12 United States Patent

Fried et al.

US009262324B2

US 9,262,324 B2
Feb. 16, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

(58)

EFFICIENT DISTRIBUTED CACHE
CONSISTENCY

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Eric P. Fried, Austin, TX (US); Lance

W. Russell, Rosanky, TX (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 41 days.

Notice:

Appl. No.: 14/302,981

Filed: Jun. 12, 2014
Prior Publication Data
US 2015/0169497 Al Jun. 18, 2015

Related U.S. Application Data

Continuation of application No. 14/104,008, filed on
Dec. 12, 2013.

Int. CI.

GO6F 12/12 (2006.01)

GO6F 12/08 (2006.01)

GO6F 15/173 (2006.01)

U.S. CL

CPC .......... GO6I' 12/0822 (2013.01); GO6F 12/084

(2013.01); GO6F 12/0831 (2013.01); GO6F
15717331 (2013.01); GO6F 2212/154 (2013.01);
GO6F 2212/60 (2013.01)

Field of Classification Search

CPC ............ GO6F 12/0822; GO6F 12/0831; GO6F
15/17331
USPC e 711/141

See application file for complete search history.

114

206

(56) References Cited

U.S. PATENT DOCUMENTS

2/1996 Devarakonda et al.
0/1996 Heath et al.
3/1997 Dasgupta

(Continued)

5,490,270 A
5,553,239 A
5,612,865 A

FOREIGN PATENT DOCUMENTS

4/2001
4/2002

EP 1094651 Al
EP 1197862 Al

OTHER PUBLICATIONS

U.S. Appl. No. 12/957,853, printed Jun. 11, 2014, 3 pages.
(Continued)

Primary Lxaminer — Jae Yu

(74) Attorney, Agent, or Firm — Stephen J. Walder, Ir.;
Thomas E. Tyson

(57) ABSTRACT

Mechanisms are provided for performing a write operation on
a shared resource 1n a cluster of data processing systems. The
mechanisms determine whether a locally cached copy of the
shared resource 1s present 1 a local cache memory. The
mechanisms, 1n response to a determination that a locally
cached copy 1s present, determine whether the locally cached
copy 1s a latest version of the shared resource. The mecha-
nisms, in response to determining that that locally cached
copy 1s a latest version: perform the write operation on the
locally cached copy to generate an updated locally cached
copy, and transmit a cluster event notification to other data
processing systems ol the cluster indicating the shared
resource was written to and which data processing system
performed the write operation. The cluster event notification
1s logged 1n at least one change log data structure associated
with the other data processing systems.

10 Claims, 6 Drawing Sheets

204

0
-
2




US 9,262,324 B2

Page 2
(56) References Cited 2006/0100981 Al  5/2006 Jones et al.
2006/0167921 Al 7/2006 Grebus et al.
U.S. PATENT DOCUMENTS 2006/0173932 Al 8/2006 Cortright et al.
2007/0168793 Al 7/2007 Seo
5,666,486 A 0/1997 Alfieri et al. 2007/0276833 Al 112007 Sen et al.
5,870,759 A 7/1999 Bauer et al. 2008/0052455 Al 2/2008  Ahmadian et al.
5,870,765 A 2/1999 Bauer et al. 2009/0172195 Al 7/2009  Risbud
5,881,316 A 3/1999 Chaney et al. 2010/0154054 A1 6/2010 Beck
5,884,325 A 3/1999 Bauer et al, 2012/0143829 Al 6/2012  Fontenot et al.
5,898,836 A 4/1999 TFreivald et al. 2OT2/0143836 Ajh 6/20__52 Fried et al.
6,014,669 A 1/2000 Slaughter et al. 2012/0143887 Al 6/2012  Tontenot et al.
6,038,625 A 3/2000 Ogino et al. 2012/0143892 Al 6/2012  Fried et al.
6,047,332 A 4/2000 Viswanathan et al. 2012/0209821 Al 8/2012 Fried et al.
6,108,699 A 8/2000 Moiin
6,119,131 A 9/2000 Cabrera et al. OIHER PUBLICATIONS
g:é?gzg?g g; 1%88? EEZEigﬁa;et al U.S. Appl. No. 12/957,894, Jun. 11, 2014, 3 pages
6,247,149 Bl 6/2001 Falls et al. U.S. Appl. No. 12/957,937, Jun. 11, 2014, 3 pages.
6,256,740 B1  7/2001 Muller et al. U.S. Appl. No. 12/957,980, Jun. 11, 2014, 3 pages.
6,269,374 B1  7/2001 Chen et al. U.S. Appl. No. 13/456,388, Jun. 11, 2014, 2 pages.
6,353,898 Bl 3/2002 Wipfel et al. U.S. Appl. No. 14/104,008, Jun. 11, 2014, 1 page.
6,453,426 Bl 9/2002 Gamache et al. “International Business Machines Corporation™, International Appli-
6,460,133 Bl  10/2002 Nunez et al. cation No. PCT/EP2011/071309; International Search Report and
6,467,050 Bl 10/2002 Keung Written Opinion dated Mar. 14, 2012, 13 pages.
6,662,219 Bl 12/2003  Nishanov et al. “International Business Machines Corporation”, International Appli-
0,094,459 Bl 2§2004 Nyman cation No. PCT/EP2011/071367; International Search Report and
g*gi‘g*g%g Ez g /3882 %E;;e;t ai Written Opinion dated May 15, 2012, 11 pages.
7076.597 R? 717006 Webb. Tr. ot al Ghemawat, Sanjay et al., “The Googie File System”, SOSP *03, Oct.
7.103.616 Bl 9/2006 Harmer et al. 19-22, 2003, ACM 2003, Bolton Landing, NY, 15 pages.
7.107,267 B2 9/2006 Taylor Gordon, Susan, “Database Integrity; Security, Reliability, and Per-
7.171.476 B2 1/2007 Maeda et al. formance Considerations™, Indiana University South Bend, South
7,200,626 Bl 4/2007 Hoang et al. Bend, IN, pp. 1-12.
7,269,706 B2 9/2007 Agarwal et al. Herminghaus, et al., “Storage Management 1n Data Centers, Chap.
7,289,998 B2  10/2007 Kalos 11.3, Disk Outage in Detail”, http://books.google.com, 1 page.
7,334,089 B2 2/2008  Glasco Kronenberg, et al., “VAXclusters: A Closely-Coupled Distributed
;ﬂjgiﬂ(l)?g gé 18? 3882 Eda;l;lgnaft al System”, ACM Transactions on Computer Systems, vol. 4, No. 2,
ey | May 1986, Dept. of Computer Science, University of Washington,
gjg?gﬂggg g% lgl)gggg gztill;anarayan et al Seattle, WA, 1986, ACM 0734_0261.; pp- 130- 140.
7j617ﬁ289 RY?  11/2009 Srinivasan et al. ' Murat, “Metadata: The Role of Distributed State”, muratbuffalo.
8:095:7 53 Bl 1/2012 Pandey et al. blogspot.com/2010/1 1/role-of-distributed-state. html, = Wednesday,
8,176,014 B2  5/2012 Jacobs et al. Nov. 3, 2010, 3 pages.
8,705,504 B2* 4/2014 Moon ....cccev..., HO041. 67/2842 Nelson, Michael N. et al., “Caching in the Sprite Network File Sys-
370/331 tem”, Computer Science Division, Department of Electrical Engi-
2002/0002582 Al 1/2002 Ewing et al. neering and Computer Science, University of California, Berkeley,
2002/0042693 Al 4/2002  Kampe et al. CA, Accessed from the Internet Sep. 6, 2013, 35 pages.
2002/0059465 Al 5/2002 Kim Nick, .M. etal., “S/390 cluster technology: Parallel Sysplex”, http://
2002/0087801 AL* 72002 Bogin .....ccocecvvvos GOOF % %/I %g% researchweb.watson.ibm.com/journals/sj/362/nick.pdf, 33 pages.
s . Singh, Kamal, “CS Article”, Nov. 16, 2005; http://www/cs.sjsu.edu/
001 A1 122000 N . GOGF 02 L et
1 ! ogels, Werner et al., ““The Design and Architecture of the Microso
%883?88;%33 i glgggj Eﬁﬁ:épa{l* Cluster Service”, Published in the Proceedings of FTCS ’98, Jun.
2004/0199486 Al  10/2004 Gopinath et al. 23-25, 1998, Munich, Germany; IEEE; 11 pages.
2005/0015471 Al 1/2005 Zhang et al.
2005/0171927 Al 8/2005 Chan et al. * cited by examiner



