12 United States Patent

Schulz et al.

US009256500B2

US 9,256,500 B2
Feb. 9, 2016

(10) Patent No.:
45) Date of Patent:

(54) PHYSICAL DOMAIN ERROR ISOLATION
AND RECOVERY IN A MULTI-DOMAIN

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

SYSTEM

Applicant: Oracle International Corporation,

(38) Field of Classification Search
CPC GO6F 11/2002; GO6F 11/2007;, HO4L
49/557

See application file for complete search history.

Redwood City, CA (US) (56) References Cited
Inventors: Jurgen M. Schulz, Pleasanton, CA U5, PALENT DOCUMENTS
(US); Vishak Chandrasekhar, San Jose, 6,571,360 Bl * 5/2003 Drogichen et al. 714/44
CA (US); Wayne F. Seltzer, San Jose, 6,636,981 B1* 10/2003 Barnettetal. 714/4.5
CA (US); Brian J. McGee, San Jose, 7,010,740 B1* 3/2006 Walton 714/805
CA (US) 7,774,642 B__h * 82010 Johnsenetal. ... 714/5.11
2003/0131213 Al* 7/2003 Shanahanetal. 711/203
_ 2003/0152074 Al1* 8/2003 Hawkinsetal. 370/389
Assignee: ORACLE INTERNAEION?Lh 2010/0107015 Al* 4/2010 Bernabeu-Auban et al. ... 714/38
ggl(lé’s(;RATION,, Redwood Shores, cited by examiner
Notice: Subject to any disclaimer, the term of this Primary Examiner — YOlaTlda L Wilson _
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
U.S.C. 154(b) by 247 days. Dowler, LLP; Mark Spiller
Appl. No.: 13/861,917 (57) ABSTRACT
The disclosed embodiments disclose techniques for perform-
Filed: Apr. 12,2013 ing physical domain error 1solation and recovery in a multi-
domain system, where the multi-domain system includes two
Prior Publication Data or more processor chips and one or more switch chips that
rovide connectivity and cache-coherency support for the
US 2014/0310555 Al Oct. 16, 2014 gmcessor chips, andythe processor chips arz div?ged into two
or more distinct domains. During operation, one of the switch
Int. C1. H chips determines a fault in the multi-domain system. The
GOoF 11/00 (2006'();) switch chip determines an originating domain that 1s associ-
Gool 11/20 (2006.01) ated with the fault, and then signals the fault and an 1dentifier
HO4L 12/26 (2006.01) for the originating domain to 1ts internal units, some of which
HO4L 12/939 (2013.01) perform clearing operations that clear out all traffic for the
U.S. CL originating domain without affecting the other domains of the
CpPC ... GO6F 11/2002 (2013.01);, GO6F 112007 multi-domain system.

(2013.01); HO4L 43/0523 (2013.01); HO4L

49/557 (2013.01) 20 Claims, 6 Drawing Sheets

SWITCGH CHIP 102

SERIAL IN #0 |
104

SERIAL IN #N
106
PARALLEL+—] [— Rx oLk
DATA |]
| LFU#O (RX) |§ xN LFU N (RX)
g 108 eee 110
i v v
g QU #0 IQU #N
; 112 114
RECEIVE
UNIT #0
132 XBU UNITS 140
FXU 116 ASU SWITCH UNITS 142
FXU ARBITER AXO OUT AXCI IN y AXRI IN y
118 146 X 148 X 144 X
TRANSMIT
UNIT #0 A A
134
f————————f : A 4
: OQU #0 : OQU #N ASU #0 " ASU #M
1 iﬂ 1 iz 150 cee 152
LFU#0 (TX) [§ N LFU #N (TX) TAG ‘E‘}RR’*‘Y #0 TAG ARRAY #M
: 54
: 124 _ 126
SERIALS :
S e
{| SERIAL QUT #0 |} SERIAL OUT #N
: 128 : 130

US 9,256,500 B2

Sheet 1 of 6

Feb. 9, 2016

U.S. Patent

I Old

0tl
N# 1LNO VIddS

8C1

O# LNO V43S

zA)
(XL1) 0# N4

Ocl
0# NOO

n
<
a

AVINAS

¥Gl
N# AVHHY OV L 0 MY OV L
251 ecs
A# NSY

901
N# NI TVId3S

O# NI TVId3S

bl
0# LINN
LINSNV¥L
2! gLl
NI 14XV H3LIgYY NXd
ZiL SLINN HOLIMS NSY 9Ll NX
0¥} SLINN NEX cel
0# LINN
IAIZ03Y
OLL cos | 201 m
(Xd) N N4 N i (X o#Nd1 |
m } VLvA
! o —+137 VAV

0l dIHO HOLIMS

¢ Old

US 9,256,500 B2

NG
T
-
|
>
W X#
- dIHO oo e
HOLIAAS
&
=
e 00
-y
o
=?
e
oo
oo e

U.S. Patent

Z# NIVINOQ

Cit
dIHO

HOLIMS

CH CH
dIHO dIHO
Nndo Nndo

L# NIVINOQ

@\

an

0 m

= ¢ 9Ol

\r)

v

o OLE "/NSY/NGX/NOI WOY4 SLNdNI

N

7s SNIVINOQ 11V NIVINOQ V¥ HOA MNIT VY HOA

- HOd 219071 NOWINOD D901 A31vIoIa3a D907 d3aLvo1a3a

CCL 8LE rLE
dOdd dOdd dOdd

1VLVd-NON 1V.LV4-NON 1V.LVd-NON

\& N N\ oo ooy

I~

&

&7,

= ONIddVYIN ONIddVYIN
@ NIVINOQ NIYINOQ
72 OL MNIT OL MNIT
\&

= p0E

N NIYINOQ V

N 40 SHMNIT HOA

= SdO3SYaD 90¢

o 3INSS| ANSS| 30¢

TV.LVd-NON HOSS3ID0Hd

JDIAH3S HOS
€0¢ 00€ 1dNYH3ILNI
dO3sy3ad LINN J1VHIANTD

NIVINOQ ONITANVH-HOMYT TvHLINID
3INSS|

XXX WALSAS DNINTANVH-dOHH 3

U.S. Patent

U.S. Patent Feb. 9, 2016 Sheet 4 of 6 US 9,256,500 B2

400

FRG CLEAR IRF CLEAR

CLEAR FRG
420

CLEAR SB
SB CLEAR 410

FIG. 4A

CLUSTER-TO-DOMAIN TABLE

CPU ID

- - RESET DOMAIN

CLEAR ID CLEAR VALID

FIG. 4B

U.S. Patent Feb. 9, 2016 Sheet 5 of 6 US 9,256,500 B2

START

DETERMINE A FAULT IN THE MULTI-DOMAIN
SYSTEM
500

DETERMINE AN ORIGINATING DOMAIN THAT IS
ASSOCIATED WITH THE FAULT
510

SIGNAL THE FAULT AND AN IDENTIFIER FOR THE
ORIGINATING DOMAIN TO INTERNAL UNITS OF
THE SWITCH CHIP
520

PERFORM CLEARING OPERATIONS IN INTERNAL
UNITS OF THE SWITCH CHIP TO CLEAR OUT ALL
TRAFFIC FOR THE ORIGINATING DOMAIN
WITHOUT AFFECTING THE OTHER DOMAINS OF
THE MULTI-DOMAIN SYSTEM
530

END

FIG. 5

U.S. Patent Feb. 9, 2016 Sheet 6 of 6 US 9,256,500 B2

COMPUTING ENVIRONMENT 600

L

m O

L0000

T O (1111| N

USER CLIENT SERVER
620 630

NETWORK

‘)
—_—
-

_

Iﬁm >

660
JAa0001 DATABASE
I A0 870
USER CLIENT .. SERVER
521 650 :

S 11|
SERVER
640

N

APPLIANGE
690

o

CLIENT
612

--------------'
.-------------------------

DEVICES
680

FIG. 6

US 9,256,500 B2

1

PHYSICAL DOMAIN ERROR ISOLATION
AND RECOVERY IN A MULTI-DOMAIN
SYSTEM

BACKGROUND

1. Field of the Invention

This disclosure generally relates to the design of a semi-
conductor chip. More specifically, this disclosure relates to a
semiconductor chip that serves as a coherence directory and
switch chip for a set of processor chips 1n a multi-chip system.

