Results—Phantom Images

For analysis purposes, adynamic series of phantom images
was generated that regionally changes shape over time. The
generated series of phantom 1mages were of size 120x160
having a total of 120 temporal frames with a periodicity of 20
frames. Noise of standard deviation 0.08 was added to these
images and the performance of the KW filter approach above
was 1nvestigated. Using a SNR measurement method
described below, the SNR of the noise-added phantom 1image
was found to be 8.27. Two selected frames from the dynamic
phantom are shown in FIGS. 6 A and 6B, which illustrate
digital phantom series with 160x120 spatial size and 120
temporal frames 1n total. The phantom 1s based on dynamic
cllipsoids. Two selected frames showing the motion of the
phantom data.

To evaluate filtering performance of KW filter on phantom
images, SNR gain, image sharpness and RMS difference
were used as performance indices. Filtering performance of
KW filter was compared to that of Wavelet filter and KL T
filter 1n terms of edge sharpness and RMS ditference for a
matched value of SNR gain. Tools to compute SNR gain,
sharpness and RMS difference are described below.

To estimate noise (SNR) in phantom 1mages, a method may
be used as proposed by Donoho and Johnstone, Ideal spatial
adaptation via Wavelet shrinkage, Biometrika 81: 425-55
(1994), the contents of which are incorporated by reference 1n
its entirety. The method includes a single-level 1D Haar
Wavelet transform may be applied to the time-course (1C) of
cach pixel. TC denotes a 1D array that holds the value of a
single pixel across time. Applying Wavelet transtorm to TC of
cach pixel provides approximation and detail coetlicients for
that pixel. Eq. 13 shown below 1s applied to detail coetlicients
ol each pixel to obtain standard deviation of noise for that
pixel:

median(|D(%)])
0.6745

a(k) = ®)

where D(k) denotes detail coetficients and o(k) denotes stan-
dard deviation of noise for pixel k. Computing o for each
pixel provides a noise map for the phantom image, as shown
in FIG. 7, which illustrates a noisy phantom image showing
(1) ROI for estimating signal (dashed) and (11) ROI for esti-
mating noise (dotted).

To estimate signal, a mask was applied on the phantom
image (dashed lines 1n FI1G. 7) to select a region where signal
appears constant across time, 1.e., a region where there 1s no
temporal variation. Mean value of this constant region gives
mean value of signal for the phantom 1mage. The reason for
selecting a constant region 1s to eliminate interference of
noise caused due to temporal variation. To estimate noise,
Donoho’s method was first used to generate a noise map for
the image. Then, a mask was applied on the noise map (dotted
line 1n FIG. 7) to consider only the signal part of the phantom
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while 1gnoring the background. The mean value of this selec-
tive part of the noise map gives standard deviation ol noise for
the phantom 1mage. The ratio of mean signal value to noise
standard deviation gives the SNR value for the phantom
1mage.

To measure 1mage sharpness, a method based on paramet-
ric modeling of image edges may be used. To describe edges,
a sigmoid function § may be used, which is defined as:

]
1 +1093@0—")

(10)

fr; ap, a1, az, a3) = + ay

where a,, a,, and a, describe center location, amplitude, and
offset of the sigmoid function, respectively, r represents dis-
tance 1n terms of pixels, and a, defines growth rate or sharp-
ness of the sigmoid function.

The 1image sharpness measurement process used here con-
s1sts of the following five example steps: (1) apply edge detec-
tion algorithm to automatically 1dentily the dominant edges
(11) manually select edge pixels via a graphical user intertace;
(111) read 1mage 1ntensity profiles across all selected edge
pixels; (1v) individually curve fit the intensity profiles with the
sigmoid function (Eq. (10)) to estimate values of r for each
edge pixel; and (v) use the mean of the estimated values of r
as a measure of 1mage sharpness. FIG. 8 provides an 1llustra-
tion of the process, which illustrates an image intensity profile
that 1s read along the yellow line (left) and then fitted with a
sigmoid function (right). The above procedure 1s repeated for
multiple frames to cover one complete motion cycle. A final
edge sharpness value 1s obtained by averaging the measure-
ments over the whole cycle.

Root-mean-squared error (RMS error) 1s a parameter used
to analyze the degree of deviation of the filtered image from
the original noise-free 1mage. It 1s computed using the fol-
lowing example steps: subtracting filtered image from origi-

* [T

nal noise-free 1mage; squaring all pixels 1n the difference

image; finding the mean value of the squared pixels; and

applying root to this mean value to obtain RMS difference
value. RMS dif

the filtered 1image 1s to the original noise-free image.

‘erence provides an estimation of how close

For phantom data, the performance of KW filter was com-
pared with two other filters—a Wavelet filter and a KLT filter
in terms ol edge sharpness and RMS error after SNR gain of
all three filters were matched. The sections below discuss a
Wavelet filter, a KL'T filter and the method used to match the
SNR gains of all three filters.