U.S. Patent Feb. 16, 2016 Sheet 1 of 6 US 9,262,324 B2

NGDE 102

HARDWARE RESOURUES 11

DATA
o ORAGE

ADTTIONAL

FROCESSURS
Vi HYW 110

112

DEVICES 114

SO TWARE RESOURCES 120

APPLICATIONS 126
IDDLEWARE 124 NODE
Us(5) 142 102

NETWORK(S)
104

NODE
10 NCDE

NODE A0s
02

G



U.S. Patent Feb. 16, 2016 Sheet 2 of 6 US 9,262,324 B2

206
N\ 204
O FIG. 2

CLUSTER CONFIGURATION DATABASE 20

CHI

NUDE UL | NODE TEMP | OTHER NOLE SDID 318 DEVICE | CHECKSUM
310 D 312 |METADATA 314 = | NAME 318 308
@ ® @ ® ® @
@ ® ® @ ® @
@ @ @ ® @ @

RESERVED PREFIX [ NAMING COURIER
3.3 340

MG, 3



U.S. Patent Feb. 16, 2016 Sheet 3 of 6 US 9,262,324 B2
400 <>
430
— COMPUTING DEVICE (NODE)
ACCESS A 416
COMPUTING DEVICE (NODE) STNGE o
410 LOG DS CACHE
CHANGE LOCAL 446 456
06 DS CACHE —
440 45 7 SVENT
-~ ~~ 2 _NOTIFICATIONS
& Y
COMPUTING DEVICE (NODE) COMPUTING DEVICE (NODE)
412 414
CHANGE _OCAL CHANGE LOCAL
LOG DS CACHE LOG DS CACHE
447 452 444 454
FiG. 4
i,
) _ N UPDATE
RESOURCE 1D SOURCE NODE ID | STALENESS INDICATOR |
. - NDICATOR
616
@ @ @ @
@ @ @ @
@ @ @ @

FIG. 6



U.S. Patent Feb. 16, 2016 Sheet 4 of 6 US 9,262,324 B2

400
COMPUTING v’
DEVICE (NODE) |
410 FLUS?“E - 430
LocAL | -7 N COMPUTING DEVICE (NODE)
CACHE b~ 416
450 __
CHANGE  OCAL
CHANGE LOG DS CACHE
LOG DS 448 458
@ || |
\ OBTAN 1
\ LOCK
e L COMPUTING DEVICE (NODE)
N U BUCESS | 414
SYNC ) | e
: ; CHANGE OCAL
| ; L0G DS CACHE
COMPUTING DEVIGE (NODE) 444 224
417
CHANGE  OCAL
LOG DS CACHE
442 452
A .
CHECK IG5
RECENT LOG
ENTRY FOR
RESOURCE
Y
PROCESS




U.S. Patent Feb. 16, 2016 Sheet 5 of 6 US 9,262,324 B2

( s TART )

v

o NITIATE ACCESS
4G,/ OPERATION 702

ACQUIRE READ | peany READ WRITE | ACOUIRE

LOCK € UROWRITEY VRITE LOUK

b CACHED COPY?Y

f20
YiES

NC

INLHCATESD OTALEY

IDENTIFY NODE
HOLDING LATEST
VERSION
{30

v

DOWNLOAD TO
LOCAL CAUHE FROM
DENTIFED NODE

735

P

€

HEAL
OR WRITEY
140

REAL

WRIE N PERFURM WRiTE 10
LOCAL CACHE 755

. !
F’ERFQRFEG REAL SEND NOTIHCATION
745 7 &)

' !

RelEASE READ < END) ) RELEASE WRITE
LOCK 750 LOCK 765




U.S. Patent

Feb. 16, 2016

NO

Sheet 6 of 6

( o TART )

v

ACLGUIRE WRITE
LOUK 810

\ 4

DeELite LOCAL
CACHED CUFY
83U

CACHED
ERGHON LATESTY
g2u

Y

\ 4

WiRETE LOCALLY
CAUHED VERSION
10 QUURCE
S TORAGE LUCATION
84y

v

SEND EVENT
NOTHFICATON
INDICATING SOURCE
LOCATION HAS
LATEST VERSION
85U

v

RELEASE WRITE
LOCK
<&l

!

( N >

US 9,262,324 B2

MG &



US 9,262,324 B2

1

EFFICIENT DISTRIBUTED CACHE
CONSISTENCY

This application 1s a continuation of application Ser. No.
14/104,008, filed Dec. 12, 2013, status pending.

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for providing efficient distributed cache con-
sistency.

A cluster system, also referred to as a cluster multiproces-
sor system (CMP) or simply as a “cluster,” 1s a set of net-
worked data processing systems (or “nodes”) with hardware
and software shared among those data processing systems,
typically (but not necessarily) configured to provide highly
available and highly scalable application services. Cluster
systems are frequently implemented to achieve high avail-
ability as an alternative to fault tolerance for mission-critical
applications such as data centers, aircrait control, and the like.
Fault tolerant data processing systems rely on specialized
hardware to detect hardware faults and to switch to a redun-
dant hardware component, regardless of whether the compo-
nent 1s a processor, memory board, hard disk drive, adapter,
power supply, etc. While providing seamless cutover and
uninterrupted performance, fault tolerant systems are expen-
stve due to the requirement of redundant hardware, and fail to
address soltware errors, a more common source ol data pro-
cessing system failure.

High availability can be achieved 1n a cluster implemented
with standard hardware through the use of software that per-
mits resources to be shared system wide. When a node, com-
ponent, or application fails, the software quickly establishes
an alternative path to the desired resource. The brief interrup-
tion required to reestablish availability of the desired resource
1s acceptable 1n many situations. The hardware costs are
significantly less than fault tolerant systems, and backup
facilities may be utilized during normal operation.

The nodes of a cluster share resources of the cluster, includ-
ing files, data structures, storage devices, and the like. As
such, the various nodes of a cluster may each attempt to read
and write data from/to these shared resources. Hence, mecha-
nisms for controlling the reads and writes so as to ensure the
veracity of the shared resources are usually implemented.

SUMMARY

In one 1illustrative embodiment, a method, 1n a data pro-
cessing system comprising a processor and a memory, for
performing a write operation on a shared resource 1n a cluster
ol data processing systems 1s provided. The method com-
prises determining, by the data processing system, whether a
locally cached copy of the shared resource 1s present 1n a local
cache memory of the data processing system. The method
turther comprises, 1 response to a determination that a
locally cached copy of the shared resource 1s present 1n the
local cache memory, determining whether the locally cached
copy of the shared resource 1s a latest version of the shared
resource. In addition, the method comprises, 1n response to
determining that that locally cached copy of the shared
resource 1s a latest version of the shared resource: performing,
the write operation on the locally cached copy of the shared
resource to generate an updated locally cached copy of the
shared resource; and transmitting a cluster event notification
to other data processing systems of the cluster indicating the
shared resource was written to and identifying which data

5

10

15

20

25

30

35

40

45

50

55

60

65

2

processing system in the cluster performed the write opera-
tion. The cluster event notification 1s logged 1n at least one
change log data structure associated with the other data pro-
cessing systems.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program 1s provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method 1llustrative embodiment.

In yet another illustrative embodiment, a system/apparatus
1s provided. The system/apparatus may comprise one or more
processors and a memory coupled to the one or more proces-
sors. The memory may comprise istructions which, when
executed by the one or more processors, cause the one or more
processors to perform various ones of, and combinations of,
the operations outlined above with regard to the method 1llus-
trative embodiment.