2. Related Art

The proliferation of the Internet and large data sets has
made data centers and clusters of compute servers increas-
ingly common. Such compute servers typically include mul-
tiple processor chips that collaborate to provide increased
computational capacity for one or more applications. For
instance, processor chips in a multi-chip system may be par-
titioned 1nto multiple, separate domains, where each domain
can execute a different mstance of an operating system with
different applications and/or operate upon a different data set.
Higher-level management software typically manages these
domains.

As the number of processor chips in a system grows, the
number of external communication channels that are avail-
able 1n each processor chip becomes a limitation, and the
processor chips are configured to communicate using a sepa-
rate set of shared communication components. Unfortu-
nately, an error or failure 1n a shared component that 1s used
by multiple domains can cause all of the domains to fail,
thereby affecting the reliability, availability, and serviceabil-
ity of those domains.

Hence, what 1s needed are structures and techniques for
organizing groups of processor chips into domains without
the above-described problems of existing techniques.

SUMMARY

The disclosed embodiments disclose techniques for per-
forming physical domain error 1solation and recovery 1n a
multi-domain system, where the multi-domain system
includes two or more processor chips and one or more switch
chips that provide connectivity and cache-coherency support
for the processor chips, and the processor chips are divided
into two or more distinct domains. During operation, one of
the switch chips determines a fault in the multi-domain sys-
tem. The switch chip determines an originating domain that 1s
associated with the fault, and then signals the fault and an
identifier for the originating domain to 1ts internal units, some
of which perform clearing operations that clear out all traflic
for the onginating domain without affecting the other
domains of the multi-domain system.

In some embodiments, signaling the fault further involves:
(1) halting one or more single-domain units in the switch chip
that are associated with the originating domain; and (2) per-
forming the clearing operation 1n one or more multi-domain
units 1n the switch chip that simultaneously handle traffic for
multiple domains.

In some embodiments, halting single-domain units
involves: halting one or more mput queuing units (IQUs) that
connect to processor chips that are associated with the origi-
nating domain; temporarily halting the input packet tlow for
one or more address switch receiving units (AXRIs) and
address switch communicating units (AXCIs) during the
clearing operation; halting output paths 1 one or more
address switch output units (AXO) that connect to processor
chups that are associated with the originating domain; and

10

15

20

25

30

35

40

45

50

55

60

65

2

halting one or more output queuing units (OQUs) that connect
to processor chips that are associated with the originating
domain.

In some embodiments, performing the clearing operation
for multi-domain units involves invalidating all of the
requests that are associated with the originating domain in
one or more address serialization units (ASUs) and 1nvalidat-
ing any queued packets that are associated with the originat-
ing domain from the one or more AXOs. Note that each ASU
handles requests from multiple domains, but can selectively
clear out packet information and resources associated with
the originating domain without affecting other domains in the
multi-domain system.

In some embodiments, invalidating all of the requests that
are associated with the originating domain from an ASU
involves: 1validating all of the entries for the originating
domain from an mput request FIFO 1n the ASU; retiring all of
the scoreboard entries for the originating domain from a
scoreboard 1n the ASU; and mvalidating and discarding any
packets associated with the originating domain from a for-
ward request generator (FRG) 1n the ASU.

In some embodiments, determining the originating domain
involves determining that the fault 1s associated with a spe-
cific link between the switch chip and a processor chip, and
using a table of link-to-domain mappings to determine that
the link 1s associated with the originating domain.

In some embodiments, determining a fault for the multi-
omain system comprises one or more of the following:

C

detecting a timeout for an operation 1n a switch chip unit;
detecting a malformed packet 1n the multi-domain system;
C
C

etecting an unsupported packet in the multi-domain system;
etecting an unexpected response from a processor chip 1n an
ASU; and detecting a request {from the originating domain for
an address outside the bounds of the originating domain.

In some embodiments, timeouts for switch chip operations
are configured such that a timeout interval for the AXO 1s less
than a timeout interval for an ASU scoreboard, the timeout
interval for an ASU scoreboard 1s less than a PCle timeout
interval, and the PCle timeout interval 1s substantially less
than a processor timeout interval. This timeout interval order-
ing facilitates detecting and clearing blockages 1n the multi-
domain system such that a fault 1in the originating domain
does not propagate errors to other domains nor become vis-
ible at the operating-system or CPU level of other domains.

In some embodiments, the switch chip detects a second
fault in another domain (that 1s distinct from the originating
domain). The switch chip simultaneously clears out all traffic
for both the originating domain and the second domain with-
out atfecting the other domains of the multi-domain system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates the organization of an exemplary switch
chip that manages communication and cache coherency for a
set of connected CPUs 1n accordance with an embodiment.

FIG. 2 illustrates an exemplary system 1n which multiple
switch chips are used to facilitate communication and cache
coherency among multiple CPUs 1n accordance with an
embodiment.

FIG. 3 1llustrates an exemplary error-reporting system for a
switch chip in accordance with an embodiment.

FIG. 4 A presents a flow chart that 1llustrates a hard domain
reset process for an ASU 1n accordance with an embodiment.

FIG. 4B illustrates a cluster-to-domain table that maps
CPU identifiers to domains in accordance with an embodi-
ment.

US 9,256,500 B2

3

FIG. 5 presents a flow chart that illustrates the process of
performing physical domain error 1solation and recovery in

accordance with an embodiment.

FIG. 6 1llustrates a computing environment in accordance
with an embodiment.

Table 1 summarizes how each unit of a switch chip handles
a CeaseOp for a specific domain in accordance with an
embodiment.

DETAILED DESCRIPTION

The following description 1s presented to enable any per-
son skilled in the art to make and use the invention, and 1s
provided 1n the context of a particular application and 1its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention 1s not limited to the embodiments shown, but 1s to
be accorded the widest scope consistent with the principles
and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a non-transitory computer-
readable storage medium, which may be any device or non-
transitory medium that can store code and/or data for use by
a computer system. The non-transitory computer-readable
storage medium includes, but 1s not limited to, volatile
memory, non-volatile memory, magnetic and optical storage
devices such as disk drives, magnetic tape, CDs (compact
discs), DV Ds (digital versatile discs or digital video discs), or
other media capable of storing code and/or data now known or
later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored 1n a non-transitory computer-readable
storage medium as described above. When a computer system
reads and executes the code and/or data stored on the non-
transitory computer-readable storage medium, the computer
system performs the methods and processes embodied as data
structures and code and stored within the non-transitory com-
puter-readable storage medium.