For the Wavelet filter, the filtering was performed using the
adaptive Wavelet threshold method similar to the one used for
KW filtering. The difference 1s that spatial Wavelet filtering 1s
applied without the application of KLT, 1.e., Wavelet filtering
1s done 1n 1mage space rather than eigenimage space. Wavelet
filter can be applied using the following example steps: apply-
ing three-level non-decimated Wavelet transform to obtain
approximation and detail coelficients; applying adaptive
Wavelet threshold shown 1n Eq. 5 to filter detail coefficients in
cach of the three levels; and applying inverse Wavelet trans-
form to get de-noise 1mage series.

The SNR o1 2D spatial Wavelet filter was matched with that

of KW filter by simply varying the Wavelet threshold using a
scale factor as shown by the equation below:
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(11)

0_2
Floy) = H—Xﬁ

where {3 1s the scale factor used to match the SNR of Wavelet
filter to KW filter. p was increased linearly in steps o1 0.5 until
the desired SNR gain was achieved, 1.e., the SNR gain pro-
vided by the Wavelet filter matched that of the KW filter.
Increasing p 1s expected to lead to loss ol information content,
and this was mvestigated by measuring edge sharpness and
RMS error 1n the Wavelet filtered images.

The KLT filter was implemented by applying KLT 1n the
temporal domain and then discarding the noise-only eigen-
images estimated by MP-Law method. Finally, the inverse
KLT was applied to obtain the de-noised images. FIG. 10

shows the steps needed to de-noise 1mages using KLT {filter.
To match SNR of KLT filter with that of KW filter, more

cigenimages need to be discarded in addition to the ones
already discarded using MP Law cutoff. KLT filter satisfies
the following equation:

U filtered

(12)

=Vm/p

T original

where m 1s the number of eigenimages that pass through the
filter and p denotes the total number of eigenimages. Equation
12 demonstrates that the ratio of noise standard deviation
alter filtering to noise standard deviation before filtering 1s
equal to Vm/p. Therefore, discarding more eigenimages (i.e.,
decreasing m) leads to increase in SNR gain. In this manner,
the SNR gain of the KLT filter was matched to that of the KW
filter. Discarding additional eigenimages beyond the MP Law
cutoll 1s expected to lead to loss of information, especially
blurring of moving edges, and this was 1nvestigated by mea-
suring edge sharpness and RMS error in the KLT filtered
1mages.
To compare and evaluate the effect of three filters—KW
filter, Wavelet filter and KLT filter—on phantom data, the
following example steps may be implemented:
1. KW filter was applied on noisy phantom image series and
SNR gain was computed;
2. SNR gain of Wavelet filter was empirically matched to that
of KW filter by increasing the adaptive Wavelet threshold;
3. SNR gain of KLT filter was emplrlcally matched to that of
KW filter by further discarding eigenimages 1n addition to
the ones that were already discarded using MP Law cutoif;
4. After SNR gains of all three filters were matched, edge
sharpness of filtered 1image obtained using each filtering
technique was measured; and

5. Also, RMS difference of filtered image from original noise-
free image was calculated for all three filters.

To compute edge sharpness, three edges 1n the phantom
image are considered—the stationary edge, the horizontal
moving edge and the vertical moving edge. For each edge,
sharpness was calculated and averaged over a set of frames
that cover one complete motion cycle (e.g., 20 frames). All the
filters—KW filter, Wavelet filter, and KLT filter—were
applied on the dynamic phantom. For the noisy phantom
image series, calculated SNR was found to be 8.27. After
application of KW filtering, SNR of the filtered image was
observed to be 72.99. The SNR of all three filters were
matched which gives us a common base to compare the sharp-
ness ol the three filters. A representative frame from the
original and each of the filtered 1mage series 1s shown 1n
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FIGS.9A-9D, which illustrates a Noisy phantom image (FIG.
9A), and results from KW filter (FIG. 9B), Wavelet filter
(F1G. 9C), and KLT filter (FIG. 9D). From FIGS. 9A-9D, 1t 1s
illustrated that for a given level of noise reduction, KW {il-
tering shows better performance compared to both Wavelet
filtering and KLT filtering 1n terms of edge sharpness.

To evaluate the ability of the KW filter to preserve edges,
the edge sharpness may be evaluated at different regions of
the phantom 1mage. The three edges, shown in FIG. 10, that
were selected for measurement are: (1) Stationary edge, (11)
horizontal moving edge, and (111) vertical moving edge. The
sharpness was calculated using the algorithm described
above. The 1image intensity along a normal perpendicular to
the edge was computed and then least-square fitted with a
sigmoid function. Edge sharpness for each filter was calcu-
lated and presented as percentage of edge sharpness of the
original noise-free phantom image (gold standard). The
sharpness measurements are shown 1n FIG. 11, which 1llus-
trates three edge sharpness measurement for each filter shown
as percentage of sharpness of original noise-free 1image

Analyzing the stationary edge results 1n FIG. 11, KL'T and
KW filters show a sharpness loss of less than 1% while
Wavelet filter causes a sharpness loss of nearly 22%. This 1s
due to the fact that both KL'T and KW filter exploit the tem-
poral redundancies in the image through the application of
KLT. Therefore, 1t a particular region in the image shows
mimmal or no change across consecutive frames, then KLT 1s
more elfective in compressing important signal information.
On the other hand, Wavelet filter 1s a spatial filter. Therefore,
it exploits only spatial redundancies and the blurring of edges
1s independent of whether or not the edge 1s moving.