These and other features and advantages of the present
invention will be described in, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present 1nvention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The mvention, as well as a preferred mode of use and
turther objectives and advantages thereof, will best be under-
stood by reference to the following detailed description of
illustrative embodiments when read 1n conjunction with the
accompanying drawings, wherein:

FIG. 1 1s a high level block diagram of an exemplary data
processing environment that may be configured as a cluster
system 1n accordance with one embodiment;

FIG. 2 depicts a trusted data storage device that stores a
cluster configuration database in accordance with one
embodiment;

FIG. 3 illustrates an exemplary cluster configuration data-
base 1n accordance with one embodiment;

FIG. 4 1s an example block diagram illustrating an opera-
tion for performing cluster-wide lock of shared resources and
access notifications i1n accordance with one 1illustrative
embodiment;

FIG. 5 1s an example block diagram illustrating an opera-
tion for accessing a shared resource that already has alock on
the shared resource in accordance with one illustrative
embodiment;

FIG. 6 1s an example diagram of a change log data structure
in accordance with one 1llustrative embodiment;

FIG. 7 1s a flowchart outlining an example operation for
performing read/write operations on a shared resource by a
node of a cluster 1n accordance with one illustrative embodi-
ment; and

FIG. 8 1s a flowchart outlining an example operation for
performing a flush operation on a node of a cluster 1n accor-
dance with one illustrative embodiment.

DETAILED DESCRIPTION

The i1llustrative embodiments provide mechanisms for pro-
viding efficient distributed cache consistency. In particular,
the mechanisms of the illustrative embodiments address
cache consistency when writes to shared resources are cached
at local caches of nodes 1n a group of nodes, such as a cluster.
Because many shared resource based systems, such as clus-



US 9,262,324 B2

3

tered computing systems, allow the individual computing
devices, processors, or the like (i1.e. nodes) to cache their
writes to the shared resource 1n a local cache before flushing
these writes to the centralized shared resource as part of a
synchronization operation, reads to the same shared resource
may become stale, 1.e. may be directed to an out-of-date
version of the shared resource. For example, a first node A
may perform multiple writes to a shared resource R of a
cluster and cache those writes 1n a local cache associated with
node A. Meanwhile, node B may wish to read the shared
resource R prior to the writes to the shared resource R being,
committed at the centralized copy of the shared resource R,
1.€. prior to the synchronization operation performed between
the cache of writes at node A and the centralized shared
resource R. As a result, the nodes of the cluster may have an
inconsistent view of the shared resource R.

The illustrative embodiments provide mechanisms for
ensuring consistency in such a distributed cache architecture.
Moreover, the illustrative embodiments provide eificient

mechanisms for ensuring such consistency by providing noti-
fication mechanisms that utilize small size event notifications
that are communicated between the nodes of a cluster when
any one node obtains a cluster-wide lock on a shared resource
and performs a write to the shared resource. The small size
event notification that 1s transmitted by the node obtaining the
lock and performing the write operation comprises a small,
fixed size payload that specifies the identity of the changed
resource, the identity of the node performing the change, and
a staleness indicator, e.g., a timestamp, version number, or the
like. The event notification 1s transmitted by a source node to
each of the other nodes 1n the cluster, or to a centralized
cluster control node.

The event notification 1s stored 1n a change log that 1s used
to 1dentily which resources are being accessed by nodes 1n the
cluster and which nodes are accessing the resources. There
may be a single change log stored in a centralized location
that maintains the event notifications from the various nodes
of the cluster for all of the shared resources, or there may be
separate change log data structures maintained 1n each of the
nodes. Moreover, there may be multiple change log data
structures maintained 1n each of the nodes or in the central-
1zed location, such as one for each user, one for each direc-
tory, one for each shared resource, or the like.

The event notifications are sent by the node 1n response to
cach write operation performed by the node to the shared
resource, where the write operations are performed locally on
a local cached copy of the shared resource. Thus, multiple
entries may be stored 1n the change log data structure(s) for a
series ol write operations performed on the shared resource.
The staleness indicator 1n the event notification entries 1n the
change log data structures indicates the most recent event
notification entry. The event notification entries further
specily which node 1s responsible for the latest write to the
shared resource 1dentified 1n the event notification entry.

When a node attempts to open a path to a shared resource,
such as via a file open process for example, either foraread or
a write operation, the node first attempts to obtain a cluster-
wide lock on the shared resource. If another node currently
has a cluster-wide lock on the shared resource, then the
present node cannot obtain the lock and will simply spin on
the lock waiting for the lock to be released. Assuming that the
cluster-wide lock 1s available and 1s not held by another node,
the present node then checks the centralized change log data
structure(s) or 1ts own local change log data structure(s),
depending on the particular embodiment, and searches the
change log data structure for an entry having a shared
resource 1dentifier matching the shared resource 1dentifier of

10

15

20

25

30

35

40

45

50

55

60

65

4

the shared resource that the node 1s attempting to access by
opening the path. If the shared resource identifier 1s not
present in the change log data structure, or an entry 1s posted
to the change log data structure indicating that the previous
change log data structures should be 1gnored due to a syn-
chronization of the cached writes to the shared resource, then
the node may obtain the cluster-wide lock on the shared
resource, obtain and store a cached copy of the shared
resource Irom its source location, and perform 1ts read/write
operations to its local cached copy of the shared resource.

I1 the shared resource 1dentifier 1s present in the change log
data structure, various operations may be performed to facili-
tate the node’s access to the shared resource, while maintain-
ing consistency of the shared resource state in the distributed
cache environment. The node identified 1n the most recent
matching entry of the change log data structure 1s identified as
the node that last accessed the shared resource, and which
therefore has the latest version in its local cache. In a first
embodiment, the node wishing to access the shared resource
sends a control message instructing the node possessing the
latest copy of the shared resource to perform a synchroniza-
tion operation, 1.e. forcing the synchronization operation.
Such a synchronization operation may comprise performing,
an unmount operation, for example, forcing a flush of the
node’s local cache such that the cached writes are commutted
to the shared resource, or the like. In another illustrative
embodiment, the access operations that the node wishes to
perform on the shared resource may be remotely performed
by the node possessing the latest version of the shared
resource. That 1s, the I/0 access requests may be sent to the
node possessing the latest version of the shared resource and
that node may act as a surrogate and perform the operations
on 1ts own local cached copy of the shared resource. This may
be accomplished by connecting the calling request to a socket
where the other side of the socket patches the connection and
mimics the original call.

At any time, the node possessing the latest version of the
shared resource may flush its cache to the central location of
the shared resource. In tlushing the cache, the local cached
copy of the shared resource copies over, or otherwise
replaces, the now out-of-date centralized shared resource.

The illustrative embodiments have significant advantages
over existing art in the area of refreshing distributed caches.
Current solutions either time-out stale entries (e.g., local cop-
1es of the resource) in the local caches or continuously poll for
changes to shared resource attributes. With the timing out of
stale entries, after a certain predetermined amount of time, the
cache entry 1s automatically declared stale and discarded. As
a result, the next access must retrieve a fresh copy of the
resource Irom the source. This mechanism by itself does not
guarantee that a node will always operate on a current copy of
the resource. Furthermore, this solution may generate extra-
neous network traific as 1t will blindly re-retrieve the resource
when the cache entry expires, whether the resource has been
changed or not.

With regard to the polling solution, a query 1s sent to the
source of theresource at regular intervals, €.g., once a second,
once a minute, etc. depending on the implementation, asking
whether the resource has been updated. This query can take
many forms including comparing the current resource state to
a last known modification date, comparing to a last known
checksum, or the like. If the query determines the resource
has been modified, the node will retrieve a fresh copy of the
resource for its cache. This is a better solution than the time-
out solution because only resources that have been modified
are re-retrieved. However, there 1s a drawback in that a
resource 1s always being re-retrieved if 1t 1s modified, whether




US 9,262,324 B2

S

the resource 1s going to be used or not. This solution also
leaves a window between pollings where the resource can still
become stale and thus, consistency 1s not guaranteed with this
solution.