Furthermore, the methods and processes described below
can be included 1n hardware modules. For example, the hard-
ware modules can include, but are not limited to, application-
specific integrated circuit (ASIC) chips, a full-custom 1mple-
mentation as part of an mtegrated circuit (or another type of
hardware implementation on an itegrated circuit), field-pro-
grammable gate arrays (FPGAs), a dedicated or shared pro-
cessor that executes a particular software module or a piece of
code at a particular time, and/or other programmable-logic
devices now known or later developed. When the hardware
modules are activated, the hardware modules perform the
methods and processes included within the hardware mod-
ules.

Providing System Scalability Via Switch Chips

Compute servers typically include multiple processor
chips that collaborate to provide increased computational
capacity for one or more applications. In a system with a small
number of processor chips, the processor chips can be con-
figured to communicate with each other directly. However, 1n
such an arrangement, the external communication capabili-
ties ol each processor chip (e.g., the number of pins and/or
ports that are available for commumnication connections with
other chips) become a limiting factor for the scalability of the
system. Hence, larger multi-chip systems typically include
“switch chips” that provide connectivity among a set of pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

cessor chips (“CPUs”). These switch chips facilitate commu-
nication among CPUs, and allow the number of CPUs 1n the
system to scale beyond the number of external connections
that are supported by individual CPUs. Switch chips can also
provide directory-based cache-coherency support for the
CPUs.

As the number of CPUs 1n a multi-chip system grows, some
of these CPUs may be partitioned into multiple, separate
domains, each of which executes different applications and/
or operates upon different data sets. Higher-level manage-
ment software typically manages these domains, but unfor-
tunately provides no ability for hardware fault 1solation
among domains. For instance, for a set of CPUs that commu-
nicate using shared communication components, an error or
fallure 1n such a shared component may cause multiple
domains to fail, thereby affecting the reliability, availability,
and serviceability (RAS) of those domains.

Consider, for mstance, a shared resource 1n a switch chip
that 1s handling requests from a number of CPUs 1n different
domains. This shared resource might, under certain work-
loads (e.g., due to traific patterns), be primarily handling
traffic for a single domain. If one of the CPUs in this domain
were to fail (e.g., experience an error, and exceed a timeout
interval due to a lack of response), traific associated with that
CPU could be held up 1n the switch chip. As a result, subse-
quent requests for other domains may be forced to wait for the
shared resource, and also experience delays (e.g., timeout
delays) due to the traflic from the first domain not clearing the
shared resource properly. Hence, an 1ssue in one domain
could spill over to one or more additional domains that are
also using the shared resource.

In some embodiments, a switch chip 1s configured to pro-
vide hardware fault 1solation and seamless recovery for
domains to provide a higher level of reliability, availability,
and serviceability for multiple domains. More specifically,
the switch chip 1s designed to provide hardware fault 1solation
and seamless recovery in multiple units depending on each
unit’s function, thereby ensuring that hardware faults 1n one
domain cannot spread into other non-related domains and
cause those domains to crash. For instance, tratfic not related
to a failled domain can still be processed while shared
resources are cleared for the failled domain. After being
cleared, a failed domain can be re-configured and can start
using the shared resources again. Such capabilities can sig-
nificantly increase the RAS capabilities of a multi-CPU sys-
tem.

FIG. 1 1llustrates an exemplary switch chip 102 that man-
ages communication and cache coherency for a set of con-
nected CPUs. Switch chip 102 recerves data and requests via
a set of N receiving umits. For instance, a number of serial
input units 104-106 may recerve mput in a high-speed serial
format, convert the serial data to a lower-rate parallel format,
and then forward this information to a receiving (RX) link
framing unit (e.g., LFUs 108-110) that converts the raw data
into packets (e.g., request packets, data packets, response
packets, and programmed input/output (I/O) packets). These
packets are then placed 1nto an appropriate processing queue
for a crossbar unit (XBU units 140) by an input queuing unit
(e.g., IQUs 112-114) based on the packet type.

Some of the recewved packets are just passing through
switch chip 102; the processing queues for these packets are

forwarded by XBU units 140 to a forwarding switch unit
(FXU 116), which includes switching capabilities. An arbiter

(FXU arbiter 118) in FXU 116 forwards each of these packets
to one of N transmit units. For instance, the packet may first be
routed to an output queuing unit (e.g., OQUs 120-122) based
on the target destination. A transmit (1X) link framing unit

US 9,256,500 B2

S

(e.g., LFUs 124-126) for the target OQU then converts the
packet into raw data and passes this data on to a serial output
unit (e.g., serial output units 128-130), which converts the
data to a high-speed serial stream and transmits 1t to the target
destination. Note that while the N recerving and transmit units
are logically illustrated as separate units, each pair (e.g.,
receive unit #0 132 and transmit unit #0 134) may be imple-
mented as a single combined hardware unit that sends and
receives data from a given commumnications port.

Another set of processing queues for XBU units 140 route
packets to switch units 142 for a set of M address serialization
units (ASUs) 150-152. As mentioned previously, one or more
switch chips 102 may provide directory-based cache-coher-
ency capabilities for a set of CPUs. The address space for the
multi-CPU system 1s partitioned across the set of switch chips
such that each cache chip, and each ASU 1n each cache chip,
serves as a directory for a distinct set of cache lines. Cache
misses 1n each CPU are routed to the appropriate switch chip
(based on the requested memory address), where the appro-
priate (also based on the requested memory address) ASU
performs a lookup 1n its local tag array to determine the status
of the requested cache line. If the ASU determines that the
requested cache line 1s being cached in another CPU, the ASU
can send a request to the caching CPU to send the cache line
to the requesting CPU, and then update its tag array to indi-
cate that the cache line 1s now also being cached (e.g., shared)
by the requesting CPU. If the requesting CPU 1s requesting,
exclusive access to the requested cache line, the ASU can
determine the set of CPUs currently caching the cache line,
and perform the appropriate actions. For example, the ASU
may 1nitiate a cache-to-cache transfer that clears the cache
line from a caching CPU and forwards it to the requesting
CPU, thereby ensuring that the cache line always stays 1n
caches (instead of being cleared from a cache, and then
reloaded from memory, which would mvolve additional
delay). Furthermore, the ASU may send invalidation requests
tor the cache line to one or more other CPUs that are caching
the cache line. Hence, each ASU in general tracks where its
subset of data 1s cached, and sends instructions (e.g., packets)
that forward this cached data throughout the multi-CPU sys-
tem as needed. Note, however, that while the ASUs track
where cache lines are stored, and can send requests that adjust
cache contents, the ASUs do not actually store cache lines.

In the context of FIG. 1, a portion of the address space for

the system 1s partitioned across the ASUs 150-152 of switch
chup 102, with ASUs 150-152 handling requests for their
respective allocated portion of the address space. A CPU
experiencing a cache miss 1n this address range sends a cache
request to switch chip 102; this request packet is routed by an
IQU to XBU units 140 and ASU switch units 142. ASU switch
units 142 route the request to the specific address switch
receiving unit (AXRI IN) 144 that handles requests for the
ASU (e.g., ASU #0 150) that handles the address range for the
requested cache line. This ASU looks up the requested cache
line 1n 1ts tag array (e.g., tag array #0 154), and generates an
outgoing packet with the necessary instructions needed to
tulfill the cache request. This instruction packet 1s sent to one
of N address switch output units (AXO OUT 146), which
transiers it to an appropriate OQU (e.g., one of OQUs 120-
122) based on the target destination for the mstruction packet
(e.g., a specific CPU 1n the multi-CPU system).

The ASU switch units 142 may also receive responses to
requests that were generated by the ASUs 150-152 (e.g., an
acknowledgment, or the requested cache line in implementa-
tions where CPUs receiving requests send requested data
back via the requesting ASU and switch chip). Such response

10

15

20

25

30

35

40

45

50

55

60

65

6

packets are routed from the IQUs (112-114) to ASUs 150-152
via a set of M AXCI switch units (e.g., AXCI IN 148).