Sharpness results for moving edges follow a different pat-
tern when compared to stationary edge results. For the hori-
zontal moving edge, loss 1n edge sharpness caused by KW,
Wavelet and KLT filters were 3.4%, 25.6% and 26.4% respec-
tively. Sharpness results for the vertical moving edge were
similar to that of horizontal moving edge with KW, Wavelet
and KLT filters showing a loss of 5.2%, 23.8% and 26.2%
respectively. This was expected since none of the three filter-
ing methods should show any directional dependence. Sig-
nificant temporal variation adversely atffects temporal filters
that rely on temporal redundancies across image frames. This
explains why temporal filters like KLT filter show better

sharpness results on stationary edges than on moving edges.
Comparison of KW and KL'T Filter:

Both KLT and KW filters make use of the MP Law cutoil
to 1dentify and discard noise-only eigenimages. After this
step, KW filter applies Wavelet filtering 1n the spatial domain
to Turther increase SNR gain. To match this additional SNR
gain provided by KW filter, additional eigenimages were
discarded (zero-filled) by the KLT filter beyond the MP Law
cutoll causing a loss 1n temporal information. The KW filter
instead applied a spatial Wavelet filter to the remaining eigen-
images, thereby keeping the important signal information
while reducing the noise. This 1s the reason KW filter showed
better sharpness results compared to the KLT filter for mov-
ing edges.

Comparison of KW and Wavelet Filter:

Both KW and Wavelet filters make use of 2D Wavelet
filtering for spatial de-noising. However, KW filter first uses
KLT to compress important signal information into a finite set
of eigenimages. This improves the working of the subsequent
Wavelet filtering that makes use of an adaptive threshold,
thereby providing an additional SNR gain over Wavelet filter.
To account for this additional SNR gain, the Wavelet thresh-
old used 1n Wavelet filter was increased to match the SNR of
the KW filter. Increasing the Wavelet threshold causes spatial
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information loss and 1s likely to cause blurring of edges. This
was corroborated by the edge sharpness measurements which
showed that sharpness loss caused by Wavelet filter was uni-
form, 1rrespective of edge motion. The KW filter demon-
strated superior edge preservation (stationary and moving)
compared to the Wavelet filter for the same gain in SNR.

To evaluate the significance of difference in sharpness
between the filtered 1mages and original noise-ifree 1mage,
paired t-test was performed on the sharpness measurements
of the following pairs
1. Original noise-iree 1image and KW filtered image
2. Original noise-Iree image and Wavelet filtered image
3. Original noise-iree image and KLT filtered image

4. KW filtered image and KLT filtered image
5. KW filtered image and Wavelet filtered image
with the assumption that both samples have unequal mean
with unknown and unequal variance and alpha (signifi-
cance level) 1s 0.05.

TABLE 1
ORIGINAL NOISE-FREE
IMAGE KW FILTER
KW FILTER P >0.05 —
WAVELET P <0.001 P < 0.001
FILTER
KLT FILTER P >0.05 P >0.05

Table 1 illustrates p-value of paired t-test between sharp-
ness measurements 1n stationary edge of original and filtered
images. The p-values 1n Table 1 show that the stationary edge
sharpness of the original noise-free image, KW filtered image
and KLT filtered image were not significantly different from
one another since corresponding p-values are greater than
0.05. However, the stationary edge sharpness of the Wavelet
filtered 1image was significantly different from similar mea-
surements 1 both original noise-free 1mage and KW filtered
image. Thus, Table 1 shows that KW filter and KLT filter
preserve stationary edge sharpness while Wavelet filtering did
not.

Tables 2 and 3 show the paired t-test results for sharpness
measurements in horizontal moving edge and vertical moving
edge respectively.

TABLE 2
ORIGINAL NOISE-FREE
IMAGE KW FILTER
KW FILTER P >0.05 —
WAVELET FILTER P <0.001 P < 0.001
KLT FILTER P <0.001 P < 0.001
TABLE 3
ORIGINAL NOISE-FREE
IMAGE KW FILTER
KW FILTER P >0.05 —
WAVELET FILTER P <0.001 P < 0.001
KLT FILTER P <0.001 P < 0.001

Tables 2 and 3 shows that the sharpness of moving edges 1n
the original noise-free image and the KW filtered image were
not significantly different from one another since p-value 1s
greater than 0.05. However, both KLT filtered image and
Wavelet filtered 1image showed significant difference from
KW filtered image as well as original noise-free image. So, 1t
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may be concluded that the sharpness loss caused by KW filter
1s msignificant while both KLT filter and Wavelet filter caused
significant loss 1n moving edge sharpness.

Table 4 shows the RMS ditfference ol noisy input image and
filtered 1mages from the original noise-free image:

TABLE 4
UNFILTERED KW
NOISY FILTERED WAVELET KLT FILTERED
IMAGE IMAGE  FILTERED IMAGE IMAGE
0.08 0.0162 0.0454 0.0380

From Table 4, 1t can be seen that RMS difference between

unfiltered noisy image and original noise-free image 1s 0.08,
which corresponds to the standard deviation of added noise.