The illustrative embodiments eliminate the need to check
whether a resource has been updated or not because the nodes
of the cluster have already been notified (or not) that the
resource has changed and thus, there 1s no need to send a
potentially slow and costly query to the source, e.g., central
repository. Moreover, the illustrative embodiments eliminate
the need to perform polling. That 1s, with the illustrative
embodiments, 11 a node wishes to maintain 100% consistency
at the cost of potentially unnecessary network traffic, 1.e.
always copying the latest version even 1f the resource 1s not
going to be used, the node can respond to cluster event noti-
fications by immediately refreshing the node’s local cache.
This eliminates the probability that the local copies of the
resources 1n the local cache are stale at any given time. This 1s
in contrast to current polling solutions where the probability
of a stale cache entry 1s proportional to the poll interval.

With the mechanisms of the illustrative embodiments,
when a cluster event notification 1s received by the other
nodes, or 1n the centralized cluster control device, the other
nodes are informed that the entry, 1.e. each node’s locally
cached copy of the resource, 1s stale. If a node does not have
a locally cached copy of the resource, 1.e. an entry 1n the local
cache for the resource, then this event notification may be
1gnored by that node. Thus, no polling 1s necessary to identily
that the shared resource has been modified. Moreover, the
particular shared resource that 1s stale 1s known from the
information communicated in the event notifications and
thus, no searching through entire directories and their
attributes for shared resources that have changed 1s necessary.
Moreover, the mechanisms of the illustrative embodiments
may be implemented independent of a cluster file system.

Furthermore, event notifications are transmitted very
quickly to the other nodes, or the centralized cluster control
device and thus, the life of a stale entry 1s short. That 1s, 1T a
node 1s to keep its cached copy of resources consistent all of
the time, the node can refresh immediately upon receiving the
event notification. However, this 1s not a requirement of the
illustrative embodiments. In fact, a node may disregard noti-
fications until such a time as 1t needs to reuse the resource.
Thus, 1n a case where notifications are disregarded until such
a time that the resource 1s to be reused, the life of a stale entry
may be indefinitely long.

To further illustrate the difference between polling solu-
tions and the mechanisms of the i1llustrative embodiments, 1t
should be kept in mind that polling solutions are blind and
merely occur on a regular interval. The queries represent
network traffic which can be seen as “wasted” tratlic any time
a query indicates the resource has not been updated since the
last polling occurred. In contrast, the mechamsms of the
illustrative embodiments send a very small event notification
only when a resource has been updated and this event notifi-
cation informs all of the nodes that their local copies of the
resource are stale.

In addition with polling solutions, the window where a
resource 1s potentially stale 1s effectively the entire poll inter-
val. However, with the mechanisms of the 1illustrative
embodiments, depending on the particular implementation
by which the local cache is refreshed, the window 1s either the
lifecycle of a single lock instance, 1.¢. a very small window, or
however long 1t takes another node to make a second modi-
fication while the first event notification 1s being processed.
This 1s the smallest potential staleness window that 1s math-
ematically able to be achieved.

.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Moreover, polling solutions always require an application
(or the user) to make a tradeolil between having shorter poll-
ing intervals, 1n order to decrease the potential staleness win-
dow, and having increased network noise by requiring polling
to be done more often with potentially higher instances of
“wasted” network traflic, or lower network noise but longer
polling intervals. The mechanisms of the 1llustrative embodi-
ments eliminate this tradeotl 1ssue since there 1s no polling
done and small event notifications are sent only when neces-
sary, 1.e. when a resource 1s actually modified.

The above aspects and advantages of the illustrative
embodiments of the present mvention will be described 1n
greater detail herealter with reference to the accompanying
figures. It should be appreciated that the figures are only
intended to be 1llustrative of exemplary embodiments of the
present invention. The present invention may encompass
aspects, embodiments, and modifications to the depicted
exemplary embodiments not explicitly shown in the figures
but would be readily apparent to those of ordinary skaill 1n the
art 1n view of the present description of the illustrative
embodiments.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied 1n any
one or more computer readable medium(s) having computer
usable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium 1s
a system, apparatus, or device of an electronic, magnetic,
optical, electromagnetic, or semiconductor nature, any suit-
able combination of the foregoing, or equivalents thereof.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would 1nclude the following;:
an electrical device having a storage capability, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber based device, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium 1s any tangible medium that can contain or store a
program for use by, or in connection with, an struction
execution system, apparatus, or device.

In some 1llustrative embodiments, the computer readable
medium 1s a non-transitory computer readable medium. A
non-transitory computer readable medium 1s any medium
that1s not a disembodied signal or propagation wave, 1.e. pure
signal or propagation wave per se. A non-transitory computer
readable medium may utilize signals and propagation waves,
but 1s not the signal or propagation wave 1tself. Thus, for
example, various forms of memory devices, and other types
of systems, devices, or apparatus, that utilize signals 1n any
way, such as, for example, to maintain their state, may be
considered to be non-transitory computer readable media
within the scope of the present description.

A computer readable signal medium, on the other hand,
may include a propagated data signal with computer readable




US 9,262,324 B2

7

program code embodied therein, for example, 1n a baseband
or as part of a carrier wave. Such a propagated signal may take
any of a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer read-
able medium that 1s not a computer readable storage medium
and that can communicate, propagate, or transport a program
for use by or 1n connection with an instruction execution
system, apparatus, or device. Similarly, a computer readable
storage medium 1s any computer readable medium that 1s not
a computer readable signal medium.

Computer code embodied on a computer readable medium
may be transmitted using any appropriate medium, including,
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LLAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present mnvention are described below with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to the 1llustrative embodiments of the mven-
tion. It will be understood that each block of the tflowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart 1llustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function 1n a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program

10

15

20

25

30

35

40

45

50

55

60

65

8

products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or tlowchart
1llustration, and combinations of blocks in the block diagrams
and/or tlowchart 1llustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

In order to provide a context for the description of the
specific elements and functionality of the 1llustrative embodi-
ments, FIGS. 1-2 are provided hereafter as example environ-
ments 1n which aspects of the illustrative embodiments may
be implemented. It should be appreciated that FIGS. 1-2 are
only examples and are not intended to assert or imply any
limitation with regard to the environments 1n which aspects or
embodiments of the present invention may be implemented.
Many modifications to the depicted environments may be
made without departing from the spirit and scope of the
present invention.

With reference now to FIG. 1, there 1s 1llustrated a high
level block diagram of a data processing environment that
may be configured as a cluster system 1n accordance with one
embodiment. In the depicted embodiment, data processing
environment 100 includes a distributed collection of homo-
geneous or heterogeneous networked data processing
devices/systems, referred to herein as nodes 102. For
example, each node 102 can be implemented with a server
computer system, such as one of the POWER servers avail-
able from International Business Machines Corporation of
Armonk, N.Y. Alternatively, the nodes 102 may be client
computing devices or a combination of client and server
computing devices may be utilized as nodes 102. Of course,
other types of data processing systems may be used without
departing from the spirit and scope of the illustrative embodi-
ments.

As shown, each node 102 includes both hardware
resources 110 and software resources 120. Hardware
resources 110 of nodes 102 include processors 112 for pro-
cessing data and program instructions, as well as data storage
devices 114 such as memory and optical and/or magnetic
disks for storing software and data. Hardware resources 110
also include additional hardware 116, such as network, input/
output (I/O) and peripheral adapters, power systems, ports,
administrative consoles, attached devices, etc. In various
embodiments, hardware resources 110 may include at least
some redundant or backup resources that may be selectively
placed into service, for example, in response to high workload
or hardware failure.