Note that some implementations of switch chips may
include credit-based interfaces between the bullers of each
unit. For instance, a transmitting unit may know the amount
of buifer space in the next umit, and will only send that amount
of packets (e.g., “using up 1ts credits”). When the next unit has
processed 1ts requests, 1t signals a set of credits back to the
transmitting unit to allow an additional set of packets to be
transmitted. Such credit-based interfaces facilitate managing,
traffic flow (and avoiding overloaded buffers) without having
to include dedicated flow-control signals 1n the implementa-
tion. Note that buffers are typically sized based on an
expected round-trip latency between two communicating
units. External interfaces that communicate with units that are
external to the switch chip may have larger buflfers, due to
off-chip latencies typically being larger than on-chip laten-
Cies.

FIG. 2 1llustrates an exemplary system in which multiple
switch chips (e.g., of the type 1llustrated 1n FI1G. 1) are used to
facilitate communication and cache coherency among mul-
tiple CPUs. Note that each CPU may include multiple pro-
cessor cores and cache levels, and be associated with 1ts own
memory (not shown); the collective memories associated
with the set of CPUs are shared across the system 1n a non-
uniform memory access architecture (e.g., where processors
can access their local memory faster than non-local memory).
Note that the number of switch chips needed and the topology
for the CPUs and switch chips may depend on a range of
factors that include, but are not limited to: the number of
CPUs 1n the system; the number of communication ports on
cach CPU; the number of communication ports on each
switch chip; a desired level of connectivity and link redun-
dancy; the number and directory sizes of the ASUs on each
switch chip, and the overall size of the caches and memory
address space (e.g., the number of ASUs 1n a switch chip may
be decided based on an expected request lookup bandwidth
and physical implementation limitations, such as the area
needed by the RAM for each ASU); and/or the layout of chips
and switch chips across physical boards 1n a server design
(and the physical space available for routing links). Similarly,
the number of domains 1n the system, and the number of
CPUs 1n each domain, may also vary based on a number of
factors.

Some system architectures may have each CPU only con-
nect to one or more switch chips. In other system architec-
tures, however, CPUs may be linked with both switch chips
and other CPU chips (e.g., as 1llustrated in FIG. 2). In some
systems, switch chips may also be linked to other switch
chips. For example, there may not be sufficient communica-
tions ports on each switch chip to connect to all of the CPUs
in the system; hence, some cache requests from a given CPU
may follow a multi-hop path that traverses multiple CPUs
and/or switch chips. Furthermore, the links between CPUs
and switch chips may be organized in a manner that provides
multiple redundant paths between each CPU and switch chip
(e.g., 1n case of link failures). Depending on the partitioning
of the system address space, CPUs 1n a given domain may be
configured to access either a subset or the complete set of
switch chips (e.g., the address range may be eflectively par-
titioned for each domain).

Consider, for instance, an exemplary system that includes
32 processor chips and 12 switch chips, where each of these
switch chips has 8 ASUs and 24 communications ports (e.g.,
M=8 and N=24; however, some ol the communications ports
on one or more switch chips might not be used). Each CPU 1s
logically connected with every switch chip (either directly or

US 9,256,500 B2

7

via a multi-hop route), and the address space for the system 1s
statically partitioned across the 96 ASUs. Each CPU 1s con-
figured to determine which switch chip to contact based on
the address of a desired cache line, and the ASU switch unaits
in each switch chip guide specific request packets to the
correct ASUs, which then 1ssue the instructions needed to
ensure that the requesting CPUs receive the needed cache
data.

In some implementations, CPUs are aware of the address
range for their respective domain, but are not specifically
aware of being 1n a domain, or the presence of other domains
(or even sometimes of other CPUs). From the CPU perspec-
tive, each CPU 1s operating on data 1in a given memory address
range, submitting requests for addresses 1n this memory range
(which are then routed to an appropriate switch chip), and
then receiving the requested data. Some higher-level proces-
sor and/or process configures the domains, and each domain
may be configured to run a different instance of an operating,
system (and/or different operating systems).

Hardware Fault Isolation and Recovery

In a multi-domain system that does not provide fault 1so-
lation, an error or fault 1n one domain may spread to multiple
domains (or even all of the domains), thereby potentially
corrupting (and/or undoing) the work done by some or all of
the CPUs 1n the system. Sources of faults may vary, and
include (but are not limited to) one or more of the following:

a malformed packet (e.g., a frame that cannot be decoded
into a packet 1n the supported packet protocol specifica-
tion, perhaps because of a protocol violation or a multi-
bit error);

an unsupported packet (e.g., a packet that 1s defined in the
packet protocol specification but 1s not implemented
and/or supported, or a type of packet that should not be
received by a specific unit);

a request for an address outside of a CPU’s domain (e.g., a
request from a CPU for a memory address that should
not be accessible by the CPU’s domain);

an unexpected response to an ASU request (e.g., an unex-
pected acknowledgment of a non-existent request, or
notification of an error 1n servicing a request); and/or

a request exceeding a specified timeout interval for some
reason.

In some embodiments, a switch chip 1s configured to
ensure that corrupt packets and/or requests are not propagated
among domains. For instance, multiple units 1n a switch chip
may be configured to perform checks and react to 1ssues 1n a
manner that ensures hardware fault 1solation. For example, a
link frame unit receiving packets will typically check that the
received packets are valid, and that cache line requests
received from a given CPU access valid memory addresses in
that CPU’s domain. Any unit of a switch chip that determines
an 1ssue signals a fault, after which each switch chip 1n the
system needs to clear any resources that are being consumed
by the faulty domain.

However, different units in a switch chip have different
characteristics and different levels of resource sharing.
Hence, each unit may need to handle faults differently
depending on whether the unit 1s handling traffic only for a
single domain or might be simultaneously handling tratfic for
multiple domains. For instance, consider the units described
for the exemplary switch chip of FIG. 1:

The IQUs: Each IQU 1s (physically) connected to exactly
one CPU. If each CPU can only be 1n one domain, this
means that each individual IQU 1s 1n a single domain
(e.g., 15 a “single-domain unit”). Hence, 1f a problem 1s
detected for a domain that includes the CPU connected
to a given IQU, a “CeaseOp” (e.g., a signal to stop traific

5

10

15

20

25

30

35

40

45

50

55

60

65

8

flow) can be sent to that IQU, effectively ceasing com-
munication on the link. Note that halting this IQU will
only affect the faulty domain, not any of the other
domains 1n the system.

The FXU: The FXU 1s essentially an N-way switch that

forwards tratfic, and 1s connected to the IQUs and OQUs
of the switch chip. Each of the N ports of this N-way
switch 1s part of one domain. The FXU does not need to
be halted 11 the link from a given CPU 1s disabled by a
CeaseOp; 1t will automatically stop forwarding traflic
from that CPU, because the link supplying such tratfic
(the IQU recerving traffic from that CPU) has already
been halted (and/or because of a lack of send credits for
that IQU, 11 a credit-based technique 1s used to provide
flow control for the stopped link). Hence, the FXU 1s
also effectively a single-domain unait.