KW filter was able to bring this RMS difference from 0.08 to
0.0162, a reduction of almost 80%. The KW f{iltered image
was closer on an RMS basis to the original image than both
Wavelet filtered image and KLT filtered image with equiva-
lent gain 1n SNR.

Example Results—Human Data

For the purpose of analyzing the effect of KW filter on MR
cine 1mages, images were acquired 1n vertical and horizontal
long-axis and short-axis views in four healthy volunteers
using steady-state free precession real-time cine on a 3.0 T
MR scanner (MAGNETOM Trio, Siemens Healthcare, Ger-
many). Imaging parameters were: TGRAPPA with parallel
acceleration rate=5, 192x95 1mage matrix reconstructed (in-
terpolated by zero padding to 192x144) from 192x19
acquired k-space matrix, 5 mm thick slice, flip angle=48°,
temporal resolution=>54.77 ms, TE/TR (Echo time/Repetition
time)=1.25/2.83 ms, pixel bandwidth=1447 Hz/pixel,
FOV=300x225 mm*. A total of 256 images were acquired per
image series over a 13.77 second acquisition during free-
breathing. Also, for a single volunteer, images were acquired
in vertical and horizontal long-axis and short-axis views with
three different acceleration rates—rate 4, rate 5 and rate 6. A
total of 256 1mages of size 192x144 were acquired per image
Series.

Temporal filter performance can be influenced by the num-
ber of frames 1n the series, especially when there 1s some
temporal periodicity. An increasing number of frames that
span additional cycles of motion (e.g., heart beats) increases
the redundancy of information, enhancing the level of signal
compression provided by the KLT. This was mvestigated 1n
one series of cine 1mages by varying the number of temporal
frames that were filtered.

To evaluate the performance of the KW filter on human
images, SNR gain and image sharpness were used as perfor-
mance 1dices. Filtering performance of KW filter was com-
pared to that of Wavelet filter and KLT filter in terms of edge
sharpness for a matched value of SNR gain. This 1s explained
in detail above.

To find the SNR of MR cine images, a subtraction method
was implemented 1n an ROI enclosing the heart. To imple-
ment the subtraction method, a pair of 1mage frames were
identified that showed the least amount of vanation between
them 1n the ROI so that the difference between these two
frames would yield predominantly noise 1n the ROI. To find
the palr of frames with least amount of variation in the ROI,
the pairwise correlation coellicients are computed, and then
the pair of frames with the highest correlation 1s 1dentified.
Analyzing the pairwise correlation coellicients, the pair of
most “similar” 1image frames may be identified. The noise-
only difference image was then obtained by subtracting the
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ROIs of these two similar frames. The standard deviation of
this noise-only difference image divided by V2 was used as an
estimate of the noise standard deviation.

The mean signal value was obtained by calculating the
mean value of the ROI for the particular pair of image frames
chosen. Using the computed mean signal value and noise
standard deviation, the SNR of the MR cine image was
obtained as the ratio of the former to the latter. The method to
compute edge sharpness for MR cine images 1s the same as
the one used for phantom 1mages, as described above.

To compare the performance of KW filter, Wavelet filter
and KLT filter on human images, the following example steps
were implemented (1n same order):

1. SNR gain comparison of filters

a. Higher parallel acceleration rates result in higher noise
level. For a single volunteer data obtained with different
acceleration rates (rate 4, rate 5, and rate 6), KW {ilter,
Wavelet Filter and KLT filter were applied.

b. SNR gain provided by the filters was calculated for all three
acceleration rates (Refer section 4.1)

2. Sharpness comparison of filters

a. For rate 5 data acquired in four healthy volunteers, the KW
filter was applied to each volunteer data separately and
SNR gain was computed.

b. For each volunteer data, SNR gain of Wavelet filter was
empirically matched to that of KW filter by increasing the
adaptive Wavelet threshold (Refer section 3.4.1)

c. Similarly, SNR gain of KLT filter was empirically matched
to that of KW filter by discarding eigenimages 1n addition
to those discarded using the MP Law cutoil (Refer section
3.4.2)

d. After SNR gains of all three filters were matched for four
rate 5 volunteer data, loss 1n edge sharpness caused by each
filter with respect to original image was computed (Refer
section 3.2)

3. SNR gain comparison for varying number of frames

a. For a single rate 4 volunteer data with a total of 256 frames,
a KW filter 1s applied to 32 frames, 64 frames, 128 frames
and 256 frames of the image series separately

b. SNR gain was computed for each frame length separately
For sharpness measurements, the myocardial edge was

chosen as 1t moves with the beating heart and thus shows
temporal variation across image frames. Sharpness measure-
ments are calculated and averaged over one cardiac cycle.
Computing SNR gain for volunteer data acquired with differ-
ent acceleration rates was done to evaluate filter performance
with varying levels of image noise. A quantitative comparison
of filter performance was also performed using the same
approach described for the phantom experiments described
above; the SNR gain for the three filters was matched, and
image edge sharpness measured. In this manner, the degree of
edge degradation for a given level of SNR gain could be
quantitatively assessed and compared.

To analyze the effect of KW filter on images with varying
noise, the cardiac 1mage series of a single volunteer acquired
using different acceleration rates (rate 4, rate 5 and rate 6) are
considered. For all three acceleration rates, the SNR gain for
KW filter 1s determined, KL'T filter and Wavelet filter. For
every acceleration rate, three views were considered; short
ax1s view, 2 chamber view and 4 chamber view. The SNR gain
was computed using the subtraction method previously
described above.