The software resources 120 of a node 102 can include, for
example, one or more possibly heterogeneous concurrent
instances of operating system(s) 122, middleware 124 such as
web and/or application servers, and applications 126. In a
preferred embodiment, at least one of operating systems 122
includes built-in clustering capability supporting commands
and programming APIs to enable creation, maintenance, and
management of a cluster from a group of operating system
instances on multiple nodes 102. As described further below,
the operating system infrastructure supports cluster-wide




US 9,262,324 B2

9

resource locking mechanisms and notification mechanisms
for ensuring efficient distributed cache consistency 1n accor-
dance with one or more of the illustrative embodiments. In
one 1llustrative embodiment, this clustering capability 1s pro-
vided by cluster-aware Advanced Interactive Executive
(AIX™), which 1s an open standards-based UNIX™ operat-
ing system available from International Business Machines
Corporation of Armonk, N.Y., augmented to provide logic for
facilitating the operations and functionality described herein
in accordance with one or more 1llustrative embodiments.

As further illustrated 1n FIG. 1, nodes 102 are coupled by
one or more wired or wireless, public or private networks 104
to permit sharing of at least some of hardware resources 110
and software resources 120 among ditferent nodes 102 con-
figured to operate as a cluster. Network(s) 104 can include
local area networks or wide area networks, such as the Inter-
net, as well as private point-to-point connections between
individual nodes 102.

One mmportant function of the cluster architecture 1s to
make shared cluster hardware and software resources highly
available. As an example, 11 an individual node 102 within
cluster system 100 fails, one or more applications 126 on the
talled node 102 will be automatically migrated by operating
system 122 to one or more other nodes 102 1n the cluster
system 100. Consequently, services provided by the failed
node 102 will, after a brief interruption, be continuously
available. For an application 126 or other resource to be
highly available, multiple nodes 102 within the cluster are
usually configured to run that application 126 or resource,
although usually at most only one node 102 manages the
shared application 126 at any single instant in time.

Those of ordinary skill 1n the art will appreciate that the
hardware and software employed in a cluster system, such as
the exemplary data processing environment depicted in FIG.
1, may vary. For example, a cluster system can comprise
additional or fewer nodes, one or more client systems, and/or
other connections not explicitly shown. The generalized clus-
ter architecture shown 1n FIG. 1 1s not intended to imply any
architectural limitations on the claimed nvention.

To permit resource sharing between certain nodes 102 in
data processing environment 100, while preventing unautho-
rized access to the shared resources by other nodes 102,
clients or other devices, a cluster configuration database pret-
erably defines what nodes 102 are authorized to form and/or
join a cluster and thus access the shared resources of the
cluster. In one preferred embodiment depicted 1n FIG. 2, the
cluster configuration database 200 resides on a trusted shared
data storage device 114 of a host node 102, represented 1n
FIG. 2 by a hard disk 202. Cluster system 100 1s constructed
and configured such that trusted shared data storage device
114 1s only accessible to nodes 102 that are authorized to be
members of a cluster (whether or not the nodes 102 actually
are members of the cluster at the time of access).

Hard disk 202 includes a boot sector 204 containing the
information required to boot the host node 102 under one of
operating systems 122. In accordance with a preferred
embodiment, boot sector 204 includes a cluster field 206
containing a pointer to cluster configuration database 200,
which as shown, preferably resides on the same trusted shared
data storage device 114. At a mimimum, cluster configuration
database 200 identifies which nodes 102 are authorized to
jo1n a cluster and thus access shared cluster resources of the
cluster.

With reference now to FIG. 3, there 1s illustrated an exem-
plary cluster configuration database 200 in accordance with
one embodiment. It should be appreciated that the depiction
in FI1G. 3 1s only for illustrative purposes and 1s not intended

10

15

20

25

30

35

40

45

50

55

60

65

10

to state or imply any limitation with regard to the manner in
which the illustrative embodiments must be 1mplemented.
Many modifications to the cluster configuration database 200
may be made without departing from the spirit and scope of
the illustrative embodiments.

In the depicted embodiment, cluster configuration data-
base 200 includes a plurality of data records 302 each com-
prising a payload 304 and a checksum field 306 storing a
checksum of the data record’s payload 304. The payload 304
of each data record 302 includes a node UUID (Universally
Unique Identifier) field 310 for storing the UUID of a respec-
tive one of nodes 102. The UUID preferably 1s self-assigned
by the node 102 and conforms to the format described, for
example, i ISO/IEC 11578. Data record 302 additionally
includes a node temporary ID field 312 that records a tempo-
rary identifier of the node 102, such as the hostname or
Internet Protocol (IP) address assigned to the node 102. Data
record 302 may optionally include one or more additional
node metadata fields, shown generally at reference numeral
314, that hold additional metadata regarding the node 102.

As noted above, nodes 102 within a cluster defined by
cluster configuration database 200 share software resources
120 and hardware resources 110, including at least some of
data storage devices 114. The data storage device(s) 114 of a

node 102 to be shared by other nodes 102 of a cluster are
identified by Universal Disk Identifiers (UDIDs) (or UUIDs)

recorded 1n UDID field 316 of data record 302. The UDID
field 316 of a data record 302 1s populated upon the addition
of a host node 102 on which the shared data storage devices
114 reside to the cluster configuration.

Associated with UDID field 316 1s a disk name field 318

that stores a corresponding device name for each of the shared
data storage devices 114 referenced in UDID field 316. As
will be appreciated, software, such as operating systems 114,
traditionally reference data storage devices by a variety of
names, such as the combination of major and minor numbers
utilized by UNIX™ to refer to disks. However, 1n a cluster
environment, the migration of software and hardware
resources between nodes 102 1s hampered by use of incon-
sistent resource 1dentifiers by different nodes 102 to identify
the same resource. Accordingly, cluster configuration data-
base 200 preferably includes support for the generation of
umque names for shared data storage devices 114. In the
depicted embodiment, this support includes a reserved prefix
builer 330 that holds a reserved prefix of the names of shared
data storage devices 114. In addition, cluster configuration
database 200 includes a naming counter 340 that monotoni-
cally advances (i.e., increments or decrements) to ensure a
device name 1s never repeated during the lifetime of cluster
configuration database 200.

The UUID’s and/or UDIDs of the nodes and shared
resources may be utilized with the mechanisms of the illus-
trative embodiments when sending cluster-wide event notifi-
cations via a cluster event service to the other nodes 1n the
cluster or to a centralized server hosting the shared resources
for the cluster. The cluster event service may be any mecha-
nism for cluster wide communication that provides reliable
(1.e. guarantees message delivery) and synchronous (the mes-
sage posting operation does not complete until the message 1s
delivered) messaging capability, e.g., Autonomic Health
Advisor File System (AHAFS) or the like.

As mentioned above, when a node obtains a cluster-wide
lock on a shared resource and performs a cached write to the
shared resource on alocal cached copy of the shared resource,
the node transmits an event notification out to the other nodes
in the cluster, or to the centralized server, or both, informing
the nodes of the cluster that the shared resource has been




US 9,262,324 B2

11

changed and thus, any local copies, or even the source copy, of
the shared resource 1s stale to these other nodes. This event
notification may specily, for example, an identifier of the
node that has modified the shared resource, an 1identifier of the
shared resource, and a staleness indicator, such as a times-
tamp, monotonically increasing version number for each
resource, or the like. If a version number 1s used, comparing,
the version number of a cached copy of a resource against the
version number 1n the event notification can be used to deter-
mine 1f a cached copy of the resource 1s stale or not. These
event notifications are stored 1n one or more change log data
structures for later use when a node wishes to access a shared
resource by opening a path to the shared resource, as will be
described 1n greater detail hereafter.