The AXRI and AXCI inputs: the mnputs and outputs of the

AXRI and AXCI units are considered separately (e.g.,
the outputs are described in a following bullet). The
inputs, which receive and route incoming tratfic to the
ASUs, can distinguish incoming tratfic by domain, and
hence are considered a single-domain unit (e.g., the
inputs can drop traffic received for that domain). How-
ever, cach AXRI (and AXCI) input may stop forwarding,
all traffic to 1ts associated ASU for a given interval, as the
ASUs go through a clearing operation that removes the
state of the failed domain (described i more detail
below). Note that once this clearing operation begins,
the ASUs will not expect any further packets from the
falled domain (until 1t has been completely recovered
and restarted); hence, the input units should be halted as
quickly as possible (e.g., within a few cycles of detecting
a fault).

The ASUs: each ASU recetves requests from all of the

domains 1n the system. The resources for the faulty
domain need be cleared; e.g., 1f any one CPU in a domain
sends malformed packets, the entire domain needs to be
shut down, and all of the directory information for that
domain needs to be cleared from all of the ASUs of all of
the switch chips (in parallel). However, the directory

information for all of the other domains needs to be
preserved. Thus, the ASUs are considered “multi-do-
main’” units, and continue operating normally after the
faulty domain’s resources have been cleared.

The AXRI and AXCI outputs: the AXRI and AXCI outputs

receive packets destined for all CPUs and domains from
the ASUSs, and hence are considered multi-domain unaits.
The AX*I outputs continue runmng, but because the
ASU clearing operation invalidates all requests for the
faulty domain 1n its request butiers (as described below),
the AX*]I outputs can continue to output the tratfic for
the other domains without fear of propagating faults
from the faulty domain.

The AXO mputs: the mputs and outputs of the AXO units

are also considered separately. The 1nputs of the AXO
units recerve packets destined for multiple domains from
the ASUs, and hence are considered multi-domain unaits.
The AXO units may have some packets queued up for a
domain that 1s going 1mnto CeaseOp, and hence need to
ensure that such packets are cleared. The links for a
faulty domain will typically have already been
CeaseOp’d (e.g., halted), so the clearing process for the
AXO units involves inspecting their bullers for any
requests destined for such domains, and invalidating
such packets. After packets for the faulty domain have

US 9,256,500 B2

9

been discarded from the mput queue, the AXO unit can
continue to operate normally (e.g., sending request trai-
fic for other domains).

The AXO outputs and OQUs: Each AXO output and OQU
1s associated with exactly one CPU, and hence, as for the
IQUs, are single-domain units. More specifically, the
AXO outputs and OQUSs associated with a faulty domain

can be halted, while the AXO outputs and OQUSs asso-
ciated with non-faulty domains can continue to operate

normally.
TABLE 1
CeaseOp CeaseOp Reset

Unit Class Type Type Action for CeaseOp

IQU single link link Link 1s down; halt packet flow
(within x cycles)

FXU single link Continue operation (packets
from faulty link will
eventually halt due to lack
of credits)

AX*] single link link Halt packet flow

(input) (within x cycles); stop
requesting to output link

AX*] multi Continue operation

(output)

ASU multi domain Continue operation; for
CeaseOp domain, perform
clearing operation
(described below)

AXO multi link Continue operation; for

(1nput) CeaseOp link, invalidate &
discard all packets in mput
queues that are destined to
that output lLink

AXO single link Continue operation

(output)

OQU single link link Link 1s down; halt packet flow

Table 1 summarizes how each unmit handles a CeaseOp for a
specific domain. Single-domain units (such as the IQU) can
be selectively disabled to stop sending packets on a per-CPU
basis for the set of CPUs that are part of a faulty domain.
Multi-domain units (such as the ASU) continue operation for
the set of domains that are not faulty after clearing resources
for any faulty domains.
Detecting and Reporting Errors

In some embodiments, 1solating errors to individual
domains 1nvolves detecting a fault and flagging an appropri-
ate CeaseOp. For 1nstance, depending on where 1n a switch
chip an error 1s detected, a detecting unit may 1nitiate either a
domain CeaseOp or a link CeaseOp. For example, an OQU
may determine that its queue 1s not making progress, deter-
mine that its output link has failed (e.g., by detecting a multi-
bit error, protocol violation, illegal address outside of the
domain, etc.), and then flag a CeaseOp for that link, thereby
elfectively ceasing communication on that link. Another
alternative example involves detecting a link failure via a
timeout 1n a switch; upon detecting that an outgoing packet 1s
elfectively stuck (e.g., hasn’t been sent for some time 1nterval,
perhaps due to a hardware fault in the credit management
system that provides tlow control for the link), an AXO switch
may also determine that an output link 1s not properly sending
packets, and tlag a CeaseOp for that link. An event-reporting
hierarchy translates a received link CeaseOp into (poten-
tially) a multi-link CeaseOp and a single domain CeaseOp,
which 1n turn lead to a set of halts and clearing operations for
all (or, potentially, in some scenarios and/or implementations,
a subset) of the multi-domain units.

Consider another example, this time for a domain
CeaseOp. A request that 1s sent by a CPU and recerved by an

10

15

20

25

30

35

40

45

50

55

60

65

10

ASU 1s tracked 1 a “scoreboard” that keeps track of all
outstanding requests and ensures that the requests complete
successiully. The ASU generates a set of instructions to other
CPUs (based on the nature of the request), and then tracks the
set and timeirame of expected responses in the scoreboard.
The ASU determines whether an expected response 1s not
received within a certain timeframe, and 11 so, flags the miss-
Ing response as a request timeout and triggers a CeaseOp for
the domain that generated the request.

FIG. 3 1llustrates an exemplary error-reporting system for a
switch chip. A central error-handling unit 300 collects infor-
mation from all of the units of the switch chip 310. As men-
tioned above, errors may be detected at the scope of a specific
link or at the scope of adomain. Each umit may also determine
whether an error 1s fatal or non-fatal. Consider first the error

handling for the dedicated logic for a link. The link logic

determines whether an error 1s fatal 312 or non-fatal 314. The
reported error goes through a link-to-domain mapping that
maps the link to a specific domain (e.g., the system maintains
mappings of links to domains, as well as domains to links),
and 1s then reported to central error-handling unit 300. In the
case of a fatal error 312, central error-handling unit 300
responds to the fatal 1ssue 302 by initiating a domain CeaseOp
for that domain 303 and as well as appropnate link CeaseOps
for all of the links 1n that domain 304. Note that the domain
CeaseOp 1s broadcast to the appropriate units on the switch
chip (which take the appropriate actions, as described above),
and may also be broadcast to other switch chips and/or CPUs
in the system. In scenarios with link failures, another switch
chip not recerving a failure message due to a failed link 1s also
likely to detect the failed link and 1nitiate a fatal error for the
domain, thereby still propagating the fact that the domain
needs to be halted.

The dedicated logic for multi-domain units can directly
determine a domain involved 1n an error, and hence does not
need to go through a link-to-domain mapping. Instead, the
dedicated logic directly reports a fatal 316 or non-fatal 318
error for a domain to central error-handling unit 300, which as
betfore (1n the case of a fatal error 316) can 1nitiate a domain
CeaseOp 303 and appropriate link CeaseOps 304. In some
instances, an error (€.g., a fatal error 320 or a non-fatal error
322) may be raised by common logic that handles all
domains, or a fatal error may be detected that cannot be
mapped to a specific domain; such situations typically trigger
a fatal error for all domains, thereby effectively stopping the
entire multi-CPU system. In general, switch chip implemen-
tations strive to minimize such common logic and indetermi-
nate-domain errors as much as possible, because of these
consequences. For instance, an ASU scoreboard may include
special error-correcting code (ECC) checksum fields that pro-
tect a number of bits of information for each transaction held
in the scoreboard (e.g., protecting the address, request type,
associated domain, and other information). Note that if a
single checksum were used to protect all of this information,
data corruption 1n the checksum or the checksummed infor-
mation could lead to uncertainty of the source domain, which
could lead 1n turn to a CeaseOp for all of the domains. Hence,
some 1mplementations may include two or more checksums,
where one checksum covers the bits which determine the
cluster (e.g., the domain) to which the request belongs, and
one or more additional checksums cover the other informa-
tion. In such an implementation, situations in which the
domain bits or domain checksum are corrupted would still
lead to all of the domains being stopped, but corruption for
any of the other bits would only result in a CeaseOp for a
single domain.