With the above as an introduction, FIGS. 12A-12D 1illus-
trate a two chamber view of rate 4 volunteer data showing a
noisy mput image (F1G. 12A); KW filtered image (FI1G. 12B);
Wavelet filtered image (FIG. 12C); and KLT filtered image
(F1G.12D). FIGS. 13A-13D 1llustrate a short axis view of rate
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4 volunteer data showing a noisy input image (FIG. 13A);
KW filtered image (FI1G. 13B); Wavelet filtered image (FIG.

13C); and KLT filtered image (FI1G. 13D). FIGS. 14A-14D
illustrate a 4 chamber view of rate 4 volunteer data showing a
noisy mputimage (FI1G. 14A); KW filtered image (FI1G. 14B);
Wavelet filtered image (FI1G. 14C); and KLT filtered image
(F1G. 14D). F1GS. 12, 13 and 14 show the original and filtered
images for a single rate 4 volunteer data. For rate 4 image
series, SNR gain provided by the filters 1s summarized 1n the
graph shown 1n FIG. 15, which 1llustrates the SNR gain of
filters for single rate 4 volunteer data

From the FIG. 15, 1t can be seen that KW filter provided
higher SNR gain than the KI'T and Wavelet filters in these
three 1mage series acquired 1n a single volunteer using rate 4
acceleration. SNR gain was computed using the method
specified 1n section 4.1.

FIGS. 16 A-16D 1llustrate a 2 chamber view of rate 5 vol-
unteer data showing noisy input image; a KW filtered image;
Wavelet filtered 1mage, and KL T filtered image, respectively.
FIGS. 17A-17D illustrate a short axis view of rate 5 volunteer
data showing a noisy mput image; a KW filtered image; a
Wavelet filtered 1mage; and KL T filtered image, respectively.
FIGS. 18A-18D 1illustrate a 4 chamber view of rate 5 volun-
teer data showing a noisy input image; a KW filtered image;
a Wavelet filtered image; and KLT filtered image, respec-
tively. FIGS. 16, 17 and 18 show the original and filtered
images for a single rate 5 volunteer data. For the single rate 5
volunteer data, SNR gain for all three filters was computed.

FIG. 19 summarizes the SNR gain results of the three filters
for rate 5 data. FIG. 19 shows that KW filter provides better
SNR results compared to KLT filter and Wavelet filter for
single rate 5 data. By comparing FIG. 18 and FIG. 19, the KW
filter provides better SNR gain for rate 5 data than for rate 4
data. This 1s because noise level inrate 5 1images 1s higher than
in rate 4 1images. This causes the MP Law method to discard
more noise-only eigenimages for rate 5 data than for rate 4
data, leading to better SNR gain results.

FIGS. 20A-20D 1llustrate a 2 chamber view of rate 6 vol-
unteer data showing a noisy mput image; a KW filtered
image; a Wavelet filtered 1image; and KLT filtered image,
respectively. FIGS. 21 A-21D 1illustrate a short axis view of
rate 6 volunteer data showing a noisy mput image; a KW
filtered 1mage; a Wavelet filtered 1mage; and KLT filtered
image, respectively. FIGS. 22A-22D illustrate a 4 chamber
view of rate 6 volunteer data showing a noisy input image; a
KW filtered image; a Wavelet filtered image; and KLT filtered
image, respectively. FIGS. 20, 21 and 22 show the original
and filtered 1mages for a single rate 6 volunteer data. FIG. 23
provides SNR gain results of all three filters for a single rate
6 volunteer data. From FIG. 23, 1t can be seen that KW filter
provides better SNR gain than KLT filter and Wavelet filter
for a single rate 6 volunteer data. Also, it has to be noted that
SNR gain provided by KW filter for rate 6 data 1s superior to
the gain provided for rate 5 and rate 4 data. This 1s because
noise level in rate 6 data 1s higher than in rate 5 and rate 4 data,
which causes MP Law to discard more noise-only eigenim-
ages for rate 6 data. Therefore, SNR gain for rate 6 data 1s
higher.

In summary, these experiments have demonstrated that
KW filter provides better SNR results than Wavelet filter and
KLT filter for all three acceleration rates (rate 4, rate 3, rate 6).
Also, SNR gain provided by KW filter increased with increas-
ing acceleration rate, 1.¢., with increasing noise level.

The previous section shows the SNR gain provided by the
three filters for images acquired using various acceleration
rates. However, to have a basis for comparison, one parameter
1s set constant and another parameter 1s evaluated. This was
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done by following the same procedure that was applied to the
phantom 1mages as described above; SNR gain was set to the
same level for each filter and the loss 1n edge sharpness was
measured. For comparison purposes, acceleration rate 5
images from four healthy volunteers are considered.