FIG. 4 1s an example block diagram illustrating an opera-
tion for performing changes to shared resources and generat-
ing event notifications 1 accordance with one 1illustrative
embodiment. As shown 1n FI1G. 4, a cluster 400 of computing
devices 410-416, such as servers, client computing devices,
or the like (herein referred to as nodes 410-416), are provided
that are configured to operate as a cluster with regard to
reliability and share resources i a manner as previously
described above. In accordance with one 1llustrative embodi-
ment, each of the nodes 410-416 comprise a change log data
structure 440-446 stored 1n a local memory of the node 410-
416. Each of the nodes 410-416 further comprise a local
cache memory 450-456 for caching shared resources for local
access to the shared resources. These shared resources may
comprise liles, data structures, or the like, which are shared by
the various nodes 410-416 of the cluster 400 such that any of
these nodes 410-416 may perform reads/writes from/to these
shared resources. The shared resources may be stored 1n a
network attached storage 430, may be resident 1n one or more
of the nodes 410-416, provided in a centralized server that
may be configured as a control server for the cluster 400, e.g.,
node 416 may be a central cluster control server for the cluster
400, or the like.

When anode, such as node 410, wishes to write to a shared
resource, such as a file or data structure stored 1n the storage
system 430, the node 410 caches the writes 1n a local cache by
performing the writes to a local copy of the shared resource in
the local cache 450. That 1s, using node 410 as an example, the
node 410 obtains a read lock on the resource using any known
cluster resource locking mechanism generally known 1n the
art, reads the shared resource and stores a copy of the shared
resource 1n the local cache 450. Thereatter, the node 410 may
obtain a cluster-wide write lock on the shared resource and
perform read/write mput/output (I/0) operations to the local
cached copy of the shared resource in local cache 450 to
thereby cache the writes to the shared resource 1n the local
cache 450.

In accordance with the mechanisms of the illustrative
embodiments, as the node 410 performs write operations to
the shared resource i1n its local cache 450, the node 410
transmits cluster event notifications to the other nodes 412-
416 1n the cluster 400. These cluster event notifications are
small size datagrams that are transmitted to the other nodes
412-416 that comprise a minimal amount of information ndi-
cating (1) the shared resource that 1s written to, (2) the node
that wrote to the shared resource, e¢.g., node 410 1n this
example, and (3) a staleness indicator, such as a timestamp or
version 1dentifier, that may be used to i1dentily which event
notifications, and which versions of the shared resource, are
the most recent. These event notifications may take many
different forms, but in one 1llustrative embodiment, the event
notification may comprise the staleness indicator, the shared

resource UUID or UDID, and the UUID of the node that

10

15

20

25

30

35

40

45

50

55

60

65

12

performed the write of the shared resource. One example
format for such an event noftification may be of the type
{timestamp:FileUUID:SourceNodeUUID}.

When the cluster event notification message 1s received by
the nodes 412-416 of the cluster 400, corresponding change
log data structure entries are posted to the local change log
data structures 442-446 of the nodes 412-416. It should be
appreciated that while FI1G. 4 illustrates a single local change
log data structure 440-446 being provided in each node 410-
416, the illustrative embodiments are not limited to such.
Rather, there may be separate change log data structures
440-446 for each of the users of a corresponding node, each
shared resource that 1s able to be shared by the node 410-416,
or the like. Thus, 1n some cases, when generating the change
log data structure entries corresponding to recerved cluster
event notifications, the node 410-416 may first identity which
change log data structure to generate the event 1n, such as
based on the UUID of the shared resource associated with the
cluster event notification.

The change log data structures store the entries for the
cluster event notifications 1n any manner suitable to the par-
ticular implementation, e.g., in chronological order based on
timestamp associated with the cluster events, in order of
receipt, organized according to UUID of the shared resource
or the source node that sent the cluster event notification, or
the like. The entries are stored 1n a manner that allows quick
searching of the change log data structures for finding match-
ing entries in the change log data structure as will be
described hereafter with regard to FIG. 5.

At some point, after first verifying that it possesses the
latest version of the shared resource, the node 410 may flush
its local cache 450 to the cluster 400 by replicating the local
copy of the shared resource on the shared storage system 430,
for example. In this case, the node 410 transmits a cluster
event notification indicating the central copy of the shared
resource 1s up to date. The other nodes 412-416 may respond
to this notification by deleting, invalidating, or otherwise
ignoring the previous change log entries corresponding to the
shared resource. Such cluster event notification, in some
embodiments, may be added as an entry to the local change
log data structures 442-446 of the nodes 412-416 as with the
other cluster event notifications and may be considered 1n
combination with the other cluster event notifications previ-
ously obtained by these nodes 412-416 for the shared
resource and source node. In other 1llustrative embodiments,
the receipt of the cluster event notification indicating the
flushing of the shared resource 1nitiates a process 1n the other
nodes 412-416 to remove or 1nvalidate entries in their local
change log data structures 442-446 corresponding to the
shared resource and source node.

FIG. 5 1s an example block diagram illustrating an opera-
tion for accessing a shared resource that already has alock on
the shared resource in accordance with one illustrative
embodiment. Elements 1n FIG. 5 that correspond to elements
in FIG. 4 utilize similar reference numerals.

As shown 1n FIG. 5§, when a process 510 on a node 412
wishes to access a shared resource, the node 412 first checks
its local change log data structure 442 for entries correspond-
ing to the shared resource for which access 1s sought. For
example, using a UUID of the shared resource, a search of the
local change log data structure 442 1s performed to 1dentily a
most recent change log data structure 442 entry correspond-
ing to the shared resource. The most recent change log data
structure 442 entry may be 1dentified based on a comparison
of the staleness indicators of the entries matching the shared
resource UUID. The most recent change log data structure
442 entry may then be analyzed to determine 11 the locally-




US 9,262,324 B2

13

cached copy of the shared resource 1s presently 1n a stale state.
If not, then the node 412 may proceed to operate on 1ts
locally-cached copy of the shared resource.

If the most recent change log data structure 442 entry
indicates that the latest version of the shared resource 1s 1n fact
held by another node, e.g., node 410, then the node 412
secking access to the shared resource may send a control
message to the node 410 to force a synchronization of the
node 410°s locally cached writes to the shared resource. The

forcing of the synchronization may involve causing the node
410 to flush its local cache 450 to the cluster 400 such that the
local copy of the shared resource 1s replicated to the shared
storage system 430. As a result of the forced synchronization,
the node 410 transmits a cluster event notification indicating,
the flushing of the shared resource 1n the manner previously
described above. The node 410 may initiate the process of
caching and update at a later time, but at this point the node
412 may access the shared resource using a local cached copy

in the manner previously described above with regard to FIG.
4

It should be appreciated that while FIGS. 4 and 5 are
described with regard to an embodiment 1n which each of the
nodes 410-416 of the cluster 400 maintain their own change
log data structures, the 1llustrative embodiments are not lim-
ited to such. To the contrary, as noted above, in some 1llustra-
tive embodiments, a centralized set of one or more change log,
data structures may be associated with the shared resource,
such as via a centralized server computing device 416, for
example. Thus, 1n such an embodiment, rather than broad-
casting the cluster event notification when writes are per-
formed on a local cached copy of a shared resource by a node,
the cluster event notification may be transmitted to the cen-
tralized server computing device for use 1n updating the
change log data structure corresponding to the shared
resource.

It should be appreciated that the above description of 1llus-
trative embodiments assumes a need to flush the most recent
copy of a shared resource to the shared storage system 430 1n
order for another node to obtain access to the most recent
version ol the shared resource. However, the illustrative
embodiments are not limited to such. To the contrary, as noted
above, 1n some 1llustrative embodiments, the node wishing to
operate on the shared resource may request that the node
possessing the latest version of the shared resource act as a
broker or surrogate for the operations being performed.

As noted above, the illustrative embodiments populate and
utilize one or more change log data structures. FIG. 6 1s an
example of a change log data structure 1n accordance with one
illustrative embodiment. The entries 1n the change log data
structure 600 may comprise a resource identifier 610, e.g., a
UUID, that identifies the resource that was changed, a source
node 1dentifier 612 identifying a source node performing the
change or update of the resource 1dentified by the resource
identifier 610, a staleness indicator 614 that i1dentifies the
relative staleness of the entry compared to other entries for the
same resource in the change log data structure 600 (e.g., a
timestamp, monotonically increasing version number, or the
like), and an update indicator 616 indicating whether the
oflicial source copy of the resource has been updated to the
latest version (e.g., a Boolean value). Entries 1n the change
log data structure 600 may be generated 1n response to noti-
fications sent by nodes when they perform writes, or updates,
to their local cached copies of resources and may be updated
when flushes of local cached copies of the resources back to
the cluster are performed (i.e. updating the update indicator

616).