US 9,256,500 B2

11

Central error-handling unit 300 secks to ensure that any
potential data corruption does not reach persistent storage
(e.g., the IO subsystem for the multi-CPU system). Central
error-handling unit 300 gathers information for non-fatal
1ssues 306, and can then send an mterrupt to a service pro-
cessor 308, which may look at system state to determine
potential 1ssues and reconfiguration options. Sumilarly, in the
case ol a fatal 1ssue 302, central error-handling unit 300
attempts to capture enough information to identity the source
of the fault, 1n the hopes that a service processor can deter-
mine how to remedy the fault and continue to use the
resources of the halted domain. For instance, upon determin-
ing that one CPU 1s causing a large number of errors, the
service processor may disable that CPU and restart the
domain without the faulty hardware (e.g., the restarted
domain will have one less CPU). Alternatively, 11 the service
processor determines that the source of the problem 1s a given
memory associated with a CPU, 1t may take the memory
offline and restart the domain (e.g., leaving the CPU associ-
ated with the faulty memory operational, but having 1t load 1ts
cache via other CPU’s caches and/or memories). In one more
example, 1f the service processor determines that the source
of the problem 1s a given link between a CPU and another
CPU or switch chip, the service processor may disable this
link, and have the chips communicate via another redundant
or multi-hop link.

In some embodiments, ensuring domain 1solation involves
clearing out resources 1n switch chip units before CPUs can
detect a problem. In some switch chip implementations, this
involves using a set of ordered timeouts to ensure that errors
are resolved with minimal disruption and propagation. For
instance, consider a set of timeouts for an AXO switch and an
ASU scoreboard. An AXO switch (1n the XBU umnit, as illus-
trated 1n FI1G. 1) that 1s handling ASU packets may include a
timeout for any packet that 1s being sent to an output port.
These AXO timeouts prevent an error (in one domain) from
backing up the AXO and eventually the ASU. The ASU
scoreboard implements timeouts for all of the transactions
that 1t generates and for which 1t expects additional comple-
tion and/or response packets. When a timeout occurs for one
of these transactions, the ASU logs relevant data (e.g., into a
central error-code register) and clears the scoreboard entry.
The AXO timeout interval may be configured to be shorter
than the ASU timeout interval, to allow the packet flow a
chance to clear before the ASU detects a timeout; otherwise,
the ASU may erroneously detect a timeout 1n an unrelated
domain. Furthermore, having the AXO time out before the
ASU facilitates clearing stuck packets from the AXO’s input
queues (and returming internal flow-control credits to the
ASU). For example, a hierarchy of timeouts 1n the system
may be configured as:

AXO timeout<ASU timeout<PCle Timeout<<CPU tim-
eout
(where PCle 1s a peripheral component bus used to access I/O
devices). In general, a fatal error for a domain will typically
result 1n the domain crashing (e.g., being halted, cleared,
possibly reconfigured, and restarted), but choosing appropri-
ate timeout intervals can speed up the process of detecting and
clearing blockage so that other domains can carry on process-
ing using the shared resources. PCle and CPU timeouts are
visible atthe operating-system level; having shorter AXO and
ASU timeouts facilitates temporarily ceasing operation,
clearing blocked resources, and resuming operation before
the operating systems and CPUs of other domains time out,
thereby ensuring that timeouts do not propagate among

10

15

20

25

30

35

40

45

50

55

60

65

12

domains. Note that individual switch chip units may still see
briel blockage and/or delays, but any blocks should be

quickly cleared.
Clearing ASUs

During a domain CeaseOp, each ASU needs to clear any
requests for any domains that are being reset. CeaseOps may
be signaled using a multi-bit bus, where each bit represents a
domain. Once a CeaseOp signal 1s recerved, an ASU 1nitiates
a hardware domain reset process (1llustrated in FI1G. 4A) that
clears all of the requests for any specified domains from the
ASU. Structures 1n the ASU are cleared 1n order from umit
input to output, to msure that a request does not miss being
cleared. First, the ASU clears all entries for a failed domain
from 1ts input request FIFO (IRF) (operation 400), which is a
first-1n, first-out (FIFO) buffer between the AXRI and ASU
that holds requests coming into the ASU from the AXRI
switch. Next, the ASU clears out 1ts scoreboard of any entries
associated with the failled domain (operation 410). Then, the
ASU clears any packets related to the failed domain from the
forward request generator (FRG) (operation 420), which gen-
erates (and queues) requests from the ASU to the CPUs (e.g.,
requesting cache lines, etc). All of the packets for the faulty
domain are detected and imnvalidated (e.g., discarded) during
this process. As mentioned previously, the AXRI and AXCI
inputs to the ASU are halted prior to the clearing operation to
ensure that no new packets for the failed domain can enter the
ASU as 1t clears. Hence, after the clearing operation has
completed, the system 1s assured that all of the packets for the
falled domain have been purged from the ASU. After all of the
requests for a domain have been cleared from the ASU, a
service processor can reset the directory for each CPU i1n that
domain.

In some embodiments, during each step of the clearing
process, an ASU may cycle through a “cluster-to-domain”
table (illustrated 1n FIG. 4B) that maps CPU identifiers to
specific domains. When the domain of an entry 1n the table
matches a current domain undergoing CeaseOp, a clear signal
and a CPU identifier are provided to the structure being
cleared. In such implementations, the structures are cleared
on a CPU-by-CPU basis. Note that the clearing process may
include an additional delay after the last CPU 1n the table 1s
checked and the process proceeds to the next clearing state, to
allow any 1n-flight transactions which may have been missed
to reach the next structure (where they will then subsequently
be cleared). Note also that some implementations may pre-
vent any requests from being installed 1n the ASU scoreboard
during a CeaseOp to prevent any race conditions that are
related to invalidating a request 1n the scoreboard, installing a
new request in the same scoreboard entry, and then recerving
indication of that scoreboard entry being processed by the
FRG.

Note that multiple domains may have errors (and hence
trigger CeaseOps) at the same time, and as a result each ASU
may need to perform the clearing operation illustrated 1in FIG.
4A for each domain that 1s experiencing a CeaseOp. For
instance, the clearing process may involve going through the
above-described clearing process one domain at a time, clear-
ing out packets for each CPU 1n that domain before moving
on to the next domain. Alternatively, the clearing process may
process all of the packets for all of the failed domains 1n each
stop of the process (of FIG. 4A), thereby only going through
the clearing operations once for the multiple failed domains.
Note that each unit may include logic that tracks the domains
that have been cleared, and prevents those domains from
being cleared again, until after the CeaseOp signal for that
domain has been de-asserted again.