SNR gain of KLT filter was matched to that of KW filter by
varying the number of noise-only eigemimages that were dis-
carded. On the other hand, SNR gain of Wavelet filter was
matched to that of KW filter by varying Chang’s adaptive
Wavelet threshold. After SNR gain of all three filters was
matched, edge sharpness of the myocardial wall was com-
puted using the same method that was used in the case of
phantom i1mages. For each of the three views (short axis,
4-chamber, and 2-chamber), myocardial edge sharpness was
averaged over a set of frames representing one cardiac cycle.
The edge sharpness measurement was also averaged over four
volunteers, to get a single measurement value for each view.

For rate 5 images of four volunteers considered, the aver-
age SNR gain provided by the KW filter 1s shown 1n Table 3,
which shows the average SNR gain of KW filter for four rate
S volunteers.

TABLE 5
SNR OF ORIGINAL ~ SNR OF KW FILTERED
TYPE OF VIEW IMAGE IMAGE
2 CHAMBER 3.7019 8.1456
SHORT AXIS 4.0276 7.3448
4 CHAMBER 6.3002 12.2897

For each volunteer data, the SNR gain of the Waveletand KLLT
filters were matched to the SNR gain of KW filter separately
for each of the three views prior to measuring edge sharpness.

FIGS. 24, 25 and 26 show filtering results of rate 5 volun-
teer data after SNR gain of all three filters were matched.
FIGS. 24 A-24D 1llustrate a 2 chamber view of rate 5 volun-
teer data showing a noisy input image; a KW filtered image;
a Wavelet filtered 1mage; and KLT filtered image, respec-
tively; SNR gain of all three filters were matched. FIGS.
25A-25D 1illustrate a short axis view of rate 5 volunteer data
showing a noisy input image; a KW filtered image; a Wavelet
filtered 1mage; and KLT filtered image, respectively; SNR
gain of all three filters were matched. FIGS. 26 A-26D 1llus-
trate a 4 chamber view of rate 5 volunteer data showing a
noisy input image; a KW filtered image; a Wavelet filtered
image; and KLT filtered image, respectively; SNR gain of all
three filters were matched

FIG. 27 focuses on the heart to compare the sharpness
performance of the three filters for a similar value of SNR
gain to show the eflect of different filters on myocardial edge
sharpness. In FI1G. 27, the arrows point to the myocardial edge
in each view. By visually looking at the myocardial edge 1n
cach filtered 1mage, it 1s evident that KW filter provides better
sharpness results when compared to KL'T filter and Wavelet
filter for a matched value of SNR gain.

FIG. 28 illustrates sharpness measurements of all three
filters averaged over four rate 5 volunteers. The edge selected
to compute sharpness was the myocardial edge (the interface
between bright blood and dark heart muscle). The 1dentical
edge was evaluated for each of the different filtered image
series. Sharpness measurement 1s presented as percentage of
sharpness of the original image. From FIG. 28, it can be seen
that KW filter shows better sharpness performance compared
to Wavelet filter and KLT filter. For each view, % loss 1n
sharpness caused by KW filter 1s lesser than both Wavelet
filter and KLT filter for a similar value of SNR gain.
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To analyze the significance of difference 1n sharpness mea-
surements between the original and filtered human 1mages, a
paired t-test may be used. Procedure and assumptions to
perform t-test were 1dentical to those described 1n chapter 3
for phantom 1mages.

TABLE 6

ORIGINAL IMAGE KW FILTER
KW FILTER P < 0.05 —
WAVELET FILTER P < 0.001 P <0.001
KLT FILTER P < 0.001 P <0.001

Table 6 provides the t-test results for sharpness measurements
on all three views of all four rate 5 volunteers combined
together. It can be seen that measurements of all three fil-

ters—KW filter, KLT filter and Wavelet filter are significantly
different from one another as well as from the original image.
It has to be noted that sharpness of KW filtered image shows
significant difference from original image 1n human data, but
the difference in phantom data 1s insignificant.

To analyze the performance of KW filter on image series
with varying frame length, a single rate 4 volunteer data
having a total of 256 frames 1s considered. KW filter was
applied to 32 frames, 64 frames, 128 frames and 256 frames
of the image series separately.

TABLE 7
128 256
ORIGINAL 32 FRAMES 64 FRAMES FRAMES  FRAMES
4.888 5.908 5.956 6.143 6.559

KW filter demonstrated higher SNR gain when more images
were included. SNR gain of KW filter for a 256 image series
was 13.31% higher than for a 32 image series. This 1s because
the level of temporal redundancy, and hence the performance
of the KLT filter, increases with increase 1n series length. This
tradeotl can be exploited 1n situations where longer series of
images can be acquired.

FIG. 29 1s a hardware block diagram of a general-purpose
computer 2900 that can be used to implement one or more of
the components of the filters disclosed herein. The computer
2900 contains a number of components that are well known 1n
the art of call center software, including a processor 2910, a
network interface 2920, memory 2930, and non-volatile stor-
age 2940. Examples ol non-volatile storage include, for
example, a hard disk, flash RAM, flash ROM, EEPROM, etc.
These components are coupled via a bus 2950. The memory
2930 contains instructions which, when executed by the pro-
cessor 2910, implement the methods and systems disclosed
herein. Omitted from FIG. 29 are a number of conventional
components, known to those skilled in the art that are unnec-
essary to explain the operation of the system 2900.