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 7 1s a flowchart outlining an example operation for
performing read/write operations on a shared resource by a
node of a cluster 1n accordance with one illustrative embodi-
ment. As shown 1n FIG. 7, the operation starts with the node
initiating an access operation for accessing a shared resource
(step 702). A determination 1s made based on the type of
access to the shared resource being initiated, 1.e. read or write
access (step 703). If the access 1s a read access, the operation
acquires a read lock on the shared resource (step 710). It the
access 1s a write access, the operation acquires a cluster wide
write lock on the shared resource (step 713).

Whether the access 1s a read or a write, a determination 1s
made as to whether the node has a local cached copy of the
shared resource (step 720). If the node has a locally cached
copy of the shared resource, a determination 1s made as to
whether the latest change log entry for the shared resource
indicates that the locally cached copy of the shared resource
1s stale (step 725). If the locally cached copy 1s stale, or if there
1s no locally cached copy (step 720), then a node holding the
latest version of the shared resource 1s 1dentified (from the log

entry) (step 730). The latest version of the shared resource 1s
downloaded to the local cache of the node from the node
identified 1n step 730 (step 735).

Thereatter, or 1n response to the local cache having a latest
version of the shared resource, a determination 1s again made
as to whether the access operation 1s a read or a write (step
740). It should be noted that the decision 1n step 740 will
match the result of the decision 1n step 705, 1.e. 1t 1s not
possible for step 705 to determine that the access operation 1s
a read/write and step 740 decide that the access operation 1s
the other of a read/write. If the access 15 a read access opera-
tion, then the read operation 1s performed on the locally
cached copy of the shared resource (step 745) and the read
lock 1s then released (step 750). If the access 1s a write access
operation, then the write operation 1s performed to the locally
cached copy of the shared resource (step 735), an event noti-
fication 1s transmitted to the other nodes 1n the cluster 1n
accordance with the illustrative embodiments previously
described (step 760), and the write lock 1s then released (step
770). The operation then terminates.

In the above operation flow of FIG. 7, 1t should be appre-
ciated that steps 710, 715, 745, and 765 refer to the mechanics
of lock acquisition/release, which 1n general are well known
concepts and thus, no further explanation 1s needed as to how
exactly lock acquisition and release are specifically per-
formed. In step 720, what 1s being determined 1s whether a
locally cached copy of the shared resource 1s present or not
and 11 not, then the node can skip attempts to determine
whether the cached copy i1s a latest version since 1t does not
have any version of the shared resource 1n the local cache.
Instead, the operation skips directly to determining where the
latest version of the shared resource 1s currently located (step
730) and downloading it into the local cache of the current
node (step 735).

On the other hand, 11 1n step 720 1t 1s determined that the
node already has a locally cached copy, the node looks to its
local change log and the entries 1n the change log that corre-
sponding to the shared resource to determine whether the
locally cached copy 1s stale (step 725). If the locally cached
copy of the shared resource 1s not stale (1.¢., the node’s local
copy 1s the latest copy of the shared resource), then the node
can skip acquiring the latest version and proceed directly to
the sequence starting with step 740 whereby the node oper-
ates on the shared resource, e.g., the file. If node’s local copy
of the shared resource 1s stale, the node needs to do the same
thing as 11 1t did not have a locally cached copy 1n the first



US 9,262,324 B2

15

place, 1.e. determining where the latest version 1s and down-
load 1t to the nodes local cache (steps 730 and 735).

The sequence of operations beginning with step 740 1s
where the node knows that 1t has the latest version of the
shared resource 1n 1ts own local cache and, thus, can perform
the desired access operation on the locally cached copy of the
shared resource. If node 1s performing a read operation, the
node can perform this operation (step 745) and release the
read lock (step 750). No event notification 1s necessary 1n this
case because the shared resource has not been changed by the
read operation. On the other hand, 11 the node 1s performing a
write operation, the write operation 1s performed to the node’s
locally cached copy of the shared resource (step 755), and an
event notification 1s transmitted to the other nodes of the
cluster indicating that the shared resource has been changed
(step 760), and the write lock 1s released (step 765).

As described above, the event notification comprises the
synchronous reliable “event” whereby each participating
node 1n the cluster 1s guaranteed to receive the datagram
betore the above flow proceeds out of step 760. In an illus-
trative embodiment, the event notification datagram com-
prises (a) The identity (e.g. UUID) of the resource being
changed, (b) the 1dentity of the source node (the node per-
tforming the update or change to the shared resource), (¢) a
staleness 1ndicator, e.g., time stamp, if the cluster 1s time-
synchronized, or a monotonically increasing version number.
In one 1llustrative embodiment, the datagram 1s transmitted to
cach participating node via a reliable synchronous channel,
such as AHAFS or the like, and each node reacts to receiving
this datagram by storing 1ts contents 1n a local change log data
structure. In a different embodiment, the datagram 1s
appended to a change log which resides 1n a central storage
location, and individual nodes need take no action until/un-
less they need to act on the same resource.

In steps 725 and 730, a node wishing to operate on a
particular shared resource must consult the change log and
find the latest (according to staleness indicator (c¢) in the
change log entry, e.g., time stamp or version number) entry
pertaining to that shared resource (as 1dentified by the identity
(a) 1n the change log entry). Straightforward, well-known
techniques are used to filter the change log data structure,
either 1n the local environment or at the centralized storage
location, such that only entries with the relevant (a) resource
UUID are considered, and sort these entries such that only the
latest entry, according to (c) the staleness indicator, are con-
sidered. Having 1solated a single log entry 1n this fashion, the
identity of the source node (b) indicates the 1dentity of the
node holding the latest version of the desired resource.

There are two special cases to consider 1n addition to the
operations outlined above. The first special case 1s 1f no
matching entry 1s found 1n the change log data structure. This
means that the shared resource in question has not been
cached locally on any node of the cluster and step 735 results
in the requesting node retrieving the shared resource from the
shared resource’s source storage location. This can actually
come about 1n two ways: 1) the resource has truly never been
cached locally on any node; or 11) a flush operation was
performed (see flush operation outlined 1n FIG. 8 hereatter).
That 1s, 1n some embodiments, the reaction to notification
850, described hereafter, may be to delete all change log
entries whose resource 1dentifier (a) matches that of the event
notification. It should be appreciated that the node that per-
torms the flush would still have the latest copy of the shared
resource cached locally and would want to continue taking,
advantage of this. In illustrative embodiments where the
change log 1s located 1n a local environment of the node, the
node that performed the flush operation may achieve this b

10

15

20

25

30

35

40

45

50

55

60

65

16

not deleting all matching change log entries. Alternatively,
the node that performed the flush may simply compare the
source copy’s version indicator (¢) to that of his own local
cached copy.

In a second special case, the matching entry may indicate
that the latest version of the shared resource was flushed to the
source storage location of the shared resource. In one embodi-
ment, this may be accomplished by using a predetermined
special value for (b) in the entry of the change log, 1.e. the
identity of the source node. In another embodiment, the data-
gram may possesses a fourth field comprising a boolean 1ndi-
cator that indicates that the official source copy of the
resource has been updated to the latest version. In this special
case, step 735 results 1n the requesting node retrieving the
shared resource from 1ts source storage location, again with
the exception that the node whose 1dentity matches (b) can
skip the download because the node already has the latest
version cached.