US 9,256,500 B2

13

FIG. 5 presents a flow chart that illustrates the process of
performing physical domain error 1solation and recovery in a
multi-domain system, where the multi-domain system
includes two or more processor chips and one or more switch
chips that provide connectivity and cache-coherency support
for the processor chips, and the processor chips are divided
into two or more distinct domains. During operation, one of
the switch chips determines a fault in the multi-domain sys-
tem (operation 500). The switch chip determines an originat-
ing domain that 1s associated with the fault (operation 510),
and then signals the fault and an 1dentifier for the originating
domain to its internal units (operation 520), some of which
perform clearing operations that clear out all traffic for the
originating domain without atfecting the other domains of the
multi-domain system (operation 530).

In summary, embodiments of the present invention com-
prise techniques for providing physical domain error 1sola-
tion and recovery in a multi-domain system that includes
multiple processor chips that are divided into two or more
distinct domains. One or more switch chips provide connec-
tivity and cache-coherency support for these processor chips,
and include a set of structures that ensure that faults are
compartmentalized into an originating domain (e.g., do not
propagate to and interfere with other domains 1n the multi-
domain system, thereby improving the reliability, availabil-
ity, and serviceability of the other domains). For instance, a
switch chip may: (1) disable individual single-domain struc-
tures that are associated with the originating domain; and (2)
allow multi-domain structures to continue operation for the
set of domains that are not faulty after clearing any resources
used by the originating domain.

Computing Environment

In some embodiments of the present mvention, physical
domain error i1solation and recovery functionality can be
incorporated into a wide range of computing devices 1n a
computing environment. For example, FIG. 6 1llustrates a
computing environment 600 1n accordance with an embodi-
ment of the present invention. Computing environment 600
includes a number of computer systems, which can generally
include any type of computer system based on a micropro-
cessor, a mainirame computer, a digital signal processor, a
portable computing device, a personal organizer, a device
controller, or a computational engine within an appliance.
More specifically, referring to FIG. 6, computing environ-
ment 600 includes clients 610-612, users 620 and 621, servers
630-650, network 660, database 670, devices 680, and appli-
ance 690.

Clients 610-612 can include any node on a network that
includes computational capability and includes a mechanism
for communicating across the network. Additionally, clients
610-612 may comprise a tier 1n an n-tier application archi-
tecture, wherein clients 610-612 perform as servers (servic-
ing requests from lower tiers or users), and wherein clients
610-612 perform as clients (forwarding the requests to a
higher tier).

Similarly, servers 630-650 can generally include any node
on a network including a mechanism for servicing requests
from a client for computational and/or data storage resources.
Servers 630-650 can participate in an advanced computing
cluster, or can act as stand-alone servers. For instance, com-
puting environment 600 can include a large number of com-
pute nodes that are organized into a computing cluster and/or
server farm. In one embodiment of the present mvention,

server 640 1s an online “hot spare” of server 650. In other
embodiments, servers 630-650 include coherent shared-

memory multiprocessors.

10

15

20

25

30

35

40

45

50

55

60

65

14

Users 620 and 621 can include: an individual; a group of
individuals; an organization; a group of organizations; a com-
puting system; a group of computing systems; or any other
entity that can interact with computing environment 600.

Network 660 can include any type of wired or wireless
communication channel capable of coupling together com-

puting nodes. This includes, but 1s not limited to, a local area
network, a wide area network, or a combination of networks.
In one embodiment of the present invention, network 660
includes the Internet. In some embodiments of the present
invention, network 660 includes phone and cellular phone
networks.

Database 670 can include any type of system for storing
data in non-volatile storage. This includes, but 1s not limited
to, systems based upon magnetic, optical, or magneto-optical
storage devices, as well as storage devices based on flash
memory and/or battery-backed up memory. Note that data-
base 670 can be coupled: to a server (such as server 650), to a
client, or directly to a network.

Devices 680 can include any type of electronic device that
can be coupled to a client, such as client 612. This includes,
but 1s not limited to, cell phones, personal digital assistants
(PDAs), smartphones, personal music players (such as MP3
players), gaming systems, digital cameras, portable storage
media, or any other device that can be coupled to the client.
Note that, 1n some embodiments of the present invention,
devices 680 can be coupled directly to network 660 and can
function 1n the same manner as clients 610-612.

Appliance 690 can include any type of appliance that can
be coupled to network 660. This includes, but 1s not limited to,
routers, switches, load balancers, network accelerators, and
specialty processors. Appliance 690 may act as a gateway, a
proxy, or a translator between server 640 and network 660.

Note that different embodiments of the present invention
may use different system configurations, and are not limited
to the system configuration illustrated 1n computing environ-
ment 600. In general, any device that includes multiple pro-
cessor chips that can be split into multiple domains and com-
municate using a switch chip may incorporate elements of the
present invention.

In some embodiments of the present invention, some or all
aspects of physical domain error 1solation and recovery func-
tionality can be implemented as dedicated hardware modules
in a computing device. These hardware modules can include,
but are not limited to, processor chips, application-specific
integrated circuit (ASIC) chips, field-programmable gate
arrays (FPGAs), memory chips, and other programmable-
logic devices now known or later developed.

Note that a processor can include one or more specialized
circuits or structures that support physical domain error 1so-
lation and recovery functionality. Alternatively, operations
that facilitate physical domain error isolation and recovery
functionality may be performed using general-purpose cir-
cuits that are configured using processor mnstructions.

In these embodiments, when the external hardware mod-
ules are activated, the hardware modules perform the methods
and processes included within the hardware modules. For
example, 1n some embodiments of the present invention, the
hardware module includes one or more dedicated circuits for
performing the operations described above. As another
example, 1n some embodiments of the present invention, the
hardware module 1s a general-purpose computational circuit
(e.g., a microprocessor or an ASIC), and when the hardware
module 1s activated, the hardware module executes program
code (e.g., BIOS, firmware, etc.) that configures the general-
purpose circuits to perform the operations described above.

US 9,256,500 B2

15

The foregoing descriptions of various embodiments have
been presented only for purposes of 1llustration and descrip-
tion. They are not intended to be exhaustive or to limit the
present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled 1n the art. Additionally, the above disclosure 1s not
intended to limit the present invention. The scope of the
present invention 1s defined by the appended claims.

What is claimed 1s:
1. A computer-implemented method for performing physi-
cal domain error 1solation and recovery imn a multi-domain
system, the method comprising:
in a switch chip that provides connectivity and cache-
coherency support for two or more processor chips,
determining a fault for the multi-domain system,
wherein the multi-domain system comprises the proces-
sor chips and the switch chip, and wherein the processor
chips are divided into two or more distinct domains;

determining an originating domain of the multi-domain
system that 1s associated with the fault;

signaling the fault and an identifier for the originating

domain to one or more units in the switch chip; and
performing a clearing operation in one or more units of the
switch chip that clears out all traffic for the originating
domain without affecting the other domains of the multi-
domain system, wherein performing the clearing opera-
tion comprises:
invalidating all requests for cache lines for the originat-
ing domain that are queued at the switch chip; and
invalidating all packets queued at the switch chip that are
destined for or originating from the originating
domain.
2. The computer-implemented method of claim 1, wherein
signaling the fault and the identifier for the ornginating
domain to one or more units 1n the switch chip further com-
Prises:
halting one or more single-domain units in the switch chip
that are associated with the originating domain; and

performing the clearing operation in one or more multi-
domain units in the switch chip, wherein a multi-domain
unmt simultaneously handles traific for multiple domains
in the multi-domain system.

3. The computer-implemented method of claim 2, wherein
halting one or more single-domain units 1n the switch chip
turther comprises:

halting one or more input queuing units (IQUs) that con-

nect to processor chips that are associated with the origi-
nating domain;

temporarily halting the input packet tlow for one or more

address switch recerving units (AXRIs) and address
switch communicating units (AXClIs) during the clear-
ing operation;

halting output paths 1n one or more address switch output

unmts (AXO) that connect to processor chips that are
associated with the originating domain; and

halting one or more output queuing units (OQUs) that

connect to processor chips that are associated with the
originating domain.