The systems and methods disclosed herein can be imple-
mented 1n software, hardware, or a combination thereof. In
some embodiments, the system and/or method 1s 1mple-
mented 1n software that 1s stored 1n a memory and that 1s
executed by a suitable microprocessor (uP) situated 1n a com-
puting device. However, the systems and methods can be
embodied in any computer-readable medium for use by or 1n
connection with an instruction execution system, apparatus,
or device. Such instruction execution systems include any
computer-based system, processor-containing system, or
other system that can fetch and execute the mstructions from
the 1nstruction execution system. In the context of this dis-
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closure, a “computer-readable medium™ can be any means
that can contain, store, communicate, propagate, or transport
the program for use by, or 1n connection with, the 1nstruction
execution system. The computer readable medium can be, for
example but not limited to, a system or propagation medium
that 1s based on electronic, magnetic, optical, electromag-
netic, indrared, or semiconductor technology.

Specific examples of a computer-readable medium using
clectronic technology would include (but are not limited to)
the following: an electrical connection (electronic) having
one or more wires; a random access memory (RAM); a read-
only memory (ROM); an erasable programmable read-only
memory (EPROM or Flash memory). A specific example
using magnetic technology includes (but 1s not limited to) a
portable computer diskette. Specific examples using optical
technology include (but are not limited to) optical fiber and
compact disc read-only memory (CD-ROM).

It should be noted that any process descriptions or blocks 1n
flowcharts should be understood as representing modules,
segments, or portions of code which include one or more
executable instructions for implementing specific logical
functions or steps 1n the process. As would be understood by
those of ordinary skill in the art of the software development,
alternative embodiments are also included within the scope of
the disclosure. In these alternative embodiments, functions
may be executed out of order from that shown or discussed,
including substantially concurrently or in reverse order,
depending on the functionality mvolved.

This description has been presented for purposes of 1llus-
tration and description. It 1s not imntended to be exhaustive or
to limit the disclosure to the precise forms disclosed. Obvious
modifications or variations are possible 1n light of the above
teachings. The embodiments discussed, however, were cho-
sen to 1llustrate the principles of the disclosure, and 1ts prac-
tical application. The disclosure 1s thus intended to enable one
of ordinary skill 1in the art to use the disclosure, in various
embodiments and with various modifications, as are suited to
the particular use contemplated. All such modifications and
variation are within the scope of this disclosure, as deter-
mined by the appended claims when interpreted 1n accor-
dance with the breadth to which they are fairly and legally
entitled.

What 1s claimed:

1. A method of providing a Karhunen-Love Transform
Wavelet (KW) Filter to suppress random noise 1n an image
series, comprising:

applying a Karhunen-Loeve Transform (KLT) to the image

series to compress signal information 1nto a finite set of

frames, the KL'T being applied to a temporal domain to

convert a temporal series of frames 1nto a series of e1gen-

images having eigenvalues, wherein the signal informa-

tion 1s concentrated into a subset of eigenimages in

accordance with their respective eigenvalues;
discarding substantially noise-only frames;

applying a Wavelet filter with an adaptive threshold to

remaining frames; and

applying an inverse KLT to obtain the de-noised image

series.

2. The method of claim 1, wherein the temporal series of
frames comprises M frames each having N pixels, the method
further comprising:

representing the image series by a MxN matrix I, wherein

cach row corresponds to an 1image frame;

representing a MxM empirical temporal covariance matrix

R=IT"/N that has M eigenvalues (A, <A,<...=A,,) and a
corresponding eigenvector matrix E, with eigenvectors
as rows; and

applying E to I to determine an eigenimage matrix X.
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3. The method of claim 2, further comprising sorting rows
of the matrix Xby their eigenvalues, wherein smaller e1gen-
values contain less signal information, and wherein relatively
eigenvalues contain more signal information.

4. The method of claim 1, further comprising removing,
noise-only eigenimages that substantially contain noise by
applying the MP Law.

5. The method of claim 4, wherein the noise-only eigen-
images follow a probability distribution function defined by:

p(A) = 12 P Vv max(0, (Amax — A)(A — min) ,

2no

and

Amax, min = crz(l + \/E)z,

wherein 0 is a noise variance, Amax is a maximum eigen-
value of the noise-only eigenimages, Amin 1s a minimum
cigenvalue of the noise-only eigenimages, and a=(M-
r)/N where M 1s the total number of 1mages, r 1s the
cutoll, 1.e. M—r1s the number of noise only e1genimages,
N 1s the pixel number per image.

6. The method of claim 5, estimating the noise variance,

turther comprising:

selecting an eigenimage cutoif r;

determining o~ as an average of first M—r eigenvalues:;

varying a pixel number N representing pixels in each frame
to maximize a goodness-of-1it (GOF) between the MP-
law probability distribution and the empirical probabil-
ity distribution first M-r eigenvalues using a Kolmog-
orov-Smirnov (KS) Test; and

repeating the selecting, determining and varying until a
global maximum of GOF i1s found at an eigenimage
cutoif r=r, and a pixel number N=N,,.

7. The method of claim 6, wherein first M-r, eigenimages

are noise-only eigenimages.
8. The method of claim 6, further comprising determining,

o as an average of first M—-r eigenvalues using the relation-
ship

O rmin " hp (M)

9. The method of claim 1, discarding substantially noise-
only frames by defining a cutoil that results in noise suppres-
s1on substantially without reducing the signal information.