FIG. 8 1s a flowchart outlining an example operation for
performing a flush operation on a node of a cluster 1n accor-
dance with one 1llustrative embodiment. As shown in FIG. 8,
the tlush operation comprises obtaining a write lock on the
shared resource (step 810) and determining 11 the change log
entries of the change log indicate that the node has the latest
version of the shared resource 1n 1ts local cache (step 820). IT
not, then the local cached copy of the shared resource 1s not
the latest version and can be deleted from the local cache (step
830). If the local cached copy of the shared resource 1s the
latest version, then the locally cached version 1s written to the
source storage location for the shared resource (step 840) and
an event notification 1s sent to the other nodes of the cluster
indicating that the source location stores the latest version of
the shared resource (step 850). Thereatter, or 1f the locally
cached copy 1s deleted because it 1s not the latest version (step
830), the write lock 1s released (step 860) and the operation 1s
terminated.

The operation outlined in FIG. 8 may be mitiated for sev-
eral reasons. The most common reason 1s simply that such
flushing 1s performed routinely, on a set schedule and/or when
periods of low resource usage are detected (so the operation
does not 1ntertere with other work). However, 1t 1s also pos-
sible that such a flush 1s 1nitiated on demand by another node
attempting to access the shared resource as previously
described above. In such an embodiment, a new operation 1s
interposed between steps 730 and 735 such as a step 732 (not
shown) entitled “Request cache flush from the identified
node” and then step 735 would again result 1n the shared
resource being downloaded from its source storage location.
Note that in such a circumstance, the flushing node would
skip the locking/unlocking (steps 810 and 860) because 1t 1s
essentially operating under the auspices of the lock already
held by the node requesting the flush.

Again, steps 810 and 860 utilize known mechanics of lock-
ing/release of write locks on shared resources. In this case,
operation 1s concerned with a write (exclusive) lock because
it 1s undesirable to have other nodes reading the shared
resource during this operation since there 1s no guarantee that
the nodes are reading a latest version or a previous (stale)
version of the shared resource.

In step 820 1t 1s assumed that processing of the change log
finds the latest entry pertaining to the shared resource 1n
question. In this case, 1t 1s determined whether the local copy
1s the latest version of the shared resource simply based on
whether the node 1dentifier (b) 1s the node’s own node 1den-
tifier. IT 1t 1s not, then the node knows that its locally cached
copy, 1f there 1s one, 1s stale, and theretfore, the locally cached




US 9,262,324 B2

17

copy can be safely deleted (step 830). In addition, 1t 1s known
that there 1s nothing for the node to flush and the write lock
can be released (step 860).

If, via step 820, the node determines that it has the latest
version of the shared resource, the node writes the latest
version of the shared resource back to the source location and,
once 1t has been written back to the source location, an event
notification needs to be sent out to indicate that the source
location now has the latest version of the shared resource. The
consequences of this event notification are discussed above
(see discussion of special cases).

Thus, the illustrative embodiments provide mechanisms
for providing efficient distributed cache consistency. The
mechanisms ensure cache consistency in a cluster by inform-
ing the nodes of write accesses to a local cached copy of a
shared resource by a node such that the shared resource state
1s determined to be stale. Thus, polling of the state of shared
resources 1s not required since the nodes are already informed
ol the staleness or non-staleness of the shared resources by
virtue of the cluster event notifications having small, fixed
s1ze payloads. Thus, from small, fixed size event notifications
posted by the nodes performing the updates to the shared
resource, all of the nodes 1n the cluster are provided with a
consistent cluster-wide view of the shared resources.

As noted above, 1t should be appreciated that the illustra-
tive embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In one
example embodiment, the mechanisms of the illustrative
embodiments are implemented 1n software or program code,
which includes but 1s not limited to firmware, resident soft-
ware, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening 1I/0 control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethemnet cards are just a few of the cur-
rently available types of network adapters.

The description of the present invention has been presented
for purposes of 1llustration and description, and i1s not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described 1n order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A method, in a data processing system comprising a
processor and a memory, for performing a write operation on
a shared resource 1n a cluster of data processing systems, the
method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

18

determiming, by the data processing system, whether a
locally cached copy of the shared resource 1s present 1n
a local cache memory of the data processing system;

in response to a determination that a locally cached copy of
the shared resource 1s present 1n the local cache memory,
determining whether the locally cached copy of the

shared resource 1s a latest version of the shared resource;
and
in response to determining that that locally cached copy of
the shared resource 1s a latest version of the shared
resource:
performing the write operation on the locally cached
copy of the shared resource to generate an updated
locally cached copy of the shared resource; and
transmitting a cluster event notification to other data
processing systems ol the cluster indicating the
shared resource was written to and 1dentifying which
data processing system 1n the cluster performed the
write operation, wherein the cluster event notification
1s logged 1n at least one change log data structure
associated with the other data processing systems.
2. The method of claim 1, wherein determining whether a
locally cached copy of the shared resource 1s a latest version
of the shared resource comprises:
searching a change log data structure associated with the
data processing system for an entry corresponding to the
shared resource, wherein the change log data structure
stores entries corresponding to cluster event notifica-
tions recerved from other data processing systems 1n the
cluster in response to the other data processing systems
accessing shared resources of the cluster; and

determining, based on results of the searching of the
change log data structure, whether entries 1n the change
log data structure indicate that the locally cached copy of
the shared resource 1s a latest version of the shared
resource.

3. The method of claim 2, wherein determiming whether
entries 1n the change log data structure indicate that the
locally cached copy of the shared resource 1s a latest version
of the shared resource comprises:

identifying a latest entry in the change log data structure

corresponding to the shared resource based on a stale-
ness indicator of the entries 1in the change log data struc-
ture; and

determining 11 a source 1dentifier 1n the latest entry matches

an 1dentifier of the data processing system, wherein the
source 1dentifier identifies a data processing system that
performed a write operation to the shared resource.
4. The method of claim 2, wherein determiming whether
entries 1n the change log data structure indicate that the
locally cached copy of the shared resource 1s a latest version
of the shared resource comprises:
determiming whether there are no entries corresponding to
the shared resource 1n the change log data structure; and

in response to determining that there are no entries corre-
sponding to the shared resource 1n the change log data
structure, determining that the locally cached copy of the
shared resource 1s not the latest version of the shared
resource.

5. The method of claim 2, further comprising:

in response to determining, based on the entries in the

change log data structure, that the locally cached copy of
the shared resource 1s not the latest version of the shared
resource, 1dentiiying a storage location of the latest ver-
sion of the shared resource based on the entries 1n the
change log data structure;




US 9,262,324 B2

19

reading a the latest version of the shared resource from the
storage location of the latest version of the shared
resource; and
storing a new locally cached copy of the shared resource 1n
the local cache memory of the data processing system.
6. The method of claim 1, wherein the cluster event noti-
fication comprises at least one of a version number of the
updated locally cached copy of the shared resource or a times-

tamp corresponding to a time when the write operation was
performed on the locally cached copy of the shared resource,
a unique 1dentifier of the data processing system, and a unique
identifier of the shared resource.

7. The method of claim 1, further comprising performing a
flush of the local cache memory of the data processing system
in response to an event, wherein performing the flush of the
local cache memory comprises:

determining 1 a locally cached version of the shared

resource 1s the latest version of the shared resource; and
based on results of determining if the locally cached ver-
stion of the shared resource 1s the latest version of the
shared resource, either writing the locally cached ver-
sion back to a source storage location of the shared

10

15

20

20

resource or deleting the locally cached copy of the
shared resource from the local cache memory.

8. The method of claim 7, wherein 1f the results of deter-
mining 1f the locally cached version of the shared resource 1s
the latest version of the shared resource indicate that the
locally cached version of the shared resource 1s the latest
version ol the shared resource, the method comprises writing
the locally cached version back to the source storage location
of the shared resource and sending an event notification to the
other data processing systems of the cluster indicating that the
latest version of the shared resource 1s located at the source
storage location.

9. The method of claim 1, wherein the at least one change
log data structure comprises a plurality of change log data
structures, each change log data structure being resident on a
corresponding one of the data processing systems in the clus-
ter.

10. The method of claim 1, wherein the at least one change
log data structure comprises a single change log data structure
associated with a source storage location of the shared
resource.




	Front Page
	Drawings
	Specification
	Claims