4. The computer-implemented method of claim 3, wherein
performing the clearing operation for one or more multi-
domain units in the switch chip further comprises:

invalidating all of the requests that are associated with the

originating domain in one or more address serialization
units (ASUs); and

invalidating any queued packets that are associated with

the originating domain from the one or more AXOs.

10

15

20

25

30

35

40

45

50

55

60

65

16

5. The computer-implemented method of claim 4, wherein
cach ASU 1s a single unit that handles requests from multiple
domains for the multi-domain system but can selectively
clear out packet information and resources associated with
the originating domain without atfecting other domains 1n the
multi-domain system.

6. The computer-implemented method of claim 4, wherein
invalidating all of the requests that are associated with the
originating domain 1n one or more ASUs further comprises:

invalidating all of the entries for the originating domain

from an mput request FIFO for an ASU;
retiring all of the scoreboard entries for the originating
domain from a scoreboard in the ASU; and

invalidating and discarding any packets associated with the
originating domain from a forward request generator
(FRG) 1n the ASU.

7. The computer-implemented method of claim 4, wherein
determining the originating domain of the multi-domain sys-
tem that 1s associated with the fault comprises:

determining that the fault 1s associated with a specific link

between the switch chip and a processor chip; and
using a table of link-to-domain mappings to determine that
the link 1s associated with the originating domain.

8. The computer-implemented method of claim 4, wherein
determining the fault for the multi-domain system comprises
detecting a timeout for an operation 1n a switch chip unait.

9. The computer-implemented method of claim 8,

wherein the timeouts for switch chip operations are con-

figured such that a timeout interval for the AXO 1s less
than a timeout interval for an ASU scoreboard, the tim-
cout interval for the ASU scoreboard i1s less than a PCle
timeout interval, and the PCle timeout interval 1s sub-
stantially less than a processor timeout interval; and
wherein this timeout interval ordering facilitates detecting
and clearing blockages in the multi-domain system such
that the fault 1n the originating domain does not propa-
gate errors to other domains nor become visible at the
operating-system or CPU level of other domains.

10. The computer-implemented method of claim 4,
wherein determining the fault for the multi-domain system
comprises detecting a maltormed packet in the multi-domain
system.

11. The computer-implemented method of claim 4,
wherein determining the fault for the multi-domain system
comprises detecting an unsupported packet in the multi-do-
main system.

12. The computer-implemented method of claim 4,
wherein determining the fault for the multi-domain system
comprises detecting an unexpected response in an ASU.

13. The computer-implemented method of claim 4,
wherein determining the fault for the multi-domain system
comprises detecting a request from the originating domain for
an address outside the bounds of the originating domain.

14. The computer-implemented method of claim 4,
wherein the method further comprises:

detecting a second fault 1n a second domain of the multi-

domain system that 1s distinct from the originating
domain; and

simultaneously clearing out all traffic for both the second

domain and the originating domain without affecting the
other domains of the multi-domain system.

15. A multi-domain system, comprising:

two or more processor chips; and

a switch chip,

wherein the switch chip includes internal structures that

provide connectivity and cache-coherency support for
the processor chips;

US 9,256,500 B2

17

wherein the processor chips are divided into two or more

distinct domains; and

wherein the switch chip 1s configured to:

determine a fault for the multi-domain system;
determine an originating domain of the multi-domain
system that 1s associated with the fault;
signal the fault and an identifier for the originating
domain to one or more internal units in the switch
chip; and
perform a clearing operation in one or more internal
units that clears out all traific for the originating
domain without affecting the other domains of the
multi-domain system, wherein, while performing the
clearing operation, the switch chip 1s configured to:
invalidate all requests for cache lines for the originat-
ing domain that are queued at the switch chip; and
invalidate all packets queued at the switch chip that
are destined for or originating from the originating
domain.
16. The multi-domain system of claim 15, wherein signal-
ing the fault and the identifier for the originating domain to
one or more units 1n the switch chip further comprises:
halting one or more single-domain units in the switch chip
that are associated with the originating domain; and

performing the clearing operation in one or more multi-
domain units in the switch chip, wherein a multi-domain
umt simultaneously handles traific for multiple domains
in the multi-domain system.

17. The multi-domain system of claim 16, wherein halting
one or more single-domain units in the switch chip further
COmMprises:

halting one or more input queuing units (IQUs) that con-

nect to processor chips that are associated with the origi-
nating domain;

temporarily halting the input packet tlow for one or more

address switch recerving units (AXRIs) and address
switch communicating units (AXClIs) during the clear-
ing operation;

halting output paths 1n one or more address switch output

unmts (AXO) that connect to processor chips that are
associated with the originating domain; and

halting one or more output queuing units (OQUs) that

connect to processor chips that are associated with the
originating domain.

18. The multi-domain system of claim 17, wherein per-
forming the clearing operation for one or more multi-domain
units 1n the switch chip further comprises:

invalidating all of the requests that are associated with the

originating domain in one or more address serialization
units (ASUs); and

invalidating any queued packets that are associated with

the originating domain from the one or more AXOs.

19. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method for performing physical
domain error 1solation and recovery in a multi-domain sys-
tem, the method comprising;:

10

15

20

25

30

35

40

45

50

55

18

in a switch chip that provides connectivity and cache-
coherency support for two or more processor chips,
determining a fault for the multi-domain system,
wherein the multi-domain system comprises the proces-
sor chips and the switch chip, and wherein the processor
chips are divided into two or more distinct domains;
determining an originating domain of the multi-domain
system that 1s associated with the fault;
signaling the fault and an identifier for the originating
domain to one or more units in the switch chip; and
performing a clearing operation in one or more units of the
switch chip that clears out all traffic for the originating,
domain without atfecting the other domains of the multi-
domain system, wherein performing the clearing opera-
tion comprises:
invalidating all requests for cache lines for the originat-
ing domain that are queued at the switch chip; and
invalidating all packets queued at the switch chip that are
destined for or originating from the originating
domain.
20. The method of claim 1, further comprising:
for each cache line 1n a set of cache lines:
in response to determining, at a first processor chip of the
processor chips, that a cache miss has occurred for the
cache line, sending a request for the cache line from
the first processor chip to the switch chip;
at the switch chip, performing a lookup 1n a tag array
stored at the switch chip to determine that the cache
line 1s cached at a second processor chip of the pro-
cessor chips; and
storing, 1n a first buffer at the switch chip, a request for
the second processor chip to send the cache line to the
first processor chip;
sending, from the switch chip to the second processor chip,
a subset of the requests 1n the first buifer; and
recewving, at the switch chip from the second processor
chip, a set of response packets to at least some of the
requests 1n the subset, wherein, for each response packet
in the set of response packets, receiving the response
packet comprises storing, 1n a second butfer at the switch
chip, the cache line for the request 1n the subset of
requests that corresponds to the response packet,
wherein mvalidating all the requests comprises invalidat-
ing all of the requests for the second processor chip to
send the cache line to the first processor chip that are
stored 1n the first butter,
wherein invalidating all the packets comprises invalidating
all of the cache lines that are stored 1n the second buiter,
and
wherein the switch chip 1s separate and distinct from the
first processor chip, wherein the switch chip 1s separate
and distinct from the second processor chip, and wherein
the first processor chip 1s separate and distinct from the
second processor chip.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