10. The method of claim 1, further comprising applying
Wavelet filtering using a soit thresholding method wherein
the adaptive threshold 1s directly proportional to noise vari-
ance and 1versely proportional to signal standard deviation
of each eigenimage.

11. The method of claim 10, wherein the adaptive threshold
applies relatively stronger filtering to eigenimages with low
signal information and relatively weaker filtering to eigenim-
ages with higher signal information.

12. The method of claim 1, further comprising applying a
Wavelet transform as a n-level Wavelet transform that is
applied to each remaining eigenimage after noise-only e1gen-
images are discarded.

13. The method of claim 12, further comprising applying a
2-D Wavelet transform to divide an image into an approxi-
mation that comprises one low frequency component and
details that comprise three high frequency components.

14. The method of claim 13, wherein the adaptive threshold
removes noise by thresholding only the Wavelet coetlicients
of sub-bands of the details while keeping low resolution
coellicients of the approximation unaltered.
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15. The method of claim 13, further comprising;:
for each detail coelficient, determining the adaptive thresh-
old 1 accordance with the relationship:

.
I'oy) = —,

X

wherein 0 is a noise variance that is calculated and aver-
aged over all noise-only eigenimages, wherein signal
standard deviation ax of each sub-band of the details 1s
determined in accordance with the relationship:

O X:\/max(GFE—Oz ,0),

wherein o~ is the variance of pixel values in a sub-band

that include both signal information and noise.

16. The method of claim 12, further comprising determin-
ing and applying the adaptive threshold to each of the details,
wherein a predetermined number of n thresholds are obtained
for each eigenimage in accordance with n-level Wavelet
transiorm.

17. The method of claim 1, wherein the adaptive threshold
provides additional suppression of noise beyond that which 1s
provided by the KLT.

18. A method of providing a Karhunen-Love Transform
Wavelet (KW) Filter to suppress random noise in an image
series, comprising:

applying a Karhunen-Loeve Transform (KLT) to the image

series to compress signal information 1nto a finite set of
frames;

discarding substantially noise-only frames;

applying a Wavelet filter with an adaptive threshold to

remaining frames; and

applying an inverse KLT to obtain the de-noised image

series,

wherein the inverse KLT 1s defined by the relationship:

D=w'T

wherein D:{di{}l. , represents a matrix of de-noised eigen-
images, W~ represents a 2D dyadic inverse Wavelet
transform operator and T={t,;}, . represents a matrix of
Wavelet coellicients after application of the adaptive
threshold.
19. The method of claim 18, wherein an output image
series obtained after applying the inverse KLT 1s represented
by a matrix F={f,}, , and is represented by the relationship:

F=E'D

wherein E~' represents an inverse KLT operator.
20. A method of providing of suppressing random noise 1n
an 1mage series with M frames, comprising;
applying a transform to the image series to convert a tem-
poral series of frames 1nto a series of eigenimages hav-
ing eigenvalues;
applying a probability distribution function to determine
noise-only eigenimages in the series of eigenimages to
determine a set of remaining eigenimages;
applying a wavelet filter with an adaptive threshold to each
cigenimage 1n the set of eigemimages to define the wave-
let filter strength for each of the e1genimages 1n the set of
cigenimages; and
applying an inverse transform to obtain a de-noised 1image
series.
21. The method of claim 20, wherein the transform com-
prises a temporal filtering technique.
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22. The method of claim 21, wherein the temporal filtering
technique 1s a Karhunen-Loeve Transform (KLT).

23. The method of claim 21, wherein the temporal filtering,
technique 1s a singular value decomposition (SVD).

24. The method of claim 20, further comprising determin-
ing the adaptive threshold based on a noise variance and
standard deviation of an 1mage.

25. The method of claim 20, wherein the probability dis-
tribution function 1s tuned by two fitting parameters, the num-
ber of pixels N, and the eigenimage cutoff r.

26. The method of claim 25, wherein the probability dis-
tribution function 1s MP-law distribution, defined by a noise
variance, a maximum eigenvalue of the noise-only eigenim-
ages, a minimum ei1genvalue of the noise-only eigenimages,
and wherein the fitting parameter adjusts the number of pixels
per frame.

277. The method of claim 20, wherein the probability dis-
tribution function 1s replaced by a method that 1s adapted to
identily the eigenimages that can be removed without affect-

ing the signal image series.
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28. The method of claim 25, discarding substantially noise-
only eigenimages by defining a cutoil that results 1n noise
suppression substantially without reducing the signal infor-
mation.

29. The method of claim 27, further comprising:

selecting an eigenimage cutoll r for the image series with
M {frames;

determining the noise variance as an average of first M—r
cigenimages;
varying a pixel number N representing pixels in each frame

to maximize a goodness-oi-1it (GOF) between the prob-
ability distribution and first M—r eigenvalues; and

repeating the selecting, determining and varying until a
global maximum of GOF i1s found at an eigenimage
cutoll r=r, and a pixel number N=N,.

30. The method of claim 28, wherein first M-r, eigenim-
ages are noise-only eigenimages.

G ex x = e
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